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ABSTRACT

We consider nonlinear Schrödinger equations in R
3. Assume

that the linear Hamiltonians have two bound states. For
certain finite codimension subset in the space of initial data,
we construct solutions converging to the excited states in both
non-resonant and resonant cases. In the resonant case, the
linearized operators around the excited states are non-self
adjoint perturbations to some linear Hamiltonians with
embedded eigenvalues. Although self-adjoint perturbation
turns embedded eigenvalues into resonances, this class of
non-self adjoint perturbations turn an embedded eigenvalue
into two eigenvalues with the distance to the continuous
spectrum given to the leading order by the Fermi golden rule.
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1. INTRODUCTION

Consider the nonlinear Schrödinger equation

i@t ¼ ð��þ V Þ þ �j j2 ,  ðt ¼ 0Þ ¼  0, ð1:1Þ

where V is a smooth localized real potential, � ¼ �1 and  ¼  ðt, xÞ :
R � R

3
! C is a wave function. The goal of this paper is to study the

asymptotic dynamics of the solution for initial data  0 near some nonlinear
excited state.

For any solution  ðtÞ 2 H1
ðR

3
Þ the L2-norm and the Hamiltonian

H½ 
 ¼

Z
1

2
jr j2 þ

1

2
V j j2 þ

1

4
�j j4 dx ð1:2Þ

are constant for all t. The global well-posedness for small solutions in
H1

ðR
3
Þ can be proved using these conserved quantities and a continuity

argument.
We assume that the linear Hamiltonian H0 :¼ ��þ V has two simple

eigenvalues e0 < e1 < 0 with normalized eigen-functions �0, �1. The non-
linear bound states to the Schrödinger equation (1.1) are solutions to the
equation

ð��þ V ÞQþ �jQj2Q ¼ EQ: ð1:3Þ

They are critical points to the Hamiltonian H½ 
 defined in Eq. (1.2) subject
to the constraint that the L2-norm of  is fixed. We may obtain two families
of such bound states by standard bifurcation theory, corresponding to the
two eigenvalues of the linear Hamiltonian. For any E sufficiently close to e0

so that E � e0 and � have the same sign, there is a unique positive solution
Q ¼ QE to Eq. (1.3) which decays exponentially as x! 1. See Lemma 2.1
of Ref. [24]. We call this family the nonlinear ground states and we refer to it
as fQEgE . Similarly, there is a nonlinear excited state family fQ1,E1

gE1
for E1

near e1. We will abbreviate them as Q and Q1. From the same Lemma 2.1 of
Ref. [24], these solutions are small and we have kQEk � jE � e0j

1=2 and
kQ1,E1

k � jE1 � e1j
1=2.

It is well-known that the family of nonlinear ground states is stable in
the sense that if
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inf
�,E

 ðtÞ �QE e
i�

�� ��
L2

is small for t ¼ 0, it remains so for all t, see Ref. [16]. Let �k kL2
loc

denote a
local L2 norm, for example the L2-norm in a ball with large radius.
One expects that this difference actually approaches zero in local
L2 norm, i.e.,

lim
t!1

inf
�,E

 ðtÞ �QE e
i�

�� ��
L2

loc

¼ 0: ð1:4Þ

If ��þ V has only one bound state, it is proved in Refs. [12,20] that the
evolution will eventually settle down to some ground stateQE1 with E1 close
to E. Suppose now that ��þ V has two bound states: a ground state �0

with eigenvalue e0 and an excited state �1 with eigenvalue e1. It is proved in
Ref. [23] that the evolution with initial data  0 near some QE will eventually
settle down to some ground stateQE1 with E1 close to E. See also Refs. [2–4]
for the one dimensional case, Refs. [5,6] for its extension to higher dimen-
sions, and Ref. [21] for real-valued nonlinear Klein–Gorden equations.

If the initial data is not restricted to near the ground states, the
problem becomes much more delicate due to the presence of the excited
states. On physical ground, quantum mechanics tells us that excited states
are unstable and all perturbations should result in a release of radiation and
the relaxation of the excited states to the ground states. Since bound states
are periodic orbits, this picture differs from the classical one where periodic
orbits are in general stable.

There were extensive linear analysis for bound states of nonlinear
Schrödinger and wave equations, see, e.g., Refs. [7,8,17–19,25,26]. A special
case of Theorem 3.5 of Ref. [8], page 330, states that

Theorem A. Let H1 ¼ ��þ V � E1. The matrix operator

JH1 ¼
0 H1

�H1 0

� �
, J ¼

0 1
�1 0

� �
,

is structurally stable if and only if e0 > 2e1.

The precise meaning of structural stability was given in Ref. [8].
Roughly speaking, it means that the operator remains stable under small
perturbations. Theorem A will not be directly used in this paper.

As we will see later, the linearized operator around an excited state is a
perturbation of JH1. Thus, two different situations occur:

1: Non-resonant case: e0 > 2e1: ðe01 < je1jÞ:

2: Resonant case: e0 < 2e1: ðe01 > je1jÞ:
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Here e01 ¼ e1 � e0 > 0. In the resonant case, Theorem A says the linearized
operator is in general unstable, which agrees with the physical picture. In
the non-resonant case, however, the linearized operator becomes stable. The
difference here is closely related to the fact that 2e1 � e0 lies in the
continuum spectrum of H0 only in the resonant case.

In the resonant case, the unstable picture is confirmed for most data
near excited states in our work.[24] We prove that, as long as the ground state
component in  0 �Q1 is larger than k 0k

2 times the size of the dispersive
part corresponding to the continuous spectrum, the solution will move away
from the excited states and relax and stabilize to ground states locally. Since
k 0k

2 is small, this assumption allows the dispersive part to be much larger
than the ground state component.

There is a small set of data where Ref. [24] does not apply, namely,
those data with ground state component in  0 �Q1 smaller than k 0k

2

times the size of the dispersive part. The aim of this paper is to show that
this restriction is almost optimal: we will construct within this small set of
initial data a ‘‘hypersurface’’ whose corresponding solutions converge to
excited states.

This does not contradict with the physical intuition since this
hypersurface in certain sense has zero measure and cannot be observed in
experiments. These solutions, however, show that linear instability does not
imply all solutions to be unstable. In the language of dynamical systems, the
excited states are one parameter family of hyperbolic fixed points and this
hypersurface is contained in the stable manifold of the fixed points. We believe
that this surface is the whole stable manifold.

We will also construct solutions converging to excited states in the
non-resonant case, where it is expected since the linearized operator is
stable. We now state our assumptions on the potential V :

Assumption A0. H0 :¼ ��þ V acting on L2
ðR

3
Þ has two simple eigenvalues

e0 < e1 < 0, with normalized eigenvectors �0 and �1.

Assumption A1. The bottom of the continuous spectrum to ��þ V , 0, is
not a generalized eigenvalue, i.e., not an eigenvalue nor a resonance. There
is a small 	 > 0 such that

jr

VðxÞj � C xh i

�5�	, for j
j � 2:

Also, the functions ðx � rÞkV , for k ¼ 0, 1, 2, 3, are �� bounded with a
��-bound < 1:

kðx � rÞkV�k2 � 	0k ���k2 þ C �k k2, 	0 < 1, k ¼ 0, 1, 2, 3:
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Assumption A1 contains some standard conditions to assure that most
tools in linear Schrödinger operators apply. In particular, it satisfies the
assumptions of Ref. [27] so that the wave operator WH0

¼ limt!1 e
itH0eit�

satisfies the Wk, p estimates for k � 2. These conditions are certainly not
optimal.

Let e01 ¼ e1 � e0 be the spectral gap of the ground state. In the
resonant case 2e01 > je0j so that 2e1 � e0 lies in the continuum spectrum
of H0, we further assume

Assumption A2. For some s0 > 0,

�0 � inf
jsj<s0

lim
	!0þ

Im �0�
2
1,

1

H0 þ e0 � 2e1 þ s� 	i
Pc

H0�0�
2
1

� �
> 0:

ð1:5Þ

Note that �0 � 0 since the expression above is quadratic. This assumption is
generically true.

Let Q1 ¼ Q1,E1
be a nonlinear excited state with kQ1,E1

k2 small. Since
ðQ1,E1Þ satisfies Eq. (1.3), the function  ðt, xÞ ¼ Q1ðxÞe

�iE1t is an exact
solution of Eq. (1.1). If we consider solutions  ðt, xÞ of Eq. (1.1) of the form

 ðt, xÞ ¼ Q1ðxÞ þ hðt,xÞ½ 
 e�iE1t

with hðt, xÞ small in a suitable sense, then hðt, xÞ satisfies

@th ¼ L1hþ nonlinear terms,

where L1, the linearized operator around the nonlinear excited state solution
Q1ðxÞe

�iE1t, is defined by

L1h ¼ �i ð��þ V � E1 þ 2�Q2
1Þ hþ �Q

2
1 h

� �
: ð1:6Þ

Theorem 1.1. Suppose H0 ¼ ��þ V satisfies Assumptions A0–A1. Suppose
either

(NR) e0 > 2e1, or
(R) e0 < 2e1, and the Assumption A2 for �0 holds.

Then there are n0 > 0 and "0ðnÞ > 0 defined for n 2 ð0, n0
 such that the
following holds. Let Q1 :¼ Q1,E1

be a nonlinear excited state with kQ1kL2 ¼

n � n0, and let L1 be the corresponding linearized operator. For any

1 2 HcðL1Þ \ ðW2, 1

\H2
ÞðR

3
Þ with k
1kW2, 1\H2 ¼ ", 0 < " � "0ðnÞ, there

is a solution  ðt, xÞ of Eq. (1.1) and a real function �ðtÞ ¼ Oðt�1
Þ for t > 0

so that
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 ðtÞ �  asðtÞ
�� ��

H2 � C"
2
ð1 þ tÞ�7=4,

where C ¼ CðnÞ and

 asðtÞ ¼ Q1 e
�iE1tþi�ðtÞ þ e�iE1tetL1
1:

To prove this theorem, a detailed spectral analysis of the linearized
operator L1 is required. We shall classify the spectrum of L1 completely
in both non-resonant and resonant cases, see Theorems 2.1 and 2.2. It is
well-known that the continuous spectrum �c of L1 is the same as that of
JH1, i.e., �c ¼ fsi : s 2 R, jsj � jE1jg. The point spectrum of L1 is more
subtle. By definition, H1�1 ¼ �ðE1 � e1Þ�1 and H1�0 ¼ �ðE1 � e0Þ�0, and
thus the matrix operator JH1 has 4 eigenvalues � iðE1 � e1Þ and
� iðE1 � e0Þ. In the non-resonant case, the eigenvalues of L1 are purely
imaginary and are small perturbations of these eigenvalues. In the resonant
case, the eigenvalues � iðE1 � e0Þ are embedded inside the continuum spec-
trum �c. In general perturbation theory for embedded eigenvalues, they
turn into resonances under self-adjoint perturbations. The operator L1 is
however not a self-adjoint perturbation of H1. In this case, we shall prove
that the embedded eigenvalues � iðE1 � e0Þ split into four eigenvalues �!�
and � �!!� with the real part given approximately by the Fermi golden rule
(see Ref. [15], Chap. XII.6):

n4 Im ��0�
2
1,

1

��þ V þ e0 � 2e1 � 0i
Pc��

2
1�0

� �
:

Here n� 1 is the size of Q1, see Eq. (2.45). In particular, etL1 is exponentially
unstable with the decay rate (or the blow-up rate) given approximately by
the Fermi golden rule. In other words, although self-adjoint perturbation
turns embedded eigenvalues into resonances, the non-self adjoint perturbations
given by L1 turns an embedded eigenvalue into two eigenvalues with the shifts
in the real axis given to the leading order by the Fermi golden rule. The
dynamics of self-adjoint perturbation of embedded eigenvalues were studied
in Ref. [22].

In the appendix we will prove the existence of solutions vanishing
locally as t! 1, independent of the number of bound states of H0.
Although it is probably known to experts, we are unable to find a reference
and hence include it for completeness.

Proposition 1.2. Suppose H0 ¼ ��þ V satisfies Assumption A1. There is a
small constant "0 > 0 such that the following holds. For any 
1 2 HcðH0Þ \

ðW2, 1
\H2

ÞðR
3
Þ with 0 < k
1kW2, 1\H2 ¼ " � "0, there is a solution  ðt, xÞ of
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Eq. (1.1) of the form

 ðtÞ ¼ e�itH0
1 þ gðtÞ, ðt � 0Þ,

with kgðtÞkH2 � C"2
ð1 þ tÞ�2.

2. LINEAR ANALYSIS FOR EXCITED STATES

As mentioned in §1, there is a family fQ1,E1
gE1

of nonlinear excited
states with the frequency E1 as the parameter. They satisfy

ð��þ V ÞQ1 þ � Q1

		 		2Q1 ¼ E1Q1: ð2:1Þ

Let Q1 ¼ Q1,E1
be a fixed nonlinear excited state with n ¼ kQ1,E1

k2 �

n0 � 1. The linearized operator around the nonlinear bound state solution
Q1ðxÞe

�iE1t is defined in Eq. (1.6)

L1h ¼ �i ð��þ V � E1 þ 2�Q2
1Þ hþ �Q

2
1h

� �
:

We will study the spectral properties of L1 in this section. Its properties are
best understood in the complexification of L2

ðR
3, CÞ.

Definition 2.1. Identify C with R
2 and L2

¼ L2
ðR

3, CÞ with L2
ðR

3, R2
Þ.

Denote by CL2
¼ L2

ðR
3, C2

Þ the complexification ofL2
ðR

3, R2
Þ. CL2 consists

of 2-dimensional vectors whose components are in L2. We have the natural
embedding

j : f 2 L2
�!

Re f
Im f

� �
2 CL2:

We equip CL2 with the natural inner product: For f , g 2 CL2, f ¼


f1
f2

�
,

g ¼


g1

g2

�
, we define

ð f , gÞ ¼

Z
R

3

�ff � g d3x ¼

Z
R

3
ð �ff1g1 þ

�ff2g2Þ d
3x: ð2:2Þ

Denote by RE the operator first taking the real part of functions in CL2 and
then pulling back to L2:

RE : CL2
�!L2, RE

f

g

� �
¼ ðRe f Þ þ iðRe gÞ:

We have RE � j ¼ idL2 .
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Recall the matrix operator JH1 defined in Theorem A. Since H1�1 ¼

�ðE1 � e1Þ�1 and H1�0 ¼ �ðE1 � e0Þ�0, the matrix operator JH1 has 4
eigenvalues � iðE1 � e1Þ and �iðE1 � e0Þ with corresponding eigenvectors

�1

�i�1

� �
,

�1

i�1

� �
,

�0

�i�0

� �
,

�0

i�0

� �
: ð2:3Þ

Notice that

E1 � e1 ¼ Oðn2
Þ, E1 � e0 ¼ e01 þOðn

2
Þ: ð2:4Þ

The continuous spectrum of JH1 is

�c ¼ si : s 2 R, jsj � jE1j
� �

, ð2:5Þ

which consists of two rays on the imaginary axis.
The operator L1 in its matrix form

0 L�

�Lþ 0

� �
, with

L� ¼ ��þ V � E1 þ �Q
2
1

Lþ ¼ ��þ V � E1 þ 3�Q2
1

(
ð2:6Þ

is a perturbation of JH1. By Weyl’s lemma, the continuous spectrum of L1 is
also �c. The eigenvalues are more complicated. In both cases (e01 < je1j and
e01 > je1j) they are near 0 and �ie01. As we shall see, in both cases 0 is
an eigenvalue of L1. The main difference between the two cases are
the eigenvalues near ie01 and �ie01. If e01 < je1j, then ie01 lies outside
the continuous spectrum and L1 has an eigenvalue near ie01 which is
purely imaginary. On the other hand, if e01 > je1j, then ie01 lies inside the
continuous spectrum. It splits under our perturbation and the eigenvalues of
L1 near � ie01 have non-zero real parts.

We shall show that L2
ðR

3, CÞ, as a real vector space, can be decom-
posed as the direct sum of three invariant subspaces

L2
ðR

3, CÞ ¼ SðL1Þ � E1ðL1Þ � HcðL1Þ: ð2:7Þ

Here SðL1Þ is the generalized null space, E1ðL1Þ is the eigenspace associated
to nonzero generalized eigenvalues (they become eigenvalues for the
complexified space CE1ðL1Þ, see below), and HcðL1Þ corresponds to the
continuous spectrum. Both SðL1Þ and E1ðL1Þ are finite dimensional.

Recall the Pauli matrices

	1 ¼
0 1
1 0

� �
, 	2 ¼

0 �i
i 0

� �
, 	3 ¼

1 0
0 �1

� �
:

They are self-adjoint and

	1L1 ¼ L
�
1	1, 	3L1 ¼ �L1	3, ð2:8Þ

where L
�
1 ¼



0 �Lþ

L� 0

�
.
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Let R1 ¼ @E1
Q1,E1

. Direct differentiation of Eq. (2.1) with respect to E1

gives LþR1 ¼ Q1. Since L�Q1 ¼ 0 and LþR1 ¼ Q1, we have L1



0
Q1

�
¼ 0

and L1



R1

0

�
¼ �



0
Q1

�
. We will show dimR SðL1Þ ¼ 2, hence

SðL1Þ ¼ span
R

0

Q1

� �
,
R1

0

� �
 �
: ð2:9Þ

HcðL1Þ can be characterized as

HcðL1Þ ¼  2 L2 : ð	1 , f Þ ¼ 0, 8f 2 SðL1Þ � E1ðL1Þ
� �

: ð2:10Þ

We will use Eq. (2.10) as a working definition of HcðL1Þ. After we have
proved the spectrum of L1 and the resolvent estimates, we will use the wave
operator of L1 (see Refs. [5,27,28]) to show that Eq. (2.10) agrees with the
usual definition of the continuous spectrum subspace. See §2.5.

The space E1ðL1Þ, however, has very different properties in the two
cases, resonant or nonresonant, due to whether � iðE1 � e0Þ are embedded
eigenvalues of JH1. We will consider E1 ¼ E1ðL1Þ as a subspace of
L2
ðR

3, R2
Þ and denote by CE1 ! CL2 the complexification of E1. We will

show that CE1 is a direct sum of eigenspaces of L1 in CL2. We also have

ð	1 f , gÞ ¼ 0, 8f 2 SðL1Þ, 8g 2 E1ðL1Þ: ð2:11Þ

We have the following two theorems for the two cases.

Theorem 2.1 (Non-resonant case). Suppose e0 > 2e1, and the Assumptions
A0–A1 hold. Let Q1 ¼ Q1,E1

be a nonlinear excited state with kQ1kL2 ¼ n
sufficiently small, and let L1 be defined as in Eq. (1.6).

(1) The eigenvalues of L1 are 0 and �!�. The multiplicity of 0 is two.
The other eigenvalues are simple. Here !� ¼ i�, � is real, � ¼ e01 þOðn

2
Þ.

There is no embedded eigenvalue. The bottoms of the continuous spectrum are
not eigenvalue nor resonance.

(2) The space L2
¼ L2

ðR
3, CÞ, as a real vector space, can be decom-

posed as in Eq. (2.7). Here SðL1Þ and HcðL1Þ are given in Eqs. (2.9) and
(2.10), respectively; E1ðL1Þ is the space corresponding to the perturbation of
the eigenvalues � iðE1 � e0Þ of JH1. We have the orthogonality relation (2.11).

(3) Let CE1 denotes the complexification of E1 ¼ E1ðL1Þ. CE1 is
2-complex-dimensional. E1 is 2-real-dimensional. We have

CE1 ¼ span
C

�,�
� �

,

E1 ¼ span
R

u

0

h i
,

0

v

� �
 �
:

ð2:12Þ

Here � ¼


u
�iv

�
is an eigenfunction of L1 with eigenvalue !�. u and v are real-

valued L2-functions satisfying Lþu ¼ ��v, L�v ¼ ��u and ðu, vÞ ¼ 1. u and v
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are perturbations of �0. ��� ¼


u
iv

�
is another eigenfunction with eigenvalue�!�.

We have L1� ¼ !��, L1
��� ¼ �!� ���.

(4) For any function � 2 E1ðL1Þ, there is a unique 
 2 C so that

� ¼ RE 
�:

We have L1� ¼ RE !�
� and etL1� ¼ RE et!�
�.
(5) We have the orthogonality relations in Eqs. (2.10) and (2.11).

Hence any  2 L2 can be decomposed as (see Eq. (2.7))

 ¼ a
R1

0

� �
þ b

0

Q1

� �
þ c

u

0

h i
þ d

0

v

� �
þ �, ð2:13Þ

with � 2 HcðL1Þ,

a ¼ ðQ1,R1Þ
�1
ðQ1, Re Þ, c ¼ ðu, vÞ�1

ðv, Re Þ,

b ¼ ðQ1,R1Þ
�1
ðR1, Im Þ, d ¼ ðu, vÞ�1

ðu, Im Þ:
ð2:14Þ

(6) Let M1 � E1ðL1Þ � HcðL1Þ. We have

M1 � E1ðL1Þ � HcðL1Þ ¼
Q?

1

R?
1

� �
: ð2:15Þ

There is a constant C > 1 such that, for all � 2M1 and all t 2 R, we have

C�1 �k kHk � ketL1�kHk � C �k kHk , ðk ¼ 1, 2Þ: ð2:16Þ

(7) Decay estimates: For all � 2 HcðL1Þ, for all p 2 ½2,1
, one has

ketL1�kLp � Cjtj
�3ð1=2�1=pÞ �k kLp0 :

Theorem 2.2 (Resonant case). Suppose e0 < 2e1, and the Assumptions A0–A2
hold. Let Q1 ¼ Q1,E1 be a nonlinear excited state with kQ1kL2 ¼ n sufficiently
small, and let L1 be defined as in Eq. (1.6).

(1) The eigenvalues of L1 are 0, �!� and � �!!�. The multiplicity of 0 is
two. The other eigenvalues are simple. Here !� ¼ i�þ �, �, � > 0,
� ¼ e01 þOðn

2
Þ, and 3

4 �
2�0n

4
� � � Cn4. (�0 is given in Eq. (1.5)). There is

no embedded eigenvalue. The bottoms of the continuous spectrum are not
eigenvalue nor resonance.

There is an !�-eigenvector �, L1� ¼ !��, which is of order one in L2

and ��


�0

�i�0

�
is locally small in the sense that

�,��
�0

�i�0

� �� �				 				 � Crn 2
khxir�kL2 , ð2:17Þ
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for any �, for any r > 3. However, � is not a perturbation of


�0

�i�0

�
in CL 2.

In fact, � ¼ u
v


 �
with u� �0 and vþ i�0 of order one in L

2,

u ¼ �0 �
1

��þ V � E1 � �þ �i
PcðH0Þ��0Q

2
1 þOðn 2

Þ in L 2,

and v ¼ �Lþu=!�. Note �E1 � � ¼ e0 � 2e1 þOðn
2
Þ.

(2) The space L 2
¼ L2

ðR
3, CÞ, as a real vector space, can be decom-

posed as in Eq. (2.7).Here SðL1Þ and HcðL1Þ are given in Eqs. (2.9) and (2.10),
respectively; E1ðL1Þ is the space corresponding to the perturbation of the eigen-
values �iðE1 � e0Þ of JH1. We have the orthogonality relation (2.11).

(3) Let CE1 denotes the complexification of E1 ¼ E1ðL1Þ. CE1 is
4-complex-dimensional. E1 is 4-real-dimensional. If we write � ¼



u
v

�
¼


u1þu2i
v1þv2i

�
with u1, u2, v1, v2 real-valued L

2 functions, we have

CE1 ¼ span
C

�, ���, 	3�, 	3
���

� �
,

E1 ¼ span
R

u1

0

h i
,
u2

0

h i
,

0

v1

� �
,

0

v2

� �
 �
:

ð2:18Þ

Recall 	3 ¼



1 0
0 �1

�
. The other eigenvectors are ���, 	3� and 	3

���,

L1� ¼ !��, L1
��� ¼ �!!� ���,

L1	3� ¼ �!�ð	3�Þ, L1	3
��� ¼ � �!!�ð	3

���Þ:
ð2:19Þ

(4) For any function � 2 E1ðL1Þ, there is a unique pair ð
,�Þ 2 C
2

so that

� ¼ RE 
�þ �	3�
� �

: ð2:20Þ

We have L1� ¼ REf!�
�� !��	3�g and e
tL1� ¼ REfet!�
�þ e�t!��	3�g.

(5) We have the orthogonality relations in Eqs. (2.10) and (2.11).
Moreover, 	1

��� ? f ���, 	3�, 	3
���g, 	1� ? f�, 	3�, 	3

���g, and
R
�uuv dx ¼ 0, etc.

For any function  2 CL 2, if we decompose

 ¼ a
R1

0

� �
þ b

0

Q1

� �
þ 
1�þ 
2

���þ �1	3�þ �2	3
���þ �, ð2:21Þ

where a, b,
1,
2,�1,�2 2 C and � 2 HcðL1Þ, then we have

a ¼ c1 	1

0

Q1

� �
;  

� �
, b ¼ c1 	1

R1

0

� �
, 

� �
,


1 ¼ c2ð	1
���, Þ, 
2 ¼ �cc2ð	1�, Þ,

�1 ¼ �c2ð	1	3
���, Þ, �2 ¼ � �cc2ð	1	3�, Þ,

ð2:22Þ
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where c�1
1 ¼ ðQ1,R1Þ and c

�1
2 ¼ ð	1

���,�Þ ¼
R

2uv dx. (Note c1� > 0.) The
statement that  2 L 2 is equivalent to that a, b 2 R, 
1 ¼ 
2 ¼ 
=2, �1 ¼

�2 ¼ �=2 and RE � ¼ �. In this case,

 ¼ a
R1

0

� �
þ b

0

Q1

� �
þ REf
�þ �	3�g þ �, ð2:23Þ

with a, b 2 R, � 2 HcðL1Þ with RE � ¼ �, 
,� 2 C, and


 ¼ P
ð Þ � 2c2ð	1
���, Þ, � ¼ P�ð Þ � �2c2ð	1	3

���, Þ: ð2:24Þ

P
 and P� are maps from L2 to C.
(6) There is a constant C > 1 such that, for all � 2 HcðL1Þ and all

t 2 R, we have

C �1 �k kHk � ketL1�kHk � C �k kHk , ðk ¼ 1, 2Þ:

(7) Decay estimates: For all � 2 HcðL1Þ, for all p 2 ½2,1
, one has

ketL1�kLp � Cjtj
�3ð1=2�1=pÞ

k�kLp0 ,

where C ¼ Cðn, pÞ depends on n.

Remark. (i). In (6), we restrict ourselves to HcðL1Þ, not M1 as in Theorem
2.1. (ii). In (3), � is not a perturbation of



�0

�i�0

�
. Also, the L2 functions u1

and u2 are independent of each other. So are v1 and v2. (iii) In (7) the
constant depends on n since there are eigenvalues which are very close to
the continuous spectrum.

Since the proof of Theorem 2.1 is easier, we postpone it to the last
subsection, §2.8. We will focus on proving Theorem 2.2 in the following
subsections.

2.1. Perturbation of Embedded Eigenvalues

and Their Eigenvectors

In this subsection we study the eigenvalues of L1 near ie01. By
symmetry we also get the information near �ie01. For our fixed nonlinear
excited state Q1 ¼ Q1,E1

, let H ¼ ��þ V � E1 þ �Q
2
1 . (H is L� in

Eq. (2.6).) Let e��0 denote a positive normalized ground state of H, with
ground state energy �� which is very close to �e01. Hence the bottom
of the continuous spectrum of H, which is close to je1j, is less than �.

2374 TSAI AND YAU



©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

MARCEL DEKKER, INC. • 270 MADISON AVENUE • NEW YORK, NY 10016

We have

HQ1 ¼ 0, He��0 ¼ ��e��0:

Q1 ¼ n�1 þOðn
3
Þ, e��0 ¼ �0 þOðn

2
Þ:

ð2:25Þ

We want to solve the eigenvalue problem L1� ¼ !�� with !� near
ie01. Write � ¼



u
v

�
. The problem has the form

0 H

�ðH þ 2�Q 2
1 Þ 0

" #
u

v

h i
¼ !�

u

v

h i
,

for some !� near ie01 and for some complex L2-functions u, v. We have

Hv ¼ !�u, ðH þ 2�Q 2
1 Þu ¼ �!�v:

Thus HðH þ 2�Q 2
1 Þu ¼ �! 2

�u. Suppose !� ¼ i�þ � with � � e01 and � � 0.
Since Imð�! 2

� Þ � 0 and H is real, it is more convenient to solve

ðH 2
þ AÞ �uu ¼ z �uu, ð2:26Þ

where

A � H2�Q 2
1 , z � � �!! 2

� : ð2:27Þ

Note z � e 2
01 with Im z small. We may and will assume Im z � 0. Note that

� > 0 corresponds to Im z > 0. We will assume Im z 6¼ 0 in this subsection.
The non-existence of eigenvalues with Im z ¼ 0 will be proved in §2.4.

If we decompose �uu ¼ ae��0 þ bQ1 þ h with h 2 HcðHÞ, we find b ¼ 0
since �uu 2 ImageH. If a ¼ 0, we have ðH 2

þ PcAPc � zÞh ¼ 0. Here Pc ¼

PcðHÞ. We will show later that the resolvent

ðH 2
þ PcAPc � zÞ

�1
Pc ð2:28Þ

is well-defined if Im z 6¼ 0. It can be proven by expanding

ðH 2
þ PcAPc � zÞ

�1
Pc

¼
H

H 2 � z
Pc �

H

H 2 � z
Pc2�Q1

X1
j¼0

Q1

�2�H

H 2 � z
PcQ1

� �j
Q1

1

H 2 � z
Pc,

ð2:29Þ

and summing the estimate for each term provided by Lemma 2.3. Hence
h ¼ 0 and there is no such solution.
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Suppose now a 6¼ 0. We may assume a ¼ 1 and �uu ¼ e��0 þ h. We have

ðH 2
þ AÞðe��0 þ hÞ ¼ zðe��0 þ hÞ,

i.e.,

ze��0 þ zh ¼ � 2e��0 þ Ae��0 þ ðH 2
þ AÞh: ð2:30Þ

Taking projection Pc ¼ PcðHÞ, we get

zh ¼ PcAe��0 þ ðH 2
þ PcA PcÞh:

Hence

h ¼ �ðH 2
þ PcAPc � zÞ

�1
PcAe��0: ð2:31Þ

Note, if Im z ¼ 0, the function H defined above is generically not in L 2.
Taking inner product of Eq. (2.30) with e��0, we get

z ¼ � 2
þ ðe��0,Ae��0Þ þ ðe��0,AhÞ:

Substituting Eq. (2.31), we get

z ¼ � 2
þ ðe��0,Ae��0Þ � ðe��0,AðH 2

þ PcAPc � zÞ
�1

PcAe��0Þ: ð2:32Þ

Remark. If A is self-adjoint, then the signs of the imaginary parts of the two
sides of the above equation are different. This can be seen by expanding the
right side into series and taking the leading term of the imaginary part. Thus
z is real and generically h is not in L2. In our case, A ¼ H2�Q 2

1 is not
self-adjoint and hence a solution is not excluded.

Using A ¼ H2�Q2
1 and He��0 ¼ ��e��0, Eq. (2.32) becomes the following

fixed point problem,

z ¼ f ðzÞ, ð2:33Þ

where

f ðzÞ ¼ � 2
� �ðe��02�Q 2

1
e��0Þ

þ �ðe��02�Q 2
1 , ðH 2

þHPc2�Q
2
1 Pc � zÞ

�1HPc2�Q
2
1
e��0Þ: ð2:34Þ

Let

RðzÞ ¼ ðH 2
� zÞ�1H ¼

1

2ðH �
ffiffiffi
z

p
Þ
þ

1

2ðH þ
ffiffiffi
z

p
Þ
, ð2:35Þ
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where
ffiffiffi
z

p
takes the branch Im

ffiffiffi
z

p
> 0 if Im z > 0. We can expand f ðzÞ as

f ðzÞ ¼ � 2
� �ðe��02�Q 2

1
e��0Þ

�
X1
k¼1

�2�ðe��0Q1, ½�2�Q1PcRðzÞPcQ1

kQ1

e��0Þ: ð2:36Þ

Let

z0 ¼ � 2
� �ðe��02�Q 2

1
e��0Þ,

z1 ¼ z0 þ 4�� 2
ðe��0Q

2
1,Rðz0 þ 0i ÞPcQ

2
1
e��0Þ:

We have jz1 � z0j � Cn
4 from its explicit form, (cf. Eq. (2.39) of Lemma 2.3

below). We also have, by Eqs. (2.25) and (1.5),

Im z1 ¼ Im 4�� 2 e��0Q
2
1 ,

1

2ðH �
ffiffiffiffiffi
z0

p
� 0i Þ

PcQ
2
1
e��0

� �
�

7

4
e01�

2�0n
4
þOðn6

Þ > 0:

Let r0 ¼
1
4 ððe01Þ

2
� je1j

2
Þ be a length of order 1. Denote the regions

G ¼ xþ iy : jx� � 2
j < r0, 0 < y < r0

� �
, ð2:37Þ

D ¼ Bðz1, n5
Þ ¼ z : jz� z1j � n

5
� �

: ð2:38Þ

Clearly z0 2 G and z1 2 D ! G. Also observe that the real part of all points
in G are greater than jE1j

2. We will solve the fixed point problem (2.33) in D.
We need the following two lemmas.

Lemma 2.3. Fix r > 3. There is a constant C1 > 0 such that, for all z 2 G,

xh i
�r

PcRðzÞPc xh i
�r

�� ��
ðL 2,L 2Þ

� C1, ð2:39Þ

xh i
�r

Pc

d

dz
RðzÞPc xh i

�r

���� ����
ðL 2,L 2Þ

� C1ðIm zÞ�1=2: ð2:40Þ

Here Pc ¼ PcðHÞ. Moreover, for w1,w2 2 G,

xh i
�r

Pc½Rðw1Þ � Rðw2Þ
Pchxi
�r

�� ��
ðL 2,L 2Þ

� C1ðmaxðImw1, Imw2ÞÞ
�1=2

jw1 � w2j: ð2:41Þ
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Proof. We have

RðzÞ ¼ ðH 2
� zÞ�1H ¼

1

2ðH �
ffiffiffi
z

p
Þ
þ

1

2ðH þ
ffiffiffi
z

p
Þ
: ð2:42Þ

Since 1=ð2ðH þ
ffiffiffi
z

p
ÞÞ is regular in a neighborhood of G, it is sufficient to

prove the lemma with RðzÞ replaced by R1ðzÞ :¼ ðH �
ffiffiffi
z

p
Þ
�1.

That k xh i
�r

PcR1ðzÞPc xh i
�r
kðL2,L2Þ � C1 is well-known, see e.g. Refs.

[1,9]. The estimate (2.40) will follow from Eq. (2.41) by taking limit. We
now show Eq. (2.41) for R1ðzÞ. For any w1,w2 2 G, we have j

ffiffiffiffiffiffi
w1

p
�

ffiffiffiffiffiffi
w2

p
j �

jw1 � w2j. Write
ffiffiffiffiffiffi
w1

p
¼ a1 þ ib1 and

ffiffiffiffiffiffi
w2

p
¼ a2 þ ib2. We may assume

0 < b1 � b2. Let w3 2 G be the unique number such that
ffiffiffiffiffiffi
w3

p
¼ a1 þ ib2.

For any u, v 2 L2 with uk k2 ¼ vk k2 ¼ 1, let u1 ¼ Pc xh i
�ru and

v1 ¼ Pc xh i
�rv. We have u1, v1 2 L

1
\ L 2

ðR
3
Þ and

u, hxi�rPc R1ðw1Þ � R1ðw3Þ½ 
Pchxi
�rvð Þ

		 		
¼

Z 1

0

ðu1, e�itðH�a1Þv1Þðe
�b1t � e�b2tÞ dt

				 				
�

Z 1

0

Cð1 þ tÞ�3=2
ðe�b1t � e�b2tÞ dt � Cb�1=2

2 ðb2 � b1Þ:

Here we have used the decay estimate for e�itH with H ¼ ��þ V � E1�

�Q 2
1 , namely,

e�itHPc�
�� ��

L1
� Cjtj�3=2 �k kL1 ð2:43Þ

under our Assumption A1. See Refs. [9,10,13,27]. The bound b�1=2
2 ðb2 � b1Þ

can be proved by considering two cases: If b1 � b2=2, the integral is
bounded by

F
Z 1=b2

0

ð1þ tÞ�3=2
ðb2 � b1Þt dtþ

Z 1

1=b2

ð1þ tÞ�3=2e�b1t dtFb�1=2
2 ðb2 � b1Þ:

If b2=2 � b1 � b2, the integral is bounded by

F
Z 1

0

ð1 þ tÞ�3=2
ðb2 � b1Þte

�b1t dtF ðb2 � b1Þð1=b1Þ
1=2,

which is similar to b�1=2
2 ðb2 � b1Þ. Hence we have the bound b�1=2

2 ðb2 � b1Þ.
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We also have

u, hxi�rPc R1ðw3Þ � R1ðw2Þ½ 
Pchxi
�rvð Þ

		 		
¼

Z 1

0

ðu1, e�itðH�a2�ib2Þv1Þðe
iða1�a2Þt � 1Þ dt

				 				
�

Z 1

0

Cð1 þ tÞ�3=2e�b2tjeiða1�a2Þt � 1j dt � Cb�1=2
2 ja1 � a2j:

Since ja1 � a2j þ jb1 � b2j � j
ffiffiffiffiffiffi
w1

p
�

ffiffiffiffiffiffi
w2

p
j � jw1 � w2j, we conclude

u, xh i
�r

Pc R1ðw1Þ � R1ðw2Þ½ 
Pc xh i
�rvð Þ

		 		 � Cb�1=2
2 jw1 � w2j:

Hence we have Eq. (2.41). Q.E.D.

Lemma 2.4. Recall the regions G and D are defined in Eqs. (2.37)–(2.38).

(1) f ðzÞ defined by Eq. (2.34) is well-defined and analytic in G.

(2) j f 0
ðzÞj � Cn4

ðIm zÞ�1=2 in G and j f 0
ðzÞj � 1=2 in D.

(3) for w1,w2 2 G,

j f ðw1Þ � f ðw2Þj � Cn
4
ðmaxðImw1, Imw2ÞÞ

�1=2
jw1 � w2j:

(4) f ðzÞ maps D into D.

Proof. By Eq. (2.39), the expansion (2.36) can be bounded by

j f ðzÞj � C þ CC1n
4
þ CC 2

1 n
6
þ � � �

and thus converges. Since every term in Eq. (2.36) is analytic, f ðzÞ is
well-defined and analytic. We also get the estimates in (2) using Eqs. (2.36)
and (2.40). To prove (3), let b ¼ maxðImw1, Imw2Þ. From Eqs. (2.36),
(2.39), (2.41),

j f ðw1Þ � f ðw2Þj �
X1
k¼1

CkCk1n
2kþ2b�1=2

jw1 � w2j � Cn
4b�1=2

jw1 � w2j:

It remains to show (4). We first estimate j f ðz1Þ � z1j. Write
z1 ¼ z0 þ aþ bi. Recall that jaj < Cn4 and e01�

2�0n
4 < jbj < Cn4. Using
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Eqs. (2.39) and (2.41) we have

j f ðz1Þ � z1j ¼

				ðe��0Q
2
1 , Rðz1Þ � Rðz0 þ 0i Þ½ 
PcQ

2
1
e��0Þ

þ
X1
k¼2

ðe��0Q1, Q1PcRðz1ÞPcQ1½ 

kQ1

e��0Þ

				
� Cn4b�1=2

ðjaj þ jbjÞ þ CC2
1n

6
þ CC3

1n
8
þ � � � � Cn6:

Hence j f ðz1Þ � z1j � Cn
6. For any z 2 D, we have

j f ðzÞ � z1j � j f ðzÞ � f ðz1Þj þ j f ðz1Þ � z1j �
1

2
jz� z1j þ Cn

6
� n5:

Hence f ðzÞ 2 D. This proves (4). Q.E.D.

We are ready to solve Eq. (2.33) in G. By Lemma 2.4 (1), (2) and (4),
the map f ! f ðzÞ is a contraction mapping in D and hence has a unique
fixed point z� in D. By (3), for any z 2 G we have j f ðzÞ � f ðz�Þj �
Cn4

ðIm z�Þ
�1=2

jz� z�j � 1=2jz� z�j. Hence there is no other fixed point of
f ðzÞ in G.

By symmetry, there is another unique fixed point with negative
imaginary part. Moreover, they have the size indicated in Theorem 2.2.
We will prove in §2.3 and §2.4 that !� does not admit generalized eigen-
vectors and that there is no purely imaginary eigenvalue near ie01, i.e., there
is no embedded eigenvalue. Hence !�, and � �!!� are simple and are the only
eigenvalues near ie01.

We now look more carefully on z� and u�, where u� denotes the unique
solution of HðH þ 2�Q 2

1 Þu� ¼ �! 2
� u� with the form u� ¼ e��0 þ

�hh�. Recall
jz1 � z�j � n

5 and

z1 ¼ � 2
� �ðe��02�Q 2

1
e��0Þ þ 4�� 2 e��0Q

2
1 ,Rðz0 þ 0i ÞPcQ

2
1
e��0

� �
,

where z0 ¼ � 2
� �ðe��02�Q 2

1
e��0Þ. Hence

ffiffiffi
z

p
� ¼

ffiffiffiffiffi
z1

p
þOðn5

Þ

¼ �� ðe��0�Q
2
1
e��0Þ þ 2� 2

ðe��0Q
2
1 ,Rðz0 þ 0i ÞPcQ

2
1
e��0Þ

�
1

2�
ðe��0�Q

2
1
e��0Þ

2
þOðn5

Þ:
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Since z� ¼ � �!! 2
� , we have �!!� ¼ i

ffiffiffiffiffi
z�

p
. Thus if we write !� ¼ i�þ �, then

� ¼ �� ðe��0�Q
2
1
e��0Þ �

1

2�
ðe��0�Q

2
1
e��0Þ

2

þ Re 2� 2
ðe��0Q

2
1 ,Rðz0 þ 0i ÞPcQ

2
1
e��0Þ þOðn

5
Þ,

� ¼ � Im 2� 2
ðe��0Q

2
1 ,Rðz0 þ 0i ÞPcQ

2
1
e��0Þ þOðn

5
Þ:

ð2:44Þ

By Eqs. (2.35), (2.25) and expansion into series,

� ¼ Im �2
ðe��0Q

2
1 , ðH �

ffiffiffiffiffi
z0

p
� 0i ÞPcQ

2
1
e��0Þ þOðn

5
Þ

¼ Im � 2n4 �0�
2
1 ,

1

��þ V � E1 �
ffiffiffiffiffi
z0

p
� 0i

Pc�
2
1�0

� �
þOðn5

Þ: ð2:45Þ

By Eq. (1.5), � � � 2n4�0 þOðn
5
Þ.

We now consider the eigenvector. Since Im z� 6¼ 0, the resolvent
Eq. (2.28) is invertible and hence there is a unique eigenvector h� given by
(2.31) with z ¼ z�. Since A ¼ H2�Q 2

1 , we have

h� ¼ �ðH 2
þ PcH2�Q 2

1 Pc � z�Þ
�1HPc2�Q

2
1
e��0, ð2:46Þ

where Pc ¼ PcðHÞ. We now expand the resolvent on the right side using
Eq. (2.29). By Lemma 2.3, we obtain jð�, hÞj � Cn 2

khxir�k2, for any r > 3.
We now show that h� is bounded in L2 with a bound uniform in n.

Recall
ffiffiffiffiffi
z�

p
¼ �þ i� with � � e01, � > 1

2�
2�0n

4. Since Q1 ¼ n�1 þOðn
3
Þ, by

expansion and Eq. (2.25) we have

h� ¼ �ðH2
� z�Þ

�1HPcðHÞ2��0Q
2
1 þOðn2

Þ

¼ �ðH �
ffiffiffiffiffi
z�

p
Þ
�1

PcðHÞ��0Q
2
1 þOðn2

Þ

¼ �
1

��þ V � s� �i
PcðH0Þ��0Q1

2
þOðn2

Þ, ð2:47Þ

where s ¼ E1 þ � ¼ 2e1 � e0 þOðn
2
Þ > 0. Here we have used the fact that

PcðHÞ� ¼ PcðH0Þ�þ n
2
XN
k¼1

ð �
k,�Þ k,

for some local functions  k,  
�
k of order one. We will show that the leading

term on the right of Eq. (2.47) is of order one in L2. It follows from the same
proof that Oðn2

Þ on the right is also in L2 sense.
We first consider the case V ¼ 0. For f ð pÞ 2 L2

\ L1 of order 1,Z
1

��� sþ �i
f̂f ðxÞ

1

��� s� �i
f̂f ðxÞ dx ¼

Z
j f ð pÞj2

1

ð p2 � sÞ2 þ �2
dp:
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We can divide the integral into two parts: j pj 62 I and j pj 2 I , where I ¼
ð

ffiffi
s

p
=2, 3

ffiffi
s

p
=2Þ. Note s is of order 1. For j pj 62 I , we have 1=ðð p2

� sÞ2 þ
�2
Þ � C. Hence the integral is bounded by k f k2

L2 . For j pj 2 I , we first
bound j f ð pÞj2 by k f k2

L1 and then integrate out the angular directions.
Hence the whole integral is bounded by

C þ C

Z 3
ffiffi
s

p
=2ffiffi

s
p
=2

r2

ðjr�
ffiffi
s

p
j þ �Þ2

dr � C þ C

Z ffiffi
s

p
=2

0

1

ð� þ �Þ2
d� � C þ C=�:

Here r � 0 denotes the radial direction and � ¼ r�
ffiffi
s

p
.

Using wave operator for ��þ V , we have similar estimates if ��
is replaced by ��þ V . Since � � n4 and ��0Q

2
1 ¼ Oðn2

Þ is smooth and
localized (similarly for Oðn2

Þ on the right side of Eq. (2.47)), we get

ðh�, h�Þ � Cn
2��1n2

� C,

where C is independent of n. Since u� ¼ e��0 þ
�hh� ¼ �0 þ

�hh� þOðn
2
Þ, we have

obtained the u part of the estimates �k kL2 � C and Eq. (2.17). The
corresponding estimate for v can be proved using v ¼ ð�LþÞu=!�.

2.2. Resolvent Estimates

In this subsection we study the resolvent RðwÞ ¼ ðw� L1Þ
�1. Note that

RðwÞ had a different meaning in the previous subsection.
Let L2

r denote the weighted L2 spaces for r 2 R:

L 2
r ¼ f : ð1 þ x2

Þ
r=2f ðxÞ 2 L2

ðR
3
Þ

� �
:

We will prove the following lemma on resolvent estimates along the
continuous spectrum �c. As a corollary of the proof, we also show that
f0, �!�, �!�g consists of all eigenvalues outside of �c.

Lemma 2.5. Let RðwÞ ¼ ðw� L1Þ
�1 be the resolvent of L1. Let B ¼

BðL2
r ,L

2
�rÞ, the space of bounded operators from L2

r to L2
�r with r > 3.

Recall !� ¼ i�þ �. For � � jE1j we have

Rði� � 0Þ
�� ��

B
þ Rð�i� � 0Þ
�� ��

B
� Cð1 þ �Þ�1=2

þ Cðj� � �j þ n4
Þ
�1:

ð2:48Þ
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The constant C is independent of n. We also have

RðkÞ
ði�� 0Þ

��� ���
B
þ RðkÞ

ð�i�� 0Þ
��� ���

B
� Cð1þ �Þ�ð1þkÞ=2 þCðj�� �j þ n4

Þ
�1

ð2:49Þ

for derivatives, where k ¼ 1, 2.

We first consider R0ðwÞ ¼ ðw� JH1Þ
�1. Recall H1 ¼ ��þ V � E1.

Since

ðw� JH1Þ
�1

¼
w �H1

H1 w

� ��1

¼
1

H 2
1 þ w 2

w H1

�H1 w

� �
¼

1

2

�i 1

�1 �i

� �
ðH1 � iwÞ

�1
þ

1

2

i 1

�1 i

� �
ðH1 þ iwÞ

�1,

ð2:50Þ

the estimates of R0ðwÞ can be derived from those of ðH1 � iwÞ
�1 and

ðH1 þ iwÞ
�1. By assumption, the bottom of the continuous spectrum of

H1, �E1, is not an eigenvalue nor a resonance of H1. Hence ðH1 � zÞ
�1 is

uniformly bounded in B for z away from e0 � E1 and e1 � E1, see Ref. [9].
By Eqs. (2.4) and (2.50), R0ðwÞ is uniformly bounded in B for w with
distðw,�pÞ � n, where �p ¼ f0, ie01, � ie01g.

Write

L1 ¼ JH1 þW , W ¼
0 �Q 2

1

�3�Q 2
1 0

� �
:

For RðwÞ ¼ ðw� L1Þ
�1 we have

RðwÞ ¼ ð1 � R0ðwÞWÞ
�1R0ðwÞ ¼

X1
k¼0

½R0ðwÞWÞ

kR0ðwÞ: ð2:51Þ

Since R0ðwÞ is uniformly bounded in B for w with distðw,�pÞ > n, and W
is localized and small, Eq. (2.51) converges and ðw� L1Þ

�1 is uniformly
bounded in B for w with distðw,�pÞ > n and we have

RðwÞ
�� ��

B
� C distðw,�pÞ

�1, ðn � distðw,�pÞ � 1Þ: ð2:52Þ

Recall �c ¼ fis : jsj � jE1jg is the continuous spectrum of JH1 and L1.
For w in the region

w : distðw,�pÞ � n,w 62 �c

� �
, ð2:53Þ
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we have

R0ðwÞ
�� ��

ðL2,L2Þ
� C distðw,�cÞ

�1:

By Eq. (2.51), and because W is localized and small,

RðwÞ
�� ��

ðL 2,L 2Þ
� R0ðwÞ
�� ��

ðL2,L2Þ

þ
X1
k¼1

C R0ðwÞ
�� ��

ðL2,L2Þ
Cn2 R0ðwÞ

�� ��
B

� �k�1
R0ðwÞ
�� ��

ðL 2,L2Þ

� C distðw,�cÞ
�1

þ C distðw,�cÞ
�2:

Hence RðwÞ is uniformly bounded in ðL2,L2
Þ in a neighborhood of w.

In particular, there is no eigenvalue of L1 in the region (2.53) above. Note
that this region includes a neighborhood of the bottom of the continuous
spectrum �c, �iE1, except those in �c. Hence the eigenvalues can occur only
in fw : distðw,�pÞ < ng or �c.

The circle w : jwj ¼
ffiffiffi
n

p� �
is in the resolvent set of L1. By Ref. [15]

Theorem XII.6, the Cauchy integral

P ¼
1

2�i

I
jwj¼

ffiffi
n

p
ðw� L1Þ

�1 dw

gives the L2-projection onto the generalized eigenspaces with eigenvalues
inside the disk fw : jwj <

ffiffiffi
n

p
g. Moreover, the dimension of P is an upper

bound for the sum of the dimensions of those eigenspaces. However,
since the projection P0 ¼ ð2�i Þ�1

H
jwj¼

ffiffi
n

p R0ðwÞ dw has dimension 2 (see
Eqs. (2.3)–(2.4)), and

P� P0 ¼
1

2�i

I
jwj¼

ffiffi
n

p

X1
k¼1

½R0ðwÞW 

k R0ðwÞ dw

is convergent and bounded in ðL2,L2
Þ by

� C R0ðwÞ
�� ��

ðL2,L2Þ
n2
X1
k¼0

Cn2 R0ðwÞ
�� ��

B

� �k
R0ðwÞ
�� ��

ðL2,L2Þ

� Cn�1=2Cn 2n�1=2
¼ Cn,

(here we have used Eq. (2.52)), the dimension of P is also 2. Since we already
have two generalized eigenvectors



0
Q1

�
and



R1

0

�
with eigenvalue 0, we have

obtained all generalized eigenvectors with eigenvalues in the disk jwj<
ffiffiffi
n

p
.

Together with the results in §2.1, we have obtained all eigenvalues outside of
�c: 0, �!�, and �!�.
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We next study RðwÞ ¼ ðw� L1Þ
�1 for w near �ie01 : jw� ie01j < n or

jwþ ie01j < n. Let us assume w ¼ i� � " with �, " > 0, thus �w 2 lies in G
(defined in Eq. (2.37)). The other cases are similar. Let



f
g

�
2 CL2. We want

to solve the equation

ðw� L1Þ
u

v

h i
¼

f

g

� �
: ð2:54Þ

We have

wu�Hv ¼ f , wvþ ðH þ 2�Q2
1Þu ¼ g:

Cancelling v, we get (recall A ¼ H2�Q 2
1 )

w 2uþ ðH 2
þ AÞu ¼ F , F ¼ wf þHg:

Write u ¼ 
e��0 þ �bQQ1 þ � with � 2 HcðHÞ and bQQ1 ¼ Q1=kQ1k2. Also
denote � ¼ 
e��0 þ �bQQ1 ¼ u� �. We have

w2
þH2

þ PcA
� �

� ¼ PcF � PcA�,

w 2
þH 2

þ P
?A

� �
� ¼ P

?F � P
?A�:

Here Pc ¼ PcðHÞ and P
?
¼ 1 � Pc. Solving � in terms of �, we get

� ¼ �ðPcF � PcA�Þ, � � w 2
þH 2

þ PcAPc

� ��1
: ð2:55Þ

Note that � is the resolvent in Eq. (2.28) with z ¼ �w 2. Substituting the
above into the � equation we get

w 2
þH 2

þ P
?A� P

?A�PcA
� �

� ¼ eFF , ð2:56Þ

eFF ¼ P
?F � P

?A�PcF :

Using e��0 and bQQ1 as basis, we can put Eq. (2.56) into matrix form

a b
0 w 2

� �


�

� �
¼

ðe��0, eFFÞ
ðbQQ1, eFFÞ

� �
, ð2:57Þ

where (recall He��0 ¼ ��e��0, HbQQ1 ¼ 0 and A ¼ H2�Q2
1)

a ¼ w 2
þ �2

� �ðe��02�Q 2
1
e��0Þ þ �ðe��02�Q 2

1 ,�HPc2�Q
2
1
e��0Þ,

b ¼ ��ðe��02�Q 2
1
bQQ1Þ þ �ðe��02�Q 2

1 ,�HPc2�Q
2
1
bQQ1Þ:
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Thus




�

� �
¼

1=a �b=ðaw2
Þ

0 w�2

� �
ðe��0, eFFÞ
ðbQQ1, eFFÞ

" #
: ð2:58Þ

Note that we have ðbQQ1, eFFÞ ¼ ðbQQ1,FÞ ¼ ðbQQ1,wf Þ and

ðe��0, eFFÞ ¼ ðe��0,FÞ � ð��e��02�Q2
1,�PcFÞ

¼ ðe��0,wf Þ � ð�e��0, gÞ þ ð�e��02�Q 2
1 ,�Pcwf þ�HPc gÞ:

By Eq. (2.55), F ¼ wf þHg and A ¼ H2�Q 2
1 ,

� ¼ �wPc f þ�HPcg��HPc2�Q
2
1 �: ð2:59Þ

The above computation from Eqs. (2.54)–(2.59) is valid as long as �
is invertible, in particular, if z ¼ �w2

2 G. We now consider the case
w ¼ i� � " with j� � e01j < 2n and 0 < "� n4. It follows that z ¼ �w2

2 G
and Re z > 0 is small. Recall f ðzÞ defined in Eq. (2.34), and the fixed point
z� ¼ � �!!2

� found in §2.1. We have a ¼ f ðzÞ � z ¼ ðz� � zÞ þ ð f ðzÞ � f ðz�ÞÞ.
Using Lemma 2.4 (3) with w1 ¼ z and w2 ¼ z�, we have

jaj � jz� z�j � j f ðzÞ � f ðz�Þj �
1

2
jz� z�j ¼

1

2
jw2

� �!!2
�j � Cjwþ �!!�j:

Since !� ¼ i�þ � with � � n4 and w ¼ i� � " with 0 < "� n4, we have
jaj � Cðj� � �j þ n4

Þ.
We will bound 
, �, and � using Eqs. (2.58) and (2.59). Note that the

operators � ¼ ðw2
þH2

þ PcAPcÞ
�1 and �H do not have a uniform bound

in ðL2,L2
Þ as " goes to zero. They are, however, uniformly bounded in B.

It can be proven by first expanding � into a series as in Eq. (2.29), and then
by using formulas like Eq. (2.42) and the usual weighted estimates near the
continuous spectrum. Therefore, if f , g 2 L2

r , using Eqs. (2.58), (2.59), and
the explicit forms of ðe��0, eFFÞ and ðbQQ1, eFFÞ,

j
j þ j�j � Cð1 þ jaj�1
Þk f , gkL 2

r
� Cðj� � �j þ n4

Þ
�1
k f , gkL2

r
,

�k kL 2
�r
� Ck f , gkL 2

r
þ Cn2

ðj
j þ j�jÞ:

We conclude, for u ¼ 
e��0 þ �bQQ1 þ �,

kukL 2
�r
� ðC þ Cðj� � �j þ n4

Þ
�1
Þðk f kL2

r
þ kgkL2

r
Þ:

We can estimate v similarly. Thus, for � 2 ðe01 � n, e01 þ n),

kRði� � 0ÞkB � C þ Cðj� � �j þ n4
Þ
�1, ðj� � e01j < nÞ:

The estimate for kRði� þ 0ÞkB is similar.
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For � > e01 þ n and w ¼ i� þ 0, using RðwÞ ¼ ð1 þ R0ðwÞWÞ
�1R0ðwÞ

and the fact that kR0ðwÞkB � Cð1 þ �Þ�1=2, (see Ref. [9] Theorem 9.2),
we have kRði� þ 0ÞkB � C��1=2. For � 2 ½jE1j, e01 � n
, the same argument
gives kRði� þ 0ÞkB � C. The derivative estimates for the resolvent are
obtained by induction argument, by differentiating the relation
Rð1 þWR0Þ ¼ R0 and by using the relations ð1 þWR0Þ

�1
¼ 1 �WR and

ð1 þ R0WÞ
�1

¼ 1 � RW . See the proof of Ref. [9] Theorem 9.2. We have
proved Lemma 2.5.

2.3. Nonexistence of Generalized x�-Eigenvector

Since the resolvent in Eq. (2.28) with z ¼ z� is invertible, h� given by
Eq. (2.31) is unique and hence � is the only !�-eigenvector satisfying
ðL1 � !�Þ� ¼ 0. We now show that there is no other generalized !�-eigen-
vector, i.e., there is no vector � with ðL1 � !�Þ� 6¼ 0 but ðL1 � !�Þ

k� ¼ 0 for
some k � 2. Suppose the contrary, then we may find a vector



u
v

�
with

ð!� � L1Þ


u
v

�
¼


u�
v�

�
. That is, w ¼ !� and



f
g

�
¼


u�
v�

�
in the system (2.54).

We have F ¼ wu� þHv� ¼ 2!�u�. Since u� ¼ e��0 þ
�hh� with �hh� 2 HcðHÞ, we

have ðbQQ1, eFFÞ ¼ ðbQQ1,FÞ ¼ ðbQQ1, 2!�u�Þ ¼ 0. Hence � ¼ 0. Also

ðe��0, eFFÞ ¼ ðe��0,FÞ � ðe��0H2�Q 2
1 ðw

2
þH 2

þ PcAPcÞ
�1

PcFÞ

¼ 2!� þ �ðe��02�Q 2
1 ðw

2
þH2

þ PcAPcÞ
�12!� �hh�Þ

¼ 2!� 1 þ �ð	,��H	Þ

 �

,

where � ¼ ðw 2
þH 2

þ PcAPcÞ
�1 and 	 ¼ Pc

e��02�Q 2
1 . Since the main term

in ð	,��H	Þ,

ð	, ðw2
þH2

Þ
�1
ð �ww2

þH2
Þ
�1H	Þ,

is positive, ðe��0, eFFÞ is not zero. On the other hand, a ¼ ! 2
� þ f ð�!

2
� Þ ¼

� �zz� þ f ð �zz�Þ ¼ 0. Hence there is no solution for 
. This shows !� is simple
(and so are �!�, � �!!�).

2.4. Nonexistence of Embedded Eigenvalues

In this subsection we prove that there is no embedded eigenvalue i�
with j�j > jE1j. Suppose the contrary, we may assume � > �E1 > 0 and
L1 ¼ i� for some  2 CL 2. We will derive a contradiction.
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Let H� ¼ ��� E1. We can decompose

L1 ¼ JH� þ A, A ¼
0 V þ �Q 2

1

�V � 3�Q 2
1 0

� �
: ð2:60Þ

Hence ði� � JH�Þ ¼ A . By the same computation of Eq. (2.50) we have

ðw� JH�Þ
�1

¼ ðH� � iwÞ
�1Mþ þ ðH� þ iwÞ

�1M�,

where

Mþ ¼
1

2

�i 1
�1 �i

� �
, M� ¼

1

2

i 1
�1 i

� �
:

Thus, with w ¼ i�, we have

 ¼ ði� � JH�Þ
�1A ¼ ðH� þ �Þ

�1�þ þ ðH� � �Þ
�1��, ð2:61Þ

where �þ ¼MþA and �� ¼M�A . By Assumption A1 on the decay of V
and that  2 L 2, both �þ,�� 2 L 2

5þ	 with 	 > 0. Since �� is outside the
spectrum of H�, we have ðH� þ �Þ

�1�þ 2 L 2
5þ	. Let s ¼ E1 þ � > 0. We have

H� � � ¼ ��� s. By assumption  2 CL2, hence so is ðH� � �Þ
�1��.

Therefore ð p2
� sÞ�1c����ð pÞ 2 L2. Since �� 2 L2

5þ	, c���� is continuous and
we can conclude

c����ð pÞ		j pj¼ ffiffi
s

p ¼ 0: ð2:62Þ

We now recall Ref. [14] page 82, Theorem IX.41: Suppose f 2 L2
r with

r > 1=2 and let Bs f ¼ ðð p2
� sÞ�1bff Þ_. Suppose f̂f ð pÞ

		
j pj¼

ffiffi
s

p ¼ 0. Then for
any " > 0, one has Bs f 2 L

2
r�1�2" and kBs f kL2

r�1�2"
� Cr, ", sk f kL2

r
for some

constant Cr, ", s.
In our case, we have f ¼ ��, " ¼ 	=2 and r ¼ 5 þ 	. We conclude

ðH� � �Þ
�1�� ¼ Bs f 2 L

2
4. Thus  2 L2

4.
However, since ðz� L1Þ ¼ ðz� i�Þ , we have RðzÞ ¼ ðz� i�Þ�1 .

Thus we have

ðz� i�Þ�1 
�� ��

L 2
�r
� C  

�� ��
L2

4

,

where the constant C remains bounded as z! i� by Lemma 2.5. This is
clearly a contradiction. Thus  does not exist.
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2.5. Absence of Eigenvector and Resonance at Bottom of

Continuous Spectrum

We want to show that �iE1, the bottom of the continuous spectrum,
are not eigenvalue nor resonance. That is, the null space of L1 ' iE1 in
X ¼ L2

�r, r > 1=2, is zero. In fact, since the resolvent are bounded near
� iE by Lemma 2.5, the same argument in Ref. [9] for the expansion
formula of the resolvent near the bottom of the continuous spectrum,
trivially extended for non-self adjoint perturbations, shows the claim.
Here we provide another proof for completeness.

Let us consider the case at ijE1j. Suppose otherwise, we have a
sequence Q1,E1ðkÞ ! 0 and  k 2 X ¼ L2

�r so that

L1,E1ðkÞ þ iE1ðkÞ
� �

 k ¼ 0, k kkX ¼ 1:

As in Eq. (2.60) we write L1,E1ðkÞ ¼ JH� þ Ak, where H� ¼ ��� E1ðkÞ and
Ak ¼ JV þ 0 1

�3 0


 �
�Q2

1,E1ðkÞ
. By Eq. (2.61) with � ¼ jE1ðkÞj we have

 k ¼ ði� � JH�Þ
�1Ak k ¼ ð��þ 2�Þ�1MþAk k þ ð��Þ�1M�Ak k

in X. Note that ð��þ 2�Þ�1MþAk and ð��Þ�1M�Ak are compact opera-
tors in X, with a bound uniform in k. Since X is a reflexive Banach space,
we can find a subsequence, which we still denote by  k, converging weakly
to some  � 2 X . Thus � ! je1j, ð��þ 2�Þ�1MþAk k ! ð��� 2e1Þ

�1
�

MþJV � and ð��Þ�1M�Ak k ! ð��Þ�1MþJV � strongly in X. Thus

 � ¼ ð��� 2e1Þ
�1MþJV � þ ð��Þ�1MþJV �

and  k !  � strongly. Hence k �kX ¼ limk kkX ¼ 1 and ðJH1 þ ie1Þ � ¼ 0
by Eq. (2.61) again. One can show that ð��þV Þ � ¼



0
0

�
, which contradicts

Assumption A1 and thus shows the claim.

2.6. Proof of Theorem 2.2 (4)–(6)

Once we have an eigenvector � with L1� ¼ !�� and !� complex, we
have three other eigenvalues and eigenvectors as given in Eq. (2.19). Hence
we have found all eigenvalues and eigenvectors of L1. CE1 is the combined
eigenspace of �!� and � �!!�. It is easy to check that RE CE1 ¼ E1. We have
proved parts (1)–(3) of Theorem 2.2.

We now show the orthogonality conditions. Recall 	1 ¼
0 1
1 0


 �
. It is

self-adjoint in CL2. Let L
�
1 be the adjoint of L1 in CL2. We have

L
�
1 ¼



0 �Lþ
L� 0

�
and L

�
1 ¼ 	1L1	1. Suppose L1 f ¼ !1 f and L1g ¼ !2g with
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�!!1 6¼ !2. We have L
�
1	1 f ¼ 	1L1 f ¼ !1	1 f . Thus

!2ð	1 f , gÞ ¼ ð	1 f ,!2gÞ ¼ ð	1 f ,L1gÞ

¼ ðL
�
1	1 f , gÞ ¼ ð!1	1 f , gÞ ¼ �!!1ð	1 f , gÞ:

Hence ð	1 f , gÞ ¼ 0. Therefore we have 	1
��� ? ���, 	3�, 	3

���, 	1� ? �, 	3�,
	3

���, etc. If we write u ¼ u1 þ iu2, v ¼ v1 þ iv2 and � ¼


u
v

�
, then we haveZ

�uuv dx ¼ 0: ð2:63Þ

In other words, ðu1, v1Þ þ ðu2, v2Þ ¼ 0 and ðu1, v2Þ ¼ ðu2, v1Þ.
If f 2 SðL1Þ and L1g ¼ !2g with !2 6¼ 0. We have ðL�

1Þ
2	1 f ¼ 0, hence

ð	1 f ,!
2
2gÞ ¼ ð	1 f ,L

2
1gÞ ¼ ððL

�
1Þ

2	1 f , gÞ ¼ ð0, gÞ:

Hence ð	1 f , gÞ ¼ 0. In terms of components, we get ðQ1, u1Þ ¼ ðQ1, u2Þ ¼ 0,
ðR1, v1Þ ¼ ðR1, v2Þ ¼ 0. The above shows Eq. (2.22). The rest of (4) and (5)
follows directly.

To prove (6), we first prove the following spectral gap

Lþ Q1, v1, v2f g
? >

1

2
je1j, L� R1, u1, u2f g

? >
1

2
je1j:

								 ð2:64Þ

We will show the first assertion. Note that by Eq. (2.17) we have

v1 ¼ PcðL�Þv1 þOðn
2
Þ, v2 ¼ ��0 þ PcðH1Þv2 þOðn

2
Þ

in L2. In particular kv2kL2 � 1=2, and ðv1,L�v1Þ � ðv1,L� PcðL�Þv1Þ �Cn
2
�

�Cn2. By Eq. (2.63)

ðv1,L�v1Þ þ ðv2,L�v2Þ ¼ ðv,L�vÞ ¼ ðv,!uÞ ¼ 0:

Hence ðv2,Lþv2Þ ¼ ðv2,L�v2Þ þOðn
2
Þ � Cn2. We also have ðQ1,LþQ1Þ ¼

ðQ1,L�Q1Þ þOðn
4
Þ ¼ 0 þOðn4

Þ. Let Q0
1 ¼ Q1 � ðQ1, v2Þv2=kv2k

2
2. We have

Q0
1 ? vj and Q0

1 ¼ Q1 þOðn
3
Þ by Eq. (2.17) again. Hence ðQ0

1,LþQ
0
1Þ ¼

ðQ1,LþQ1ÞþOðn
4
Þ¼Oðn4

Þ�Cn2
ðQ0

1,Q0
1Þ. We conclude that Lþjspan Q1,v2f g �

Cn2. Since Lþ is a perturbation of H1, it has exactly two eigenvalues below
1
2je1j. By minimax principle we have LþjfQ1,v2g

? > ð1=2Þje1j. This shows the
first assertion of Eq. (2.64). The second assertion is proved similarly.

Let Qð Þ denote the quadratic form: (see e.g. Refs. [25,26])

Qð Þ ¼ ð f ,Lþf Þ þ ðg,L�gÞ, if  ¼ f þ ig: ð2:65Þ

One can show for any  2 L2

QðetL1 Þ ¼ Qð Þ, for all t, ð2:66Þ
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by direct differentiation in t. By Eq. (2.64) one has

Qð�Þ � �k k
2
H1 , for any � 2 HcðL1Þ:

Thus

ketL1�k2
H1 � QðetL1�Þ ¼ Qð�Þ � �k k

2
H1 :

Similarly, we have by Eq. (2.64) and the above relation

�k k
2
H3 � kL1�k

2
H1 � QðL1�Þ:

Since QðL1�Þ ¼ QðetL1L1�Þ, we have �k kH3 � ketL1�kH3 . By interpolation we
have �k kH2 � ketL1�kH2 . We have proven (6).

2.7. Wave Operator and Decay Estimate

It remains to prove the decay estimate (7). We will use the wave
operator. We will compare L1 with JH�, where H� ¼ ��� E1. Recall
we write L1 ¼ JH� þ A in §2.4, Eq. (2.60). Keep in mind that H� has no
bound states and A is local. Define Wþ ¼ limt!þ1 e

�tL1etJH� . Let RðzÞ ¼
ðz� L1Þ

�1 and R�ðzÞ ¼ ðz� JH�Þ
�1. We have

Wþf � f

¼ lim
"!0þ

Z þ1

jE1j

Rði� þ "ÞA R�ði� � "Þ � R�ði� þ "Þ½ 
 f d�

� lim
"!0þ

Z þ1

jE1j

Rð�i� þ "ÞA R�ð�i� � "Þ � R�ð�i� þ "Þ½ 
 f d�:

Yajima[27,28] was the first to give a general method for proving the
ðWk, p,Wk, p

Þ estimates for the wave operators of self-adjoint operators.
This method was extended by Cuccagna[5] to non-selfadjoint operators in
the form we are considering. (He also used idea from Kato[11]). One key
ingredient in this approach is the resolvent estimates near the continuous
spectrum, which in many cases can be obtained by the Jensen–Kato[9]

method. (See Ref. [27], Lemmas 3.1–3.2 and Ref. [5], Lemmas 3.9–3.10).
In our current setting, this estimate is provided by the Lemma 2.5. We can
thus follow the proof of Ref. [5] to obtain that Wþ is an operator from CL2

onto HcðL1Þ. Furthermore, Wþ and its inverse (restricted to HcðL1Þ) are
bounded in ðLp,LpÞ-norm for any p 2 ½1,1
. (Note this bound depends on n
since our bound on RðwÞ depends on n.) By the intertwining property of the
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wave operator we have

etL1 Pc ¼Wþe
tJH� ðWþÞ

�
Pc:

The decay estimate in (7) follows from the decay estimate of etJH� .
The proof of Theorem 2.2 is complete.

2.8. Proof of Theorem 2.1

By the same Cauchy integral argument as in subsection 2.2, the only
eigenvalues of L1 are inside the disks fw : jwj <

ffiffiffi
n

p
g, fw : jw� ie01j <

ffiffiffi
n

p
g

and fw : jwþ ie01j <
ffiffiffi
n

p
g. Moreover, their dimensions are 2, 1, and 1, re-

spectively, the same as that of JH1. It counts the dimension of (generalized)
eigenspaces of L1 in CL2. It also counts the dimensions of the restriction of
these spaces in L2

¼ L2
ðR

3, R2
Þ as a real-valued vector space.

By Eq. (2.9), we already have two generalized eigenvectors near 0.
Hence we have everything near 0. Since the dimension is 1 near ie01, there
is only a simple eigenvalue !� near ie01. We have !� ¼ ie01 þOðn

2
Þ since the

difference between L1 and JH1 is of order Oðn2
Þ. !� has to be purely ima-

ginary, otherwise � �!!� is another eigenvalue near ie01, cf. Eq. (2.19), and the
dimension cannot be 1. (This also follows from the Theorem of Grillakis.)

By the same arguments in §2.2–2.4 we can prove resolvent estimates
and the non-existence of embedded eigenvalues. Also, the bottoms of the
continuous spectrum are not eigenvalue nor resonance.

Let � be an eigenvector corresponding to !�. Since L1� ¼ !�� and
�!!� ¼ �!�, we have L1

��� ¼ �!� ���. Hence the (unique) eigenvalue near �ie01

is �!� with eigenvector ���. Write � ¼


u
�iv

�
. We may assume u is real.

Writing out L1� ¼ i�� we get L�v ¼ ��u and Lþu ¼ ��v. Hence v is
also real. We can normalize u so that ðu, vÞ ¼ 1 or �1. Since � is a perturba-
tion of



�0

�i�0

�
, we have ðu, vÞ ¼ 1.

With this choice of u, v, let CE1 and E1 be defined as in Eq. (2.12).
CE1 is the combined eigenspace corresponding to �!�. Clearly
RE CE1 ! E1. Since

a
u
0

� �
þ b

0
v

� �
¼ RE 
�, 
 ¼ aþ bi,

we have RECE1 ¼ E1. That the choice of 
 is unique can be checked
directly. The statement that if � ¼ RE 
� then L1� ¼ RE !�
� and
etL1� ¼ RE et!�
� is clear. We have proved (3) and (4).

2392 TSAI AND YAU



©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

MARCEL DEKKER, INC. • 270 MADISON AVENUE • NEW YORK, NY 10016

Clearly, SðL1Þ, E1ðL1Þ, and HcðL1Þ defined as in Eqs. (2.9), (2.10),
and (2.12) are invariant subspaces of L2 under L1, and we have the decom-
position Eq. (2.7). This is (2).

For (5), note that Eq. (2.10) is by definition. For Eq. (2.11), we have

ðQ1, uÞ ¼ ðQ1, ð��Þ�1L�vÞ ¼ ðL�Q1, ð��Þ�1vÞ ¼ 0,

ðR1, vÞ ¼ ðR1, ð��Þ�1LþuÞ ¼ ð��Þ�1
ðLþR1, uÞ ¼ ð��Þ�1

ðQ1, uÞ ¼ 0:

Equation (2.14) comes from the orthogonal relations directly.
The first statement of (6) is because of (5). For the rest of (6), we first

prove the following spectral gap

LþjfQ1, vg? >
1

2
je1j, L�jfR1, ug? >

1

2
je1j: ð2:67Þ

Since Lþ is a perturbation of H1, it has exactly two eigenvalues below
ð1=2Þje1j. Notice that ðQ1,LþQ1Þ¼ ðQ1L�Q1ÞþOðn

4
Þ¼Oðn4

Þ and ðv,LþvÞ¼
ðv, � �uÞ ¼ ��. Since Q1 ¼ n�1 þOðn

3
Þ and v¼ �0 þOðn

2
Þ, one has ðQ1, vÞ ¼

Oðn3
Þ. Thus one can show Lþjspan Q1, vf g � Cn

2. If there is a �?Q1, v with
ð�,Lþ�Þ �

1
2

� �
je1jð�,�Þ, then we have Lþjspan Q1, v,�f g � ð1=2Þje1j, which

contradicts with the fact that Lþ has exactly two eigenvalues below
ð1=2Þje1j by minimax principle. This shows the first part of Eq. (2.67). The
second part is proved similarly.

Recall the quadratic form Qð Þ defined in Eq. (2.65) in §2.6. Also recall
Eq. (2.66) that QðetL1 Þ ¼ Qð Þ for all t and all  2 L2. By the spectral gap
Eq. (2.67) one has

Qð�Þ � �k k
2
H1 , QðL1�Þ � �k k

2
H3 , for any � 2 HcðL1Þ: ð2:68Þ

For  2M1, we can write  ¼ � þ �, where � ¼ RE 
�, 
 2 C and
� 2 HcðL1Þ. Notice that, by orthogonality in Eq. (2.10),

Qð Þ ¼ �j
j2�ðu, vÞ þQð�Þ,

which is not positive definite, (recall ðu, vÞ ¼ 1). However,

k k2
H1 � j
j2 þ �k k

2
H1 : ð2:69Þ

To see it, one first notes that k k2
H1 is clearly bounded by the right side.

Because of Eq. (2.14), one has j
j2 � Ck k2
H1 . One also has �k k

2
H1 �

C �k k
2
H1 þCj
j2. Hence Eq. (2.69) is true.
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Therefore for  ¼ ðRE 
�Þ þ � we have

etL1 
��� ���2

H1
� etL1RE 
�
��� ���2

H1
þ etL1�
��� ���2

H1
ðby Eq:ð2:69ÞÞ

� je�it!�
j2 þQðetL1�Þ ðby ð4Þ, Eq: ð2:68ÞÞ

� j
j2 þQð�Þ ðby Eq: ð2:66ÞÞ:

Hence we have ketL1 k2
H1 � k k2

H1 for all t. By an argument similar to that
in §2.6, we have ketL1 kHk � k kHk for k ¼ 3, 2. We have shown (6). The
decay estimate in (7) is obtained as in Theorem 2.2 (7). The constant C,
however, is independent of n in the non-resonant case. The proof of
Theorem 2.1 is complete.

3. SOLUTIONS CONVERGING TO EXCITED STATES

In this section we prove Theorem 1.1 using Theorems 2.1 and 2.2.
Since the proof for the non-resonant case is easier, we will first prove the
resonant case and then sketch the non-resonant case. Note that we could
follow the approach of Theorem 1.5 of Ref. [23] if we had the transform
L1 Pc

L1 ¼ �U�1iAU Pc
L1 as in Ref. [23]. However, it is not easy to define A

and U for L1 and hence we choose another approach. This new approach
also gives another proof for Theorem 1.5 of Ref. [23].

Note that, if we reverse the time direction, the same proof below gives
the ‘‘unstable manifold,’’ i.e., solutions  ðtÞ which converge to excited states
as t! �1.

Fix E1 and Q1 ¼ Q1,E1
. Let L1 be the corresponding linearized opera-

tor, and PM1
, PE1

and P
L1

c the corresponding projections with respect to L1.
For any 
1 2 HcðL1Þ with small H2

\W2, 1 norm, we want to construct
a solution  ðtÞ of the nonlinear Schrödinger Eq. (1.1) with the form

 ðtÞ ¼ Q1 þ aðtÞR1 þ hðtÞ½ 
e�iE1tþi�ðtÞ,

where aðtÞ, �ðtÞ 2 R and hðtÞ 2M1 ¼ E1 � HcðL1Þ. Substituting the above
ansatz into Eq. (1.1) and using L1iQ1 ¼ 0 and L1R1 ¼ �iQ1, we get

@th ¼ L1hþ i
�1FðaR1 þ hÞ � i _��ðQ1 þ aR1 þ hÞ � aiQ1 � _aaR1,

where

FðkÞ ¼ �Q1ð2jkj
2
þ k2

Þ þ �jkj2k, k ¼ aR1 þ h: ð3:1Þ
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The condition hðtÞ 2M1 can be satisfied by requiring that hð0Þ 2M1 and

_aa ¼ ðc1Q1, ImðF þ _��hÞÞ, ð3:2Þ

_�� ¼ �½aþ ðc1R1, ReFÞ
½1 þ ðc1R1,R1Þaþ ðc1R1, Re hÞ
�1, ð3:3Þ

where c1 ¼ ðQ1,R1Þ
�1 and F ¼ FðaR1 þ hÞ. The equation for h becomes

@th ¼ L1hþ PMFall, Fall ¼ i�1
ðF þ _��ðaR1 þ hÞÞ:

The proofs of the two cases diverge here. For the resonant case we
decompose, using the decomposition of M1 and Eq. (2.20) of Theorem 2.2,

hðtÞ ¼ �ðtÞ þ �ðtÞ, �ðtÞ ¼ REf
ðtÞ�þ �ðtÞ	3�g,

where 
ðtÞ,�ðtÞ 2 C and �ðtÞ 2 HcðL1Þ. Note

L1� ¼ RE !�
�� !��	3�
� �

:

Recall !� ¼ i�þ � with �, � > 0. Taking the projections P
 and P� defined
in Eq. (2.24) of Theorem 2.2 of the h-equation, we have

_

 ¼ !�
þ P
Fall, ð3:4Þ

_�� ¼ �!��þ P�Fall: ð3:5Þ

Taking projection P
L1
c we get the equation for �,

@t� ¼ L1�þ Pc
L1 i�1 _���þ Pc

L1 eFF , eFF ¼ i�1
ðF þ _��ðaR1 þ �ÞÞ:

We single out P
L1
c i

�1 _��� since it is a global linear term in � and cannot be
treated as error. Let

e�� ¼ Pc
L1ei��:

Note � ¼e��þ Pc
L1ð1 � ei�Þ� and Pc

L1ð1 � ei�Þ is a bounded map from
HcðL1Þ \H

2 into itself with its norm bounded by Cj�j. Hence if � is
sufficiently small, we can solve � in terms of e�� by expansion:

� ¼ U�e��, U� �
X1
j¼0

½Pc
L1ð1 � ei�Þ
 j: ð3:6Þ
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The equation for e�� is

@te�� ¼ P
L1
c e

i�
ði _���þ @t�Þ

¼ L1e��þ P
L1
c e

i�
L1 � L1P

L1
c e

i�
n o

�

þ P
L1
c e

i� i _���� P
L1
c i _���þ P

L1
c
eFFn o
:

Note that

P
L1
c e

i�
L1 � L1P

L1
c e

i�
n o

� ¼ P
L1
c ½ei�,L1
�

¼ P
L1
c sin �½i,L1
�

¼ P
L1
c sin �2�Q2

1 ���:

Hence we have

@te�� ¼ L1e�� þ Pc
L1 sin �2�Q2

1 ���þ e
i�
ð1 � Pc

L1Þi _���þ ei� Pc
L1 eFFn o

:

For a given profile 
1, let

e��ðtÞ ¼ etL1
1 þ gðtÞ: ð3:7Þ

We have the equation

@tg ¼ L1gþ Pc
L1 sin �2�Q2

1 ���þ e
i�
ð1 � Pc

L1Þi _���þ ei� Pc
L1 eFFn o

: ð3:8Þ

We want gðtÞ ! 0 as t!1 in some sense.
Summarizing, we write the solution  ðtÞ in the form

 ðtÞ ¼
n
Q1 þ aðtÞR1 þ RE 
ðtÞ�þ �ðtÞ	3�

� �
þU�ðtÞðe

tL1
1 þ gðtÞÞ
o
e�iE1tþi�ðtÞ, ð3:9Þ

with aðtÞ, �ðtÞ, 
ðtÞ, �ðtÞ, and gðtÞ satisfying Eqs. (3.2)–(3.5) and (3.8),
respectively.

The main term of F is

F0 ¼ �Q1 2j
j2 þ 
2
� �

þ �j
j2
, 
ðtÞ ¼ U�ðtÞe
tL1
1:

Notice that, if k
1kH2\W2, 1 � "� 1, then 
ðtÞ satisfies

k
ðtÞkH2 � CðnÞ", k
ðtÞkW2,1 � CðnÞ"jtj�3=2,

kj
j2
ðtÞkH2 � CðnÞ"3 th i�3:
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Here we have used the boundedness and decay estimates for etL1 Pc
L1 in

Theorem 2.2 (6)–(7). Since Q1 is fixed, it does not matter that the constant
depends on n. The main term of F0 is quadratic in 
. Hence

kF0ðtÞkH2 � C"2 th i�3:

As it will become clear, we have the freedom to choose 
1 and
�0 ¼ �ð0Þ. We require that 
1 2 HcðL1Þ and

k
1kH2\W2, 1 � ", j�0j � "2=4, ð3:10Þ

with " � "0ðnÞ sufficiently small. With given 
1 and �0, we will define a
contraction mapping � in the following space

A ¼
�
ða, �,
,�, gÞ : ½0,1Þ ! R � R � C � C � ðHcðL1Þ \H

2
Þ,

jaðtÞj, j
ðtÞj, j�ðtÞj, � "7=4
ð1 þ tÞ�2,

kgðtÞkH2 � "7=4
ð1 þ tÞ�7=4, j�ðtÞj � 2"7=4

ð1 þ tÞ�1
�
:

For convenience, we introduce a variable b ¼ _��. Our map � is defined by

� : ða, �,
,�, �Þ�!ða4, �4,
4,�4, �4Þ,

a4ðtÞ ¼

Z t

1

ðc1Q1, ImðF þ bhÞÞ ds,

�4ðtÞ ¼

Z t

1

bðsÞ ds,


4ðtÞ ¼

Z t

1

e!�ðt�sÞP
i
�1
ðF þ bðaRþ hÞÞ ds,

�4ðtÞ ¼ e�!�t�0 þ

Z t

0

e�!�ðt�sÞP�i
�1
ðF þ bðaRþ hÞÞ ds,

g4ðtÞ ¼

Z t

1

eL1ðt�sÞP
L1
c

n
sin �2�Q2

1 ���þ e
i�
ð1 � P

L1
c Þib�

þ ei�PL1
c i

�1
ðF þ bðaRþ �ÞÞ

o
ds,

where c1 ¼ ðQ1,R1Þ
�1, F ¼ FðaRþ hÞ is defined in Eq. (3.1), and

hðtÞ ¼ �ðtÞ þ �ðtÞ,

�ðtÞ ¼ RE 
ðtÞ�þ �ðtÞ	3�
� �

, �ðtÞ ¼ U�ðtÞðe
tL1
1 þ gðtÞÞ,

bðtÞ ¼ �½aþ ðc1R1, ReFÞ
½1 þ ðc1R1,R1Þaþ ðc1R1, Re hÞ
�1:

STABLE DIRECTIONS FOR EXCITED STATES OF NLS 2397



©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

MARCEL DEKKER, INC. • 270 MADISON AVENUE • NEW YORK, NY 10016

We will use Strichartz estimate for the term sin �2�Q2
1 ��� in the

g-integral:Z t

1

eL1ðt�sÞ Pc
L1 f ðs, �Þ ds

���� ����
L2
x

� CðnÞ

Z t

1

f ðs, �Þ
�� ��q0

Lr
0

x
ds


 �1=q0

ð3:11Þ

for 3=rþ 2=q ¼ 3=2, 2 < q � 1. Here 0 means the usual conjugate exponent.
Equation (3.11) can be proved by either using wave operator to map etL1 to
e�itð���E1Þ, or by using the decay estimate Theorem 2.2 (7) and repeating the
usual proof for Strichartz estimate. We will also use

�k kH2 � kL1�kL2 for � 2 HcðL1Þ,

which follows from the spectral gap Eq. (2.64). Since sin �2�Q2
1 ��� is local and

bounded by CðnÞ"7=4 th i�1" th i�3=2, by choosing q large we haveZ t

1

eL1ðt�sÞP
L1
c sin �2�Q2

1 ��� ds

���� ����
H2

� C

Z t

1

eL1ðt�sÞP
L1
c L1 sin �2�Q2

1 ��� ds

���� ����
L2
x

� C

Z t

1

½"11=4
ð1 þ sÞ�ð5=2Þ
q

0

ds


 �1=q0

¼ C"11=4
ð1 þ tÞ�5=2þ1=q0 :

Here C ¼ CðnÞ. In particular, we get CðnÞ"11=4
ð1 þ tÞ�7=4 by choosing q ¼ 4.

Note that we would only get t�3=2 if we estimate this term directly without
using Eq. (3.11).

Note jbðtÞj � 2jaðtÞj. Since t� s < 0 in the integrand of 
,
Re!�ðt� sÞ < 0 and the 
-integral converges. Similarly Re!�ðt� sÞ > 0 in
the integrand of � and hence the �-integration converges. Observe that we
have the freedom of choosing �0 and 
1. Since e�!�t�0 decays exponentially,
the main term of �ðtÞ when t large is given by F0, not e�!�t�0. Direct
estimates show that

j
ðtÞj � CðnÞ"2
ð1 þ tÞ�3, j�ðtÞj � "2e��t=4 þ CðnÞ"2

ð1 þ tÞ�3,

jaðtÞj, jbðtÞj � CðnÞ"2
ð1 þ tÞ�2, j�ðtÞj � CðnÞ"2

ð1 þ tÞ�1,

gðtÞ
�� ��

H2 � CðnÞ"
2
ð1 þ tÞ�7=4:

It is easy to check that the map � is a contraction if " is sufficiently small.
Thus we have a fixed point in A, which gives a solution to the system
(3.2)–(3.5), and (3.8). Since it lies in A, we also have the desired estimates.
We obtain 
ð0Þ, að0Þ, and �ð0Þ as functions of 
1 and �0.
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Recall  asðtÞ ¼ Q1e
�iE1tþi�ðtÞ þ e�iE1tetL1
1 and we have

 ðtÞ ¼ ½Q1 þU�ðtÞe
tL1
1
 e

�iE1tþi�ðtÞ þOðt�7=4
Þ in H2:

Since Pc
L1 ð1 � ei�Þ ¼ Oð�ðtÞÞ ¼ Oðt�1

Þ, by the definition (3.6) of U�,

U�ðtÞe
tL1
1 ¼ ½1 þ P

L1
c ð1 � ei�Þ
etL1
1 þOðt�2

Þ

¼ ð2 � ei�ÞetL1
1 þ ð1 � P
L1
c Þð1 � ei�ÞetL1
1 þOðt�2

Þ

in H2. Since ð1 � Pc
L1Þ is a local operator, ð1 � P

L1
c Þð1 � ei�ÞetL1
1 ¼

Oðt�1
� t�3=2

Þ. Also, ei�ð2 � ei�Þ ¼ 1 þOð�2
Þ ¼ 1 þOðt�2

Þ. Hence we have
 ðtÞ �  asðtÞ ¼ Oðt�7=4

Þ in H2. We have proven Theorem 1.1 under assump-
tion (R).

We now sketch the proof for the non-resonant case. The only
difference is that we define �ðtÞ as RE 
ðtÞ� and write  ðtÞ in the form

 ðtÞ ¼ Q1 þ aðtÞR1 þ RE 
ðtÞ�ð Þ þU�ðtÞðe
tL1
1 þ gðtÞÞ

n o
e�iE1tþi�ðtÞ:

The function 
ðtÞ still satisfies Eq. (3.4) but with a purely imaginary
eigenvalue !�. The previous proof will go through if we remove all terms
related to �.

4. APPENDIX

In this appendix we prove Proposition 1.2 on the existence of vanish-
ing solutions. Recall H0 ¼ ��þ V . The propagator e�iH0t is bounded in
Hs, s � 0, and satisfies the decay estimate,

e�itH0 P
H0
c �

�� ��
L1

� Cjtj�3=2 �k kL1 ð4:1Þ

under assumption A1. See Refs. [9,10,13,27].
For any 
1 6¼ 0 2 HcðH0Þ with k
1kH2\W2, 1 ¼ " small, we want to

construct a solution  ðtÞ of Eq. (1.1) with the form

 ðtÞ ¼ e�iH0t
1 þ gðtÞ, gðtÞ ¼ error: ð4:2Þ

Let 
ðtÞ ¼ e�iH0t
1. By Eq. (4.1) we have,

k
ðtÞkH2 � C1", k
ðtÞkW2,1 � C1"jtj
�3=2, 
2 �

ðtÞ

�� ��
H2 � C1"

3 th i�3,

for some constant C1. The error term gðtÞ satisfies

@tg ¼ �iH0gþ F ,
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with gðtÞ ! 0 as t! 1 in certain sense, and

FðtÞ ¼ �i�j j2 ,  ¼ 
ðtÞ þ gðtÞ, 
ðtÞ ¼ e�iH0t
1: ð4:3Þ

We define a solution by Eq. (4.3) and

gðtÞ ¼

Z t

1

e�iH0ðt�sÞFðsÞ ds: ð4:4Þ

Note that gðtÞ belongs to L2 and is not restricted to the continuous spectrum
component of H0. Also note that the main term in F is j
j2
ðtÞ, which is of
order t�3 in H2. Hence gðtÞF t�2.

We define a contraction mapping in the following class

A ¼ gðtÞ : ½0,1Þ ! H2
ðR

3
Þ, khðtÞkH2 � C1"

3
ð1 þ tÞ�2

� �
:

This class is not empty since it contains the zero function. We also define the
norm

kgkA :¼ sup
t>0

ð1 þ tÞ2kgðtÞkH2 :

For gðtÞ 2 A we define

� : gðtÞ �! g4ðtÞ ¼ �i�

Z t

1

e�iH0ðt�sÞ j
 þ gj2ð
 þ gÞ
� �

ðsÞ ds:

It is easy to check that

g4ðtÞ
�� ��

H 2 �

Z 1

t

kFðtÞkH2 ds

�

Z 1

t

C1"
3 sh i�3

þC"5 sh i�7=2 ds � C1"
3 th i�2,

if "0 is sufficiently small. This shows that the map � maps A into itself.
Similarly one can show k�g1 ��g2kA � 1

2kg1 � g2kA, if g1, g2 2 A.
Therefore our map is a contraction mapping and we have a fixed point.
Hence we have a solution  ðtÞ of the form (4.2) with e�itH0
1 as the main
profile.

Remark. The above existence result holds no matter how many bound states
H0 has. The situation is different if we linearize around a nonlinear excited
state. In that case, the propagator etL1 , (L1 is the linearized operator), may
not be bounded in whole L2.
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