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Abstract

We consider a linear Schrödinger equation with a nonlinear perturbation inR
3.

Assume that the linear Hamiltonian has exactly two bound states and its eigen-
values satisfy some resonance condition. We prove that if the initial data is suffi-
ciently small and is near a nonlinear ground state, then the solution approaches to
certain nonlinear ground state as the time tends to infinity. Furthermore, the dif-
ference between the wave function solving the nonlinear Schrödinger equation
and its asymptotic profile can have two different types of decay: The resonance-
dominated solutions decay ast−1/2 or the dispersion-dominated solutions decay
at least liket−3/2. c© 2002 John Wiley & Sons, Inc.
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1 Introduction

Consider the nonlinear Schrödinger equation

(1.1) i ∂tψ = (−1+ V)ψ + λ|ψ |2ψ , ψ(t = 0) = ψ0 ,

where V is a smooth localized potential,λ is an order-1 parameter, andψ =
ψ(t, x) : R × R

3 −→ C is a wave function. Lete0 < 0 be the ground state
energy to−1+ V , and denoteH1 = −1+ V − e0. The nonlinear bound states to
the Schrödinger equation (1.1) are solutions to the equation

(1.2) (−1+ V)Q+ λ|Q|2Q = E Q .

They are critical points to the energy functional

H[φ] =
∫

1

2
|∇φ|2+ 1

2
V |φ|2+ 1

4
λ|φ|4 dx

subject to the constraint of fixedL2 norm. For each bound stateQ = QE, ψ(t) =
Qe−i Et , is a solution to the nonlinear Schrödinger equation. We may obtain a
family of such bound states by standard bifurcation theory: For eachE sufficiently
close toe0 so thatE−e0 andλ share the same sign, there is a unique small positive
solution Q = QE to equation (1.2) that decays exponentially asx → ∞; see
Lemma 2.1. We call this family thenonlinear ground statesand shall refer to it as
{QE}E.

Let

(1.3) HE = −1+ V − E + λQ2
E .

We haveHE QE = 0. SinceQE is small andE is close toe0, the spectral properties
of HE are similar to those ofH1.

Suppose the initial data of the nonlinear Schrödinger equationψ0 is near some
QE. Under rather general conditions, the family of nonlinear ground states is stable
in the sense that if

inf
2,E

∥∥ψ(t)− QEei2
∥∥

L2

is small fort = 0, it remains so for allt ; see, for example, [13] for the caseλ < 0.
See also [18, 19]. Let‖·‖L2

loc
denote a localL2 norm; a precise choice will be made

later on. One expects that this difference actually approaches zero when measured
by a localL2 norm, i.e.,

(1.4) lim
t→∞ inf

2,E

∥∥ψ(t)− QEei2
∥∥

L2
loc
= 0 .

If −1 + V has only one bound state, it is proven in [15] that the evolution will
eventually settle down to some ground stateQE∞ with E∞ close toE. (See also
[9] for another proof using techniques from dynamical systems.)

Suppose now that−1+ V has multiple bound states, say, two bound states: a
ground stateφ0 with eigenvaluee0 and an excited stateφ1 with eigenvaluee1, i.e.,
H1φ1 = e01φ1 wheree01 = e1−e0 > 0. The question is whether the evolution with
initial dataψ0 near someQE will eventually settle down to some ground stateQE∞
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with E∞ close toE. Furthermore, can we characterize the asymptotic evolution?
In this paper, we shall answer this question positively in the case of two bound
states and estimate precisely the rate of relaxation for a certain class of initial data.

We now state the main assumptions of this paper.

ASSUMPTIONA0: −1 + V acting onL2(R3) has two simple eigenvalues
e0 < e1 < 0 with normalized eigenvectorsφ0 andφ1.

ASSUMPTIONA1: Resonance condition. Let e01 = e1 − e0 be the spectral
gap of the ground state. We assume that 2e01 > |e0| so that 2e01 is in the
continuum spectrum ofH1. Furthermore, for some constantγ0 > 0 and all
reals sufficiently small,

(1.5) lim
σ→0+

(
φ0φ

2
1, Im

1

H1− σ i − 2e01− s
PH1

c φ0φ
2
1

)
≥ γ0 > 0 .

We shall use 0i to replaceσ i and the limit limσ→0+ later on.
ASSUMPTIONA2: ForλQ2

E sufficiently small, the bottom of the continuous
spectrum to−1 + V + λQ2

E, 0, is not a generalized eigenvalue; i.e., it
is not a resonance. Also, we assume thatV satisfies the assumption in
Yajima [20] so that theWk,p estimatesk ≤ 2 for the wave operatorWH =
limt→∞ eit H eit (1+E) hold fork ≤ 2; i.e., there is a smallσ > 0 such that

|∇αV(x)| ≤ C〈x〉−5−σ for |α| ≤ 2 .

Also, the functions(x · ∇)kV for k = 0,1,2,3, are−1 bounded with a
−1 bound less than 1:∥∥(x · ∇)kVφ

∥∥
2 ≤ σ0 ‖−1φ‖2+ C ‖φ‖2 , σ0 < 1 , k = 0,1,2,3.

Assumption A2 contains some standard conditions to assure that most tools in
linear Schrödinger operators apply. These conditions are certainly not optimal. The
main assumption above is the condition 2e01 > |e0| in assumption A1. The rest of
assumption A1 just consists of generic assumptions. This condition states that the
excited state energy is closer to the continuum spectrum than to the ground state
energy. It guarantees that twice the excited state energy ofH1 (which one obtains
from taking the square of the excited state component) becomes a resonance in
the continuum spectrum (ofH1). This resonance produces the main relaxation
mechanism. If this condition fails, the resonance occurs in higher-order terms and
a proof of relaxation will be much more complicated. Also, the rate of decay will
be different.

Define the notation

(1.6) 〈x〉 =
√

1+ x2 , {t}ε = ε−2n−2+20t , {t}−1/2
ε ∼ min

{
εn,n−1t−1/2

}
,

wheren = ‖ψ0‖L2 and0 = O(n2) is a positive constant to be specified later in
(6.3) of Lemma 6.1. For the moment, we remark that0 is of order 2λ2n2 times
the quantity in (1.5). The subscriptε is a small parameter to be specified in Theo-
rems 1.3 and 1.4. We shall often drop it in the proofs of Theorems 1.3 and 1.4. We
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denote byL2
r the weightedL2 spaces (r may be positive or negative),

(1.7) L2
r (R

3) ≡ {
φ ∈ L2(R3) : 〈x〉rφ ∈ L2(R3)

}
.

Our space for initial data is

(1.8) Y ≡ H1(R3) ∩ L2
r0
(R3) , r0 > 3 .

We shall useL2
loc to denoteL2−r0

. The parameterr0 > 3 is fixed, and we can choose,
say,r0 = 4 for the rest of this paper.

Our first theorem states that if the initial dataψ0 is small inY and the distance
betweenψ0 and a nonlinear ground stateQ∗ is small, then the solutionψ(t) has to
settle down to some asymptotic nonlinear ground state ast → ∞. Furthermore,
the difference betweenψ0 and the asymptotic nonlinear ground state att = ∞ is
boundedaboveby the orderO(t−1/2). Recall thatλ = O(1) is fixed.

THEOREM 1.1 Assume that assumptionsA0, A1, andA2 on V hold. Then there
are small universal positive constantsε0 and n0 > 0 such that, for any nonlinear
ground state Q∗ with mass n= ‖Q∗‖L2 < n0 and any initial dataψ0 satisfying
‖ψ0− ei20 Q∗‖Y ≤ ε2

0n2 for some20 ∈ R, there exist an energy E∞ and a function
2(t) such that‖QE∞‖L2 − n = O(ε2

0n),2(t) = −E∞t + O(log t), and

(1.9)
∥∥ψ(t)− QE∞ei2(t)

∥∥
L2

loc
≤ C(1+ t)−1/2 .

To describe more detailed behavior of the solutionψ(t), we need various spec-
tral properties of the linearized operator. All statements we make here will be
proven in Section 2. LetL be the operator obtained from linearizing the Schrö-
dinger equation (1.1) around the trivial solutionQe−i Et (see Section 2), i.e.,

(1.10) Lh = i−1
{
(−1+ V − E + λQ2)h+ λQ2(h+ h)

}
.

Notice thatL is not self-adjoint due to the conjugation. If we can decomposeh
into its real and imaginary parts, the operatorL can be written in the matrix forms

L←→
[

0 L−
−L+ 0

]
where

(1.11) L− := −1+ V − E + λQ2
E = HE , L+ = L− + 2λQ2

E .

Explicitly, we have
L( f + ig) = L−g− i L+ f .

Notice thatL is a small perturbation of the HamiltonianH1. Hence the spectral
properties ofL are closely related to those ofH1. SinceH1 has two eigenvalues, 0
ande01, we expectL to have two eigenvalues as well.

From (1.2) we haveL−QE = 0. If we differentiate (1.2) with respect toE, we
haveL+RE = QE, whereRE = ∂E QE. Let SE be the space spanned byi QE and
its tangentRE, i.e.,

(1.12) S= SE = span
R
{RE, i QE} .
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Clearly,S is the generalized eigenspace ofL with eigenvalue 0.
L has a pair of eigenvalues±i κ, whereκ is a perturbation ofe01 = e1 − e0 of

H1. The corresponding generalized eigenfunctions,u andv, are perturbations of
the linear excited stateφ1. They are real-valued functions characterized by

(1.13) L+u = κv , L−v = κu , (u, v) = 1 .

In particular, for all real numbersα andβ, we haveL2(αu + βi v) = −κ2(αu +
βi v). Thus

(1.14) Eκ(L) = span
R
{u, i v}

is the generalized eigenspace with eigenvalues±i κ.
Finally, the space of the continuous spectrum,Hc(L), is characterized by the

relation

(1.15) Hc(L) =
{

f + ig ∈ L2 : f, g real, f ⊥ QE, v; g ⊥ RE,u
}
.

We have the following spectral decomposition result, to be proven in Section 2.2.

LEMMA 1.2 (Spectral Decomposition)The space of complex-valued L2 functions
in R

3 can be decomposed as the direct sum of S,Eκ(L) andHc(L), i.e.,

(1.16) L2(R3) = S⊕ M = S⊕ Eκ(L)⊕ Hc(L) , M := Eκ(L)⊕ Hc(L) .
The decomposition is not orthogonal; the three real subspaces S,Eκ(L), and
Hc(L) are invariant underL but not under multiplication by i . The space M can
also be characterized by

(1.17) M = ME =
{

f + ig ∈ L2 : f, g real, f ⊥ QE; g ⊥ RE
}
.

From this lemma, for a fixed energyE we can decompose a wave function via
(1.16). It is more convenient for our analysis to decompose the wave function into
the following form:

(1.18) ψ(t, x) = [QE(x)+ aE(t)RE(x)+ hE(t, x)] ei2(t)

with hE(t, x) ∈ ME. We shall prove in Lemma 2.2 the existence and uniqueness
of such a decomposition forψ(t, x) near a ground state. If we allow the energyE
to vary, it is possible to chooseE such that the component along theRE direction
vanishes; i.e., there existsE(t) such that

(1.19) ψ(t, x) = [QE(t)(x)+ h(t, x)]ei2(t)

with hE(t, x) ∈ ME; see Lemma 2.3. We can view this ground stateQE(t) as
the best approximation to the wave functionψ(t). This choice is different from
choosing the best approximation by minimizing the difference in theL2 norm
infE,2 ‖ψ(t, ·)− QEei2‖L2.

Although (1.19) can be viewed as the best decomposition of a wave function,
it introduces a time-dependent linearized operator. So for analytical purposes, it is
more convenient to work with (1.18). Notice thatQE + aE(t)RE is the first-order
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approximation ofQ(E+aE(t)). So the decomposition (1.18) can be viewed as the
best time-independent decomposition. SincehE(t, x) ∈ ME, we can write it as

(1.20) hE(t) = ζE(t)+ ηE(t) , ζE ∈ Eκ(L) , ηE ∈ Hc(L) .
Theorem 1.1 gives an upper bound to the difference between the wave function

and the asymptotic ground state. In fact, we can estimate the component along the
excited states and the continuum spectrum more precisely in the following theo-
rem:

THEOREM 1.3 Suppose the assumptions of Theorem1.1hold. Let

(1.21) ε ≡ n−1
(‖ζE0,0‖ + ‖ηE0,0‖1/2Y

) ≤ ε0 .

If we decomposeψ(t) as in(1.18)with Q= QE∞ being the profile at time t= ∞
and h(t) = ζ(t)+ η(t) as in(1.20), then we have

‖ζ(t)‖L2 ≤ C {t}−1/2 , |a(t)| ≤ C {t}−1 ,

‖η(t)‖L4 ≤ C {t}−3/4+σ , ‖η(t)‖L2
loc
≤ C {t}−1 ,

(1.22)

where{t} = {t}ε andσ = 0.01.

Theorem 1.3 provides rather precise upper bounds on the asymptotic evolution.
These bounds are optimal for a large class of initial data described by the next
theorem. In the following, for two functionsf andg, we denote

(1.23) f ≈ g if C1 ‖g‖ ≤ ‖ f ‖ ≤ C2 ‖g‖
for some constantsC1,C2 > 0.

THEOREM 1.4 (Resonance-Dominated Solutions)Assume that assumptionsA0
throughA2 on V hold. Suppose that the initial dataψ0 is decomposed as in(1.19)
with respect to the unique E0, i.e.,

ψ0 = [QE0 + ζE0,0+ ηE0,0]ei2E0,0 .

Write ζE0,0 = z0u+ i z1v and denote zE0,0 = z0 + i z1. Suppose that these compo-
nents satisfy

(1.24) ‖ψ0‖ = n < n0 , 0< ε := ‖zE0,0‖
n
≤ ε0 , ‖ηE0,0‖Y ≤ ε2n2 ,

where n0 andε0 are the same constants as in Theorem1.1. Then the conclusions
of Theorem1.1and Theorem1.3hold. In particular, there is a limit frequency E∞
such that the estimates(1.22)hold for {t} = {t}ε. If ζ(t) = ζE∞(t) denotes the
excited state component with respect to the linearized operator with energy E∞,
the lower bound holds as well, and we have

(1.25) ζE∞(t) ≈ {t}−1/2
ε .

Furthermore, for allλ > 0 or λ < 0, we have‖QE∞‖2 > ‖QE0‖2 and

(1.26) ‖QE∞‖2L2 = ‖QE0‖2L2 + 1

2
‖ζE0,0‖2L2 + o(ε2n2) .
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Solutions satisfying(1.25)are calledresonance-dominated solutions.

Roughly speaking, Theorem 1.4 states that, if the excited state component is
much bigger than the dispersive component, then the decay mechanism is domi-
nated by resonance. Furthermore, (1.26) states that approximately half of the prob-
ability density of the excited state,|ζE0(x)|2/2, is transferred to the ground state
independently of the sign ofλ. Since the total probability is conserved, the other
half is transferred to the dispersive part.

We have decomposed the wave function according to the optimal energyE0

(1.19). Alternatively, we can first fix an energyE∗ and decompose the initial data
ψ0 as

(1.27) ψ0 = [QE∗ + a∗RE∗ + ζ∗ + η∗]ei2∗ .

If the components satisfy

(1.28)
‖ψ0‖ = n < n0 , ‖ζ∗‖ = εn , 0< ε ≤ ε0 ,

‖η∗‖Y ≤ Cε2n2 , |a∗| ≤ ε2n2 ,

then we can re-decomposeψ0 as in Theorem 1.4 with respect toE0 satisfying the
estimate (1.24); see Lemma 2.3. This implies that the set of all suchψ0 contains
an open setwith nonlinear ground states in its boundary. Therefore, the class of
resonance-dominated solutions is in a sense large.

The condition (1.24) is very subtle. It states that the excited-state component
is much bigger than the dispersive component with respect to a decomposition
according toL. SinceL differs from HE by ordern2, the condition (1.24) does not
hold for a decomposition ofψ0 with respect to the linear HamiltonianHE.

Finally, the following existence result shows that the resonance-dominated so-
lutions are not all solutions. We expect that the dispersion-dominated solutions
constructed by the following theorem are rare:

THEOREM1.5 (Dispersion-Dominated Solutions)Let assumptionsA0 throughA2
apply on V . Let Z= H2∩W2,1(R3). For a given nonlinear ground state QE∞ with
‖QE∞‖ = n ≤ n0, let E= E∞ andL = LE∞ . For any givenξ∞ ∈ Hc(L)∩Z with
sufficiently small Z norm, there exists a solutionψ(t) of (1.1)and a real function
θ(t) = O(t−1) for t > 0 so that

‖ψ(t)− ψas(t)‖H2(R3) ≤ Ct−2 ,

where

ψas(t) = QEe−i Et+i θ(t) + e−i EtetLξ∞ .
In particular,ψ(t)− QE∞e−i Et+i θ(t) = O(t−3/2) in L2

loc.

Theorem 1.5 constructs dispersion-dominated solutions based on the operator
etL. The scattering property of this operator is very similar to the standard operator
ei1t . In particular, forχ∞ ∈ Z̃ = H2(R3) ∩ W2,1(R3, (1+ |x|4)dx) sufficiently
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small in Z̃ with χ̂∞(0) = 0 and∇χ̂∞(0) = 0, the same statement holds if we
replaceψas by

ψ̃as(t) = QEe−i Et + ei1tχ∞ .
This will be shown in the proof of Theorem 1.5.

The resonance solutions were first observed by Buslaev and Perel′man [3] for
some one-dimensional Schrödinger equation with two bound states and a higher
nonlinear term (we thank the referee for supplying us with this reference). In the
physical dimensiond = 3, this type of solution was proven by Soffer and Weinstein
in an important paper [16], but for real solutions to the nonlinear Klein-Gordon
equation

(1.29) ∂2
t u+ B2u = λu3 , B2 := (−1+ V +m2) ,

whereλ is a small nonzero number. Assume thatB2 has onlyoneeigenvector (the
ground state)φ, B2φ = �2φ, with the resonance condition� < m < 3� (and
some positivity assumption similar to that appearing in assumption A1). Rewrite
real solutions to equation (1.29) asu = aφ + η with

a(t) = ReA(t)ei�t , ReA′(t)ei�t = 0 .

ThenA andη satisfy the equations

Ȧ = 1

2i�
e−i�t

(
φ, λ(aφ + η)3)(1.30)

(∂2
t + B2)η = Pcλ(aφ + η)3 .(1.31)

Theorem 1.1 in [16] states that all solutions decay as

A(t) ∼ 〈t〉−1/4 , ‖η(t)‖L∞ ∼ 〈t〉−3/4 .

In particular, the ground state is unstable and will decay as a resonance with
ratet−1/4.

We first remark that the proof in [16] has only established the upper bound
t−1/4. Furthermore, a universal lower bound of the formt−1/4 is in fact incorrect.
From the previous work of [1, 5], it is clear that dispersion-dominated solutions
decaying much faster thant−1/4 exist. Similar to Theorems 1.4 and 1.5, we have
the following two cases:

(1) η(0)� A(0): The dominant term on the right side of (1.30) isλa3φ3.
(2) η(0)� A(0): The dominant term isλη3.

In case 2 another type of solutions arises, namely, those with decay rate

A(t) ∼ 〈t〉−2 , ‖η‖L∞ ∼ 〈t〉−3/2 .

We shall sketch a construction of such solutions at the end of Section 8.
Notice that all solutions in [16] decay as a function oft . Therefore, we can view

[16] as a study of asymptotic dynamics around a vacuum. Although most works
concerning asymptotic dynamics of nonlinear evolution equations have been con-
centrated on cases with vacuum as the unique profile att = ∞, more interesting
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and relevant cases are asymptotic dynamics around solitons (such as the Hartree
equations [5]; see also [2, 3]). The soliton dynamics have extra complications
involving translational invariance. The current setting of nonlinear Schrödinger
equations with local potentials eliminates the translational invariance and consti-
tutes a useful intermediate step. This greatly simplifies the analysis but preserves a
key difficulty that we now explain.

Recall that we need to approximate the wave functionψ(t) by nonlinear ground
states for allt . Since we aim to show that the error between them decay liket−1/2,
we have to track the nonlinear ground states with accuracy at least liket−1/2. Al-
though the nonlinear ground states approximating the wave functionψ(t) can in
principle be defined, say, via equation (1.4) or (1.6), neither characterization is
useful unless we know the wave functionsψ(t) precisely. Furthermore, even as-
suming we can track the approximate ground states reasonably well, the linearized
evolution around these approximate ground states will be based ontime-dependent,
non-self-adjointoperatorsLt . At this point we would like to mention the approach
of [15] based on perturbation around the unitary evolutioneit H1, whereH1 is the
original self-adjoint Hamiltonian. While we do not know whether this approach
can be extended to the current setting by adding the ideas of [16] (it was announced
in [16] that its method can be extended to (1.1) as well), such an approach can be
difficult to extend to the Hartree or other equations with nonvanishing solitons. The
main reason is that these dynamics are not perturbations of linear dynamics.

We believe that perturbation around the profile att = ∞ is a more natural
setup. In this approach, at least we do not have to worry about the time dependence
of approximate ground states in the beginning. But the linearized operatorL =
L∞ is still non-self-adjoint, and it does not commute with the multiplication by
i . So calculations and estimates based onL are rather complicated. Our idea
is to map this operator to a self-adjoint operator by a bounded transformation in
Sobolev spaces. This map in a sense brings the problem back to the self-adjoint
case for various calculations and estimates. Another important input we used is the
existence and boundedness of the wave operator forL. The boundedness of the
wave operator in Sobolev spaces for the standard one-body Schrödinger operator
is a classical theorem of Yajima [20]. In the current setting it was recently proved
by Cuccagna [4]. See Section 2 for more details.

The next step is to identify and calculate the leading oscillatory terms of the
nonlinear systems involving the bound-states components and the continuum-spec-
trum components. The leading-order terms, however, depend on the relative sizes
of these components, and thus we have two different asymptotic behaviors: The
resonance-dominated solutions and the dispersion-dominated solutions. Finally,
we represent the continuum spectrum component in terms of the bound-states com-
ponents, and this leads to a system of ordinary differential-integral equations for
the bound-states components. This system can be put into a normal form, and the
size of the excited-state component can be seen to decay ast−1/2. Notice that the
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phase and the size of the excited-state component decay differently. It is thus im-
portant to isolate the contribution of the phase in the system. Finally, we estimate
the error terms using estimates of the linearized operators. These estimates are
based on standard methods from scattering theory [6, 14, 16] and estimates on the
wave operators [4, 20].

2 Preliminaries

We first fix our notation. LetHk denote the Sobolev spacesWk,2(R3). The
weighted Sobolev spaceL2

r (R
3) is defined in (1.7). The inner product( , ) is

(2.1) ( f, g) =
∫
R3

f̄ g d3x .

For two functionsf andg, we denote

f = O(g) if ‖ f ‖ ≤ C ‖g‖ for some constantC > 0 .

We will denote, as in (1.23),

f ≈ g if C1 ‖g‖ ≤ ‖ f ‖ ≤ C2 ‖g‖ for some constantsC1,C2 > 0 .

For a double indexα = (α0, α1), α0 andα1 nonnegative integers, we denote

(2.2) zα = zα0 z̄α1 , |α| = α0+ α1 , [α] = −α0+ α1 .

For example,z(32) = z3z̄2. We will definez = µ−1 p whereµ = ei κt . Hence
zα = µ[α]pα. In what follows|α| = 2 and|β| = 3.

2.1 Nonlinear Ground States Family
We establish here the existence and basic properties of the nonlinear ground-

states family mentioned in Section 1. Our statement and proof are also valid for
nonlinear excited states.

LEMMA 2.1 Suppose that−1+V satisfies assumptionsA0 andA2. Then there is
an n0 sufficiently small such that for E between e0 and e0+λn2

0 there is a nonlinear
ground state{QE}E solving(1.2). The nonlinear ground state QE is real, local,
and smooth,λ−1(E − e0) > 0, and

QE = nφ0+ O(n3) , n ≈ C[λ−1(E − e0)]1/2 , C =
(∫

φ4
0 dx

)−1/2

.

Moreover, we have RE = ∂E QE = O(n−2)QE + O(n) = O(n−1) and∂2
E QE =

O(n−3). If we define c1 ≡ (Q, R)−1, then c1 = O(1) andλc1 > 0.

PROOF: Suppose thatQ = QE is a nonlinear ground state satisfying

(−1+ V − e0)Q+ λQ3 = E′Q
whereE′ = E−e0 is small. WriteQ = nφ0+h with realh ⊥ φ0. Thenh satisfies

(2.3) (−1+ V − e0− E′)h+ λ(nφ0+ h)3 = E′nφ0 .
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Taking the inner product withφ0, we see that it is necessary thatλ andE′ be of the
same sign. ForE′ sufficiently small, since the spectral gap of the operator−1 +
V−e0 is of order 1, the same conclusion holds for the operator−1+V−e0− E′.
Thus we can check directly from (2.3) that

(2.4) ‖QE‖ := n2 ∼ λ−1E′ , ‖h‖2 = O(λn3) .

The existence of solutionsh andE′ can be established from the implicit function
theorem, or the solutions can simply be obtained by a contraction mapping argu-
ment.

By differentiating the equation ofQE with respect toE, we have

(2.5) L+RE = QE , L+ := −1+ V − E + 3λQ2 .

Denote by|0〉 the ground state toL+ with L2 norm 1 and eigenvalue≈ λn2. We
have

QE = O(n)|0〉 + O(λn3) .

Hence (using the spectral gap)

R= (L+)−1[O(n)|0〉 + O(λn3)] = O

(
n

λn2

)
|0〉 + O(λn3)

= O(λ−1n−2)Q+ O(n) .

(2.6)

Hencec1 = O(1). Since the sign of the ground-state energy toL+ is the same as
λ, we haveλ(Q, R) > 0. By differentiating the equation, we can prove∂2

E QE =
O(n−3) in a similar way. �

SupposeQE = O(n) anda is a small parameter with|a| � n. By Taylor
expansion and∂2

E QE = O(n−3), we have

(2.7) QE+a = QE + aRE + O(n−3a2) = QE + O(n−1a) .

Since(aRE)
2 = O(n−2a2), from (2.7) we also have

(2.8) ‖QE+a‖2 = ‖QE‖2+ 2a(QE, RE)+ O(n−2a2) .

We will need the following renormalization lemmas. We will formulate them
in terms of nonlinear ground states, although they also hold for nonlinear excited
states. LetY1 be eitherY, defined in (1.8), orL2−r0

, defined in (1.7) withr0 > 3.
Recall from Lemma 1.2 thath ∈ M if and only if Reh ⊥ Q and Imh ⊥ R.

LEMMA 2.2 Letψ ∈ Y1 be given with‖ψ‖Y1 = n, 0 < n ≤ n0. Suppose that for
some nonlinear ground state QEei2 we have‖ψ − QEei2‖Y1 ≤ Cτn, 0≤ τ ≤ ε0.
Then there are unique small a,θ , and h such that

(2.9) ψ = [QE + aRE + h] ei (2+θ) , h ∈ ME .

Furthermore,‖QE‖Y1 >
9
10n, a= O(τn2), θ = O(τ ), and h= O(τn).
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PROOF: By consideringψe−i2 instead ofψ , we may assume2 = 0. Write
ψ = Q + k with a smallk = O(τn). We want to solve smalla andθ such that
h = ψe−i θ − QE − aRE ∈ ME, i.e.,[

(Q,Re(Q+ k)e−i θ − Q− aR)
(R, Im[(Q+ k)e−i θ ])

]
=

[
0
0

]
,

with the left side of order[ τn2

τ
] if (a, θ) = (0,0). We compute the derivative of

this vector with respect toa andθ at (a, θ) = (0,0) and obtain the matrix[−(Q, R) (Q, Im k)
0 (R,−Re(Q+ k))

]
=

[−(Q, R) O(τn2)

0 −(R, Q)+ O(τ )

]
,

which is invertible. Here we have usedQ = O(n) and R = O(n−1). Since
(Q, R) = O(1), by the implicit function theorem we can solvea = O(τn2) and
θ = O(τ ) satisfying the equation. Henceh = (QE + k)e−i θ − QE − aRE =
O(τn). �

The next lemma shows that the best decomposition as defined by (1.19) can
always be achieved for a small vector near a nonlinear ground state.

LEMMA 2.3 Let ψ ∈ Y1 with ‖ψ‖Y1 = n bounded by a small number n0, i.e.,
0 < n ≤ n0. If ψ is near a nonlinear ground state QE1e

i21 in the sense that
‖ψ − QE1e

i21‖Y1 ≤ Cτn for someτ with 0 ≤ τ ≤ ε0 andε0 small. Then there is
a unique E near E1 such that the component along the RE direction as defined by
(2.9)vanishes; i.e., there is unique smallθ and h such that

ψ = [QE + h] ei (21+θ) , h ∈ ME .

Moreover, E− E1 = O(τn2), θ = O(τ 2), and h= O(τn).
If ψ is given explicitly asψ = [QE1 + a1RE1 + h1]ei21 with h1 ∈ ME1 and

a1 = O(τ 2n2), we have

(2.10) |E − E1| ≤ 5

4
|a1| = O(τ 2n2) , θ = O(τ 3) , h− h1 = O(τ 2n) .

PROOF: As in the proof of the previous lemma, we may assume21 = 0. Write
ψ = QE1 + k1 with h1 ∈ ME1 and k1 = a1RE1 + h1 = O(τn) small. Let
E = E1 + γ . We want to find smallγ andθ such thath = ψe−i θ − QE ∈ ME,
that is,

(2.11)

[
(QE1+γ ,Re(QE1 + k1)e−i θ − QE1+γ )

(RE1+γ , Im[(QE1 + k1)e−i θ ])
]
=

[
0
0

]
.

When(γ, θ) = (0,0), the left side equals[
(QE1,a1RE1)

0

]
, which is of order

[
τn2

0

]
.

The derivative of this vector with respect toγ andθ at (γ, θ) = (0,0) is given by
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(RE1,−QE1 + Rek1) (QE1, Im k1)

(∂E RE|E=E1, Im k1) (RE1,−Re(QE1 + k1))

]
=[−(Q, R) O(τn2)

O(τn−2) −(R, Q)+ O(τ )

]
,

which is invertible. Here we have usedQ = O(n), R = O(n−1), and∂E RE =
O(n−3). By the implicit function theorem we can solveγ = O(τn2) andθ =
O(τ 2) satisfying the equation. Henceh = (QE1 + k1)e−i θ − QE1+γ = O(τn).

Finally, whena1 = O(τ 2n2), the vector on the left side of (2.11) at(γ, θ) =
(0,0) is of order [

τ 2n2

0

]
.

Hence we can solveγ = O(τ 2n2) and θ = O(τ 3). We also haveh − h1 =
(QE1+a1RE1+h1)e−i θ −h1−QE1+γ = O(nθ)+O(n−1a1) = O(τ 2n). The last
statement is proven. �

The next lemma provides estimates on the components in (1.18) when the ref-
erence nonlinear ground state varies.

LEMMA 2.4 Letψ = [QE1 + a1RE1 + h1]ei21 with ‖QE1‖Y1 = n ≤ n1, ‖h1‖Y1 =
ρ ≤ ε1n, and|a1| ≤ Cρ2. Suppose E2 = E1 + γ with |γ | ≤ Cρ2. By Lemma2.2
we can rewriteψ uniquely with respect to E2 as

(2.12) ψ = [
QE2 + a2RE2 + h2

]
ei22 ,

where h2 ∈ ME2, a2, andθ = 22−21 are small. We have the estimates

θ = O(n−3ργ ) ,

E1+ a1− E2− a2 = O(n−1ργ ) ,

h1− h2 = O(n−2ργ ) .

(2.13)

Notice that n−3ργ ≤ Cε3
1 is small.

PROOF: Note|γ | ≤ Cρ2 ≤ ε2
1n2. Using (2.7) we have

(2.14)
QE1 − QE2 = O(n−1γ ) , RE1 − RE2 = O(n−3γ ) ,

λQ2
E1
− λQ2

E2
= O(γ ) .

Since

e−i21ψ − QE2 = [QE1 − QE2] + a1RE1 + h1

= O(n−1γ )+ O(ρ2n−1)+ O(ρ) = O(ρ) ≤ Cε1n ,

Lemma 2.2 is applicable withτ = ρ/n, and we have (2.12) with

a2 = O(τn2) = O(nρ) , h2 = O(τn) = O(ρ) , θ = O(τ 2) = O(n−2ρ2) .

We have

(2.15) [QE1 + a1RE1 + h1]e−i θ = QE2 + a2RE2 + h2 .
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Denote by (RS) the right side and by (LS) the left side. Taking the imaginary part
and then taking the inner product withRE2, we have

(RE2, Im(RS)) = (RE2, Im h2) = 0 ,

sinceh ∈ ME2, and

(RE2, Im(LS)) = (RE2, QE1 + a1RE1 + Reh1)(− sinθ)+ (RE2, Im h1) cosθ .

Since(RE2, QE1 + a1RE1 + Reh1) ≈ 1 and

(RE2, Im h1) = (RE1 + O(n−3γ ), Im h1) = 0+ O(n−3ργ ) ,

we conclude that sinθ+O(n−3ργ ) = 0. Sinceθ is small, we haveθ = O(n−3ργ ).
Write ei θ = 1+ O(θ) in (2.15). Since

[QE1 + aRE1 + h1]O(θ) = O(n)O(n−3ργ ) ,

equation (2.15) gives

(2.16) QE1 + a1RE1 − QE2 − a2RE2 = O(n−2ργ )+ h2− h1 .

Taking the real part and then taking the inner product withQE2, we get from the
right sideO(n · n−2ργ )+ 0+ (QE1 + O(n−1γ ), h1) = O(n−1ργ ). On the other
hand, by (2.7)

QE1 + a1RE1 − QE2 − a2RE2

= [
QE2 − γ RE2 + O(γ 2n−3)

]+ a1
[
RE2 + O(γn−3)

]− QE2 − a2RE2

= (−γ + a1− a2)RE2 + O(n−3ρ2γ ) ,

where we have usedE1 = E2− γ . Hence we conclude

(E1− E2+ a1− a2)(QE2, RE2)+ O(n−3ρ2γ ) = O(n−1ργ ) .

Since(QE2, RE2) = O(1), we haveE1− E2+a1−a2 = O(n−1ργ ). From (2.16),
we thus have

h2− h1 = O(n−1ργ )RE2 + O(n−3ρ2γ )− O(n−2ργ ) = O(n−2ργ ) .

�

2.2 Linearized Operator: Spectral Analysis

We now study the spectral properties ofL. In this section, we identifyC with
R

2 and the multiplication byi becomes

J =
[
0 −1
1 0

]
.

Recall the definition ofM and the decompositionL2(R3) = S⊕ M . This decom-
position is nonorthogonal and presents some problems in analysis. LetX be the
space orthogonal toQ,

X = 5(L2) = [
φ ∈ L2(R3) : φ ⊥ Q

] ; X←→
[

Q⊥
Q⊥

]
,



DYNAMICS OF NLS 167

where5 is the orthogonal projection that eliminates theQ direction:

5h = h− (Q, h)

(Q, Q)
Q .

We claim that there is a “nice” operatorU from M to X and a self-adjoint operator
A that is a perturbation ofH1 such that

(2.17) L∣∣
M
= −U−1J AU .

Let PM be the projection fromL2 onto M according to the decomposition
L2(R3) = S⊕ M . It has the matrix form

PM :
[

L2

L2

]
−→

[
Q⊥
R⊥

]
, PM =

[
P1 0
0 P2

]
,

where the projections are given by

P1 : L2 −→ Q⊥ , P1 = Id− c1|R〉〈Q| , c1 = (Q, R)−1 ,(2.18)

P2 : L2 −→ R⊥ , P2 = Id− c1|Q〉〈R| .
Clearly P1R= 0 andP2Q = 0. One can easily check that

(2.19) RM X ≡
[

I 0
0 5

]
: M −→ X , RX M ≡

[
I 0
0 P2

]
: X −→ M .

We now define

(2.20) A := [
(H2+ H1/22λQ2H1/2)

]1/2 = [
H1/2L+H1/2

]1/2
, H = L− .

A is a self-adjoint operator acting onL2(R3), with Q as an eigenvector with eigen-
value 0. We shall often viewA as an operator restricted to its invariant subspace
X. Define

(2.21) U0 : X −→ X , U0 ≡
[

A1/2H−1/2 0
0 A−1/2H1/2

]
,

and let

(2.22) U = U0RM X : M −→ X , U−1 = RX MU−1
0 : X −→ M .

Notice thatH−1/2 is defined only onQ⊥. We can easily check thatU−1U |M = IdM

andUU−1|X = IdX. Moreover, we have

−(U−1J)(AU)M =
[

0 H1/2A−1/2

−P2H−1/2A1/2 0

] [
A3/2H−1/2 0

0 A1/2H1/2

]

=
[

0 H
−P25L+ 0

]
.

SinceP25L+ = L+ when acting onR⊥, we have proven (2.17).
If we define

(2.23) U± = 1

2

(
5A1/2H−1/2P1±5A−1/2H1/25

)
,
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then(U±)∗ = 1
2(P2H−1/2A1/25±5H1/2A−1/25) and

(2.24) U = U+ + CU− , U−1 = (U+)∗ − C(U−)∗ ,

whereC = [ 1 0
0 −1 ] is the conjugation operator inL2(R3). AlthoughU+ andU− are

not self-adjoint operators, they commute with the multiplication operatori . Hence,
as operators inL2(R3),

(2.25) Ui = (U+ + CU−)i = i (U+ − CU−) .

Since the mass ofQE is small,A is a self-adjoint perturbation ofH1 = −1+
V−e0 . As H1 has two simple eigenvalues, so doesA. The ground state ofA is just
Q (which with the normalized ground state equalsφA

0 = Q/ ‖Q‖2) with energy
0. Standard perturbation theory implies thatA has an excited stateAφA

1 = κφA
1

such thatκ = e10 + O(n2) andφA
1 = φ1 + O(n2). The spectral decomposition

Lemma 1.1 is a corollary of (2.17) and the spectral properties ofA. For example,
define [

u
v

]
= U−1

[
φA

1
φA

1

]
.

We can check easily thatu andv are the generalized eigenvectors of (1.13). We
summarize the results here in the following lemma:

LEMMA 2.5 Let X be the orthogonal complement of Q in L2. Let A be de-
fined by(2.20). Let U and U−1 be defined by(2.22). Then(2.17) holds, i.e.,
L|M = −U−1J AU. If we denote by PAκ andPA

c the orthogonal projections onto
the eigenspace and continuous spectrum space of A, we have

(2.26) U PM = U , U PL
κ = PA

κ U , UPL
c = PA

c U .

Furthermore, we have U= U+ + U−C and U−1 = U ∗+ − U ∗−C, with U+ and U−
commuting with i .

2.3 The Equations

In this subsection we derive the equations for the components of the solution
ψ(t) of the Schrödiger equation (1.1) according to the decomposition (1.18).

Fix an energyE, the corresponding ground stateQ = QE, and its tangent
R = RE = ∂E QE. Recall the decomposition (1.18) of the wave functionψ(t, x).
We let

(2.27) 2(t) = θ(t)− Et .

Denote byha = a(t)RE(x)+ h(t, x). Substituting the above ansatz into (1.1), we
have the equations

∂t ha = Lha + i−1(F + θ̇ (Q+ ha)) ,

F = λQ(2|ha|2+ h2
a)+ λ|ha|2ha

= λQ(2|h|2+ h2)+ 2λQRa(2h+ h̄)+ 3λQR2a2+ λ(aR+ h)2(aR+ h̄) ,
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whereL is already defined in (1.10). By (1.2) and (2.5), we have(L − ∂t)aR =
−iaQ− ȧR. Hence

∂t h = Lh+ i−1(F + θ̇ (Q+ aR+ h))− iaQ− ȧR.

Sinceh(t) ∈ M andM is an invariant subspace ofL, we havei−1(F+ θ̇ (Q+aR+
h))− iaQ− ȧR∈ M . From the characterizationM = [ f + ig : f ⊥ Q, g ⊥ R],
the functionsa(t) andθ(t) satisfy

(Q, Im(F + θ̇h)− ȧR) = 0 ,

(R,Re(F + θ̇ (Q+ aR+ h))+ aQ) = 0 .

The equation onM is

(2.28) ∂t h = Lh+ PM Fall , Fall = i−1(F + θ̇ (aR+ h)) .

Recall the representation ofL in terms ofA. The previous equation can be rewritten
as

(2.29) ∂t(Uh) = −i A(Uh)+U PM Fall .

We can writeUh = zφA
1 +w wherew denotes the part on the continuum spectrum

of A. Then we have

ż= −i κz+ (φA
1 ,U PM Fall) , ẇ = −i Aw + PA

c U PM Fall .

SinceUPL
c = PA

c U , we havePA
c U PM = PA

c U . Using the definitions ofu andv,
we have

(φA
1 ,U PM Fall) = (v,ReFall)+ i (u, Im Fall) = (u+, Fall)− (u−, Fall)

whereu± = 1
2(u± v). If we definep(t) = ei κt z(t), we have

e−i κt ṗ(t) = i−1{(u+, F)+ (u−, F)+ [(u+, h)+ (u−, h)+ (u, R)a]θ̇} .
Summarizing, we have the decomposition

ψ = (Q+ aR+ h)e−i Et+i θ , Uh = zφA
1 + w , z= e−i κt p , µ = ei κt ,

and the equation

(2.30)




ȧ = (c1Q, Im(F + θ̇h)) , c1 = (Q, R)−1 ,

∂tw = −i Aw + PA
c Ui−1(F + θ̇ (aR+ h)) ,

ie−i κt ṗ = (u+, F)+ (u−, F)+ [(u+, h)+ (u−, h)+ (u, R)a]θ̇ ,
where

F = λQ(2|h|2+ h2)+ 2λQRa(2h+ h̄)+ 3λQR2a2(2.31)

+ λ(aR+ h)2(aR+ h̄) ,

θ̇ = − [a+ (c1R,ReF)] · [1+ a(c1R, R)+ (c1R,Reh)]−1 .(2.32)

This is a system of equations involvinga, z, andη only. It is the system that we
shall solve in the rest of this paper. Note thatθ does not appear explicitly in the
system (2.30). We seėθ only on the right side. Althoughθ will appear when we
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integrate the main term ofη, it appears only in the formei θ ; hence we do not need
estimates forθ .

We also have the following decomposition ofh according to (1.16):

h = ζ + η , η = U−1w ∈ Hc(L) ,(2.33)

ζ = U−1zφA
1 = Re(z)u+ Im(z)i v = zu+ + z̄u− ∈ Eκ(L) .(2.34)

The equation forη can be obtained from that ofw or more directly from projecting
the original equation ofh onto the continuum spectrum ofL:

(2.35) ∂tη = Lη + PL
c i−1(F + θ̇ (aR+ h)) .

2.4 Linear Estimates

Here we collect a few estimates on the operatorsU , L, and A. They will be
proven at the end of this paper.

We denote the wave operators forL (respectively,A and H ) by WL (respec-
tively, WA andWH ). They are defined by

(2.36)
WL = lim

t→∞e−tLe−i t H∗ , WA = lim
t→∞eit Ae−i t H∗ ,

WH = lim
t→∞eit H e−i t H∗ ,

where

(2.37) H∗ = −1− E .

Note that if WA exists, we have the intertwining property thatf (A)Pc(A) =
WA f (H∗)W∗A for suitable functionsf . We also have a similar property forL.

LEMMA 2.6 For k = 0,1,2, there is a positive constant C1 so that

(2.38) C−1
1 ‖φ‖Hk ≤ ‖e−i t Aφ‖Hk ≤ C1 ‖φ‖Hk

for all φ ∈ X ∩ Hk and all t ∈ R.

LEMMA 2.7 (Decay Estimates fore−i t A) For q ∈ [2,∞] and q′ = q/(q − 1),

(2.39)
∥∥e−i t APA

c5φ
∥∥

Lq ≤ C|t |−3
(

1
2− 1

q

)
‖φ‖Lq′ .

For smooth local functionsφ and sufficiently large r1, we have

(2.40)

∥∥∥∥〈x〉−r1e−i t A 1

(A− 0i − 2κ)l
PA

c5〈x〉−r1φ

∥∥∥∥
L2

≤ C〈t〉−9/8

where l= 1,2 and0i meansσ i with limσ→0+ outside of the bracket.

Estimate (2.39) forA = −1 + V was proven in [8] using estimates from [7]
and [10]. Estimate (2.40) forA = √H was proven by Soffer and Weinstein [16].
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LEMMA 2.8

(2.41)

(
φ0φ

2
1, Im

1

A− 0i − 2κ
PA

c5φ0φ
2
1

)
=(

φ0φ
2
1, Im

1

H1− 0i − 2κ
PH1

c φ0φ
2
1

)
+ O(n2) > 0 .

This lemma is a perturbation result. Notice thatκ = e01 + O(n2); hence the
second term is greater thanγ0 by assumption A1.

LEMMA 2.9 (OperatorU ) (i) The operators U0 and U−1
0 are bounded opera-

tors in Wk,p ∩ X for k ≤ 2, 1 ≤ p < ∞, and in L2
r ∩ X for |r | ≤ r0. (L2

r is the
weighted L2 space defined in(1.7).) Hence U : M → X and U−1 : X → M are
bounded in Wk,p and L2

r norms.

(ii) The commutator[U, i ] is a local operator in the sense that

(2.42) ‖[U, i ]φ‖L8/7∩L4/3 ≤ C ‖φ‖L4 .

LEMMA 2.10 (Wave Operators)The wave operators WL and WA defined by(2.36)
exist and satisfy Wk,p estimates for k≤ 2, 1 ≤ p <∞ (similar estimates hold for
their adjoints):∥∥WLPL

c

∥∥
(Wk,p,Wk,p)

≤ C ,
∥∥WAPA

c5
∥∥
(Wk,p,Wk,p)

≤ C .

The statement onWL was proven in [4], following the proof of [20]. Hence we
need only to prove the statement onWA.

3 Main Oscillation Terms

We now identify the main oscillation terms in equation (2.30). Most quantities
treated in this paper, such asF , a, z, andη, are strongly oscillatory. Hence it is
necessary to identify their oscillatory parts before we can estimate. We shall use the
complex amplitude of the excited state,z, as the reference. Recallz(t) = e−i κt p(t).
We will show thatp(t) ∼ t−1/2 and its oscillation (phase speed) is much smaller
thanκ. The change of mass on the direction of the nonlinear ground state is given
by a. We will also show thata = O(z2) and the order of the dispersive waveη(t)
is also of orderO(z2). Assuming these orders, the second-order term inF is given
explicitly by

(3.1) F (2) = λQ(2|ζ |2+ ζ 2) = z2φ(20) + zz̄φ(11) + z̄2φ(02)

whereζ = zu+ + z̄u− and

φ(20) = λQ(u2
+ + 2u+u−) = λQφ2

1 + O(n3) ,

φ(11) = 2λQ(u2
+ + u2

− + u+u−) = 2λQφ2
1 + O(n3) ,

φ(02) = λQ(u2
− + 2u+u−) = O(n3) .

(3.2)
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We shall writeF (2) = zαφα, whereα is a double indices(i j ) with i + j = 2 and
i, j ≥ 0. The repeated indices mean summation. We shall useβ later on to denote
double indices summing to 3 andγ summing to 4.

3.1 Leading Oscillatory Terms in a

We first identify the main oscillation terms ofa(t). Recall from (2.30) that
ȧ = (c1Q, Im F+θ̇h) andc1 = (Q, R)−1. We shall impose the boundary condition
of a at t = T . This is in fact a condition imposed on the choice ofET . Hence we
use the following equivalent integral equation:

(3.3) a(t) = a(T)+
∫ t

T
(c1Q, Im F + θ̇h)(s)ds.

The main term of ImF+ θ̇h is Im F (2) = Im λQζ 2, and thus the leading oscillation
term ofa(t) is from the integral

∫ t
T A(2) ds with

A(2) = (c1Q, λQ Im ζ 2) .

Sinceζ = zu+ + z̄u−, we have Imζ = Im z(u+ − u−) and Imζ 2 = (Im z2)(u2+ −
u2−); therefore, we have

A(2) = C1 Im z2 , C1 = (c1Q, λQ(u2
+ − u2

−)) .

Write

(3.4) z2(s) = e−2i κs p2 = 1

−2i κ

d

ds
(e−2i κs)p2 .

We can integrateA(2) by parts to get

(3.5)
∫ t

T
A(2) ds= Im C1

∫ t

T
z2 ds= 2a20 Re

{
[z2]tT −

∫ t

T
e−2i κs2pṗ ds

}
,

where

(3.6) a20 = C1

4κ
= 1

4κ

(
c1Q, λQ(u2

+ − u2
−)

) = O(n2)

and the last integral is a higher-order term. Let us denote

(3.7) a(2)(t) = a20(z
2+ z̄2)(t) ,

which is the main oscillatory term ina. We denote the rest ofa by b, i.e.,

(3.8) a(t) = a(2)(t)+ b(t) ,

and we have

b(t) = a(T)− a(2)(T)

+
∫ t

T

{
(c1Q, Im[F − F (2) + θ̇h])− 4a20 Ree−2i κs pṗ

}
(s)ds.

(3.9)

It is easy to see thata,b, ȧ = O(z2), but ḃ = O(z3). In other words,a(2) is the
part ofa with strong oscillation andb is the part ofa that has slower oscillation.
The use ofb is convenient when we work on normal forms ofp anda later. (We
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will integrate by parts terms involvingb, and in some sense replace terms involving
b by terms involvingḃ, which is smaller. If we work witha instead, then we replace
a by ȧ, which is of the same order and we need one more step.) In fact, in principle
one should treat the normal forms ofp anda together, since they correspond to the
excited states and the ground state. See [17] for more elaboration on this point.

It should be noted that, althoughb(t) is not oscillatory, it is in fact larger than
a(2)(t), and hence is the main term ofa(t). Another point to make here is that the
introduction ofb(t) is for computational convenience. The true variable we work
with is still a(t). In particular, the induction assumption we make later in Section 5
is ona, notb.

Notice that when integratinġθ , we take ReF instead of ImF . Hence the term
C|z|2 survives and cannot be integrated; thusθ(t) = O(log t), althougha(t) =
O(t−1).

3.2 Leading Oscillatory Terms inη

We now identify the main oscillation term inη. From the basic equation (2.30),
we rewrite thew equation as

∂tw = −i Aw − i θ̇w + PA
c Ui−1[F + θ̇ (aR+ ζ )] − PA

c [U, i ]θ̇η .
where we have used the commutator[U, i ] to interchangeU andi so as to produce
the termi θ̇w. This term is a global linear term inη and cannot be treated as an
error term (however,[U, i ]θ̇η is an error term). We can eliminate it by rewriting
the last equation in terms ofη̃ = ei θw = ei θUη, i.e.,

∂t η̃ = −i Aη̃ + ei θPA
c Ui−1[F + θ̇ (aR+ ζ )] − ei θPA

c [U, i ]θ̇η ,
or in integral form,

(3.10) η̃(t) = e−i At η̃0+
∫ t

0
e−i A(t−s)PA

c Fη(s)ds,

where

(3.11) Fη = ei θUi−1[F + θ̇ (aR+ ζ )] − ei θ [U, i ]θ̇η .
SinceU andU−1 are bounded in Sobolev spaces by Lemma 2.9 and

(3.12) η(t) = U−1e−i θ(t)η̃(t) ,

for the purpose of estimation we can treatη andη̃ as the same.
Let Fη,2 be the second-order term ofFη, and letFη,3 denote the rest, i.e.,

Fη = Fη,2+ Fη,3 ,

Fη,2 = ei θUi−1F (2) = ei θUi−1zαφα ,

Fη,3 = ei θUi−1
[
(F − F (2))+ θ̇ (aR+ ζ )]− ei θ [U, i ]θ̇η .

(3.13)
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SinceU = U++CU− with U+ andU− commuting withi , see (2.24), we can write
Fη,2 as

Fη,2 = ei θ (U+ + CU−)i−1zαφα

= i−1ei θ (U+ − CU−)zαφα = i−1ei θzα8α ,
(3.14)

8(20) = U+φ(20) −U−φ(02) , 8(02) = U+φ(02) −U−φ(20) ,(3.15)

8(11) = (U+ −U−)φ(11) .

ReplacingFη in (3.10) byFη,2 and integrating by parts, we have∫ t

0
e−i A(t−s)PA

c Fη,2 ds=
∫ t

0
e−i t Aeis(A−0i+[α]κ) ((ei θ pα)(s)

)
i−1PA

c8α ds

= η̃(2)(t)− e−i t A(ei θzα)(0)̃ηα + (∗) ,(3.16)

where

(3.17) η̃(2)(t) = ei θ(t)zα(t )̃ηα , η̃α = −1

A− 0i + [α]κPA
c8α ,

and(∗) denotes the remainder term from integration by parts,

(∗) = −
∫ t

0
e−i (t−s)A

{
eisκ[α] d

ds
(ei θ pα)̃ηα

}
ds.

In the integration we have inserted the regularizing factoreis(−0i ) with the sign of
0i chosen so thate−i t Aη̃α decays ast →+∞. See Lemma 2.7.

We shall see that̃η(2)(t) is the main oscillation term iñη(t). We denote the rest
by η̃(3)(t):

(3.18) η̃ = η̃(2) + η̃(3) .
Notice that this is not a decomposition inL2: Both η̃(2) and η̃(2) are not inL2.
Nevertheless, this decomposition is useful for studying the local behavior ofη̃.
Also note that, although̃ηα 6∈ L2 but is still “orthogonal” to the eigenvector ofA,
(φA

1 , η̃α) = 0.
From (3.10) we obtain the equation forη̃(3):

η̃(3)(t) = e−i At η̃0− e−i At(ei θzα)(0)̃ηα

−
∫ t

0
e−i A(t−s)

{
eisκ[α] d

ds
(ei θ pα)̃ηα

}
ds

+
∫ t

0
e−i A(t−s)PA

c

{
Fη,3− ei θUi−1η2η̄

}
ds

+
∫ t

0
e−i A(t−s)PA

c ei θUi−1η2η̄ ds

≡ η̃(3)1 + η̃(3)2 + η̃(3)3 + η̃(3)4 + η̃(3)5 .

(3.19)
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We treat η̃(3)5 separately becauseη2η̄ is a nonlocal term. Recall thatη =
U−1e−i θ η̃. We have the similar decomposition forη,

η(t) = η(2)(t)+ η(3)(t) , η(2) = U−1e−i θ η̃(2) = U−1zαη̃α ,

η(3) = U−1e−i θ η̃(3) , η
(3)
j = U−1e−i θ η̃

(3)
j .

(3.20)

If we view b andη(2) as orderz2, andη(3) as orderz3, we can now decompose
F into

(3.21) F = F (2) + F (3) + F̃ (3) + F (4)

where

F (2) = λQ(2|ζ |2+ ζ 2) ,

F (3) = 2λQ
[
(ζ + ζ̄ )η(2) + ζ η̄(2)]+ λ|ζ |2ζ + 2λQRa(2)(2ζ + ζ̄ ) ,

F̃ (3) = 2λQRb(2ζ + ζ̄ ) = 2λQR(a− a(2))(2ζ + ζ̄ ) ,
F (4) = 2λQ

[
(ζ + ζ̄ )η(3) + ζ η̄(3)]+ λQ

[
2|η|2+ η2

]+ 2λaQR(2η + η̄)
+ 3λa2QR2+ λ[|k|2k− |ζ |2ζ ] .

(3.22)

In view of (4.5),F (2) consists of terms of orderz2; F (3) and F̃ (3) of terms of order
z3; andF (4) of higher-order terms. We separate theF̃ (3) term since it depends onb
and requires different methods to estimate.

From (2.32), we have

θ̇ = −[a+ (c1R,ReF)] · [1+ a(c1R, R)+ (c1R,Reh)]−1

= −[a+ (c1R,ReF)] · [1− (c1R,Reh)] + O(z4+ a2+ η2)

= −[a+ (c1R,ReF (2))] + Fθ,3+ Fθ,4(3.23)

where

Fθ,3 = −
(
c1R, ReF (3) + F̃ (3)

)+ [
a+ (c1R,ReF (2))

]
(c1R,Reζ )

andFθ,4 = O(z4+ a2+ η2).

4 Outline of Proofs and Basic Estimates

We are now ready to outline the proofs for Theorems 1.1 through 1.4.

4.1 Initial Data and Basic Quantities

Under the assumptions of either Theorem 1.1 or Theorem 1.3, we can rewrite
the initial dataψ0 using Lemma 2.3 as

ψ0 = [QE0 + hE0,0]ei2E0,0 , hE0,0 ∈ ME0 ,

for someE0, hE0,0, and2E0,0, with

n = ‖ψ0‖Y , ‖QE0‖ ≥ 9
10n , ‖hE0,0‖Y ≤ Cε0n .
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We can assume that2E0,0 = 0 without loss of generality. We now writehE0,0 =
ζE0,0 + ηE0,0 according to the spectral decomposition (1.16) inME0. Recall the
definition ofε in (1.21). We have

(4.1) ‖ζE0,0‖ ≤ Cεn , ‖ηE0,0‖Y ≤ Cε2n2 , ε ≤ ε0 .

For the rest of this paper, we shall takeε as either given by (1.21) or (1.24). The
choice will not be important, and, whenever a specific choice is needed, we shall
remark upon it.

For all t ≥ 0, we have‖ψ(t)‖L2 = n. If we write ψ(t) = xφ0 + yφ1 + ξ ,
ξ ∈ Hc(−1 + V), then we have|x|2 + |y|2 + ‖ξ‖2L2 = n2. Since the spectral
projections of−1 + V andL differ by an order ofO(λQ2) = O(n2), we have
‖QE‖ = |x| + O(n3), ‖ζ‖L2 = |y| + O(n3), and‖η‖L2 = ‖ξ‖L2 + O(n3). In
particular,

(4.2) ‖QE‖ ≤ 9
8n , ‖ζ(t)‖L2 ≤ 9

8n , ‖η(t)‖L2 ≤ 9
8n .

We now give a list of the expected sizes of frequently used quantities. Let

(4.3) 0 ≡ Im

(
2820,

1

A− 0i − 2κ
PA

c820

)
≥ λ2n2γ0 ,

where820 = O(n) is defined as in (3.15), andγ0 is the constant from assump-
tion A1. The last statement0 ≥ λ2n2γ0 will be proven in Lemma 6.1. Recall
that

(4.4) {t} ≡ ε−2n−2+ 0t, {t}−1/2 ∼ min
{
εn,n−1t−1/2

}
.

{t}−1/2 will be the typical size of|z(t)|. The following is a table of order int for
functions:

|z(t)| = O(t−1/2) , |a(t)| = O(t−1) ,

‖η(t)‖loc = O(t−1) , |θ(t)| = O(log t) .
(4.5)

The following is a table of order inn for constants:

(4.6)
Q = O(n) , R= O(n−1) ,

c1 = O(1) , u+ = O(1) , u− = O(n2) .

The first three estimates in the last equation are due to Lemma 2.1. The last one
is because the differences betweenL+, L−, andH1 = −1 + V − e0 are of order
O(λn2), and hence so are the differences betweenφ1, u, andv.

4.2 Outlines of the Proofs for Theorems 1.1 and 1.3

We now estimate solutions to the equations (2.30) with the decompositions into
main oscillatory and higher-order terms in Section 3. We first fix a timeT and let
E = E(T) be the best approximation at the timeT so that (1.19) holds at time
T , i.e.,

(4.7) ψ(T, x) = [QE(x)+ hE(T, x)] ei2(T) .
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We can now decompose the wave function for all time with respect to this ground
state as in (1.18), namely,

ψ(t, x) = [
QE(T)(x)+ aE(T)(t)RE(T)(x)+ hE(T)(t, x)

]
ei2(t) ,

wherehE(T)(t, x) = ζE(T)(t) + ηE(T)(t) ∈ ME(T). To simplify the notation, we
write aE(T) = aT , etc. By assumption, we haveaT (T) = 0. We now wish to
estimateaT , ζT , andηT for all time t ≤ T . The following propositions are stated
with respect to a decomposition of a fixed nonlinear ground state profileE.

We first choose a suitable norm. We need to control the excited-state component
z and a local norm ofη. We also need a global norm ofη to control the non-
local termη3. Recall that we can decomposeη into a sum ofη(2) + η(3) with η(3)

decomposed further into a sum of five terms; see (3.20). Sinceη(2), η(3)1 , andη(3)2
are explicit, we need only to control

(4.8) η
(3)
3−5 ≡

5∑
j=3

η
(3)
j = η(3)3 + η(3)4 + η(3)5 ,

and we define

M(T) := sup
0≤t≤T

{
{t}1/2 |z(t)| + {t}3/4−σ ‖η(t)‖L4 + nσ {t} ‖η(t)‖L2

loc

+ εσ (εn)−3/4 {t}9/8 ∥∥η(3)3−5(t)
∥∥

L2
loc

}(4.9)

where0 = O(n2) is defined in (4.3) andB22 = 1
2c10 + O(n3) will be defined

explicitly later in (7.22). For the time being, we need only know thatB is a constant
with the size given above; henceD = c1+ O(n).

If we assume thata(t) is bounded byt−1 up to some timeT , we have the
following control of M(t).

PROPOSITION4.1 Suppose z(t) andη(t) are solutions to the equations(2.30)for
0≤ t ≤ T . (T can be finite or infinite.) Assume

(4.10) |a(t)| ≤ D {t}−1 , 0≤ t ≤ T .

Then we have

M(t) ≤ 2 for all t ≤ T .

Moreover, if we further assume|z0| = εn > 0 and‖η0‖Y ≤ ε2n2, then|z(t)| ≥
c {t}−1/2.

Recallb(t) := a(t)− a(2)(t). Let ST (t) = b(t)− b(T) so that

(4.11) a(t) = a(T)+ [
a20(z

2+ z̄2)
]t

T
+ ST (t) .

Assuming thata(t) is bounded byt−1, we can controlST (t) by the following
proposition:
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PROPOSITION4.2 Suppose that M(t) ≤ 2 and |a(t)| ≤ D {t}−1 for 0 ≤ t ≤ T .
Recall D= 2B22/0 = c1+ O(n). Then we have

(4.12) |ST (t)| ≤ D

2
{t}−1 , |a(t)| ≤ |a(T)| + D

2
{t}−1 .

PROOF OFTHEOREMS1.1 AND 1.3: Assuming the previous two propositions,
we now prove that

(4.13) sup
t≤T
|aT (t)| {t} < D

for all time, whereaT is the component with respect to the best approximation
at the timeT defined in (1.19). From (4.1), the relation (4.13) holds forT = 0.
Suppose it holds for timeT = T1. From the continuity of the Schrödinger equation,
there exists anδ > 0 (depending onT1) such that|E(T)−E(T1)| ≤ exp[−T1](D−
supt≤T1

|aT1(t)| {t}) for all |T − T1| < δ. Thus the bound (4.13) holds for all
|T − T1| < δ. This proves that the set of suchT is open. Now suppose thatT1

is the first time that (4.13) is violated. Clearly, we have supt≤T1
|aT1(t)| {t} ≤ D.

From Propositions 4.1 and 4.2, formula (4.13) holds forT1.
Once we have proven (4.13), the conclusions of Propositions 4.1 and 4.2 hold,

and they imply both Theorem 1.1 and Theorem 1.3. �

We remark that the main reason that the previous continuity argument works
is due to the explicit identification of the leading terms ina, η, andz. Since these
leading terms are essentially computed without using assumptions on the decay of
a, the bound ona, i.e., (4.13), is used only to control error terms. We shall prove
Theorem 1.4 in Section 7, where we obtain more detailed information about the
wave function.

The proof of Proposition 4.1 will be given in the next two sections and is fol-
lowed by a proof of Proposition 4.2. Once again, our strategy of proof is to show
that M(0) ≤ 3

2 and thatM(t) ≤ 3
2 if M(t) ≤ 2. By continuity of M(t), this

would imply thatM(t) ≤ 3
2 for all t ≤ T . So for the rest of this and the next

sections, we shall freely use thatM(t) ≤ 2 and|a(t)| ≤ D {t}−1. It will follow
from Lemmas 5.2 and 5.3 that we can bound

{t}3/4−σ ‖η(t)‖L4 + εσ (εn)−3/4 {t}9/8 ∥∥η(3)3−5(t)
∥∥

L2
loc

by 1
4. It will follow from Lemma 6.2 that

{t}1/2 |z(t)| ≤ (1+ 2σ)

for some smallσ . We have thusM(T) ≤ 3
2 and conclude Proposition 4.1.

We note that, under the assumptions (4.10) andM(T) ≤ 2, we have, from the
equations (2.31) forF , (2.32) forθ̇ , (2.30) for ṗ, and (3.9) forb,

(4.14)
‖F‖L2

loc
≤ Cn{t}−1 ,

∥∥F − F (2)
∥∥

L2
loc
≤ C {t}−3/2 ,

|θ̇ | ≤ C {t}−1 , | ṗ| ≤ Cn{t}−1 , |ḃ| ≤ Cn{t}−3/2 .
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It follows from (4.14) that

(4.15) |θ(t)| ≤ C log{t} .
Note that, althougḣθ andȧ are of the same order,θ̇ is not oscillatory and we cannot
expect an estimate better than (4.15). This estimate will not be used in the rigorous
proof, but it provides an idea about its size.

5 Estimates of the Dispersive Wave

For the dispersive partη, our main interest is its local decay estimate. Due to
the presence of the nonlocal termη3 in F , we will also need a global estimate on
η. Our goal is to prove, forσ = 1/100,

‖η(t)‖L4 ≤ 1
8 {t}−3/4+σ ,

∥∥η(3)3−5(t)
∥∥

L2
loc
≤ Cε−σ (εn)3/4 {t}−9/8 .

We will need the following calculus lemma:

LEMMA 5.1 Let0< d < 1< m, and{t} ≡ ε−2+ 20t .∫ t

0
|t − s|−d{s}−m ds≤ Cε2m−2n2m+2d−4 {t}−d ,(5.1) ∫ t

0
|t − s|−d{s}−1 ds≤ Cn2d−2 {t}−d log(1+ ε2n4t) .(5.2)

If, instead, d≥ m> 1,

(5.3)
∫ t

0
〈t − s〉−d {s}−m ds≤ C {t}−m .

PROOF: Denote the first integral by (I). Ift ≤ ε−2n−4, then{t} ∼ ε−2n−2 and

(I) ∼
∫ t

0
|t − s|−d(εn)2m ds . (εn)2m(ε−2n−4)1−d

= ε2m−2n2m+2d−4(εn)2d ∼ ε2m−2n2m+2d−4 {t}−d .

If t ≥ ε−2n−4, then{t} ∼ 20t and

(I) ≤
∫ t/2

0
Ct−d{s}−m ds+

∫ t

t/2
C|t − s|−dC {t}−m ds

≤ Ct−d(ε2n4)m−1

0
+ Ct1−d {t}−m ≤ Cε2m−2n2m+2d−4 {t}−d .

Estimate (5.2) is an obvious modification of (5.1). For the last estimate (5.3),
denote the second integral by (II). Ift ≤ ε−2n−4, then{t} ∼ ε−2n−2 and

(II) ≤ C
∫ t

0
〈t − s〉−d (εn)2m ds≤ (εn)2m · C ∼ C {t}−m .
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If t ≥ ε−2n−4, then{t} ∼ 0〈t〉 and

(II) ∼
∫ t

0
〈t − s〉−d 0−m〈s〉−m ds≤ C0−m〈t〉−m ∼ C {t}−m .

We conclude the lemma. �

5.1 Estimates inL4

LEMMA 5.2 Suppose that̃η is given by equation(3.10)and recallη = U−1e−i θ η̃.
Assuming the estimate(4.10)on a(t) and M(T) ≤ 2, we have

‖η(t)‖L4 ≤ 1
8 {t}−3/4+σ ,

whereσ = 1/100 if ε is sufficiently small.

PROOF: From the defining equation (3.10) ofη̃, we have

‖η̃(t)‖L4 ≤ C ‖η̃0‖Y 〈t〉−3/4+
∫ t

0
C|t − s|−3/4‖Fη(s)‖4/3 ds,

whereFη = ei θUi−1[F + θ̇ (aR+ ζ )] − ei θ [U, i ]θ̇η. By Lemma 2.9,∥∥ei θ [U, i ]θ̇η(s)∥∥
L4/3 ≤ C|θ̇ | ‖η(s)‖4 .

Therefore we have

‖Fη(s)‖4/3 ≤ C|θ̇ | (|a| + ‖ζ(s)‖4/3+ ‖η(s)‖4)+ ‖F(s)‖L4/3 .

From the Hölder inequality and the definition of‖F(s)‖L4/3, we can bound
‖F(s)‖L4/3 by

‖F(s)‖L4/3 ≤ C
(‖h‖2L4 + |a| ‖h‖L4 + |a|2+ ‖h3‖L4/3 + |a|3) .

Since‖h3‖L4/3 = ‖h‖3
L4 and‖h(s)‖L4 ≤ ‖ζ(s)‖L4 + ‖η(s)‖L4, we have from the

assumptionMT (t) ≤ 2 that

‖h(s)‖L4 ≤ C{s}−1/2+ C{s}−3/4 log{s} ≤ C{s}−1/2 .

Therefore we have‖F(s)‖L4/3 ≤ Cn{s}−1. Similarly, we have|θ̇ (s)| ≤ C{s}−1.
SinceC ‖η̃0‖Y 〈t〉−3/4+σ ≤ C ‖η̃0‖Y ε−3/2+2σ {t}−3/4+σ ≤ 1

16 {t}−3/4+σ , we con-
clude

‖η(t)‖L4 ≤ 1
16 {t}−3/4+σ +

∫ t

0
|t − s|−3/4Cn{s}−1 ds

≤ 1
16 {t}−3/4+σ + Cnn−1/2 {t}−3/4 log[(εn)2 {t}] ≤ 1

8 {t}−3/4+σ .

Here we have used Lemma 5.1 for the integration. �
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5.2 Local Decay

Recall thatη(3) = U−1e−i θ η̃(3) andη̃(3) satisfies the equation (3.19). We want to
show thatη̃(3) is smaller thañη(2) locally. Recall that the localL2 norm is defined
in (1.7) withr0 the exponent in Lemma 2.7.

LEMMA 5.3 Assuming the estimate(4.10)on a(t) and M(T) ≤ 2, we have

(5.4)
∥∥η(3)1−2

∥∥
L2

loc
≤ Cε2n2〈t〉−9/8 ,

∥∥η(3)3−5

∥∥
L2

loc
≤ C(εn)3/4 {t}−9/8 .

Hence we have‖η‖L2
loc
≤ C {t}−1, and for a local functionφ we have∣∣(φ, |η|2+ |η|3)∣∣ ≤ C

∥∥〈x〉2r0φ
∥∥

L∞
(‖η‖2

L2
loc
+ ‖η‖L2

loc
‖η‖2L4

)
≤ C

∥∥〈x〉2r0φ
∥∥

L∞ {t}−2 .
(5.5)

PROOF: SinceU is bounded, it is sufficient to prove the corresponding esti-
mates for each̃η(3)j , j = 1,2, . . . ,5, defined in the decomposition (3.19) forη̃(3).

We first estimatẽη(3)1 ,∥∥η̃(3)1

∥∥
L2

loc
≤ C‖η0‖Y〈t〉−9/8 ≤ Cε2n2〈t〉−9/8 .

For η̃(3)2 andη̃(3)3 , the two terms involvingηα (ηα 6∈ L2) from the definition and the
linear estimates in Lemma 2.7, we have∥∥η̃(3)2

∥∥
L2

loc
≤ (εn)2n〈t〉−9/8 ,

∥∥η̃(3)3

∥∥
L2

loc
≤ C

∫ t

0
〈t − s〉−9/8n2{s}−3/2 ds≤ n2(εn)3/4 {t}−9/8 .

Here we have used̃ηα = O(n), | ṗ| ≤ Cn{t}−1, and|θ̇ | ≤ C {t}−1 in (4.14) and
(5.3). Note that, whent is of order 1,η̃(3)1 andη̃(3)2 are of orderη0 andε2n3, which
are larger thanC(εn)3/4 {1}−9/8 = O((εn)3).

We treatη̃(3)4 andη̃(3)5 together. For̃η(3)4 =
∫ t

0 e−i A(t−s)PA
c {Fη,3−ei θUi−1η2η̄}ds,

we can rewrite the integrand using the definition ofFη,3 from (3.13),

Fη,3− ei θUi−1η2η̄ = ei θUi−1
[
(F − F (2) − η2η̄)+ θ̇ (aR+ ζ )]− ei θ [U, i ]θ̇η ,

which consists of only local terms. SinceMT (t) ≤ 2, we have∥∥Fη,3− ei θUi−1η2η̄
∥∥

L4/3∩L8/7 ≤ C{s}−3/2 .

Here we have used Lemma 2.9 to estimateei θ [U, i ]θ̇η. Note that, in terms like
Qζη, η is estimated by‖η‖L2

loc
≤ Cn−σ {s}−1.

From the Hölder inequality, theL2 bound (4.2), and the global estimate ofη in
Lemma 5.2, we have

‖η3(s)‖L8/7 ≤ ‖η‖1/22 ‖η‖5/24 ≤ Cn1/2
({s}−3/4+σ )5/2 ≤ C{s}−7/4 ,

‖η3(s)‖L4/3 ≤ ‖η‖34 ≤ C
({s}−3/4+σ )3 ≤ C{s}−7/4 .
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Thus we havẽη(3)4 + η̃(3)5 =
∫ t

0 e−i A(t−s)PA
c Fη,3(s)ds, with∥∥Fη,3(s)

∥∥
L4/3∩L8/7 ≤ C{s}−3/2 .

We can bound theL2
loc norm by either theL4 or L8 norm. If t > 1, we bound

theL2
loc norm byL8 in 0≤ s ≤ t − 1, and byL4 in t − 1≤ s ≤ t . By Lemma 2.7,

∥∥η̃(3)4 + η̃(3)5

∥∥
L2

loc
≤ C

∫ t−1

0

1

|t − s|9/8‖Fη,3(s)‖L8/7 ds

+ C
∫ t

t−1

1

|t − s|3/4‖Fη,3(s)‖L4/3 ds

≤ C
∫ t

0
C 〈t − s〉−9/8 {s}−3/2 ds+ C {t}−3/2

≤ C(εn)3/4 {t}−9/8+ C(εn)3/4 {t}−9/8 .

In the last line we have used (5.3). Ift ≤ 1, we can use the second integral to
estimate; hence we get the desired estimate for‖η̃(3)4 + η̃(3)5 ‖L2

loc
. �

6 Excited-State Equation and Normal Form

6.1 Excited-State Equation

Let us return to the equation foṙp from (2.30),

(6.1) ṗ = −iei κt
{
(u+, F)+ (u−, F)+ [

(u+, h)+ (u−, h)+ (u, R)a
]
θ̇
}
.

In view of the decompositions (3.22) ofF and (3.23) ofθ̇ , we can expand the
right-hand side of equation (6.1) into terms in order ofz:

(6.2) ṗ = ei κt
{
cαzα + dβzβ + d1bz+ d2bz̄+ P(4)

}
.

Hereα andβ are summing over all|α| = 2 and|β| = 3. The coefficients are
computed and their properties summarized in the following lemma:

LEMMA 6.1 We can rewrite equation(6.1)of ṗ into the form(6.2). The coefficients
d1 and d2 and all cα are purely imaginary. P(4) denotes higher-order terms and
will be defined in(6.6). Moreover,Red21 = −0, with

(6.3) 0 =
(

2820, Im
1

A− 0i − 2κ
PA

c820

)
≥ λ2n2γ0 > 0 ,

whereγ0 is the constant in assumptionA1, and820 = 5λQφ2
1 + O(n3) is defined

in (3.15). We also have cα = O(n) and dβ,d1,d2 = O(1).

PROOF: There are two parts in equation (6.1): The part withF and the part
with θ̇ . We first consider the second part. Recall from (3.23),

θ̇ = −a− (c1R,ReF (2))+ O(z3) ,
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whereO(z3) denotes terms of the orderz3+az+zη plus higher-order terms. Hence

− iei κt{(u+, h)+ (u−, h̄)+ (u, R)a}θ̇
= −iei κt

{
(u+, ζ )+ (u−, ζ̄ )+ O(z2)

} · {− a− (c1R,ReF (2))+ O(z3)
}

= −iei κt
{
(u+, ζ )+ (u−, ζ̄ )

}
· {− a20(z

2+ z̄2)− b− (c1R,ReF (2))
}+ O(z4) .

The leading terms are of the formzβ , bz, andbz̄. These terms are of orderO(z3).
Since the coefficients in each bracket are real, the coefficients of the leading terms,
that is, their contributions todβ , d1, andd2, are all purely imaginary due to thei
factor in front.

Now we look at the first part of the equation (6.1). The contribution tocαzα is
from F (2) = zαφα,

−i {(u+, zαφα)+ (u−, z̄αφα)} .
Clearly all coefficients ofzα are purely imaginary. Since there is no contribution
from the second part tocαzα, we know that thecα are purely imaginary. We also
havecα = O(φα) = O(n).

The contribution from the first part tod1bz+ d2bz̄ is from F̃ (3):

−i
{
(u+,2λQRb(2ζ + ζ̄ )+ (u−,2λQRb(ζ + 2ζ̄ )

}
with ζ = zu+ + z̄u−. Hence all coefficients ofbz andbz̄ are purely imaginary.
Together with the analysis of the second part of (6.1), we knowd1 andd2 are purely
imaginary.

The contribution from the first part todβzβ is from F (3):

−i
{
(u+, F (3))+ (u−, F̄ (3))

}
.

Among alldβ , we are only interested in the real part ofd21, which does not come
from the second part as we already showed. A coefficient inF (3) has to have an
imaginary part in order to have a contribution to Red21. The only such source
is z2η̃20 in η(2), which lies in the first group of terms inF (3). Let us call these
termsF (3)

1 :
F (3)

1 = 2λQ
[
(ζ + ζ̄ )η(2) + ζ η̄(2)] .

Recall thatη(2) = U−1zαη̃α. Denoteη′ = zαη̃α and recall (2.24) thatU−1 =
(U+)∗ − (U−)∗C. Henceη(2) = [(U+)∗ − (U−)∗C]η′ = (U+)∗η′ − (U−)∗η̄′, and(

u+, F (3)
1

)+ (
u−, F̄ (3)

1

)
= (

2λQ, (u+ζ + uζ̄ )η(2)
)+ (

2λQ, (uζ + u−ζ̄ )η̄(2)
)

= (
2λQ, (u+ζ + uζ̄ )[(U+)∗η′ − (U−)∗η̄′]

)
+ (

2λQ, (uζ + u−ζ̄ )[(U+)∗η̄′ − (U−)∗η′]
)
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=
∫ [

U+
(
2λQ(u+ζ + uζ̄ )

)−U−
(
2λQ(uζ + u−ζ̄ )

)]
η′ dx

+
∫ [−U−

(
2λQ(u+ζ + uζ̄ )

)+U+
(
2λQ(uζ + u−ζ̄ )

)]
η̄′ dx .

We want to collect terms of the formCz2z̄ with ReC 6= 0. However, the only term
from η̄′ with a resonance coefficient isz2η̃20, which is of the formz̄2, with two
bars. Hence the last integral does not containz2z̄ and is irrelevant. From the first
integral, we want to choosez2 from η′, i.e.,z2η̃20, and choosēz from ζ or ζ̄ . The
terms withz̄ are

U+2λQ(u+z̄u− + uz̄u+)−U−2λQ(uz̄u− + u−z̄u+) = 2(U+φ20−U−φ02)z̄

= 2820z̄ .

Here we have used (3.2) and (3.15); hence

(6.4) Red21 = Re(−i ) (2820, η20) = Im

(
2820,

−1

A− 0i − 2κ
PA

c820

)
= −0 .

To show0 ≥ λ2n2γ0, it suffices to show that

(6.5) 820 = 5λQφ2
1 + O(n3) .

Note that820 = U+φ20− U−φ02 = U+λQφ2
1 + O(n3) by (3.15) and (3.2). Now

U+ = 1
2(5A1/2H−1/2P1+5A−1/2H1/25) is defined in (2.23). SinceA1/2H−1/2 =

1+O(n2) andA−1/2H1/2 = 1+O(n2) by (9.7) and (9.8), we haveU+ = 1
2(5P1+

5)+ O(n2). By (2.18),P1 = 5+ O(n2). Therefore we have (6.5). It will follow
from the induction assumption thatQ = mφ0 + O(n3) with m ≥ 4

5n. Then we
have, by Lemma 2.8,

0 = 2λ2m2 Im

(
5φ0φ

2
1,

1

A− 0i − 2κ
PA

c5φ0φ
2
1

)
+ O(n4)

≥ 2λ2
(

4
5n

)2
γ0+ O(n4) .

Collecting terms of orderO(z4+ a2+ η2), we have

P(4) = −i
{
(u+, F (4))+ (u−, F

(4)
)+ [(u+, η)+ (u−, η)+ (u, R)a]θ̇}

− i
[
(u+, ζ )+ (u−, ζ )

]
(Fθ,3+ Fθ,4) .(6.6)

�

6.2 Normal Form

LEMMA 6.2 We can rewrite equation(6.2)of ṗ into anormal form:

(6.7) q̇ = δ21|q|2q + d1bq+ g ,

where q is a perturbation of p given in the proof. The coefficientδ21 satisfies

(6.8) Reδ21 = Red21 = −0 .
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If we assume estimate(4.10)on a(t) and M(T) ≤ 2, then the error term g(t), to
be given by(6.22), satisfies the bound

(6.9) |g(t)| ≤ Cε3/4−σn7/4 {t}−13/8 .

Furthermore, there is a small positive constantσ such that|q(t)| and |z(t)| are
bounded by

(6.10) |q(t)| ≤ (1+ σ) {t}−1/2 , |z(t)| ≤ (1+ 2σ) {t}−1/2 .

If we have|z(0)| = εn+ o(εn), we also have lower bound

|q(t)| ≥ (1− σ) {t}−1/2 , |z(t)| ≥ (1− 2σ) {t}−1/2 .

PROOF: From (6.2) we have

ṗ = µ [
cαzα + dβzβ + d1bz+ d2bz̄+ P(4)

]
, µ = ei κt ,

and we want to obtain the normal form (6.7). We will repeatedly use the following
formula:

(6.11) µm pα = d

dt

(
µm pα

i κm

)
− µ

m pα

i κm
fα(z)

where, ifα = (α0α1), |α| = α0+ α1 = 2,3,4, . . . ,

fα(z) = (α0+ α1C)(p−1 ṗ)(6.12)

= (α0+ α1C)z−1
[
cαzα + dβzβ + d1bz+ d2bz̄+ P(4)

]
,

andC denotes the conjugation operator. The formula is equivalent to integration
by parts.

We first removecαzα. Let

p1 = p− cα
i κ(1+ [α])µzα .

Since[α] is even, 1+ [α] 6= 0. By (6.11)

ṗ1 = ṗ− cαµzα − cα
i κ(1+ [α])µzα fα(z) .

Decomposingfα(z) into two parts, we can write

d+β zβ = − cα
i κ(1+ [α])µzα(α0+ α1C)z−1cα̃zα̃ ,

g1 = − cα
i κ(1+ [α])µzα(α0+ α1C)z−1

[
dβzβ + d1bz+ d2bz̄+ P(4)

]
,

and we get
ṗ1 = δβµzβ + d1µbz+ d2µbz̄+ µP(4) + g1

with δβ = dβ + d+β . Sincecα are purely imaginary, hence so ared+β , and we have
the relation

(6.13) Reδβ = Redβ .
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Next we removed2µbz̄. Let

p2 = p1− µd2bz̄

2i κ
.

We have

ṗ2 = ṗ1− µd2bz̄− µ
2d2

2i κ
(ḃp̄+ b ˙̄p) = µδβzβ + d1µbz+ (µP(4) + g1+ g2) ,

where

g2 = −µ
2d2

2i κ
(ḃp̄+ b ˙̄p) .

Now we deal withδβzβ terms. Let

p3 = p2−
∑
β 6=(21)

δβµzβ

i κ(1+ [β]) .

Note 1+ [β] 6= 0 for β 6= (21). We have

ṗ3 = ṗ2− µδβzβ + g3 = δ21µz2z̄+ µd1bz+ (µP(4) + g1+ g2+ g3)

with

g3 = −
∑
β 6=(21)

δβµ
1+[β]

i κ(1+ [β])
d

dt
(pβ) .

Notice that the equation forp3 has the desired form (6.7), and that the error
term(µP(4) + g1 + g2 + g3) has the desired decay int whent is large. However,
certain terms in the error term are not small compared to0z3 whent is of order 1,
and hence need to be treated. (Recall0 = −Reδ21.) We will also integrate these
terms and include them in the perturbation ofp.

One such term is of the formQζη(3)1,2 from P(4), whereη(3)1,2 = η(3)1 + η(3)2 . Since

the size ofη(3)1 andη(3)2 are comparable toη(2) when the timet is of order 1, and0z3

comes from terms of the formQζη(2), we need to treat terms of the formQζη(3)1,2.
We will integrate these terms and include them in the perturbation ofp. Recall
η
(3)
j = U−1e−i θ η̃

(3)
j , j = 1,2, and

η̃
(3)
1 + η̃(3)2 = e−i At

[̃
η0− (ei θzα)(0)̃ηα

]
whereη̃0 = ei θ(0)Uη0, and η̃α, |α| = 2, are defined as in (3.17). Denoteχ =
η
(3)
1,2 = η

(3)
1 + η(3)2 andχ̃0 = ei θ(0)[Uη0− zα(0)̃ηα] ∈ Hc(A) for the computation

below. We have

(6.14) χ(t) = (
η
(3)
1 + η(3)2

)
(t) = U−1e−i θ(t)e−i At χ̃0 .

Recall (6.1). The only source ofQζχ is from F (4), where we have a term 2λQ((ζ+
ζ̄ )χ + ζχ). This is the same source for the resonance termQζη(2). Hence terms
of the formQζχ in µP(4) are exactly

Pzη(3)1,2
≡ −iµ

(
u+,2λQ((ζ + ζ̄ )χ + ζ χ̄))− iµC

(
u−,2λQ((ζ + ζ̄ )χ + ζ χ̄)) .



DYNAMICS OF NLS 187

Clearly these terms can be summed in the form

(6.15) Pzη(3)1,2
= µ(zφ + z̄φ, χ)+ Cµ−1(zφ + z̄φ, χ) .

Here eachφ = O(n) stands for a different local smooth function. RecallU−1 =
U++ −U ∗−C from (2.24); hence

U−1(z f + z̄g) = z(U ∗+ f −U ∗−ḡ)+ z̄(U ∗+g−U ∗− f̄ )

(cf. (7.14)). Together with (6.14) we have

Pzη(3)1,2
=

∫ (
pφ1+ µ2 p̄φ2

)
e−i θe−i At χ̃0 dx

+ C
∫ (

µ−2 pφ3+ p̄φ4
)

e−i θe−i At χ̃0 dx
(6.16)

for some local functionsφ1, φ2, φ3, φ4 = O(n). Recallµ(s) = ei κs. Define

f1(t) =
∫ t

∞

∫
φ1e
−i Asχ̃0 dx ds,

f2(t) =
∫ t

∞

∫
φ2e

i 2κse−i (A−0i )sχ̃0 dx ds,

f3(t) =
∫ t

∞

∫
φ3e
−i 2κse−i Asχ̃0 dx ds,

f4(t) =
∫ t

∞

∫
φ4e
−i Asχ̃0 dx ds.

These functions int depend on the initial data only. Recall̃χ0 contains̃η20 =
−(A− 0i − 2κ)−1PA

c820, which is not a local term. It is clear by Lemma 2.7 that

| f j (t)| ≤
∫ t

∞
Cn〈s〉−9/8 ‖χ̃0‖ds≤ Cε3/2n2〈t〉−1/8 .

However, we claim we have

(6.17) | f j (t)| ≤ Cε3/2n2〈t〉−9/8 , j = 1,2,3,4 .

In fact, (6.17) is clear forf j (t), j 6= 2, since we can integrate them explicitly. For
example,

f1(t) =
∫
(−i A)−1(PA

c φ1)e
−i At χ̃0 dx = O(〈t〉−9/8) ,

by Lemma 2.7. Here we have used thatA−1 is bounded inL2
r ∩ Hc(A). The

problem for the termf2(t) is that the factorei 2κse−i As gives resonance whilẽχ0 is
not a local term. However, the main term inf2 that concerns us is∫ t

∞

∫
φ2e

i 2κse−i (A−0i )sη̃20 dx ds= −i
∫
φ2(A− 2κ − 0i )−2PA

c820 dx ,

which is still of orderO(〈t〉−9/8) by Lemma 2.7. Thus we also have (6.17) forf2.
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We can now integratePzη(3)1,2
:

(6.18) Pzη(3)1,2
= d

dt
(p4)+ g4 ,

wherep4 is of similar form toPzη(3)1,2
,

p4 = pe−i θ f1+ p̄e−i θ f2+ C
(
pe−i θ f3+ p̄e−i θ f4

)
,

g4 = d

dt
(pe−i θ ) f1+ d

dt
( p̄e−i θ ) f2+ C

(
d

dt
(pe−i θ ) f3+ d

dt
( p̄e−i θ ) f4

)
.

(6.19)

By (6.17),

(6.20) |p4| ≤ Cε3/2n2〈t〉−9/8|z| , |g4| ≤ Cε3/2n2〈t〉−9/8(|zθ̇ | + | ṗ|) .
We have integrated terms of the orderQzη(3)1−2.

Other terms of concern fort = O(1) are related toaR andη from P(4). (We
are not worried about terms fromg1, g2, andg3, since the coefficients of these
remainder terms of integration by parts are multiplied byO(n); see (4.14).) These
terms are of the form

Pa2,aη = µ
{
(φ, z2aR)+ (φ, Q(aR)2)+ (φ, QaRη)+ (φ, zaRη)

}
,

whereφ denotes some local functions. Sincea = O({t}−1), R = O(n−1), and
η = O({t}−1) locally, the largest terms here are of ordern−1 {t}−2, which is larger
than0z3 when t is small. However, terms linear inη can be integrated asA(zη)

in the next section. The first two terms,µz2aR andµQ(aR)2, are multiplied
by µ = ei κt ; hence they are oscillatory and can be integrated ascαzα terms and
as A(zb) in the next section. (Notea = a20(z2 + z̄2) + b and all terms of the
form µzγbm with |γ | + 2m = 4 are oscillatory; i.e., they have a nonzero phase.)
Since the computation is the same as forA(zη), cαzα, and A(zb), we shall skip the
computation and just give the result:

Pa2,aη = d

dt
(p5)+ g5 ,

wherep5 is of similar form toPa2,aη and

(6.21) |p5| ≤ Cn−1 {t}−2 , |g5| ≤ C {t}−5/2 .

Now we letq = p3− p4− p5. We have

q̇ = δ21µz2z̄+ µd1bz+ (
µP(4) + g1+ g2+ g3

)− Pzη(3)1,2
+ g4− Pa2,aη + g5

= δ21|p|2 p+ d1bp+ [(
µP(4) − Pzη(3)1,2

− Pa2,aη

)+ g1+ g2+ g3+ g4+ g5
]

= δ21|q|2q + d1bq+ g ,

where

g = [(
µP(4) − Pzη(3)1,2

− Pa2,aη

)+ g1+ · · · + g5
]

+ δ21(|p|2 p− |q|2q)+ d1b(p− q) .
(6.22)
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Hence we have arrived at the normal form. (Note that, although we keptṗ andḃ
in the definition ofg2, it should be replaced by their corresponding equations (6.2)
and (7.2)). Also, note we have

(6.23) q = p− cα
i κ(1+ [α])µzα − µd2bz̄

2i κ
−

∑
β 6=(21)

δβµzβ

i κ(1+ [β]) − p4 .

Finally, from the explicit form ofg(t), it is bounded by terms of the form

nz4+ nb2+ (nφ, η2)+ nzη(3)3−5 .

Assuming the bounds ona(t) andM(t), we get the bound (6.9) forg(t):

|g(t)| ≤ Cε3/4−σn7/4 {t}−13/8 .

To conclude this lemma, it remains to prove the estimate onq, which follows
from the next lemma. �

Our main restriction on the size ofη0 comes from the term(nφ, (η(3)1 )2) in g(t).
Since we want it to be smaller than0|z|3, we needη0 � ε3/2n2 for t = O(1). We
assumeη0 ≤ ε2n2 for simplicity.

6.3 Decay Estimates

In this subsection we present a calculus lemma that deals with the decay ofq(t).
We will write

(6.24) q(t) = ρ(t)eiω(t) ,

whereρ = |q| andω is the phase ofq. Recall

{t} = ε−2n−2+ 20t , {t} ∼ max{ε−2n−2, t} .
Before we proceed with the proof, we give some simple facts of an ordinary

differential equation.

Example.Consider real functionsr (t) > 0 that solve

(6.25) ṙ (t) = −r (t)3− ε(1+ t)−3

for t > 0, whereε > 0 is small. We have the following facts:

(1) All solutionsr (t) satisfy

r (t) ≤ (C + 2t)−1/2 with C = r (0)−2 .

(2) There is a numberr1 > 0 such that ifr (0) > r1, thenr (t) ∼ (C + 2t)−1/2.
(3) There is a unique global solutionr0(t) of (6.25) such that

r0(t) ∼ t−2 ast →∞ .

(4) If r (0) < r0(0), thenr (t) = 0 in finite time.
(5) If r (0) > r0(0), then ∫ ∞

0
r (s)2ds= ∞ .
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Thus the behavior ofr (t) depends on which term on the right side of (6.25) domi-
nates.

LEMMA 6.3 Recall that n0, ε0, n, andε given in Theorems1.1 through1.4satisfy
0 < n ≤ n0 and 0 < ε ≤ ε0. Let 0 ≈ n2 and σ = 0.01. Suppose a positive
functionρ(t) satisfies

(6.26) ρ̇ = −0ρ3+ g̃(t) ,

where the error term

|̃g(t)| ≤ Cε3/4−σn7/4 {t}−13/8 , {t} = {t}ε = ε−2n−2+ 20t .

(i) Supposeρ0= εn. Then there is a constant m= m(ε0) > 1 such that

m−1 {t}−1/2 ≤ ρ(t) ≤ m {t}−1/2 .

Moreover, m(ε0)→ 1+ asε0→ 0+.

(ii) Suppose thatρ(0) ≤ εn. Then we have

ρ(t) ≤ m {t}−1/2 .

The above example shows that we cannot expect a lower bound forρ(t) under
the assumption of part (ii), whenρ(0) is too small compared with the error term.

PROOF: We first prove part (i). Letρ+ = m {t}−1/2 andρ− = m−1 {t}−1/2,
with m> 1 to be determined. We haveρ+(0) > ρ(0) > ρ−(0). Moreover,

ρ̇+ = −0m−2ρ3
+ = −0ρ3

+ + 0(1−m−2)ρ3
+ ≥ −0ρ3

+ + g̃

if

0(1−m−2)m3 {t}−3/2 ≥ Cε3/4−σn7/4 {t}−13/8 .

Also,

ρ̇− = −0m2ρ3
− = −0ρ3

− − 0(m2− 1)ρ3
− ≤ −0ρ3

− + g̃

if

0(m2− 1)m−3 {t}−3/2 ≥ Cε3/4−σn7/4 {t}−13/8 .

Since{t}−3/2 ≥ (εn)1/4 {t}−13/8, both inequalities hold if

0(1−m−2)m3, 0(m2− 1)m−3 ≥ Cε1−σn2 .

Since0 ≈ n2 andε ≤ ε0, the above is true form > 1 arbitrarily close to 1 by
choosingε0 sufficiently small. By comparison, we haveρ−(t) < ρ(t) < ρ+(t) for
all t .

The upper bound in part (ii) follows from the same proof by comparingρ(t)
with ρ+(t). �
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7 Change of the Mass of the Ground State

Recall thata(t) satisfies the integral equation (3.3), and we have derived the
main oscillatory terms ofa(t) in (3.8): a(t) = a(2)(t)+b(t) anda(2) = a20(z2+z̄2),
with b(t) given by (3.9); that is,

a(t) = a(T)+
∫ t

T
(c1Q, Im(F + θ̇h))ds(7.1)

= a(T)+ a(2)(t)− a(2)(T)+
∫ t

T
ḃ(s)ds,

wherec1 = (Q, R)−1 and

(7.2) ḃ = (
c1Q, Im[F − F (2) + θ̇h])− 4a20 Ree−2i κs pṗ .

Note that, after the substitutionη = η(2) + η(3) anda = a20(z2 + z̄2) + b, ḃ is of
the form Re

∑{Cz3 + Czb+ (zφ, η)+ Cz4 + Cz2b} plus error. We will perform
several integrations by parts to arrive at the form

a(t) = O(t−1)+
∫ t

T
O(t−2)ds= O(t−1)

and obtain the estimate|a(t)| ≤ O(t−1).
We first decompose the integrand ofa(t) in (7.1) according to order inz; see

table (4.5). Recallη = η(2) + η(3) anda = a20(z2 + z̄2) + b. Also, recall from
(3.23) that

θ̇ = − [
a(2) + b+ (c1R,ReF (2))

]+ Fθ,3+ Fθ,4(7.3)

Fθ,3 = −
(
c1R, ReF (3) + F̃ (3)

)+ [
a(2) + b+ (c1R,ReF (2))

]
(c1R,Reζ ) ,

andFθ,4 = O(z4+ a2+ η2). Thus we have

(c1Q, Im θ̇h) = θ̇ (
c1Q, Im ζ + η(2) + η(3))

= −[
a(2) + b+ (c1R,ReF (2))

]
(c1Q, v) Im z(7.4)

+ Fθ,3(c1Q, v) Im z− [
a(2) + b+ (c1R,ReF (2))

](
c1Q, Im η(2)

)
(7.5)

+ Fθ,4(c1Q, v) Im z+ (
Fθ,3+ Fθ,4

)(
c1Q, Im η(3)

)
+ θ̇(c1Q, Im η(3)

)
.

(7.6)

Here the second line (7.4) is of orderO(z2) and the third line (7.5) of orderO(z3),
and the last line (7.6) contains higher-order terms. Together with the decompo-
sitions (3.22) ofF we can decompose the integrand ofa(t) in (7.1) according to
order inz,

(c1Q, Im(F + θ̇h)) = A(2) + A(3) + A(4) + A(5) ,

A(3) = [A(zb) + A(zη) + A(z
3)] ,
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whereA(2) consists ofO(z2) terms,A(3) of O(z3) terms,A(4) of O(z4) terms, and
A(5) of higher-order terms. They are given explicitly by

A(2) = (c1Q, Im λQζ 2) ,

A(zb) = (c1Q, Im 2λQRbζ )− b(c1Q, v) Im z ,

A(zη) = (c1Q, Im 2λQζη) ,

A(z
3) = (

c1Q, Im λ|ζ |2ζ + 2λQRa(2)ζ
)

− [
a(2) + (c1R,ReF (2))

]
(c1Q, v) Im z ,

A(4) + A(5) = (
c1Q, Im

{
λQη2+ 2λQRaη + λ [|aR+ ζ |2(aR+ ζ )− |ζ |2ζ ]})

+ (7.5)+ (7.6).

A(4) = (7.5)+ (
c1Q, Im

{
λQ(η(2))2+ 2λQRaη(2)(7.7)

+ λ[2|ζ |2(aR+ η(2))+ ζ 2(aR+ η(2))]}) ,
A(5) = (

c1Q, Im
{
λQ[2η(2)η(3) + (η(3))2] + 2λQRaη(3)

})
+ (

c1Q, Im
{
λ
[
2|ζ |2η(3) + ζ 2η(3) + `2ζ̄ + 2|`|2ζ + `2 ¯̀]})+ (7.6),

` = aR+ η .
Sinceζ = zu+ + z̄u−, we have

Im ζ = Im z(u+ − u−) and Imζ 2 = (Im z2)(u2
+ − u2

−) .

We now proceed to integrate them term by term. We have already integrated
A(2) in Section 3.1. Write

(7.8) e−i κt ṗ = cαzα + dβzβ + d1bz+ d2bz̄+ P(4) := cαzα + P(3,4) ,

where P(3,4) is defined by the last equality. We can rewrite our result in Sec-
tion 3.1 as∫ t

T
A(2) ds= a(2)(t)− a(2)(T)+

∫ t

T
A2,3+ A2,4+ A2,5 ds,(7.9)

a(2) = a20(z
2+ z̄2) , a20 = (4κ)−1

(
c1Q, λQ(u2

+ − u2
−)

) = O(n2) ,

A2,3 = −4a20 Rezcαzα , A2,4 = −4a20 Re
[
dβzzβ + d1bz2

]
,(7.10)

A2,5 = −4a20 RezP(4) .

Note here we have used Rezd2bz̄= 0 from Lemma 6.1.

We can also rewrite (7.2), the equation forb = a− a(2), as

(7.11) ḃ = [
A(zb) + A(zη) + A(z

3) + A2,3
]+ A(4) + A2,4+ A(5) + A2,5 .
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7.1 Integration of O(z3) Terms

There are three terms of orderO(z3): A(zb), A(zη), and A(z
3) (we will absorb

A2,3 into A(z
3)). We first integrateA(zb). From its explicit form we haveA(zb) =

C2 b Im z for a real constantC2 = O(n). Hence, using the integration-by-parts
formula (6.11) and the decompositions (7.8) and (7.11),∫ t

T
A(zb) ds=

∫ t

T
C2b Im z ds= C2 Im

1

−i κ

{
bz−

∫ t

T
e−i κs d

dt
(bp)ds

}

= C2

2κ
2 Re

{
zb−

∫ t

T
zḃ+ b(cαzα + P(3,4))ds

}

= czbb(z+ z̄)+
∫ t

T
Azb,4+ Azb,5 ds,

whereP(3,4) is defined in (7.8) and

czb= C2

2κ
= O(n) ,

Azb,4 = −czb(z+ z̄)
[
A(zb) + A(zη) + A(z

3) + A2,3
]− 2czbbRecαzα ,

Azb,5 = −czb(z+ z̄)
[
A(4) + A2,4+ A(5) + A2,5

]− 2czbbReP(3,4) .

(7.12)

We now integrateA(zη). Recall from (2.24) thatU = U+ + U−C andU−1 =
U ∗+ −U ∗−C. We will also use the following formulae:

Re
∫

dx f(Cg) = Re
∫

dx(C f )g ,

Im
∫

dx f(Cg) = − Im
∫

dx(C f )g ,
(7.13)

U (z f + z̄g) = z(U+ f +U−ḡ)+ z̄(U+g+U− f̄ ) .(7.14)

Recallη = U−1e−i θ η̃. Denoteη′ = e−i θ η̃ and henceη = U−1η′. We have
from (7.13) and (7.14) the identity

A(zη) = (c1Q, Im 2λQζη)

= Im
∫

dx2c1λQ2ζη

= Im
∫

dx2c1λQ2(zu+ + z̄u−)(U ∗+ −U ∗−C)η′

= Im
∫

dx
{
(U+ +U−C)[z(2c1λQ2u+)+ z̄(2c1λQ2u−)]

}
η′

= Im
∫

dx(zφ3+ z̄φ4)η
′ ,
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where

φ3 = U+(2c1λQ2u+)+U−(2c1λQ2u−) ,

φ4 = U+(2c1λQ2u−)+U−(2c1λQ2u+) .

We now rewrite

η′(s) = e−i θ η̃ = e−i θe−i As f (s) ,

f (s) = ei Asη̃ = η̃0+
∫ s

0
ei τ APA

c Fη(τ )dτ .
(7.15)

The reason we work withf instead ofη̃ is that those terms of the same order (z2)
in ∂s f (s) = eis APA

c Fη(s) are explicit. We now have∫ t

T
A(zη) ds= Im

∫ t

T
(φ3, zη

′)+ (φ4, z̄η
′)ds

= Im
∫ t

T

(
φ3,e

−is(A+κ) (pe−i θ f
))

ds

+ Im
∫ t

T

(
φ4,e

−is(A−κ) ( p̄e−i θ f
))

ds.

Note f (s) ∈ Hc(A). We first compute the first integral, which is equal to

=
[
Im

(
φ3,

1

−i (A+ κ)e
−is(A+κ) (pe−i θ f

))]t

T

− Im
∫ t

T

(
φ3,

1

−i (A+ κ)e
−is(A+κ) d

ds

(
pe−i θ f

))
ds

=
[
Re

(
1

A+ κPA
c5φ3, ze−i θ η̃

)]t

T

− Re
∫ t

T

(
1

A+ κPA
c5φ3,

[
e−i κs ṗη′ − i θ̇zη′ + ze−i θPA

c Fη
])

ds

= [
Re

(
φ5, zη

′)]t

T
− Re

∫ t

T

(
φ5,

[
e−i κs ṗη′ − i θ̇zη′ + ze−i θPA

c Fη
])

ds

where

φ5 = 1

A+ κPA
c5φ3 .

We are careful in addingPA
c5 so thatφ5 makes sense. We can do so sincef (s) ∈

Hc(A). Similarly, the second integral is equal to

= [
Re

(
φ6, z̄η

′)]t

T
− Re

∫ t

T

(
φ6,

[
ei κs ṗη′ − i θ̇ z̄η′ + z̄e−i θPA

c Fη
])

ds

with

φ6 = 1

A− κPA
c5φ4 .
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Usingη′ = Uη, we can rewrite the leading terms of
∫ t

T A(zη) ds in the form

Re(φ5, zη
′)+ Re(φ6, z̄η

′) = Re
∫

dx(zφ5+ z̄φ6)(U+ +U−C)η

= Re
∫

dx[(U ∗+ +U ∗−C)(zφ5+ z̄φ6)]η

= Re
∫

dx(zφ8+ z̄φ7)η

= Re(zφ7+ z̄φ8, η) ,

where we have used (7.13) and (7.14) again, with the convention (2.1) and

φ8 = U ∗+φ5+U ∗−φ6 , φ7 = U ∗+φ6+U ∗−φ5 .

Tracking our definition, we haveφi = O(n2), i = 3,4, . . . ,8.
The remaining integral has the integrand

= −Re
(
φ5,

[
e−i κs ṗη′ − i θ̇η′ + ze−i θPA

c Fη
])

− Re
(
φ6,

[
ei κs ṗη′ − i θ̇ z̄η′ + z̄e−i θPA

c Fη
])

= −Re
∫

dx
(
e−i κs ṗφ5+ ei κs ṗφ6

)
Uη

+ (zφ5+ z̄φ6)
[−i θ̇Uη + e−i θPA

c Fη
]
.

Using (3.11) we have[−i θ̇Uη + e−i θPA
c Fη

] = PA
c Ui−1[F + θ̇ (aR+ ζ + η)] .

Thus the integrand of the remaining integral can be written asAzη,3+ Azη,4+ Azη,5,
and we have

(7.16)
∫ t

T
A(zη) ds= [Re(zφ7+ z̄φ8, η)]

t
T +

∫ t

T
Azη,3+ Azη,4+ Azη,5 ds,

Azη,3 = −Re
∫

dx(zφ5+ z̄φ6)PA
c Ui−1zαφα

Azη,4 = −Re
∫

dx
(
cαzαφ5+ cαzαφ6

)
Uη(2)

+ (zφ5+ z̄φ6)PA
c Ui−1

{
F (3) + F̃ (3)

− [
a(2) + b+ (

c1R,ReF (2)
)]
ζ
}

Azη,5 = −Re
∫

dx
(
cαzαφ5+ cαzαφ6

)
Uη(3) + (

P(3,4)φ5+ P(3,4)φ6
)
Uη

+ (zφ5+ z̄φ6)PA
c Ui−1

{
F (4) + θ̇ (aR+ η)+ (Fθ,3+ Fθ,4)ζ

}
,

(7.17)

whereP(3,4) stands for the higher-order terms ine−iαs ṗ (7.8), and we have used
the definitions ofF (3.22) andθ (7.3). We observe that the only appearance ofθ
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is as the exponent ofei θ . Also, Azη,3 is a sum of monomials of the formczβ with
|β| = 3. There is noa or η in Azη,3.

Summarizing our effort, we have obtained

a(t) = a(T)+ [
a20

(
z2+ z̄2

)+ czbb(z+ z̄)+ Re(zφ7+ z̄φ8, η)
]t

T

+
∫ t

T

[
A(z

3) + A2,3+ A(zη,3)
]+ [

A(4) + A2,4+ A(zb,4) + A(zη,4)
]

+ [
A(5) + A2,5+ A(zb,5) + A(zη,5)

]
ds.

(7.18)

All terms in [A(z3) + A2,3+ A(zη,3)] are of the formczβ , |β| = 3. We defineAβ so
that

Aβzβ = A(z
3) + A2,3+ A(zη,3)

= (
c1Q, Im λ|ζ |2ζ + 2λQRa(2)ζ

)− [
a(2) + (

c1R,ReF (2)
) ]
(c1Q, v) Im z

− 4a20 Rezcαzα − Re
∫

dx(zφ5+ z̄φ6)PA
c Ui−1zαφα .

From this explicit form, we haveAβ = O(n). By integration by parts, we have∫ t

T
Aβzβ ds= aβzβ −

∫ t

T
aβzβ fβ(z)ds, aβ := Aβ

i [β]κ = O(n) ,

= aβzβ +
∫ t

T
A3,4+ A3,5 ds(7.19)

where fβ is defined in (6.12) and

A3,4 =
∑

β=(β0,β1),β0+β1=3

−aβzβ(β0+ β1C)z−1cαzα

A3,5 =
∑

β=(β0,β1),β0+β1=3

−aβzβ(β0+ β1C)z−1P(3,4) .
(7.20)

Notice that[β] 6= 0 andaβ = aβ̄ .
Substituting (7.19) into (7.18), we obtain

a(t) = a(T)+ [
a20

(
z2+ z̄2

)+ czbb(z+ z̄)+ Re(zφ7+ z̄φ8, η)+ aβzβ
]t

T

+
∫ t

T

[
A(4) + A2,4+ A(zb,4) + A(zη,4) + A3,4

]
(7.21)

+ [
A(5) + A2,5+ A(zb,5) + A(zη,5) + A3,5

]
ds.

We have finished the integration of all terms of orderO(z3) in equation (7.1) for
a(t). Thus there are no order-O(z3) terms in the integrand in (7.21). The orderz4

terms are collected in first group of integrands in (7.21), and the higher-order terms
in the second group.
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In principle, order-z4 terms have the following forms:z4, b2, η2, z2b, z2η, bη,
and zη(3). Closer examination shows thatb2, b|z|2, or zη(3) never occur. (Re-
call thatzη(3) is part ofzη, which we already treated when we integratedA(zη).)
Furthermore, the terms involvingη can be removed by making the substitution
η = η(2) + η(3). A precise statement on these integrands is given in the following
lemma. It is crucial that no term involvingb2 appear in the integrand. Otherwise,
it will result in an inequality of the formb(t) ≤ C/t + ∫ t b(s)2ds, which does not
guaranteeb(t) ≤ C/t .

LEMMA 7.1 The integrands of order O(z4) in (7.21)can be summed into the form

[
A(4) + A2,4+ A(zb,4) + A(zη,4) + A3,4

] =
B22|z|4+ Re

{
A40z

4+ A31z
3z̄+ Ab2bz2

}
.

There are no terms of the form b2, b|z|2, or zη(3). Moreover, we have

(7.22) B22 = 1
2c10 + O(n3) , A40, A31 = O(n) , Ab2 = O(n) .

PROOF: Recall the definitions (7.7), (7.10), (7.12), (7.17), and (7.20):

A(4) = (
c1Q, Im

{
λQ(η(2))2+ 2λQRaη(2)

+ λ[2|ζ |2(aR+ η(2))+ ζ 2(aR+ η(2))]})
+ Fθ,3(c1Q, v) Im z− [

a(2) + b+ (
c1R,ReF (2)

) ]
(c1Q, Im η(2))

A2,4 = −4a20 Re
[
dβzzβ + d1bz2

]
A(zb,4) = −czb(z+ z̄)

[
A(zb) + A(zη) + A(z

3) + A2,3
]− 2czbbRecαzα

A(zη,4) = −Re
∫

dx
(
cαzαφ5+ cαzαφ6

)
Uη(2)

+ (zφ5+ z̄φ6)PA
c Ui−1

{
F (3) + F̃ (3) − [

a(2) + b+ (
c1R,ReF (2)

)]
ζ
}

A3,4 =
∑

β=(β0,β1),β0+β1=3

−aβzβ(β0+ β1C)z−1cαzα .

The first part of the lemma is obtained by direct inspection. Note we can deal with
Azη,4 in the same manner as we dealt withA(zη). The orders of the coefficients are
also obtained by direct check with the following table in mind:

Q = n , R= n−1 , c1 = 1 , cα = n , dβ,d1,d2 = 1 ,

a20 = n2 , aβ = n , czb= n , φ7, φ8 = n2

ζ ∼ z+ n2z̄ , aR∼ n−1ρ2 , η ∼ nρ2 .
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We note that allC|z|4 terms withC = O(n2) but one are killed by the Im operator.
The only surviving term is the following resonance term ofA(4):(

c1Q, Im λζ 2η(2)
) =(

c1Q, Im λz2u2
+z2η20

)+ O(n3)|z|4+
∑

|γ |=4,γ 6=(22)

O(n2)zγ .

The first term on the right side is equal to1
2c10|z|4 + O(n3), and this is the main

term in B22. This proves Lemma 7.1. �

7.2 Integration of Higher-Order Terms

Next we proceed to integrate out those oscillatory terms in the integrand of
(7.21) fora(t). The first group consists of terms of the formzγ , |γ | = 4.

Re
∫ t

T
A40z

4+ A31z
3z̄+ Ab2bz2 ds

= Re

[
A40z4

−4i κ
+ A31z3z̄

−2i κ
+ Ab2bz2

−2i κ

]t

T

− Re
∫ t

T

A40z4

−4i κ
f40(z)+ A31z3z̄

−2i κ
f31(z)+ Ab2µ

−2

−2i κ

d

ds
(bp2)ds

where d
ds(bp2) = ḃ p2+ 2bpṗ = O(z5). Let

a40 = A40

−4i κ
= O(n) , a31 = A31

−2i κ
= O(n) , ab2 = Ab2

−2i κ
= O(n) ,

A4,5 = −Re

{
a40z

4 f40(z)+ a31z
3z̄ f31(z)+ ab2

d

ds
(bp2)

}
.

Then we have the identity

Re
∫ t

T
A40z

4+ A31z
3z̄+ Ab2bz2 ds=

Re
[
a40z

4+ a31z
3z̄+ ab2bz2

]t

T
+

∫ t

T
A4,5 ds.

After this integration, the integrand in (7.21) becomes

A(5) + A2,5+ A(za,5) + A(zη,5) + A3,4+ A4,5 .

Since|A4,5| is of orderz5, the integrands are of orderz5 or higher. More precisely,
they are of the orders

n
(
z5+ z(aR)2+ z(aR)η + (aR)2η + zη2+ z2η

(3)
1−2+ z2η

(3)
3−5+ · · ·

)
.

(The firstn is from thec1Q in equation (2.30) foṙa.) These terms are of order
t−2−1/8 and thus can be considered as error terms whent large. Unfortunately, we
need to control their behavior even fort of order 1. In this region, their orders in
terms ofn are crucial.
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We first note thatnz5 is bounded byεn2|z|4 � |B22||z|4. Since‖η‖L2
loc
≤

C {t}−1, the termnzη2 is also much smaller than|B22||z|4. The termnz2η
(3)
3−5 is

bounded byε−σn(εn)3/4 {t}−2−1/8� |B22||z|4. Thus the main trouble lies in terms
of order

nz(aR)2+ nz(aR)η + n(aR)2η + nz2η
(3)
1−2 .

These terms have faster time-decay order than|B22||z|4, namely,t−2−1/8, but they
are larger than|B22||z|4 when timet = O(1). They are oscillatory terms of order
z5 that we will integrate. (In contrast, terms of orderz2k may be nonoscillatory.)
Since the integration procedures for these terms are the same as those forO(z3)

terms, we only sketch the main steps:

(1) Replace alla in the above group bya20(z2+ z̄2)+ b.
(2) All termszγ with |γ | = 5 are oscillatory and can be integrated asA(z

3).
(3) nz3bR2 andnzb2R2 are also oscillatory and can be integrated asA(zb).
(4) All terms linear inη—z3η, zbη, andb2η—can be integrated asA(zη).
(5) z2η

(3)
1−2 can be integrated asPzη(3)1−2

, defined in (6.15). Specifically, we have

terms of the form

Az2η
(3)
1−2
=

∑
|α|=2

Re
(
nφ , zαη(3)1−2

) = d

dt

(
az2η

(3)
1−2

)+ Az2η
(3)
1−2,5

whereφ = O(1) are some complex local functions andaz2η
(3)
1−2

andAz2η
(3)
1−2,5

are defined similarly top4 andg4 in (6.19) with the decay∣∣az2η
(3)
1−2

∣∣ ≤ C {t}−1 ε2n3〈t〉−9/8 ,∣∣Az2η
(3)
1−2,5

∣∣ ≤ C {t}−3/2 ε2n3〈t〉−9/8 ≤ Cε|B22| {t}−2 .

Note that, as inp4 and g4, we have terms of the form(φ, (A − 2κ −
0i )−2PA

c8)nz2 in az2η
(3)
1−2

, which still has the claimed decay by Lemma 2.7.

To summarize, we have obtained

a(t) = a(T)+ [
a20

(
z2+ z̄2

)+ czbb(z+ z̄)+ Re(zφ7+ z̄φ8, η)+ aβzβ
]t

T

+ Re
[
a40z

4+ a31z
3z̄+ ab2bz2+ az2η0

]t

T

+ Re
[
Cz5+ Cz3b+ Czb2+ Cz3η + Czbη + Cb2η + Cz2η

(3)
1−2

]t

T

+
∫ t

T
B22|z|4+ B5 ds,(7.23)

whereB22 = 1
2c10 + O(n3), the terms in the third line denote various terms of

similar form (e.g.,Cz5 meansCzγ with |γ | = 5), and

(7.24) |B5(t)| ≤ C(ε + n)σn7/4 {t}−2−1/8� 0 {t}−2 ,
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assuming the bound (4.10) ona(t) andM(T) ≤ 2.
Recallb(t) := a(t)− a(2)(t) andST (4.11) is defined by

a(t) = a(T)+ [
a20

(
z2+ z̄2

)]t

T
+ ST (a, z, η, θ)(t) .

From (7.23),ST can be viewed as a function ofa, z, η, andθ and explicitly given by

ST (a, z, η, θ)(t)

:= [
czbb(z+ z̄)+ Re(zφ7+ z̄φ8, η)+ aβzβ

]t

T

+ Re
[
a40z

4+ a31z
3z̄+ ab2bz2+ az2η0

]t

T

+ Re
[
Cz5+ Cz3b+ Czb2+ Cz3η + Czbη + Cb2η + Cz2η

(3)
1−2

]t

T

+
∫ t

T
B22|z|4+ B5 ds.(7.25)

The right-hand side depends onb, η(3), etc., which are not explicitly given as vari-
ables inST . But all these variables can be traced back to the basic variablesa, z,
η, andθ , e.g.,b = a− a20(z2+ z̄2).

Making the same assumptions as in Proposition 4.1, we have

(7.26) |ST (a, z, η, θ)(t)| ≤ C1(D) {t}−3/2+ B22

20
{t}−1 ≤

[
o(1)+ D

4

]
{t}−1 .

We also havea(t) = a(T)+[a20(z2+ z̄2)]tT+S(a)(t) = a(T)+[o(1)+D/4] {t}−1.
We conclude with the following lemma:

LEMMA 7.2 Suppose that M(t) ≤ 2 and |a(t)| ≤ D {t}−1 for 0 ≤ t ≤ T . Recall
D = 2B22/0 = c1+ O(n). Then we have

(7.27) |ST (a, z, η, θ)(t)| ≤ D

2
{t}−1 , |a(t)| ≤ |a(T)| + D

2
{t}−1 .

This lemma gives Proposition 4.2 and concludes the proof of Theorems 1.1 and 1.3.
Since|E0−Ej+1| ≤ |E0−Ej |+|γ | ≤ 9

8 Dε2n2+|γ | ≤ 2Dε2n2, by Lemma 2.4
again withE1 standing forE0 andE2 standing forEj+1,

(7.28) |E0− Ej+1− aj+1(0)| ≤ Cn−1(εn)(2Dε2n2) = Cε3n2 .

The constantC here is independent ofj since we use a bound for|E0− Ej+1| that
is independent ofj . Since|aj+1(0)| ≤ 1

2 Dε2n2, we have

(7.29) |E0− Ej+1| ≤ Dε2n2 .

From this, we also get‖ψ0− Qj+1ei2j+1(0)‖Y ≤ 2εn. We have thus proven the
induction hypothesis (I j+1) for t = Tj+1. The induction proof is complete.
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PROOF OFTHEOREM 1.4: Suppose the assumption of Theorem 1.4 holds. The
existence ofE∞ and the upper bound (1.22) follows from the same proof for The-
orem 1.3. Recall from (1.24) that

|zE0,0| = εn , ‖ηE0,0‖Y ≤ Cε2n2 , aE0,0 = 0 .

Let γ = E0 − E∞ be the energy shift. The energy shift can be bounded by|γ | ≤
Dε2n2 (2.10). Thus with respect toE∞ Lemma 2.4 guarantees

|zE∞(0)| = εn+ O(ε2n) , ‖ηE∞(0)‖Y ≤ Cε2n2 , aE∞(0) ≤ Cε2n2 .

The second part of Proposition 4.1 thus provides the lower bound|z∞(t)| ≥ (1−
2σ) {t}−1/2 for all timest .

We now prove (1.26), the last statement of Theorem 1.4. Since|γ | ≤ Dε2n2,
by (2.8) we have

(7.30) ‖QE0‖2 = ‖QE∞‖2+ 2γ (Q∞, R∞)+ O(n−2γ 2) .

We can also estimate the energy shiftγ = a∞(0) + O(ε3n2) by Lemma 2.4 with
E1 standing forE0 andE2 standing forE∞. Thus we have

a∞(0) =
∫ 0

∞
B22|z|4 ds+ O

(
(εn)9/4

) = ∫ 0

∞
B22|q|4 ds+ O

(
(εn)9/4

)
whereq = q∞(t). RecallB22 = 1

2c10 + O(n3) andc1 = (Q∞, R∞)−1. On the
other hand, we haveddt |q|2 = −20|q|4+ {t}−17/8; hence

|q(0)|2 =
∫ ∞

0
−20|q|4 ds+ O((εn)9/4) .

From these formulae fora∞(0) andq(0) we have

4a∞(0)(Q∞, R∞)+ |q(0)|2 = O
(
(εn)9/4

)
.

Recall that the eigenfunctions forL satisfyu, v = φ1 + O(n2). From the defini-
tion of z, we have|z(0)|2 = ‖ζ(0)‖2L2 · [1+ O(n2)]. Since|q(0)|2 = |z(0)|2 +
O((εn)9/4), we conclude 2γ (Q∞, R∞) = −1

2 ‖ζ(0)‖2L2 + O(ε2n2(ε1/4 + n1/4))

and

(7.31) ‖QE0‖2 = ‖QE∞‖2− 1
2 ‖ζ(0)‖2L2 + O

(
ε2n2(ε1/4+ n1/4)

)
.

Therefore (1.26) and thus Theorem 1.4 are proven. �

8 Existence of Dispersion-Dominated Solutions

In this section we prove Theorem 1.5. For a given profileξ∞, we will construct
a solution of the form (1.18),

ψ = [Q(x)+ a(t)R(x)+ h(t, x)]ei [−Et+θ(t)] ,

so thatψ(t)− ψas(t) = O(t−2). Herea(t), θ(t) ∈ R andh(t) ∈ M .
By (2.29) we have

∂tUh = −i AUh− i θ̇Uh+Ui−1(F + θ̇aR)− [U, i ]θ̇h .
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(RecallU PM = U .) We single out−i θ̇Uh since it is a global linear term inh. Let
h̃ = ei θUh; we have

(8.1) ∂t h̃ = −i Ah̃+ ei θ
{
Ui−1(F + θ̇aR)− [U, i ]θ̇h

}
.

Let

(8.2) h̃(t) = e−i AtUξ∞ + g(t) , h = U−1e−i θ h̃ .

Hereg(t) ∈ X is the error term. Note thatg(t) consists of both excited state and
subspace of continuity components. From (8.1) we have

(8.3) g(t) =
∫ t

∞
e−i A(t−s)ei θ

{
Ui−1(F + θ̇aR)− [U, i ]θ̇h

}
ds.

We will solve{a, θ, g} satisfying (2.30), (2.32), and (8.3), respectively, withh̃ and
h defined in (8.2).

Note F = F(aR+ h). The main term inF is

F0 = λQ
(
2|ξ |2+ ξ2

)+ λ|ξ |2ξ , ξ(t) = U−1e−i θ(t)e−i AtUξ∞ .

By assumptionξ∞ is small in the spaceZ = H2 ∩W2,1(R3). SinceU is bounded
in Wk,p, ‖Uξ∞‖H2∩W2,1(R3) ≤ ε for someε sufficiently small. From Lemmas 2.6
and 2.7, we have the bounds‖ξ(t)‖H2 ≤ C1ε and‖ξ(t)‖W2,∞ ≤ C1ε|t |−3/2. Hence
the termλ|ξ |2ξ in F0 is bounded by‖|ξ |2ξ(t)‖H2 ≤ C‖ξ(t)‖3

H2 ≤ Cε3. Moreover,
if t > 1,∥∥|ξ |2ξ(t)∥∥

L2 ≤ C
∥∥ξ(t)∥∥2

∞
∥∥ξ(t)∥∥2 ≤ Cε3t−3 ,∥∥∇2(|ξ |2ξ)(t)∥∥

L2 ≤ C
∥∥ξ(t)∥∥2

∞
∥∥∇2ξ(t)

∥∥
2+ C

∥∥ξ(t)∥∥∞∥∥∇ξ(t)∥∥2
4 ≤ Cε3t−3 .

We conclude that

(8.4)
∥∥|ξ |2ξ(t)∥∥

H2 ≤ Cε3〈t〉−3 .

We also have the following estimate: For a functionφ ∈ L1 ∩ L2, we have∣∣(φ, |ξ |2ξ)∣∣ ≤ min
{‖φ‖L1 · ‖|ξ |2ξ‖L∞, ‖φ‖L2 · ‖|ξ |2ξ‖L2

}
≤ C ‖φ‖L1∩L2 ε3〈t〉−9/2 .

(8.5)

The other termλQ(2|ξ |2+ ξ2) in F0 is actually larger thanλ|ξ |2ξ locally and can
be estimated similarly. We conclude

‖F0(t)‖H2 ≤ Cε2〈t〉−3 .

If ‖g(t)‖H2 ≤ Cε2〈t〉−2, one can prove, for example,∥∥|ξ + g|2(ξ + g)(t)
∥∥

H2 ≤ Cε3〈t〉−3, ‖Qξg(t)‖H2 ≤ Cε3〈t〉−7/2 .

From these estimates onF0, the main term ofF , the following bounds follow
from definitions (8.3), (2.30), and (2.32) ofg, a, andθ̇ , respectively,

(8.6) g(t) . t−2 , a . t−2 , θ̇ . t−2 , θ . t−1 .
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One verifies with these orders that the main term ofF is indeedF0. Although
θ(t) = O(t−1), θ only appears in the formei θ and does not change the estimates.

We now proceed to construct a solution. For convenience, we introduce a new
variableω = θ̇ . LetA be the space

A = {
(ω, θ,a, g) : [0,∞)→ R× R× R× H2, |ω(t)| ≤ ε2−2σ 〈t〉−2,

|θ(t)| ≤ ε2−3σ 〈t〉−1, |a(t)| ≤ ε2−σ 〈t〉−2, ‖g(t)‖H2 ≤ ε2−σ 〈t〉−2
}
,

whereσ = 1/100 is small. We define a Cauchy sequence on the spaceA by
iterating the following map: (cf. (2.30), (2.32), and (8.3))

ω4(t) := − [a+ (c1R,ReF)] · [1+ a(c1R, R)+ (c1R,Reh)]−1 ,

θ4(t) :=
∫ t

∞
ω ds,

a4(t) :=
∫ t

∞
(c1Q, Im(F + ωh))ds,

g4(t) :=
∫ t

∞
e−i A(t−s)e−i A(t−s)ei θ

{
Ui−1(F + ωaR)− [U, i ]ωh

}
ds,

whereF = F(aR+ h) andh(t) = U−1e−i θ (e−i AtUξ∞ + g(t)). Our initial data
are

ω(t) ≡ 0, θ(t) ≡ 0 , a(t) ≡ 0 , g(t) ≡ 0 .

Given(ω, θ,a, g) ∈ A, using this assumption and (8.4) and (8.5), we have

‖|g|2g‖H2 ≤ ‖g‖3H2 ≤ Cε6−3σ 〈t〉−6 ,

‖F‖H2 ≤ Cε2〈t〉−3 ,

|(φ, F)| ≤ C ‖φ‖L1∩L2 Cε2〈t〉−3 ,

|ω4(t)| ≤ Cε2−σ 〈t〉−2 ≤ ε2−2σ 〈t〉−2 ,

|θ4(t)| ≤
∫ t

∞
ε2−2σ 〈s〉−2ds≤ ε2−3σ 〈t〉−1 ,

|a4(t)| ≤
∫ t

∞
Cε2〈s〉−3ds≤ ε2−σ 〈t〉−2 ,

‖g4(t)‖H2 ≤
∫ t

∞
Cε2〈s〉−3ds≤ ε2−σ 〈t〉−2 ,

provided thatε is small enough. In the last line we have used Lemma 2.6 on the
boundedness ofe−i t A on X ∩ H2. We have also used the estimate

‖[U, i ]h‖H2 ≤ C ‖ξ‖W2,∞ + C ‖g‖H2 .
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The estimate ofξ is similar to (2.42) in Lemma 2.9, which in some sense says[U, i ]
is a local operator. Although it is not stated in Lemma 2.9, the proof of Lemma 2.9
in Section 9 gives the estimate. We have shown that(ω4, θ4,a4, g4) ∈ A, that is,
our mapping mapsA into itself.

Next we show that the mapping is a contraction. Given(ω1, θ1,a1, g1) and
(ω2, θ2,a2, g2) ∈ A, we denote

δ0 = sup
0≤t<∞

{
8〈t〉2|δω(t)| + 〈t〉|δθ(t)| + 27〈t〉2|δa(t)| + 〈t〉2 ‖δg(t)‖H2

} ;
we knowδ0 ≤ Cε2−3σ . Note thatF0 is cancelled inδF and thatδ(ei θ ) = O(δθ).
We have (the norms ofF , g, andh are taken inH2)

‖δ(|g|2g)‖H2 ≤ C ‖g‖2 ‖δg‖ ≤ Cε4−2σ δ0〈t〉−6 ,

|(φ, δh)| ≤ Cφε〈t〉−3/2|δθ | + Cφ ‖δg‖ ≤ Cφδ0〈t〉−2 ,

‖δF‖H2 ≤ C ‖aR+ h‖ · (ε〈t〉−3/2|δθ | + ‖δg‖ + |δa|) ≤ Cεδ0〈t〉−7/2 ,

|δω4(t)| ≤ 5

4
|δa| + C ‖δF‖ + Cε〈t〉−3/2|(R, δh)| ≤ 1

64
δ0〈t〉−2 ,

|δθ4(t)| ≤
∫ t

∞
|δω|ds≤ 1

8
δ0〈t〉−1 ,

|δa4(t)| ≤ C
∫ t

∞
‖δF‖ + ε2−2σ 〈s〉−2(|δω| + |(Q, δh)|)ds≤ 2−10δ0〈t〉−2 ,

‖δg4(t)‖H2 ≤ C
∫ t

∞
ε2〈s〉−3|δθ | + ‖δF‖ ,

+ ε2−2σ 〈s〉−2(|δω| + |δa| + δ0〈s〉−2)ds≤ 1

8
δ0〈t〉−2 .

Here we have used Lemma 2.6 and the localness of[U, i ] again. Therefore we
have

sup
0≤t<∞

{
8〈t〉2|δω4(t)| + 〈t〉|δθ4(t)| + 27〈t〉2|δa4(t)| + 〈t〉2‖δg4(t)‖H2

}
≤ 1

2
δ0 ,

and thus our map is a contraction. We conclude that we do have solutionsh̃ with
the main profilee−i AtUξ∞.

Recallψas(t) = QEe−i Et+i θ(t) + e−i EtetLξ∞. By (8.2) we have

ψ(t) = [Q+ aR+U−1e−i θ (e−i AtUξ∞ + g)]e−i Et+i θ(t)

= ψas(t)+ [aR+U−1e−i θg]e−i Et+i θ(t) + e−i Et+i θ [U−1,e−i θ ]e−i AtUξ∞ .
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Sincea(t), ‖g(t)‖H2 = O(t−2), and by the localness of[U−1, i ]
[U−1,e−i θ ]e−i AtUξ∞ = − sinθ[U, i ]e−i AtUξ∞ = O(t−1) · O(t−3/2) ,

we haveψ(t)− ψas(t) = O(t−2) in H2. Hence Theorem 1.5 is proved.
Finally, we address the remark after Theorem 1.5. RewriteL = i (1+ E)+ V1

whereV1 = i−1(V + 2λQ2 + λQ2C) is a local operator. One may replace the
definition ofξ(t) by ξ(t) = U−1e−i θ(t)U ξ̃ (t) with

(8.7) ξ̃ (t) = PL
c ei (1+E)tχ∞ +

∫ t

∞
e(t−s)L PL

c V1 ei (1+E)sχ∞ ds,

and proceed as in the previous proof to construct a solutionh = U−1e−i θ (U ξ̃ +g).
The assumption̂χ∞(0) = 0 and∇χ̂∞(0) = 0 ensures thatei (1+E)tχ∞ has a local
decay of orderO(t−7/2); see [5, lemma 5.2]. Hence the difference betweenξ̃ (t)
andei (1+E)tχ∞ is of orderO(t−5/2) in H2. Thus globallyF0(t) = O(t−3) and
locally F0(t) = O(t−5). Hencea, θ̇ = O(t−4) andθ(t) = O(t−3). Therefore
in H2

ψ(t) = [Q+U−1e−i θ(t)U ξ̃ (t)]e−i Et+i θ(t) + O(t−2)

= Qe−i Et + ei1tχ∞ + O(t−2) .

Here we use again thatei1tχ∞ has a fast local decay and that[U−1, i ] is a local
operator. Note that (8.7) is in fact an expansion ofetLWLχ∞ by the Duhamel’s
formula, whereWL is the wave operator ofL defined in (2.36). See [5, section 5]
for a similar argument.

Remark(Remark on Dispersion-Dominated Solutions to Klein-Gordon Equations).
We now sketch a construction for dispersion-dominated solutions to Klein-Gordon
equations. We follow the notation in the introduction. For a specified profileη±,
let u = ξ +g whereξ(t) = ei Btη++e−i Btη− andg denotes the rest. Then we have

(∂2
t + B2)ξ = 0 , (∂2

t + B2)g = λ(ξ + g)3 .

Henceg(t) satisfies

g(t) =
∫ t

∞

{
ei B(t−s) − e−i B(t−s)

} 1

2i B
λ(ξ + g)3ds.

Since the main source term is bounded by‖ξ3‖2 ≤ ‖ξ‖2∞ ‖ξ‖2 ≤ Ct−3, we have
‖g‖2 ≤

∫ t
∞Cs−3 ds ≤ Ct−2. Then we proceed as in Section 8 to construct one

such solution by a contraction mapping argument.

9 Proof of Linear Estimates

We now proceed to prove the lemmas in Section 2.4. To simplify the presenta-
tion, we will assumeλ > 0. The proof for the caseλ < 0 is exactly the same.

Recall thatX is the space of all functions inL2(R3) that are orthogonal toQ,
and5 is the orthogonal projection fromL2(R3) onto X. In what follows we will
only consider the restrictions ofH andA on X. Hence we often omit the projection
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5 in the definition ofA. (It should be noted, however,H∗ acts onL2(R3).) In the
rest of this section, when we writeL2, Wk,p, or L2

r , we often mean their intersection
with X: L2 ∩ X, Wk,p ∩ X, or L2

r ∩ X.
We recall assumption A2 onV . We assume that 0 is neither an eigenvalue nor a

resonance for−1+ V . We also assume thatV satisfies the assumption in Yajima
[20] so that theWk,p estimates fork ≤ 2 for the wave operatorWH holds: For a
smallσ > 0,

|∇αV(x)| ≤ C〈x〉−5−σ for |α| ≤ 2 .

Also, the functions(x · ∇)kV , for k = 0,1,2,3, are−1 bounded with an−1
bound less than 1:

(9.1) ‖(x · ∇)kVφ‖2 ≤ σ0 ‖−1φ‖2+ C ‖φ‖2 , σ0 < 1 , k = 0,1,2,3.

By the assumption, the following operators are bounded inL2:

(9.2) H−1/2
∗ (x · ∇)kV H−1/2

∗ , (x · ∇)kV H−1
∗ , H−1

∗ (x · ∇)kV ,

for k = 0,1,2,3.
SinceQ is the ground state ofH with V satisfying the previous assumptions,Q

is a smooth function with exponential decay at infinity. Hence the above statements
on V also hold forQ andQ2. SinceV + λQ2 andV have the same properties, in
what follows we will replaceV + λQ2 in H by V and writeH = H∗ + V to make
the presentation simpler. So it should be kept in mind that the potentialV in this
section is in factV + λQ2.

For two operatorsS andT with bounded inverses,S is said to beT -bounded
if ST−1 is a bounded operator. If bothS andT are self-adjoint, this impliesT−1S
is also bounded. A deeper result saysS1/2 is T1/2-bounded; see [11, theorem
X.18]. We saySandT aremutually boundedif both ST−1 andT S−1 are bounded
operators. This is the case if‖(S− T)T−1‖(L2,L2) = θ < 1 for someθ . (It
implies immediately that‖ST−1‖ < 2. Since‖Tφ‖ ≤ ‖Sφ‖ + ‖(T − S)φ‖ ≤
‖Sφ‖ + θ ‖Tφ‖, we have‖Tφ‖ ≤ C ‖Sφ‖, which impliesT is S-bounded.)

LEMMA 9.1 For each k= 1
2,1,

3
2,2,3, the operators Hk∗ , Hk, and Ak are mutually

bounded.

PROOF: That Hk∗ and Hk are mutually bounded follows from our assumption
on V by standard argument. To showHk and Ak are mutually bounded, it suf-
fices to prove the casesk = 2 andk = 3 by the previous remark. We first show
‖(A2− H2)H−2‖ < 1, which implies the casek = 2.∥∥(A2− H2)H−2

∥∥ = ∥∥H1/2λQ2H1/2H−2
∥∥

≤ ∥∥H1/2λQ2H−1
∥∥ ≤ ∥∥H1/2

∗ λQ2H−1
∗

∥∥ ≤ 1/2 .

The last inequality can be obtained by writing

H1/2
∗ Q2H−1

∗ = H−1/2
∗ Q2+ H1/2

∗ [Q2, H−1
∗ ]

= H−1/2
∗ Q2+ H−1/2

∗ [Q2, H∗]H−1
∗ ,
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and noting[Q2, H∗] = 1Q2+ 2∇Q2 · ∇.
To prove the casek = 3, it suffices to proveA6 ≤ C H6 andH6 ≤ C A6. Note

that
( f A6 f ) = ( f A2A2A2 f ) ≤ ( f A2H2A2 f ) .

SinceA2 = H2+ H1/2λQ2H1/2, we have

( f A2H2A2 f ) ≤
C( f H2H2H2 f )+ C( f (H1/2λQ2H1/2)H2(H1/2λQ2H1/2) f )

where the cross terms are estimated by the Schwarz inequality. To show that the
last term is bounded byC( f H6 f ), we shall show thatH3/2Q2H−5/2 is bounded
in X. Rewrite

H3/2Q2H−5/2 = H3/2H−2Q2H−1/2+ H3/2[Q2, H−2]H−1/2

= H−1/2Q2H−1/2+ H−1/2[Q2, H2]H−5/2 .

Since[Q2, H2] is of the form
∑
|α|≤3 Gα(x)∇α, the operators on the right side of

the equation are bounded inX. This showsA6 ≤ C H6. ThatH6 ≤ C A6 is proven
similarly. �

Recall the standard formula

(9.3) T−σ =
∫ ∞

0

1

s+ T

ds

sσ
, 0< σ < 1 .

The operatorT in the above formula will beA2 or H . Hence we also need to
estimate operators of the formHm

s+H2 . Clearly, fors ≥ 0,

(9.4)

∥∥∥∥ H2

s+ H2

∥∥∥∥
(Wk,p,Wk,p)

≤ 1 ,
∥∥H−1/2

∥∥
(Wk,p,Wk,p)

≤ C .

LEMMA 9.2 Let s≥ 0. The operator H/(s+ H2) is bounded in Wk,p ∩ X with

(9.5)

∥∥∥∥ H

s+ H2

∥∥∥∥
(Wk,p,Wk,p)

≤ C〈s〉−1/2 .

Also, for k= ±1,±2,±3,∥∥∥∥〈x〉k 1

s+ H
〈x〉−k

∥∥∥∥
(L2,L2)

≤ C〈s〉−1 ,

∥∥∥∥〈x〉k H

s+ H2
〈x〉−k

∥∥∥∥
(L2,L2)

≤ C〈s〉−1/2 .

(9.6)

PROOF: We can rewrite
H

s+ H2
= 1

H +√si
+ 1

H −√si
.
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Therefore, to prove statements forH/(s+ H2), it suffices to prove the correspond-
ing statements for 1/(H ±√si). We first prove (9.5) fork = 0. Letκ1 denote the
eigenvalue of the excited state ofH , and let P1 denote the projection onto the
corresponding eigenspace. We can write

1

H +√si

∣∣∣∣∣
X

= 1

κ1+√si
P1+WH

1

p2− E +√si
W∗H PH

c ,

where p = −i∇ and WH is the wave operator ofH . Note E < 0. SinceWH

andW∗H are bounded inWk,p for sufficiently niceV [20], it is sufficient to prove
that 1/(p2− E ±√si) are bounded inWk,p. However, 1/(p2− E ±√si) are
convolution operators with explicit Green functions:

C

|x|e
−|x|(−E±√si)1/2 .

Since |e−|x|(−E±√si)1/2| ≤ e−c|x|〈s〉1/4, the L1 norms of the Green functions are
bounded by〈s〉−1/2. By Young’s inequality we have∥∥∥∥ 1

p2− E ±√si

∥∥∥∥
(L p,L p)

≤ C〈s〉−1/2 ,

which proves (9.5) fork = 0. Fork ≥ 1 and forφ ∈ Wk,p, we have∥∥∥∥Hk/2 H

s+ H2
φ

∥∥∥∥
Wk,p

∼
∥∥∥∥Hk/2 H

s+ H2
φ

∥∥∥∥
L p

=
∥∥∥∥ H

s+ H2
Hk/2φ

∥∥∥∥
L p

≤ C〈s〉−1/2
∥∥Hk/2φ

∥∥
L p ∼ 〈s〉−1/2 ‖φ‖Wk,p .

This proves (9.5) fork ≥ 1.
For (9.6), we prove the second part. The proof for the first part is similar. For

k > 0, since[
〈x〉k, 1

H +√si

]
= 1

H +√si
[〈x〉k, H +√si] 1

H +√si

and
[〈x〉k, H +√si] = 2∇∗(∇〈x〉k)− (1〈x〉k) ,

we have ∥∥∥∥
[
〈x〉k, 1

H +√si

]
〈x〉−k

∥∥∥∥
≤ C

∥∥∥∥ 1

H +√si
(∇∗ + 1)

∥∥∥∥ ·
∥∥∥∥〈x〉k−1 1

H +√si
〈x〉−k+1

∥∥∥∥
≤ C〈s〉−1/2

by induction ink. We have the same estimate for[〈x〉k, 1
H−√si

], and hence (9.6)
holds for positivek. The proof for the casek < 0 is similar. �
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RecallL2
r is the weightedL2 space with norm‖ f ‖L2

r
= ‖〈x〉r f ‖L2.

LEMMA 9.3 The operators H1/2A−1/2, A−1/2H1/2, H−1/2A1/2, and A1/2H−1/2 are
bounded operators in Wk,p ∩ X and L2

r ∩ X.

PROOF: By (9.3) we can write

H1/2A−1/2 = H1/2
∫ ∞

0

1

s+ H2+ H1/2λQ2H1/2

ds

s1/4

= H1/2
∫ ∞

0

[
1

s+ H2
+ 1

s+ H2
H1/2λQ

∞∑
j=0

(
λQ

H

s+ H2
Q

) j

QH1/2 1

s+ H2

]
ds

s1/4

= 1+
∫ ∞

0

[
H

s+ H2
λQ

∞∑
j=0

(
λQ

H

s+ H2
Q

) j

Q
H

s+ H2
H−1/2

]
ds

s1/4
.

Since‖ H
s+H2‖ ≤ 〈s〉−1/2 by Lemma 9.2, we have

∥∥H1/2A−1/2
∥∥
(Wk,p,Wk,p)

≤ 1+ C
∫ ∞

0
〈s〉−1/2n

∞∑
j=0

(n2〈s〉−1/2) j n〈s〉−1/2 ds

s1/4

≤ 1+ Cn2 .

Similarly, ∥∥A−1/2H1/2
∥∥
(Wk,p,Wk,p)

≤ 1+ Cn2 .

Also, using (9.6), forr ≤ 3 we have∥∥H1/2A−1/2
∥∥
(L2

r ,L
2
r )
+ ∥∥A−1/2H1/2

∥∥
(L2

r ,L
2
r )
≤ 1+ Cn2 .

The above proves thatH1/2A−1/2 and A−1/2H1/2 are bounded inWk,p and L2
r .

Indeed, we have proven

(9.7)
∥∥〈x〉3(H1/2A−1/2− 1)〈x〉3∥∥

(L2,L2)

+ ∥∥〈x〉3(A−1/2H1/2− 1)〈x〉3∥∥
(L2,L2)

≤ Cn2 .

We now considerH−1/2A1/2 andA1/2H−1/2. Since

A1/2 = A2A−3/2 = A2
∫ ∞

0

1

s+ A2

ds

s3/4
,
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we have

H−1/2A1/2 = H−1/2(H2+ H1/2λQ2H1/2)

∫ ∞
0

1

s+ H2+ H1/2λQ2H1/2

ds

s3/4

= (H3/2+ λQ2H1/2)

∫ ∞
0

1

s+ H2+ H1/2λQ2H1/2

ds

s3/4

= I1+ λQ2I2 .

The main term isI1. The termI2 is similar to H1/2A−1/2, and its integrand has a
better decay ins for larges. Hence∥∥λQ2I2

∥∥ ≤ Cλ ‖I2‖ ≤ Cn2 .

For the main termI1,

I1 = 1+
∫ ∞

0

H2

s+ H2
Q
∞∑

j=0

(
Q

H

s+ H2
Q

) j

Q
H

s+ H2
H−1/2 ds

s3/4
.

Hence

‖I1‖ ≤ 1+ C
∫ ∞

0
n
∞∑

j=0

(n2〈s〉−1/2) j n〈s〉−1/2 ds

s3/4

≤ 1+ C
∫ ∞

0
n2〈s〉−1/2 ds

s3/4
≤ 1+ Cn2 .

Here the norms are taken in(Wk,p,Wk,p) and(L2
r , L2

r ). Hence we have proven
Lemma 9.3. �

In fact, the last part of the above proof also shows

(9.8)
∥∥〈x〉3(H−1/2A1/2− 1)〈x〉3∥∥

(L2,L2)

+ ∥∥〈x〉3(A1/2H−1/2− 1)〈x〉3∥∥
(L2,L2)

≤ Cn2 .

PROOF OFLEMMA 2.9: The above lemma proves thatU0 andU−1
0 are bounded

in Wk,p andL2
r . Moreover, (9.7) and (9.8) mean thatU0−1 andU−1

0 −1 are “local”
operators. In particular, they imply‖[U0, i ]φ‖L8/7∩L4/3 ≤ C ‖φ‖L4. Since

U = U5̃ where5̃ =
[

P1 0
0 5

]
is a bounded projection,U is also bounded. SimilarlyU−1 is also bounded. More-
over, we have

[U, i ] = U0[5̃, i ] + [U0, i ]5̃ = U0(P1−5)
[
0 1
1 0

]
+ [U0, i ]5̃ ,

where by (2.18)P1 −5 = −c1|5R〉 〈Q| is a local operator; hence[U, i ] satisfies
the last estimate in Lemma 2.9. Lemma 2.9 is thus proven. �
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PROOF OFLEMMA 2.10: We need only to prove the statement onWA. Note
that the estimates (9.7) and (9.8) also show, for anyφ ∈ L2,

(9.9) (U±1− 1)e−i t H∗φ→ 0 in L2 ast →∞ .

Notice

WA = lim
t→∞eit Ae−i t H∗ = lim

t→∞UetLU−1e−i t H∗

= lim
t→∞UetLe−i t H∗ + lim

t→∞UetL(U−1− 1)e−i t H∗ .

By (9.9) we have
WA = lim

t→∞UetLe−i t H∗ = UWL .

The boundedness ofWA follows from that ofU andWL. This proves Lemma 2.10.
�

PROOF OFLEMMA 2.7: Since

e−i t APA
c φ = WAe−i t H∗W∗APA

c φ ,

the estimate (2.39) follows from the usual(L p, Lq) estimate fore−i t H∗ and the
boundedness ofWA andPA

c in L p spaces. To prove (2.40), either we prove the
boundedness ofWA in weighted spacesL2

r , or we use the Mourre estimate. We
will follow the second approach and the argument in [16].

Let a = 2κ. We consider intervals1 = (a − r,a + r ). Let g1(t) = g0((t −
a)/r ), whereg0 is a fixed smooth function with support in(−2,2) andg0(t) = 1
for |t | < 1. We will considerg1(A) with r small enough. LetD = xp+ px,
p = −i∇, and the commutators

ad0
D(A) = A , adk+1

D (A) = [adk
D(A), D] .

We need to prove the following lemma:

LEMMA 9.4 For 1 small enough, the Mourre estimate

g1(A)[i A, D]g1(A) ≥ θg1(A)
2

holds for someθ > 0. Also, g1(A)adk
D(A)g1(A) are bounded operators in L2 for

k = 0,1,2,3.

We will use the following lemma:

LEMMA 9.5 The operators

H−3Dk Hm/2〈x〉−3 and 〈x〉−3Hm/2Dk H−3

are bounded in L2 for k,m= 0,1,2,3.

PROOF: This is standard and we only sketch the proof. Ifm is even, we can
compute the commutator[Dk, Hm/2] explicitly and estimate

H−3Dk Hm/2〈x〉−3 = H−3Hm/2Dk〈x〉−3+ H−3[Dk, Hm/2]〈x〉−3 .
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If m is odd, we write

H−3Dk Hm/2〈x〉−3 =
∫ ∞

0
H−3Dk H (m+1)/2 1

s+ H
〈x〉−3 ds√

s

and proceed as in the case whenm is even, by using (9.6). Here we have used
formula (9.3). �

PROOF OFLEMMA 9.4: LetG = A− H and writeA = H + G. Since

[i A, D] = [H∗ + V + G, i D] = −1+ [V + G, i D]
= A− V − G+ [V + G, i D]

and g1(A)Ag1(A) ≥ 2θg1(A)2 for some 2θ > 0, it suffices to show that, for
M = −V + [V, i D],−G, and[G, D], the operators

g1(A)Mg1(A) = (g1(A)H2
∗ )(H

−2
∗ M H−2

∗ ) (H
2
∗ g1(A))

are bounded byg1(A)2, and the bound goes to zero when the interval1 shrinks to
zero. Since both

g1(A)H
2
∗ = (g1(A)A2)(A−2H2

∗ ) and H2
∗ g1(A) = (H2

∗ A−2)(A2g1(A))

are bounded and converge to zero weakly when1 shrinks to zero, this will be true
if one can show thatH−2∗ M H−2∗ is compact. The caseM = −V + [V, i D] is
standard and follows from our assumption, so we only considerH−2∗ G H−2∗ and
H−2∗ [G, D]H−2∗ .

We proceed to find an explicit form ofG. By (9.3) with T = A2, σ = 1
2, we

write

A−1 =
∫ ∞

0

1

s+ H2+ H1/2λQ2H1/2

ds√
s

=
∫ ∞

0

1

s+ H2
+ 1

s+ H2
H1/2λQ

∞∑
j=0

(
λQ

H

s+ H2
Q

) j

QH1/2 1

s+ H2

ds√
s

= H−1+ H−1/2〈x〉−3J0〈x〉−3H−1/2

where

J0 =
∫ ∞

0
〈x〉3 H

s+ H2
λQ

∞∑
j=0

(
λQ

H

s+ H2
Q

) j

Q
H

s+ H2
〈x〉3 ds√

s
.

By Lemma 9.2,

‖J0‖(L2,L2) ≤
∫ ∞

0
〈s〉−1/2 · n2 · 〈s〉−1/2s−1/2 ds≤ Cn2 .
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Hence

A = A2A−1

= (H2+ H1/2λQ2H1/2)
(
H−1+ H−1/2〈x〉−3J0〈x〉−3H−1/2

)
= H + G ,

G = H1/2λQ2H−1/2+ H3/2〈x〉−3J0〈x〉−3H−1/2

+ H1/2λQ2〈x〉−3J0〈x〉−3H−1/2 .

(9.10)

SinceH−1/2〈x〉−1 and〈x〉−1H−1/2 are compact, from (9.10)H−2∗ G H−2∗ is com-
pact. We can also write

H−2
∗ G DH−2

∗ =
{
H−2
∗ G H1/2〈x〉} · {〈x〉−1H−1/2DH−2

∗
}
.

The second operator is bounded by Lemma 9.5. The first is compact since its terms
are of the formH−m · 〈x〉−k · (bounded operator). Similarly,H−2∗ DG H−2∗ is also
compact. Hence we conclude the Mourre estimate.

To show thatg1(A)adk
D(A)g1(A) are bounded fork = 0,1,2,3, we rewrite

g1(A)adk
D(A)g1(A) =

(g1(A)A
3)(A−3H3)(H−3 adk

D(A)H
−3)(H3A−3)(A3g1(A)) .

We need only to show thatH−3 adk
D(A)H

−3 are bounded since the other terms
are bounded by Lemma 9.1. RecallA = H + G. It is standard to prove that
H−3 adk

D(H)H
−3 is bounded. ForH−3 adk

D(G)H
−3, since it is a sum of terms of

the form

H−3DkG DmH−3 , k+m ≤ 3 ,

it suffices to show that these terms are bounded. By the explicit form (9.10) ofG
and Lemma 9.5, they are indeed bounded. For example,

H−3D2
{
H3/2〈x〉−3J0〈x〉−3H−1/2

}
D1H−3 ={

H−3D2H3/2〈x〉−3
}

J0
{〈x〉−3H−1/2D1H−3

}
,

a product of three bounded operators. We conclude thatg1(A)adk
D(A)g1(A) are

bounded fork = 0,1,2,3. �

With Lemma 9.4 (cf. the remark in [16, p. 27]), the minimal velocity estimate
in [6] and theorem 2.4 of [14] implies∥∥F(D ≤ θ t/2)e−i At g1(A) 〈D〉−3/2

∥∥
(L2,L2)

≤ C〈t〉−5/4 .

The same argument in [16] then gives the desired decay estimate (2.40). �

PROOF OFLEMMA 2.8: Letψn = PA
c5φ0φ

2
1 andψ0 = PH1

c φ0φ
2
1. RecallH1 =

−1+ V − e0. We haveψn = ψ0 + O(n2). We writeψn = ψ0 + bφ1 + η, where
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η ∈ Hc(H1) andb, η = O(n2). Rewrite(
ψn, Im

1

A− 0i − 2κ
ψn

)

= Im i
∫ ∞

0

(
ψn,e

−i t (A−0i−2κ)ψn
)

dt

= Im i
∫ ∞

0

(
ψn,e

−i t (H1−0i−2κ)ψn

)
dt

(9.11)

+ Im i
∫ ∞

0

∫ t

0

(
ψn,e

−i (t−s)(A−0i−2κ)(λQ2+ G)e−is(H1−0i−2κ)ψn
)

ds dt.

(9.12)

The main term lies in (9.11). It is

Im i
∫ ∞

0

(
ψ0,e

−i t (H1−0i−2κ)ψ0
)

dt =
(
ψ0, Im

1

H1− 0i − 2κ
ψ0

)
,

which is the desired main term in Lemma 2.8.
We want to show that the rest of (9.11) and (9.12) are integrable and of order

O(n2). Recall that we writeψn = ψ0+bφ1+η. For the termη in ψn, by the decay
estimate we have

(9.13)
∣∣ (ψn,e

−i t (H1−0i−2κ)η
) ∣∣ ≤ C〈t〉−3/2 ‖ψn‖L1∩L2 ‖η‖L1∩L2 ≤ C〈t〉−3/2n2 ;

hence this term is integrable. Also, sinceH1φ1 = e01φ1,(
ψn,e

−i t (H1−0i−2κ)bφ1
) = (

ψn,e
−i t (e01−2κ−0i )bφ1

)
,

so we can integrate this oscillation term explicitly. (The boundary term att =
∞ vanishes due to the decay ofe−i t (−0i ).) We conclude that the rest of (9.11) is
integrable and of orderO(n2).

For (9.12), it suffices to show its integrability sinceλQ2 + G gives the order
O(n2). Rewrite the lastψn in (9.12) asbφ1+ PH1

c ψn. For the part containingbφ1,
we have(

ψn,e
−i (t−s)(A−0i−2κ)(λQ2+ G)e−is(H1−0i−2κ)bφ1

) =(
ψn,e

−i t (A−0i−2κ) eis(A−e01)(λQ2+ G)bφ1
)
.

Integration ins gives(
(A− e01)

−1ψn,e
−i t (A−0i−2κ)(λQ2+ G)bφ1

)
.

Sincee01 lies outside the continuous spectrum ofA, the last expression is integrable
in t following the same argument as (9.13). For the part containingPH1

c ψn, since
(λQ2 + G) is a “local” operator in the sense that it sendsL∞ functions toL1, we
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have∣∣ (ψn,e
−i (t−s)(A−0i−2κ)(λQ2+ G)e−is(H1−0i−2κ)PH1

c ψn
) ∣∣ ≤

Cn2 〈t − s〉−3/2 〈s〉−3/2 ‖ψn‖2L1∩L2 ,

which can be integrated ins andt . Hence we have proven Lemma 2.8. �
PROOF OFLEMMA 2.6: Givenφ ∈ Hk ∩ X, k = 0,1,2, letu(t) = e−i t Aφ ∈

X. We haved
dt (u(t), Amu(t)) = 0; hence(u(t), Amu(t)) is a conserved quantity.

Whenk = 0, this implies that theL2 norm is conserved. Fork = 2, we have

(u, A2u) = (
u, (H2+ H1/2λQ2H1/2)u

)
= (u, H2u)+ O(n2 ‖u‖2H1) ≤ C ‖u‖2H2 .

On the other hand, since‖u‖2H1 ≤ C ‖u‖2H2 + C ‖u‖2L2 and(u,u) ≤ C(u, A2u)
due to the spectral gap ofA, we have

C−1 ‖u‖2H2 ≤ (u, H2u) = (1− O(n2))−1
[
(u, A2u)+ O(n2) ‖u‖2L2

]
≤ C(u, A2u) .

Thus we have(u(t), A2u(t)) ≈ ‖u(t)‖2H2 in the sense of (1.23), and we have

‖u(t)‖2H2 ≈ (u(t), A2u(t)) = (u(0), A2u(0)) ≈ ‖u(0)‖2H2 .

The casek = 2 is thus proven. The casek = 1 can be obtained by interpolation.
�
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