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Abstract 

This note shows that any solution u of the Navier-Stokes equa- 
tions in a 3-D exterior domain which decays as O(lx1-l) at oo has 
the optimal decay Vku(x) = o ( ) x ~ - ' - ~ )  for k 2 1, if the body force 
f satisfies Vmf(x) = O ( l ~ l - ~ - ~ )  for all m < k. The main tool is an 
interior estimate for the Stokes system. 
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2108 SVERAK AND TSAI 

1 Introduction 

In this short note we consider the question of the spatial decay of the solu- 

tions of the Navier-Stokes equations in three-dimensional exterior domains 

with zero velocity a t  infinity, which was raised by R. Finn [lo] in 1960's. 

Our main tool is an interior estimate for the Stokes system, which seems 

to be of independent interest. This estimate is probably known to experts, 

but we were unable to locate it in the literature. 

IYe consider the Navier-Stokes equations (with unit viscosity) in a do- 

main R c R7', 

where u = (u,, ..., un)  stands for the velocity of the fluid, p the pressure, 

and f = (fl ,  ..., f,) the body force. When R is an exterior domain ( a  

domain whose complement is compact), one often considers the boundary 

conditions 

In 1933 Leray [22] studied the existence of solutions to  (1.1)' (1.2) with 

finite Dirichlet integrals (so called D-solutions). His results were later ex- 

tended in [21], [13], [9]-[Ill, [24], [19], [3]-151, and other papers. However, 

many important questions still remain open. (See [12] for a survey and [16] 

for recent results.) In this note we will only consider the case n = 3 and 

Urn = 0 .  

In 1965 Finn [lo] showed (for small data) the existence of solutions with 

the following spatial decay a t  infinity 

(so called physically reasonable solutions). Finn, Babenko and Vasil'ev, 

Clark, etc. were able to show that  solutions satisfying (1.3) possess many 
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SPATIAL DECAY 2109 

properties which are in agreement with conjectures based on a suitable 

linearization of the Navier-Stokes equations near infinity. (See e.g. [9]-[ll], 

[ 5 ] ,  [8].) Finn also showed ([lo]) 

Vu(x) = 0 ( J X ~ - ~  1n 1x1) as 1x1 -t oo. (1.4) 

If one compares (1.3) and (1.4) with the decay of the fundamental solution 

of the Stokes system, one finds that (1.3) is optimal, but (1.4) is not. The 

optimal decay for Vu(x)  would be 

The question whether (1.5) holds has received a lot of attention recently 

because of its relevance to the stability of steady solutions. Novotny and 

Padula [23] showed, for small data, the existence of solutions satisfying 

both (1.3) and (1.5). Important results were also obtained by Borchers 

and Miyakawa [6], Kozono and Yamazaki [20], and Galdi and Simader [17]. 

(For the case u, # 0 see [9]-Ill], [4], [5]. For the 2-D case, which is very 

different, see e.g. [18] and the references therein.) 

The approach in these papers is to prove, under some smallness assump- 

tions, the existence of solutions which have the desired decay properties. 

In this note we prove that any solution with the decay (1.3) must satisfy 

(1.5)) under natural assumptions on the body force f(x) .  In fact, under the 

assumption (1.3), we have 

i f f  satisfies IVmf(x)( 5 C , ~ X J - ~ - ~  a t  infinity for all m < k,  where C,,, are 

not necessarily small. Moreover, this assertion still holds if one assumes R is 

any unbounded domain. (One replaces 1x1 in (1.3) and (1.6) by dist(x, dR).) 

Our result does not say anything about the open question of existence of 

physically reasonable solutions (u, = 0) when the data are large. (Of 
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the term "physically reasonable" should probably not be taken too seriously 

in that case.) 

Our proof involves an interior estimate for the Stokes system and a 

scaling argument. The usual interior estimate for the Stokes system is of 

the form 

for B1 C BZ c R, ([14] p.210). Our interior estimate is 

which differs from (1.7) by dropping the pressure term ~ \ P I I - ~ , ~ , B ~ - B ~  from 

the right hand side. The usual proof for (1.7) is obtained by applying the 

hydrodynarnical potential theory in the whole space, together with standard 

localization techniques. When one follows this procedure, it does not seem 

immediately obvious that one can drop the pressure term. However, (1.8) 

is not surprising since the Stokes system is elliptic in the sense of [2]. 

Our interest in such estimate was motivated by our previous investiga- 

tions regarding Leray's self-similar solutions of the Navier-Stokes equations 

1271. 1% will discuss this connection in another paper [26]. 

This paper is organized as follows. In Section 2 we prove the interior 

estimate (1.8), after giving some preliminary definitions and results. In 

Section 3 we use this interior estimate to prove the decay (1.6). 

Notation. The letter n always denotes the space dimension, (n > I ) ,  

and C denotes a generic constant. S2 denotes an open domain in Rn, and 

B1, B:, denote two concentric balls inside S2 with radii R and 2R for some 

R > 0 .  Su~imation convention is used. We denote 4i,j = d$i/axj .  Lq, 

W1lq, and hhr-',q denote the usual Lebesque spaces, Sobolev spaces, and 
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SPATIAL DECAY 2111 

negative Sobolev spaces, with norms ll.llq, ll.lll,q, [l.ll-l,q respectively. Also, 

)l.lll-a,q,an denotes the boundary-trace norm. See Adams [I]. 

2 Interior estimates 

We recall that,  a q-weak solution (a terminology used in [14], [15]) of the 

Navier-Stokes equations (1.1) is a function u = (ul ,  ..., u,) E w,::, div u = 

0, which satisfies 

for all 4 = ($1, ..., 4,) E C,OO, div 4 = 0; where f lies in a suitable distri- 

bution class. (Usually we call u a weak solution if q = 2.) Similarly we 

define q-weak solutions of the Stokes system by dropping the middle term 

in (2.1). Given a q-weak solution, one can find a corresponding pressure p 

(unique up to an adding constant) such that the Navier-Stokes equations 

(1.1) (resp. Stokes system) are satisfied in distribution sense, see [14] p.180, 

[15] p.8. 

We will also use the following existence result, which can be found in 

[14] p.225. 

Lemma 2.1 Let S1 be a bounded C2 domain in  Rn, n 2 2,  and 1 < q < oo. 
Let u, E w1-"q?q (dQ) and f E W-"q (R). Then there exists a q-weak 

solution (u, p) E W1'Q (R) x Lq (R) of the Stokes system, satisfying u = u, 

on as2. It is unique up to an adding constant o f p .  Moreover, we have 

Now we can prove the interior estimate. We remark that the first half 

of the proof is similar to Struwe [25], p.444. 
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2112 SVERAK AND TSAI 

T h e o r e m  2.2 Let R be a domain in Rn, n 2 2, and B1 c B2 be concentric 

balls of radii R and 2R, strictly contained i n  R. Let 1 < q < ca and 

f E w,::'~ (R). If (u ,p )  E \I/;," (R) x LLc (R) i s  a pair of q-weak solution of 

the Stokes system i n  R, then  

llulli.q,~, + Ilp - ~ 1 1 s . ~ ~  < CZ ( I ~ U I I I . B ~ - B ~  + lIfI/-i .q,~~) , (2-3) 

where Cz = C2(n, q, R).  

Proof .  By Lemma 2.1, there exists a pair of auxiliary functions (w,  T), 

w E T/v,''~(B~) and T E L9(B2), which satisfies 

- A w + v ~ = f ,  d i v w = 0  i n B 2  

in weak sense. Moreover, this pair (w, T) satisfies 

l l ~ l i i , ~ , ~ ~  + :$ llr - 4 , ~ ~  I Ci I l f  I l - i ,q ,~~ .  

Let ( v ,  X) = ( u  - w, p - r). It satisfies (in weak sense) 

-Av + Vx = 0, div v = 0 in B2. 

It follows, by a well-known argument, that v is smooth and satisfies A2v = 

0. Moreover, by the classical estimates of elliptic equations, (see for instance 

Browder [7] ) ,  there is an absolute constant Cg = C3(n, R) such that 

Since u = v + w, (2.4) and (2.5) together give 

The estimate for p is given by [14] p.181 Remark 1.3, 

The proof is complete Q.E.D. 
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SPATIAL DECAY 21 13 

3 Spatial decay in unbounded domains 

In this section we prove the 

Theorem 3.1 Let R be an unbounded domain ( X l  may not be compact) in 

Rn, n 2 2 ,  and we denote b(x) = dist(x, dfl). Let k 2 1 be an integer. If 

u is a (weak) solution of the Nauier-Stokes equations (2.1) with the decay 

for all m < k ,  then we have 

Proof. For x E R and X > 0, let 

ux(y)  = Xu(Xy + x ) ,  fx(y) = A 3 f ( X y  3- 2). 

Then u x ( y )  and fA(y)  are defined for { y  : ( y (  < 6(x ) /X}  and ux solves 

the Navier-Stokes equations with the body force f A .  In other words, u~ 

solves the Stokes system with the body force TA = f A  - ( U A  . V ) u x .  If we 

choose X = 6(x) /2  and consider u~ in the unit ball {lyl < 11, we find that 

{ U A }  and { V m f A ) ,  m < k, are uniformly bounded in Lw(B1), by virtue 

of (3.1). Hence { f ~ )  are uniformly bounded in W-'fl(B1) for any q < w. 

By Theorem 2.2 and by following the bootstrap argument for regularity, 

we know V k u ~  are also bounded uniformly in A ,  (their dependence on the 

bounds in (3.1) are polynomials). Scaling back, we get (3.2). Q.E.D. 

Remarks. (a) We did not specify u, in Theorem 3.1 because for our 

purpose it is not important. (b) Although the theorem is true in any 

dimension n 2 3, it is only interesting in the n = 3 case since 3 is the only 

dimension that the decay (3.1) holds for the fundamental solutions. (c) 

If R is an exterior domain, then 6(x) 1x1 for 1x1 large enough. This is 
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the usual setting for the spatial decay problem. (d) In Theorem 3.1 we 

required that IVmf(x)/ . I ~ 1 ~ + " 9 e  bounded, but not necessarily small. 
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