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ABSTRACT

We consider nonlinear Schrodinger equations in R, Assume
that the linear Hamiltonians have two bound states. For
certain finite codimension subset in the space of initial data,
we construct solutions converging to the excited states in both
non-resonant and resonant cases. In the resonant case, the
linearized operators around the excited states are non-self
adjoint perturbations to some linear Hamiltonians with
embedded eigenvalues. Although self-adjoint perturbation
turns embedded eigenvalues into resonances, this class of
non-self adjoint perturbations turn an embedded eigenvalue
into two eigenvalues with the distance to the continuous
spectrum given to the leading order by the Fermi golden rule.
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1. INTRODUCTION

Consider the nonlinear Schrédinger equation

B = (=A+ V)W + AWy, w(t=0) = v, (1.1)

where V' is a smooth localized real potential, A = +1 and ¥ = (7, x) :
R x R* — C is a wave function. The goal of this paper is to study the
asymptotic dynamics of the solution for initial data v, near some nonlinear
excited state.

For any solution y(f) € H'(R?) the L*-norm and the Hamiltonian

1 1 1
M1 = [ 31907 + 37 1P + gl (1.2

are constant for all 7. The global well-posedness for small solutions in
H'(R?) can be proved using these conserved quantities and a continuity
argument.

We assume that the linear Hamiltonian H, := —A + V has two simple
eigenvalues ¢, < ¢; < 0 with normalized eigen-functions ¢,, ¢;. The non-
linear bound states to the Schrodinger equation (1.1) are solutions to the
equation

(—=A + V)0 + 1|00 = EQ. (1.3)

They are critical points to the Hamiltonian H[vy] defined in Eq. (1.2) subject
to the constraint that the L*-norm of v is fixed. We may obtain two families
of such bound states by standard bifurcation theory, corresponding to the
two eigenvalues of the linear Hamiltonian. For any F sufficiently close to ¢
so that E — ¢y, and A have the same sign, there is a unique positive solution
0 = O to Eq. (1.3) which decays exponentially as x — oo. See Lemma 2.1
of Ref. [24]. We call this family the nonlinear ground states and we refer to it
as {Qp}g. Similarly, there is a nonlinear excited state family {Q; g}, for E
near e;. We will abbreviate them as Q and Q;. From the same Lemma 2.1 of
Ref. [24], these solutions are small and we have ||Qg| ~ |E — e0|1/2 and
1015, | ~ 1By — €],

It is well-known that the family of nonlinear ground states is stable in
the sense that if
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. i®
(lar}g||1ﬂ(l) 0| 2
is small for 1 = 0, it remains so for all ¢, see Ref. [16]. Let ||-||L]2. denote a
local L? norm, for example the L’-norm in a ball with large radius.
One expects that this difference actually approaches zero in local
L? norm, i.e.,

lim inf | y() — Q™

=000, FE

=0, (1.4)

If —A + V has only one bound state, it is proved in Refs. [12,20] that the
evolution will eventually settle down to some ground state QO with E close
to E. Suppose now that —A 4+ V' has two bound states: a ground state ¢,
with eigenvalue ¢, and an excited state ¢; with eigenvalue e,. It is proved in
Ref. [23] that the evolution with initial data ¥, near some Qf will eventually
settle down to some ground state QO with E close to E. See also Refs. [2-4]
for the one dimensional case, Refs. [5,6] for its extension to higher dimen-
sions, and Ref. [21] for real-valued nonlinear Klein—-Gorden equations.

If the initial data is not restricted to near the ground states, the
problem becomes much more delicate due to the presence of the excited
states. On physical ground, quantum mechanics tells us that excited states
are unstable and all perturbations should result in a release of radiation and
the relaxation of the excited states to the ground states. Since bound states
are periodic orbits, this picture differs from the classical one where periodic
orbits are in general stable.

There were extensive linear analysis for bound states of nonlinear
Schrodinger and wave equations, see, e.g., Refs. [7,8,17-19,25,26]. A special
case of Theorem 3.5 of Ref. [8], page 330, states that

Theorem A. Let Hy = —A + V — E|. The matrix operator

|0 H 10 1
= W[
is structurally stable if and only if ey > 2e;.

The precise meaning of structural stability was given in Ref. [8].
Roughly speaking, it means that the operator remains stable under small
perturbations. Theorem A will not be directly used in this paper.

As we will see later, the linearized operator around an excited state is a
perturbation of JH;. Thus, two different situations occur:

1. Non-resonant case: ey > 2e;. (ey < |eq]).
2. Resonant case: ey < 2e;.  (eg; > ler])-
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Here ¢y; = ¢; — ¢g > 0. In the resonant case, Theorem A says the linearized
operator is in general unstable, which agrees with the physical picture. In
the non-resonant case, however, the linearized operator becomes stable. The
difference here is closely related to the fact that 2e; — ey lies in the
continuum spectrum of H, only in the resonant case.

In the resonant case, the unstable picture is confirmed for most data
near excited states in our work.*¥ We prove that, as long as the ground state
component in ¥, — Q; is larger than ||1//0||2 times the size of the dispersive
part corresponding to the continuous spectrum, the solution will move away
from the excited states and relax and stabilize to ground states locally. Since
o> is small, this assumption allows the dispersive part to be much larger
than the ground state component.

There is a small set of data where Ref. [24] does not apply, namely,
those data with ground state component in ¥, — Q; smaller than ||1p0||2
times the size of the dispersive part. The aim of this paper is to show that
this restriction is almost optimal: we will construct within this small set of
initial data a “hypersurface” whose corresponding solutions converge to
excited states.

This does not contradict with the physical intuition since this
hypersurface in certain sense has zero measure and cannot be observed in
experiments. These solutions, however, show that linear instability does not
imply all solutions to be unstable. In the language of dynamical systems, the
excited states are one parameter family of hyperbolic fixed points and this
hypersurface is contained in the stable manifold of the fixed points. We believe
that this surface is the whole stable manifold.

We will also construct solutions converging to excited states in the
non-resonant case, where it is expected since the linearized operator is
stable. We now state our assumptions on the potential V-

Assumption AQ. H, := —A 4 V acting on L2([RE3 ) has two simple eigenvalues
ey < e; < 0, with normalized eigenvectors ¢, and ¢;.

Assumption Al. The bottom of the continuous spectrum to —A 4+ V, 0, is
not a generalized eigenvalue, i.e., not an eigenvalue nor a resonance. There
is a small o > 0 such that

IVV(x)] < Clx)>%, for |a| <2.

Also, the functions (x - V)kV, for k=0,1,2,3, are —A bounded with a
—A-bound < I:

1Ge- VYVl < ooll = Aglly + Cllplla, 09 < 1, k=0,1,2,3.
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Assumption Al contains some standard conditions to assure that most
tools in linear Schrédinger operators apply. In particular, it satisfies the
assumptions of Ref. [27] so that the wave operator Wy = lim,_, oo ith
satisfies the W*? estimates for k < 2. These conditions are certainly not
optimal.

Let ey = e; — ey be the spectral gap of the ground state. In the
resonant case 2eg; > |eg| so that 2e; — ¢, lies in the continuum spectrum
of H,, we further assume

Assumption A2. For some 55 > 0,

1
= inf lim Im 2 P H, 2 0.
Yo |;|230 0—1>0+ (¢0¢1’ Hy+ey—2e) +s—oi <Pl ) >

(1.5)

Note that y, > 0 since the expression above is quadratic. This assumption is
generically true.

Let Q) = O g, be a nonlinear excited state with [|Q; g ||, small. Since
(01, E,) satisfies Eq. (1.3), the function ¥(z,x) = Q;(x)e"F'" is an exact
solution of Eq. (1.1). If we consider solutions y(z, x) of Eq. (1.1) of the form

(1, x) = [Q1(x) + h(t, x) e
with A(¢, x) small in a suitable sense, then A(z, x) satisfies
9;h = L1h + nonlinear terms,

where L, the linearized operator around the nonlinear excited state solution
x)e 1", is defined b
1 y

Lih=—il(~A+V — E; +2107) h + 707 h}. (1.6)

Theorem 1.1. Suppose Hy = —A + V satisfies Assumptions AO—A1l. Suppose
either

(NR) ey > 2e, or
(R) ey < 2ey, and the Assumption A2 for y, holds.

Then there are ny > 0 and ey(n) > 0 defined for n € (0,ng] such that the
Sollowing holds. Let Q, := Q g, be a nonlinear excited state with ||Q,||;> =
n<ny, and let L, be the corresponding linearized operator. For any
& € HU(L)N (Wz’] N H2)(IR3) with ||Exllprinm: =&, 0 <& < gy(n), there
is a solution (t,x) of Eq. (1.1) and a real function 6(t) = o™ for t >0
so that
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(0 — YD ,p < CEX(1+ 1),

where C = C(n) and

H

Wus(t) = Q1 €7iE' 1i6(1) + e*iEﬂet.Cl%_oo'

To prove this theorem, a detailed spectral analysis of the linearized
operator £ is required. We shall classify the spectrum of £; completely
in both non-resonant and resonant cases, see Theorems 2.1 and 2.2. It is
well-known that the continuous spectrum X, of £ is the same as that of
JH,, i.e., .= {si:s € R,|s| > |E||}. The point spectrum of L£; is more
subtle. By deﬁnition, H1¢1 = _(El — €1)¢1 and H1¢0 = _(El — €0)¢0, and
thus the matrix operator JH; has 4 eigenvalues +i(E, —e¢;) and
+i(E; — ¢p). In the non-resonant case, the eigenvalues of £; are purely
imaginary and are small perturbations of these eigenvalues. In the resonant
case, the eigenvalues +i(E; — ¢y) are embedded inside the continuum spec-
trum X,. In general perturbation theory for embedded eigenvalues, they
turn into resonances under self-adjoint perturbations. The operator L; is
however not a self-adjoint perturbation of H;. In this case, we shall prove
that the embedded eigenvalues +i(E| — eg) split into four eigenvalues + w,
and + w, with the real part given approximately by the Fermi golden rule
(see Ref. [15], Chap. XI1.6):

1
—A+V4ey—2e —0i

}14 Im <)\,¢0¢%, Pc)"¢%¢0) .

Here n « 1 is the size of Qy, see Eq. (2.45). In particular, s exponentially
unstable with the decay rate (or the blow-up rate) given approximately by
the Fermi golden rule. In other words, although self-adjoint perturbation
turns embedded eigenvalues into resonances, the non-self adjoint perturbations
given by L turns an embedded eigenvalue into two eigenvalues with the shifts
in the real axis given to the leading order by the Fermi golden rule. The
dynamics of self-adjoint perturbation of embedded eigenvalues were studied
in Ref. [22].

In the appendix we will prove the existence of solutions vanishing
locally as ¢t — oo, independent of the number of bound states of H,.
Although it is probably known to experts, we are unable to find a reference
and hence include it for completeness.

Proposition 1.2. Suppose Hy = —A + V satisfies Assumption Al. There is a
small constant ey > 0 such that the following holds. For any &, € H.(Hy)N
(W>'n H)(R?) with 0 < ol i = € < &g, there is a solution Y(t, x) of
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Eq. (1.1) of the form

W) = e e +g(1), (t=0),

with || g(O)|l 2 < Ccef(1+ 072

2. LINEAR ANALYSIS FOR EXCITED STATES

As mentioned in §1, there is a family {Q; g}z of nonlinear excited
states with the frequency E; as the parameter. They satisfy

(—A+ V)0, + 1|00 = E0,. 2.1)

Let Q) =0, g be a fixed nonlinear excited state with n=[Q; g [» <
ny < 1. The linearized operator around the nonlinear bound state solution
0,(x)e B1" is defined in Eq. (1.6)

Lih=—i{(=A+V — E; + 2000 h + 2Q7h }.

We will study the spectral properties of £; in this section. Its properties are
best understood in the complexification of L*(R*, C).

Definition 2.1. Identify C with R* and L? = L*(R’,C) with L*(R®,R).
Denote by CL?> = L*(R?, C?) the complexification of L} (R*,R%). CL? consists
of 2-dimensional vectors whose components are in L>. We have the natural
embedding

j:feL2—>|:E§j:i|eCL2.

We equip CL? with the natural inner product: For f,g € CL?, [ = [ﬁ],
g=[%1], we define -

&1
&2

(o= [ Foeds= [ (o +her s 22)

Denote by RE the operator first taking the real part of functions in CL* and
then pulling back to L%

RE:CL*— L*, RE [ﬂ = (Ref) +i(Reg).

We have RE oj =id;>.
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Recall the matrix operator JH; defined in Theorem A. Since H¢; =
—(E; —e))¢; and H ¢y = —(E; — ¢y)dy, the matrix operator JH; has 4
eigenvalues +i(E; — ¢;) and +i(E| — ¢;) with corresponding eigenvectors

& é ®o $o
[—m}’ [um}’ [—wo]’ [w»o]' @3

Notice that

E —ey =00,  E —e¢=eq+00). (2.4)
The continuous spectrum of JH; is
So={sitseRs| > |E). 2.5)

which consists of two rays on the imaginary axis.
The operator £; in its matrix form

_ _ 2
[0 L_], it {L_ A+V —E +210° 26

-L, 0 L, =—A+V —E +3107
is a perturbation of JH;. By Weyl’s lemma, the continuous spectrum of £; is
also X,. The eigenvalues are more complicated. In both cases (¢y; < |e;| and
eo1 > lej]) they are near 0 and +iey;. As we shall see, in both cases 0 is
an eigenvalue of £;. The main difference between the two cases are
the eigenvalues near iey; and —iey. If eq; < |ey|, then iey lies outside
the continuous spectrum and £; has an eigenvalue near ie;; which is
purely imaginary. On the other hand, if e5; > |e;|, then iey; lies inside the
continuous spectrum. It splits under our perturbation and the eigenvalues of
L1 near +iey have non-zero real parts.

We shall show that L3(R*, C), as a real vector space, can be decom-
posed as the direct sum of three invariant subspaces

LA(R3,C) = S(£)) ® E((L)) & H(L)). (2.7)

Here S(L;) is the generalized null space, E (L) is the eigenspace associated

to nonzero generalized eigenvalues (they become eigenvalues for the

complexified space CE;(L;), see below), and H.(L;) corresponds to the

continuous spectrum. Both S(£;) and E (L) are finite dimensional.
Recall the Pauli matrices

10 1 10 =i |1 0
= o) 2T o) P70 -1
They are self-adjoint and

oLy = ‘CTo-ls 3Ly = —L,03, (2.8)

where £} = [2;3*].
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Let Ry = 9g, Q) g, - Direct differentiation of Eq. (2.1) with respect to E,
gives L, Ry = Q. Since L_Q; =0 and L, R, = Q;, we have L[ 31] =0
and £,[§ ] = —[ 5, ] We will show dimg S(£;) = 2, hence

0 R
war-sp[ 3} [}
H (L) can be characterized as
Ho(L) ={y € L*: (o19.f) = 0, Vf € S(£)) @ E(L)}. (2.10)

We will use Eq. (2.10) as a working definition of H.(L;). After we have
proved the spectrum of £; and the resolvent estimates, we will use the wave
operator of £; (see Refs. [5,27,28]) to show that Eq. (2.10) agrees with the
usual definition of the continuous spectrum subspace. See §2.5.

The space E (L), however, has very different properties in the two
cases, resonant or nonresonant, due to whether £ i(E; — ¢y) are embedded
eigenvalues of JH,. We will consider E; = E{(£;) as a subspace of
L*(R?,R?) and denote by CE,; c CL? the complexification of E;. We will
show that CE, is a direct sum of eigenspaces of £, in CL>. We also have

(01/,8) =0, ¥f €S(Ly), VgeE(Ly). (2.11)

We have the following two theorems for the two cases.

Theorem 2.1 (Non-resonant case). Suppose e, > 2e;, and the Assumptions
AO0-Al hold. Let Q) = Q) g, be a nonlinear excited state with Q|2 =n
sufficiently small, and let L, be defined as in Eq. (1.6).

(1)  The eigenvalues of L are 0 and tw,. The multiplicity of 0 is two.
The other eigenvalues are simple. Here w, = ik, k is real, k = ey + O(n®).
There is no embedded eigenvalue. The bottoms of the continuous spectrum are
not eigenvalue nor resonance.

(2) The space L* = LX(R*,C), as a real vector space, can be decom-
posed as in Eq. (2.7). Here S(L,) and H.(L,) are given in Egs. (2.9) and
(2.10), respectively; E|(L,) is the space corresponding to the perturbation of
the eigenvalues £ i(E; — ey) of JH,. We have the orthogonality relation (2.11).

(3) Let CE, denotes the complexification of E; =E(L;). CE; is
2-complex-dimensional. E, is 2-real-dimensional. We have

CE, = span{®, },
c

E = spﬂgn{ 1], m } (2.12)

Here & = [_“iv] is an eigenfunction of L, with eigenvalue w,. u and v are real-

valued L*-functions satisfying Lyu = —kv, L_v = —«u and (u,v) = 1. u and v
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are perturbations of ¢. ® = [l‘;] is another eigenfunction with eigenvalue —w,.
We have L1® = 0, D, L1 = —w,D.
(4) For any function ¢ € E\(L), there is a unique a € C so that

¢ = RE ad.

We have £,¢ = RE w,a® and "'t = RE ¢/ ad.
(5) We have the orthogonality relations in Egs. (2.10) and (2.11).
Hence any € L* can be decomposed as (see Eq. (2.7))

R, 0 u 0
SRR

with n € H.(L)),

a= (leRl)il(Qla Re W)’ c= (”9 v)il(vy Re Kﬁ),

4 » (2.14)
b= (leRl) (Rla Im w): d= (M, V) (M, Im 1”)
(6) Let My =E((L))® H.(L)). We have
ot
=k )= | 9] e.15)

There is a constant C > 1 such that, for all $ € M, and all t € R, we have
C Ml < 1€l < Clidllgg, (k= 1,2). (2.16)
(7) Decay estimates: For all n € H.(L,), for all p € [2,00], one has

el < Clel 2P )1,

Theorem 2.2 (Resonant case). Suppose ey < 2e;, and the Assumptions A0-A2
hold. Let Q) = Q, E, be a nonlinear excited state with ||Q, | ;> = n sufficiently
small, and let L, be defined as in Eq. (1.6).

(1)  The eigenvalues of L are 0, tw, and +@,. The multiplicity of 0 is
two. The other -eigenvalues are simple. Here w,=ix+7y, k,y >0,
K = ey + O(n?), and %A2y0n4 <y < Cn. (y is given in Eq. (1.5)). There is
no embedded eigenvalue. The bottoms of the continuous spectrum are not
eigenvalue nor resonance.

There is an w,-eigenvector ®, LD = w, P, which is of order one in L’
and ® — [—ir%o] is locally small in the sense that

‘@@—[%}Nswﬂumw, 2.17)
—igy
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for any ¢, for any r > 3. However, ® is not a perturbation of [fl’g)o] in CL>.
In fact, ® = ["] with u— ¢y and v + i¢y of order one in L?,

! 2 2 . 2
P.(Hy)rdoQ? + O
—A+V —E K+ yi c( 0) OQI (”l ) in L~

u=q

and v = —L,u/w,. Note —E| —k = ¢y — 2ey + O(nz).

(2) The space L? = Lz(lR3 ,C), as a real vector space, can be decom-
posed as in Eq. (2.7). Here S(L1) and H.(L) are given in Egs. (2.9) and (2.10),
respectively; E((L)) is the space corresponding to the perturbation of the eigen-
values +i(E| — ey) of JH|. We have the orthogonality relation (2.11).

(3) Let CE, denotes the complexification of E, = E;(L;). CE, is
4-complex-dimensional. E; is 4-real-dimensional. If we write & = [‘:] =
[l with wy,us, vy, vy real-valued L? functions, we have

v+l

CE, = span{®, ®,0;®, 030},
c

N RIRININ] e

Recall 03 = [(]) 701 ] The other eigenvectors are ®, o3P and o3P,

,CICD :a)*QD, £1&):CT)*&>,
o (2.19)
Li03P = —w,(03P), Li03P = =, (03P).

(4) For any function ¢ € E{(L;), there is a unique pair (a, B) € C?
so that

¢ = RE{a® + fo;d}. (2.20)

We have £,¢ = RE{w,a® — w,Bo;®} and ¢'“' ¢ = RE{¢'>a® + ¢~ Bo, D).

(5) We have the orthogonality relations in Egs. (2.10) and (2.11).
Moreover, o;® L {®, 03D, 03P}, 09D L {®, 03D, 03P}, and fﬁv dx =0, etc.
For any function W € CL*, if we decompose

0 0
where a,b,a,a,, 81,2 € C and n € H (L), then we have

0 R
o) et
a) = cy(01 D, ), ay = ¢2(01 P, ¥),

B = —cy(0103D, V), By = —2(01039P, ),

R 0 _ B}
1//:61[ 1} +b[ ]+a1<1> + 0, ® + B0y D + Bro3® + 1, (2.21)

(2.22)
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where ¢! = (0, R)) and ¢;' = (o7P, ®) = [2uvdx. (Note ¢ih >0.) The
statement that € L~ is equivalent to that a,b € R, o) =ay =a/2, B =
B> = B/2 and RE n = n. In this case,

V= a|:1§1:| + b[QO } + RE{a® + fo3®} + 1, (2.23)
1

with a,b € R, n € H,(L,) with REn =1, o, 8 € C, and
a = Py(¥) = 20,(01 D, V), B=Ps(¥) = —26,(0103D,%).  (2.24)

P, and Py are maps from L* 10 C.
(6) There is a constant C > 1 such that, for all n € H.(L;) and all
t € R, we have

1Ly

C Ml < Ne“nllge < Clinllg,  (k=1,2).

(7) Decay estimates: For all n € H(L,), for all p € [2,00], one has
le“nlly < Cla =20,

where C = C(n, p) depends on n.

Remark. (i). In (6), we restrict ourselves to H.(£;), not M; as in Theorem
2.1. (ii). In (3), @ is not a perturbation of [_%0] Also, the L? functions u;
and u, are independent of each other. So are v; and v,. (iii) In (7) the
constant depends on # since there are eigenvalues which are very close to
the continuous spectrum.

Since the proof of Theorem 2.1 is easier, we postpone it to the last
subsection, §2.8. We will focus on proving Theorem 2.2 in the following
subsections.

2.1. Perturbation of Embedded Eigenvalues
and Their Eigenvectors

In this subsection we study the eigenvalues of L; near iey;. By
symmetry we also get the information near —iey;. For our fixed nonlinear
excited state Q; = Q) g, let H=—-A+V —FE +Ar0?% (H is L_ in
Eq. (2.6).) Let ¢, denote a positive normalized ground state of H, with
ground state energy —p which is very close to —e;;. Hence the bottom
of the continuous spectrum of H, which is close to |e;|, is less than p.



ﬂ MARCEL DEKKER, INC. ¢ 270 MADISON AVENUE « NEW YORK, NY 10016

™
©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

STABLE DIRECTIONS FOR EXCITED STATES OF NLS 2375
We have

HQ, =0, Hey = —pdo.

) ’ . (2.25)
0y =n¢ +0(), ¢y = ¢ + O(n").

We want to solve the eigenvalue problem £;® = w,® with w, near
ieg. Write @ = [*]. The problem has the form

0 H
it mon o [0l

for some w, near iey; and for some complex L*-functions u, v. We have
Hv = w,u, (H+ ZAle)u = —w,V.

Thus H(H + ZAle)u = —wlu. Suppose w, = ik + y with k ~ ¢p; and y > 0.
Since Im(—w?) < 0 and H is real, it is more convenient to solve

(H* + A)ii = zi, (2.26)
where
A=H2Q07, z=-a;. 2.27)

Note z ~ e021 with Im z small. We may and will assume Imz > 0. Note that
y > 0 corresponds to Imz > 0. We will assume Im z # 0 in this subsection.
The non-existence of eigenvalues with Im z = 0 will be proved in §2.4.

If we decompose u = agpy + bQ; +h with h € H.(H), we find b =0
since # € Image H. If a =0, we have (H” +P_AP, —z)h = 0. Here P, =
P.(H). We will show later that the resolvent

(H> + P AP, —2)"' P, (2.28)
is well-defined if Im z # 0. It can be proven by expanding

(H?> + P.AP, — 2)"'P,

H H [ —2aH / 1
=P —Hz_chszI;[Qle _ZPCQI} 01— Per
(2.29)

and summing the estimate for each term provided by Lemma 2.3. Hence
h =0 and there is no such solution.
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Suppose now a # 0. We may assume a = |1 and u = ao + h. We have

(H* + A) o + h) = 2(¢o + h),

ie.,
2@ + zh = py + Ay + (H + A)h. (2.30)
Taking projection P, = P,(H), we get
zh = P.Ady + (H> + P A P )h.

Hence

h=—(H>+P.AP, — 2)"'P.Ag,. (2.31)

Note, if Imz =0, the function H defined above is generically not in L.
Taking inner product of Eq. (2.30) with ¢,, we get

z=p? + (o, Ado) + (o, Ah).

Substituting Eq. (2.31), we get
z=p” + (o, Ady) — (¢o, A(H* + P AP, — 2)"'P Ady). (2.32)

Remark. If 4 is self-adjoint, then the signs of the imaginary parts of the two
sides of the above equation are different. This can be seen by expanding the
right side into series and taking the leading term of the imaginary part. Thus
z is real and generically 4 is not in L. In our case, A = H21Q7 is not
self-adjoint and hence a solution is not excluded.

Using 4 = H2107 and Hp, = —pgy, Eq. (2.32) becomes the following
fixed point problem,

z=f(2), (2.33)
where
1(2) = p* — p(e2207¢y)
+ p($22 07, (H? + HP 2107 P, — 2) ' HP 20.01¢y). (2.34)
Let

1 1
2H -5 2+ )

Rz =H?>’-2"'H= (2.35)
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where 4/z takes the branch Im /z > 0 if Imz > 0. We can expand f (z) as
1) = p* = p(#21.07o)
- i P2M(B001,[-21Q1 P.R(2)P. 011 Q1 ). (2.36)

Let
2 e 27
20 = p" — p(@o2A 01 ¢y),
21 = zo + 4pA (o071, R(zg + 00 )P.Oi ).

We have |z; — zy| < Cn* from its explicit form, (cf. Eq. (2.39) of Lemma 2.3
below). We also have, by Egs. (2.25) and (1.5),

- 1 -
_ 2 2 2
Imz, = Im4pxr (¢0Q1 C3H = 7 = 00) N Oi)PCQl ¢0)

7
2 1601)\.2)/0714 + 0(7’16) > 0
Let ry = %((601)2 — le;[) be a length of order 1. Denote the regions

G:{x+iy:|x—,02|<r0,0<y<r0}, (2.37)

D=B(z.n)={z:|z—z| <n’}. (2.38)
Clearly zy € G and z; € D C G. Also observe that the real part of all points
in G are greater than |E|| 2. We will solve the fixed point problem (2.33) in D.
We need the following two lemmas.

Lemma 2.3. Fixr > 3. There is a constant Cy > 0 such that, for all z € G,

[ ()" PREPAX) " 2,2 < s (2.39)
(x)""P, iR(z)PC (x)™" < C/(Imz)~ "2, (2.40)
dz (L2, 1Y)

Here P, = P.(H). Moreover, for wi,w; € G,

| ) PRGN = ROPIP) | 212y

< Ci(max(Imwy, Im wz))_l/z|w1 — Wy|. (2.41)
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Proof. We have

1 1

—(H?— g =
Rz =(H>-2"H CEWERE T WL

(2.42)

Since 1/(2(H + +/2)) is regular in a neighborhood of G, it is sufficient to
prove the lemma with R(z) replaced by R,(z) := (H — /z)~".

That [[(x)""P.R;(2)P(x)"[lz2. 12y < C; is well-known, see e.g. Refs.
[1,9]. The estimate (2.40) will follow from Eq. (2.41) by taking limit. We
now show Eq. (2.41) for R (z). For any w,, w, € G, we have |,/w] — /w;| <
[wy —wy|. Write /W] =a; +ib; and ,/w; =a, +ib,. We may assume
0 < by < by. Let wy € G be the unique number such that /w3 = a; + ib,.

For any wu,ve L*> with |ull,=|v|l,=1, let u, =P.(x)""u and
vy = P.(x)""v. We have u;,v; € L' N L*(R%) and

|, (x) PR (1) — Ry (w3)]Pc(x) )|

00
/ (ul,e_lt(H_al)Vl)(e_blt _ e—bzf) d[
0

< / C(1+ 0 e — e dr < Chy ' (by — by).
0

Here we have used the decay estimate for e ™ with H = —A +V — E|—
10%, namely,

le”™Peg| . < CleI 118l (2.43)

under our Assumption Al. See Refs. [9,10,13,27]. The bound b;l/z(bz — b))
can be proved by considering two cases: If b, < b,/2, the integral is
bounded by

1/b, 00
s/ L+ 07 by —bede+ | (1407 dr < by (by — by).
0 1/b,
If b,/2 < by < b,, the integral is bounded by

< / (L4 0By — by)ie ™ di < (bs — by)(1/b)2,
0

which is similar to 5,'/*(b, — by). Hence we have the bound b, /*(b, — by).
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We also have

|(, (x) PR (w3) — Ry(w2)IP(x) " v)]
/oo(ul’e*it(Hfazfibz)vl)(ei(al7(12)[ _ l)d[
0

00
5] C(1 + e =0 _ 1) dr < Cb;'Pay — ay).
0

Since |a; — ay| + |by — by| ~ | JW1 — S/ W5| < |w; — w,|, we conclude
|, () PR O01) = Ri(w)Pe ()™ )] < Cb3 2wy — .

Hence we have Eq. (2.41). Q.E.D.

Lemma 2.4. Recall the regions G and D are defined in Egs. (2.37)—(2.38).

(1) f(2) defined by Eq. (2.34) is well-defined and analytic in G.
Q) If' (@) < Ccn*mz)""? in G and |f'(z)| < 1/2 in D.
(3) for wi,wy €@,

£ (w1) = f ()] < Cr*(max(Imwy, Tmwy)) ™ 2wy — wyl.

4) f(z) maps D into D.

Proof. By Eq. (2.39), the expansion (2.36) can be bounded by
/() < C+ CCn* + CCPn® + - -

and thus converges. Since every term in Eq. (2.36) is analytic, f(z) is
well-defined and analytic. We also get the estimates in (2) using Eqs. (2.36)
and (2.40). To prove (3), let b = max(Imw;, Imw,). From Egs. (2.36),
(2.39), (2.41),

o0

1f ) = f )l <D CkCIn™* b7 2wy — wy| < Cr*b™ 2wy — wy.
=1

It remains to show (4). We first estimate |f(z;)—z;|. Write
71 = 2o+ a + bi. Recall that |a| < Cn* and ey Ayon* < |b| < Cn*. Using
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Eqgs. (2.39) and (2.41) we have

) =2 = ‘«ZOQ%, [R()) — R(zo + 01)P.070)

+ Z(‘;OQD [01P.R(z))P.0,]* 01 6)

k=2
< Cn*b™ V2 (ja| + b)) + CCI® + CCin® + -+ < Cnb.

Hence | f(z;) — z;| < Cn®. For any z € D, we have

/@) = 21l < 1f @) —f Dl + 1/ ) — 1l < %|z o+ Gt <,

Hence f(z) € D. This proves (4). Q.E.D.

We are ready to solve Eq. (2.33) in G. By Lemma 2.4 (1), (2) and (4),
the map f — f(z) is a contraction mapping in D and hence has a unique
fixed point z, in D. By (3), for any ze€ G we have |f(z)—f(z,)] <
Cn4(Im z*)*1/2|z —z,| < 1/2|z — z,|. Hence there is no other fixed point of
f(z)in G.

By symmetry, there is another unique fixed point with negative
imaginary part. Moreover, they have the size indicated in Theorem 2.2.
We will prove in §2.3 and §2.4 that w, does not admit generalized eigen-
vectors and that there is no purely imaginary eigenvalue near iegy, i.e., there
is no embedded eigenvalue. Hence w,, and —, are simple and are the only
eigenvalues near iey;.

We now look more carefully on z, and u,, where u, denotes the unique
solution of H(H + 210{)u, = —w?u, with the form u, = 50 + h,. Recall
|z — z,] < n’ and

21 = 0" = p($02001 ) + 402> (BQF, Rz + 0 POy ).
where zy = p° — p((ZOZAle%). Hence

V. = JE + O0)
= p — (Gor Q%) + 22.2(¢o Q2. R(zg + 0i )P O o)

1 ~ ~
- 2—(¢0)th2¢0)2 +0(n’).
0
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Since z, = —@2, we have &, = i /z,. Thus if we write w, = ik + , then

~ ~ 1 ~ ~
K= p— ($orQ i) — 5(¢0AQ%¢0>2

+ Re 212 ($ 07, R(zg + 00 )P0l o) + O(n°),
y = —Im23.%(¢y07, R(zy + 00 )P.Oido) + O(°).

(2.44)

By Eqgs. (2.35), (2.25) and expansion into series,
y = ImiX(G0F. (H — /Z5 — 0))P.Q7 o) + O(n)

_ 2 4 2 1 > 5
=ImAn (¢0¢1’ ATV _E _\/%_inc%‘ﬁo) + O0(n”). (2.45)

By Eq. (1.5), y > A2n4yo + O(ns).

We now consider the eigenvector. Since Imz, # 0, the resolvent
Eq. (2.28) is invertible and hence there is a unique eigenvector /4, given by
(2.31) with z = z,. Since A = H200{, we have

h, = —(H? 4+ P.H200}P, — z,) ' HP 200} ¢,. (2.46)

where P, = P,(H). We now expand the resolvent on the right side using
Eq. (2.29). By Lemma 2.3, we obtain |(¢, h)] < Cn>|[{x)"¢|l,, for any r > 3.

We now show that %, is bounded in L> with a bound uniform in n.
Recall /zZ, = k + iy with k ~ g, y > W yyn’. Since Q) = n¢, + O(n*), by
expansion and Eq. (2.25) we have

h, = —(H* — z,)" HP(H)21¢, 0 + O(n*)

= —(H — 7)) "P.(H)A$ Q1 + O(n*)

— ! 2 b
ST TAT Y s o yl.Pc(Ho)Mﬁle +O(n"), (2.47)

where s = E| + k = 2¢; — ¢y + O(n°) > 0. Here we have used the fact that

N
P.(H)p = Po(Ho)p +n° Y (Vi )V
k=1

for some local functions v, ¥f of order one. We will show that the leading
term on the right of Eq. (2.47) is of order one in L. It follows from the same
proof that O(n°) on the right is also in L* sense.

We first consider the case ¥ = 0. For f(p) € L> N L™ of order 1,

L Lo ,
| = O Fmae= [ 170 et
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We can divide the integral into two parts: |p| € I and |p| € I, where [ =
(\/5/2,34/5/2). Note s is of order 1. For |p| & I, we have 1/((p2 —s)2—|—
¥*) < C. Hence the integral is bounded by ||f||iz. For |p| €I, we first
bound |f(p)I*> by | fll7~ and then integrate out the angular directions.
Hence the whole integral is bounded by

3./5/2 ,,2 Vs/2
C+C/ —dl‘§C+C/
G (Ir— /sl +y) 0

dt < C+C/y.
T+
Here r > 0 denotes the radial direction and t = r — /s.
Using wave operator for —A + V/, we have similar estimates if —A
is replaced by —A + V. Since y ~ n* and )\quQ% = O(n°) is smooth and
localized (similarly for O(rn?) on the right side of Eq. (2.47)), we get

(h*ah*) = an)/_lnz <C,

where C is independent of n. Since u, = 50 + ﬁ* = ¢y + /;* + O(n*), we have
obtained the u part of the estimates |®|;2<C and Eq. (2.17). The
corresponding estimate for v can be proved using v = (—L)u/w,.

2.2. Resolvent Estimates

In this subsection we study the resolvent R(w) = (w — E,)_l. Note that
R(w) had a different meaning in the previous subsection.
Let L? denote the weighted L* spaces for r € R:

L?={f: (1 +x)"f () € LR}

We will prove the following lemma on resolvent estimates along the
continuous spectrum X.. As a corollary of the proof, we also show that
{0, +w,, £w,} consists of all eigenvalues outside of Z,.

Lemma 2.5. Let R(w)=(w—L,)"" be the resolvent of L. Let B=
B(L%,L?)), the space of bounded operators from L* to L, with r> 3.
Recall w, = ik + y. For t > |E|| we have

|RGT£0)| 5+ |R(—it £0)|y < C(1 + ) * + C(It — «| + 1) 7"
(2.48)
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The constant C is independent of n. We also have

| RO £0)| +|RO=ir20)| = c+n7 2 4+ Cr =l 40ty
(2.49)

for derivatives, where k = 1,2.

We first consider Ry(w) = (w—JH;)"'. Recall H, = —A+ V — E|.

Since
iy =" -H, 7N w  H,
YO H ow CHX 4wl -H, w
17—i 1 o i1 N
=51 4 —i (Hy —iw) —|—§ 1 (H +iw)™ ",

(2.50)

the estimates of Ry(w) can be derived from those of (H; —iw)~' and
(H, + iw)~". By assumption, the bottom of the continuous spectrum of
H,, —E;, is not an eigenvalue nor a resonance of H;. Hence (H; — z)_1 is
uniformly bounded in B for z away from ¢, — E; and e; — E|, see Ref. [9].
By Egs. (2.4) and (2.50), Ry(w) is uniformly bounded in B for w with
dist(w, X,) > n, where X, = {0, ieg;, — ieg;}.

Write

0 lez
: ! ’ |:—3)»Q12 0

For R(w) = (w— £;)~" we have

o0

R(w) = (1= Ry(w)W) ™ Ro(w) = I [Ry(w) W) Ro(w). (2.51)
k=0

Since Ry(w) is uniformly bounded in B for w with dist(w, X,) > n, and W
is localized and small, Eq. (2.51) converges and (w— £;)”" is uniformly
bounded in B for w with dist(w, ¥,) > n and we have

IR , < Cdistow, T,)",  (n < dist(w, £,) < 1). (2.52)

Recall ¥, = {is : |s| > |E;|} is the continuous spectrum of JH; and L;.
For w in the region

{w:dist(w, =) > n,w & =}, (2.53)
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we have
”RdmmUJ5§Cdmm%zg4
By Eq. (2.51), and because W is localized and small,

”R(W)“(L LY = HRO(W)”(L2 1?)

+ ; ClRo) g2, 1 [ | Ro) [} RO 2 1

< Cdist(w, )~ + Cdist(w, £.) 2

Hence R(w) is uniformly bounded in (L? L?) in a neighborhood of w.
In particular, there is no eigenvalue of £; in the region (2.53) above. Note
that this region includes a neighborhood of the bottom of the continuous
spectrum X, iE,, except those in X,.. Hence the eigenvalues can occur only
in {w: dist(w, ¥,) < n} or ..

The circle {w: |w| = ﬁ} is in the resolvent set of £,. By Ref. [15]
Theorem XII.6, the Cauchy integral

1

= (w—2Ly) " dw
27i Iw=/n

gives the L’-projection onto the generalized eigenspaces with eigenvalues
inside the disk {w: |w| < i/n}. Moreover, the dimension of P is an upper
bound for the sum of the dimensions of those eigenspaces. However,
since the projection Py = (27i)~"' flw|= i Ry(w)dw has dimension 2 (see
Eqgs. (2.3)+(2.4)), and

2m f; ﬁz Ro(W)W] “ Ry(w) dw

is convergent and bounded in (L*, L?) by

o0
k
=C| Ro<w>||(Lz oy 2 (Cr [ RoW)l ) [ Ro) | 12, 12,
k=0
< Cn~ V2PV = Cn,

(here we have used Eq. (2.52)), the dimension of P is also 2. Since we already
have two generalized eigenvectors [QO ] and [ %] with eigenvalue 0, we have
obtained all generalized eigenvectors with elgenvalues in the disk |w| <+/n.
Together with the results in §2.1, we have obtained all eigenvalues outside of
2. 0, +w,, and *+o,.
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We next study R(w) = (w— £,)"" for w near =iey : |w — ieg;| < n or
w4+ ieg;| < n. Let us assume w = it — ¢ with 7,& > 0, thus —w? lies in G
(defined in Eq. (2.37)). The other cases are similar. Let [fg ] e CL*. We want
to solve the equation

oot =[1] .54

We have
wu— Hv=f, wv+ (H +200Du = g.
Cancelling v, we get (recall 4 = H2AQ12)
wlu+(H> + Au=F, F=wf+ Hg.

Write u = ady 4 B0; +n with 1 € H(H) and Q) = 0,//01]>. Also
denote ¢ = a¢y + Q| = u —n. We have

(w* + H> + P A)n = P.F — P A¢,
(w?>+ H? + P A); = P*F — Pt An.

Here P, = P,(H) and P* = 1 — P_. Solving 7 in terms of ¢, we get
n=QPF —PAr), Q= (w'+H>+PAP) . (2.55)

Note that € is the resolvent in Eq. (2.28) with z = —w?. Substituting the
above into the ¢ equation we get

(w2 + H?>+P A4 — P AQP A =F, (2.56)
F=P'F —P-4QP.F.

Using 50 and Ql as basis, we can put Eq. (2.56) into matrix form
a b [a]_T[(@.F)
o B = leR) 237
where (recall H$0 = —,050, HQ =0and 4 = H2)LQ%)

a=w?+p" — p(@2001Py) + p(Be20 0%, QHP 2001 ),
b= —p($o21070)) + p($21.07, QHP21.070)).
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Thus

a] _[1/a —b/@v*)]] ($0. F)
M_[ Ja bl ][@’f)]. (2.58)
Note that we have (él,F) = (QI,F) = (Ql,wf) and
(b0, F) = (b0, F) — (—po2003, QPF)
= (¢, wf) — (00, 8) + (p$e2101, QP wf + QHP, ).
By Eq. (2.55), F = wf + Hg and A = H2),0%,

n=QwP.f + QHP.g — QHP 210} ¢. (2.59)
The above computation from Egs. (2.54)—(2.59) is valid as long as
is invertible, in particular, if z = —w? € G. We now consider the case
w=it—e¢ with |t —¢g;| <2n and 0 < & < n*. It follows that z = —w? € G

and Rez > 0 is small. Recall f(z) defined in Eq. (2.34), and the fixed point
z, = —a- found in §2.1. We have a =f(z) — z = (z, — 2) + (f(2) — f(2,)).
Using Lemma 2.4 (3) with w; = z and w, = z,, we have

1 1 - -
lal > |z = 2, =1/ () = f(2)] 2 51z = 2] = 5Iw* = @] = Clw + & .

Since w, = ik +y with y ~ n* and w=ir—¢ with 0 <& < n*, we have
la| = (|7 — & +n*).

We will bound «, 8, and n using Egs. (2.58) and (2.59). Note that the
operators Q = (w> + H> + P.AP,)~" and QH do not have a uniform bound
in (L?, L?) as ¢ goes to zero. They are, however, uniformly bounded in B.
It can be proven by first expanding €2 into a series as in Eq. (2.29), and then
by using formulas like Eq. (2.42) and the usual weighted estimates near the
continuous spectrum. Therefore, if /, g € L2, using Egs. (2.58), (2.59), and
the explicit forms of (¢q, F) and (Q;, F),

ol + 181 < C( + lal DI f gz < Cllz =l +n) 7S gl
Inllz2, < CILS gl + CrP(lal + 1B).
We conclude, for u = Olao + /3@1 +n,
lll 2, < (C+ Cll = sl + 1)y DS Nz + lgh ).
We can estimate v similarly. Thus, for t € (eg; — n, ey, + n),
IRGT = 0)llg < C+ C(r =l +n")"", (T —eql <n).

The estimate for ||R(it + 0)||g is similar.
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For 7> ey +n and w =it + 0, using R(w) = (1 + Ry(w) W)~ Ry(w)
and the fact that ||[Ry(w)|lg < C(1 +r)71/2, (see Ref. [9] Theorem 9.2),
we have ||R@it+ 0)|lg < Ct ' Forte [1Ei], eq1 — 1], the same argument
gives ||R(it + 0)||g < C. The derivative estimates for the resolvent are
obtained by induction argument, by differentiating the relation
R(1 + WRy) = R, and by using the relations (1 + WRy)™' =1 — WR and
(1+RyW) ' =1— RW. See the proof of Ref. [9] Theorem 9.2. We have
proved Lemma 2.5.

2.3. Nonexistence of Generalized w,.-Eigenvector

Since the resolvent in Eq. (2.28) with z = z, is invertible, &, given by
Eq. (2.31) is unique and hence & is the only w,-cigenvector satisfying
(L) — w,)® = 0. We now show that there is no other generalized w,-eigen-
vector, i.e., there is no vector ¢ with (£, — w, )¢ # 0 but (£, — a)*)kqs =0 for
some k > 2. Suppose the contrary, then we may find a vector [l“] with
(., —L)[y]=[}] Thatis, w=w, and [»;]NZ [4-] in the system (2.54).
We have F = wu, + Hv, = 2w,u,. Since u, = ¢y + h, with h, € H.(H), we
have (Q,,F) = (0, F) = (Q;,2w,u,) = 0. Hence 8 = 0. Also

(b0, F) = (b0, F) — (G H22.07(w? + H? + P AP,)'P.F)
= 2w, + p(¢2).0F (W* + H* + P AP) " 2w,h,)
=2w,[1 4 p(V, QQH V)],
where Q = (w2 +H*+ P.AP) "' and ¥ = PC$02AQ12. Since the main term
in (¥, QQHWY),
(W, (w* + H?)'W* + H) 'HW),

is positive, (¢y, F) is not zero. On the other hand, a = w> + f(~w?2) =
—z, + f(z,) = 0. Hence there is no solution for «. This shows w, is simple
(and so are —w,, tw,).

2.4. Nonexistence of Embedded Eigenvalues

In this subsection we prove that there is no embedded eigenvalue it
with |t| > |E||. Suppose the contrary, we may assume 7 > —FE; > 0 and
L1y = ity for some ¥ € CL?. We will derive a contradiction.
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Let H, = —A — E,. We can decompose

0 V4107
=JH,+ A4 A= . 2.6
Ly =JH, + A, [—V—3AQ12 0 (2.60)

Hence (it — JH,)y¥ = Ay. By the same computation of Eq. (2.50) we have
w—JH) "= (H, —iw)" "M+ (H, +iw)"'M_,

where

IR o]
ALY S -T2

Thus, with w = it, we have
Y= (it —JH) Ay = (H, + 1) "¢, + (H, — 1) '¢p_, (2.61)

where ¢, = M Ay and ¢_ = M_Ay. By Assumption Al on the decay of
and that ¥ € L?, both ¢, p_ € L52+U with o > 0. Since —t is outside the
spectrum of H,, we have (H, + 1)~ ¢, € L5+g Lets=E; +1t>0. We have
H,—1t=—-A—5. By assumption v € CL?, hence so is (H,—1)"'¢_.

Therefore (p* —s)~ d) (p) € L*. Since ¢_ € L5+a, ¢_ is continuous and
we can conclude

6-()],_ ;=0 (2.62)

We now recall Ref. [14] page 82, Theorem IX.41: Suppose f € L? with
r>1/2 and let B,f = (p* —s)"'f)". Suppose f(p)‘| =z = 0. Then for
any & > 0, one has B,f € L> ,_,. and | B, Sz resllfll2 for some
constant C, , ;.

In our case, we have f = ¢_, ¢ =0/2 and r =5+ 0. We conclude
(H,—1)'¢_=B,f € L. Thus ¢ € L.

However, since (z — £))¥ = (z — it)y, we have Ry = (z — it)” .
Thus we have

[CEi

2, = ClYl

where the constant C remains bounded as z — it by Lemma 2.5. This is
clearly a contradiction. Thus v does not exist.
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2.5. Absence of Eigenvector and Resonance at Bottom of
Continuous Spectrum

We want to show that +iE|, the bottom of the continuous spectrum,
are not eigenvalue nor resonance. That is, the null space of £; FiE| in
X =12, r>1/2, is zero. In fact, since the resolvent are bounded near
+iE by Lemma 2.5, the same argument in Ref. [9] for the expansion
formula of the resolvent near the bottom of the continuous spectrum,
trivially extended for non-self adjoint perturbations, shows the claim.
Here we provide another proof for completeness.

Let us consider the case at i|E;|. Suppose otherwise, we have a

sequence Q) g ) — 0 and ¥, € X = Lz,, so that
(L1, g +IE1(R) Y =0, lnlly = 1.

As in Eq. (2.60) we write £, j,x) = JH, + Ay, where H, = —A — E;(k) and
Ay =JV +[ 5 L]A0T £ - By Eq. (2.61) with 7 = |E; (k)| we have

Yy = (it — JH) ' 40 = (=A + 207 M Ay + (—A) "M _A, 9,

in X. Note that (—A + 21’)71M+Ak and (—A)"'M_A, are compact opera-
tors in X, with a bound uniform in k. Since X is a reflexive Banach space,
we can find a subsequence, which we still denote by v, converging weakly
to some ¥, € X. Thus 7 — |e||, (A + 2r)_lM+Akwk — (=A = 2¢;) 'x
M, JV, and (=AY 'M_Ay, — (—A)flMJrJVw* strongly in X. Thus

Y, = (—A = 2e)) ML IV, + (—A) ' M IV,

and v, — ¥, strongly. Hence ||y, |y = lim||Y |y = 1 and (JH| + ie))¥, =0
by Eq. (2.61) again. One can show that (—A + V), = [{ ], which contradicts
Assumption A1l and thus shows the claim.

2.6. Proof of Theorem 2.2 (4)—(6)

Once we have an eigenvector ® with £;® = w,® and w, complex, we
have three other eigenvalues and eigenvectors as given in Eq. (2.19). Hence
we have found all eigenvalues and eigenvectors of £;. CE, is the combined
eigenspace of +w, and +w,. It is easy to check that RE CE; = E;. We have
proved parts (1)—(3) of Theorem 2.2.

We now show the orthogonality conditions. Recall oy = [ {]. It is
self-adjoint in CL?. Let £} be the adjoint of £, in CL?. We have
L= [g;é*] and L} =0,L,0,. Suppose L,f =w,f and L,;g = w,g with
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5)1 # . We have £T0'1f = O']ﬁlf = a)lcrlf. Thus
wy)(o1f,8) = (o1f,0:8) = (01 f,L12)
= (Lio1f.8) = (w0, f,8) = @1(01,2).
Hence (0 f,g) = 0. Therefore we have 01® L ®,0,D,0:P, 01D L &, 0;P,
039, ete. If we write u = uy + iup, v = v, + iv, and ® =[], then we have

/ﬁv dx =0. (2.63)

In other words, (u, v;) + (up, v2) = 0 and (uy, v;) = (u, v1).
If / € S(£;) and £, = wyg with w, # 0. We have (£)*0, / = 0, hence

(01 /- @38) = 01/, L1g) = (L]01f,8) = (0.9).
Hence (0 f,g) = 0. In terms of components, we get (Q;,u;) = (Q;,uy) =0,
(R1,v1) = (R4, v,) = 0. The above shows Eq. (2.22). The rest of (4) and (5)
follows directly.

To prove (6), we first prove the following spectral gap

1 1
L, { > Elell, L_ (R > §|e1|. (2.64)

Ql,Vl,Vz}L
We will show the first assertion. Note that by Eq. (2.17) we have
v = P(L_)v; + 007, vy = —¢g + P(H))vy + O(r°)

in L*. In particular lvall;2 > 1/2, and (v, L_vy) > (vi, L_ P.(L_)vy) —Cn?
—Cn?. By Eq. (2.63)

v

v, L_v))+ (va, L_vy) = (v, L_v) = (v, wu) = 0.

Hence (v, L, vy) = (v2, L_vy) + O(n*) < Cn®>. We also have (Q;,L, Q) =
(01.L-0) + 0" =0+ O(n"). Let Q) = Oy — (Q1.v2)v2/[In2]3. We have
Q) Lv; and Q) =0, + 0(n') by Eq. (2.17) again. Hence (Q},L,0}) =
(01,L.0))+0(n")=0(n*) < Cn*(0},0). We conclude that L | o, .,y <
Cn?. Since L, is a perturbation of H, it has exactly two eigenvalues below
%|€1|- By minimax principle we have L[, - > (1/2)le;]. This shows the
first assertion of Eq. (2.64). The second assertion is proved similarly.
Let Q(¥) denote the quadratic form: (see e.g. Refs. [25,26])

QW) =(f. L)+ (g L-g), ify=f+ig (2.65)
One can show for any ¥ € L

Q™) = Q(y), for all ¢, (2.66)
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by direct differentiation in ¢. By Eq. (2.64) one has

Q(n) ~ lInllz;, forany ne H(L)).

Thus

le™ nli3 ~ Q™ n) = Q(n) ~ I3y

Similarly, we have by Eq. (2.64) and the above relation

Inllzs ~ 1Ll ~ Q(Lyn).

Since Q(£;n) = Q(e'“' £17), we have ||n]l ;3 ~ [le”“ 5l ;2. By interpolation we
have ||n]l 2 ~ ||€[LII7||H2. We have proven (6).

2.7. Wave Operator and Decay Estimate

It remains to prove the decay estimate (7). We will use the wave
operator. We will compare £; with JH,, where H, = —A — E;. Recall
we write £; = JH, + A in §2.4, Eq. (2.60). Keep in mind that H, has no
bound states and A is local. Define W, =lim,, e e et R(z) =
(z—£) " and R,(z) = (z — JH,)~'. We have

W.f—r
+00
= lim R(it + &)A[R, (it — &) — R, (it + ¢)] f dt
e—0+ |E;|
+00
— lim R(—it + &)A[R.(—it — &) — R (—it + ¢)]f dr.
0t JiE|

Yajimal?’*® was the first to give a general method for proving the

(Wk’p , Wk”’) estimates for the wave operators of self-adjoint operators.
This method was extended by Cuccagnal® to non-selfadjoint operators in
the form we are considering. (He also used idea from Kato!'"). One key
ingredient in this approach is the resolvent estimates near the continuous
spectrum, which in many cases can be obtained by the Jensen—Kato!
method. (See Ref. [27], Lemmas 3.1-3.2 and Ref. [5], Lemmas 3.9-3.10).
In our current setting, this estimate is provided by the Lemma 2.5. We can
thus follow the proof of Ref. [5] to obtain that W, is an operator from CL?
onto H.(L;). Furthermore, W, and its inverse (restricted to H.(L£,)) are
bounded in (L7, L*)-norm for any p € [1, oo]. (Note this bound depends on n
since our bound on R(w) depends on n.) By the intertwining property of the
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wave operator we have

etﬁl PC — W_;'_elJH*(W_;'_)* R:
The decay estimate in (7) follows from the decay estimate of ¢"/*+.
The proof of Theorem 2.2 is complete.

2.8. Proof of Theorem 2.1

By the same Cauchy integral argument as in subsection 2.2, the only
eigenvalues of £; are inside the disks {w: |w| < i/n}, {w:|w —iey| < o/}
and {w: |w +iey | < 4/n}. Moreover, their dimensions are 2, 1, and 1, re-
spectively, the same as that of JH;. It counts the dimension of (generalized)
eigenspaces of £, in CL?. It also counts the dimensions of the restriction of
these spaces in L? = L*(R*, R?) as a real-valued vector space.

By Eq. (2.9), we already have two generalized eigenvectors near 0.
Hence we have everything near 0. Since the dimension is 1 near iey;, there
is only a simple eigenvalue w, near iey;. We have w, = iey; + O(n*) since the
difference between £, and JH, is of order O(n%). w, has to be purely ima-
ginary, otherwise —, is another eigenvalue near iey;, cf. Eq. (2.19), and the
dimension cannot be 1. (This also follows from the Theorem of Grillakis.)

By the same arguments in §2.2-2.4 we can prove resolvent estimates
and the non-existence of embedded eigenvalues. Also, the bottoms of the
continuous spectrum are not eigenvalue nor resonance.

Let @ be an eigenvector corresponding to w,. Since £;P = w,P and

@, = —w,, we have £, ® = —w,®. Hence the (unique) eigenvalue near —ieg,
is —w, with eigenvector ®©. Write & = [_””] We may assume u is real.
Writing out £,® =ik® we get L_v= —«u and L,u = —kv. Hence v is

also real. We can normalize u so that (#,v) = 1 or —1. Since ® is a perturba-
tion of [—4;)'&0 ], we have (u,v) = 1.

With this choice of u, v, let CE; and E; be defined as in Eq. (2.12).
CE, is the combined -eigenspace corresponding to =w,. Clearly
RE CE, C E,. Since

a[g} +b|:3i| = REa®, o =a-+bi,

we have RECE; = E;. That the choice of « is unique can be checked
directly. The statement that if {= RE a® then £;¢{= RE w,a® and
¢“1r = RE " a® is clear. We have proved (3) and (4).
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Clearly, S(£y), E{(£;), and H.(£,) defined as in Egs. (2.9), (2.10),
and (2.12) are invariant subspaces of L? under £, and we have the decom-
position Eq. (2.7). This is (2).

For (5), note that Eq. (2.10) is by definition. For Eq. (2.11), we have

(Q1,u) = (01, (=) 'L_v) = (L_Qy,(—«)'v) =0,
(Ry,v) = (Ry, (=)' Lyu) = (=) (L Ry, u) = (=)' (Qy, u) = 0.

Equation (2.14) comes from the orthogonal relations directly.
The first statement of (6) is because of (5). For the rest of (6), we first
prove the following spectral gap

1 1
Lilig,. > §|€1|’ L_|ig, .yt > §|€1|- (2.67)

Since L, is a perturbation of Hj, it has exactly two eigenvalues below
(1/2)le;|. Notice that (Q,L,01)=(Q,L_01)+0(n")=0(n") and (v,L,v)=
(v, —ku) = —«. Since Q1 = n¢; + O(n’) and v = Py + O(n*), one has (01,v)=
O(n®). Thus one can show L+|Span{QM,} < Cr?. If there is a ¢ L Oy, v with
(@, L.¢) < (D)lel(@.¢), then we have Lilganfo, g < (1/2)lerl, which
contradicts with the fact that L, has exactly two eigenvalues below
(1/2)|e;| by minimax principle. This shows the first part of Eq. (2.67). The
second part is proved similarly.

Recall the quadratic form Q(v) defined in Eq. (2.65) in §2.6. Also recall
Eq. (2.66) that Q(e"c1 ¥) = Q) for all 7 and all ¥ € L*. By the spectral gap
Eq. (2.67) one has

Q) ~ Inlzn, QL) ~ IInlizs, forany ne Ho(L)). (2.68)

For ¢ € M, we can write ¥ = ¢+ n, where { = RE a«®, o« € C and
n € H.(L). Notice that, by orthogonality in Eq. (2.10),

Q) = ~lo*k(u, ) + Q(1),
which is not positive definite, (recall (1, v) = 1). However,

Wl ~ lo® + iz (2.69)
To see it, one first notes that ||1/f||i,1 is clearly bounded by the right side.

Because of Eq. (2.14), one has |af® < C||1ﬁ||i,1. One also has ||n||§,1 <
Cllgl3; + Clal*. Hence Eq. (2.69) is true.
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Therefore for ¢ = (RE a®) + n we have

2 2 2

sl ~ s e, o e
N |ef"""*a|2 + Q(etﬁl n) (by (4), Eq. (2.68))
~ o> + Q(n) (by Eq. (2.66)).

Hence we have ||e“:1 I/f||%{1 ~ ||I//||§_11 for all . By an argument similar to that
in §2.6, we have ||e’L‘1//||Hk ~ ||¥ll g for k= 3,2. We have shown (6). The
decay estimate in (7) is obtained as in Theorem 2.2 (7). The constant C,
however, is independent of n in the non-resonant case. The proof of
Theorem 2.1 is complete.

3. SOLUTIONS CONVERGING TO EXCITED STATES

In this section we prove Theorem 1.1 using Theorems 2.1 and 2.2.
Since the proof for the non-resonant case is easier, we will first prove the
resonant case and then sketch the non-resonant case. Note that we could
follow the approach of Theorem 1.5 of Ref. [23] if we had the transform
L1 PF = —U AU PF as in Ref. [23]. However, it is not easy to define A
and U for £; and hence we choose another approach. This new approach
also gives another proof for Theorem 1.5 of Ref. [23].

Note that, if we reverse the time direction, the same proof below gives
the “unstable manifold,” i.e., solutions ¥(¢) which converge to excited states
as t — —oo.

Fix E; and Q) = Q, f,. Let L, be the corresponding linearized opera-
tor, and Py, Pg, and Pf‘ the corresponding projections with respect to L.
For any &, € Ho(£,) with small H*> N W?>' norm, we want to construct
a solution ¥(#) of the nonlinear Schrodinger Eq. (1.1) with the form

w(t) = [0, + a())R, + h(f)]e B0,

where a(?),6(¢) € R and h(f) e M| =E; & H.(L,). Substituting the above
ansatz into Eq. (1.1) and using £,iQ; = 0 and £;R; = —iQ;, we get

dh=Lyh+i "F(aR, + h) — i6(Q, + aR, + h) — aiQ; — 4R,
where

F(k) = 20 Qlk|* + kK*) + Alk|*k,  k=aR, +h. (3.1)
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The condition /(¢) € M, can be satisfied by requiring that 4(0) € M; and
a = (¢;01,Im(F + 6h)), (3.2)
0 = —[a+ (e, Ry, ReF)[1 + (¢; Ry, R))a+ (c; Ry, Reh)] ™", (3.3)

where ¢; = (0, R,)"" and F = F(aR, + h). The equation for & becomes
dh=Lih+ PyFy,  Fy=i(F+6aR, +h).

The proofs of the two cases diverge here. For the resonant case we
decompose, using the decomposition of M, and Eq. (2.20) of Theorem 2.2,

) =¢@) +n(0), &) = RE{a()® + B(1)o3 P},
where «(?), B(¢) € C and n(r) € H.(L;). Note
L= RE{w*ad> — w*ﬂc73<I>}.

Recall w, = ik + y with k,y > 0. Taking the projections P, and Py defined
in Eq. (2.24) of Theorem 2.2 of the h-equation, we have

& = w,a+ P, Fy, (3.4)
B=—w.B+ PsF. (3.5)

Taking projection PC’C1 we get the equation for 7,
an=Lin+ PYi'on+ POF,  F=i"(F+6@R, +9)).

We single out P%i~'6y since it is a global linear term in 5 and cannot be
treated as error. Let

7= R,
Note n=7%+ Pf‘(l — ¥y and Pf‘(l —¢”) is a bounded map from

H.(£,)N H* into itself with its norm bounded by C|6]. Hence if 6 is
sufficiently small, we can solve 7 in terms of 7 by expansion:

oo
n = Uy, => [R(1- (3.6)
j=0
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The equation for 7 is
8,11 = P¢'e"(ifin + d11)
=L7+ {Pf‘eieﬁl - Ele'eig}n
+ Pf‘eie{ién - Pf'ién + PC'C'I?}.
Note that
[PErefe, — £ipEe |y = PEL”, 11
= P5 sin6[i, £]n
= P sin 02007%17.

Hence we have

07 = L, + PO {sin 021037 + ¢”(1 — PE)ign + & Pflﬁ}.
For a given profile &, let

r) = ¢ + 8(0). (3.7)
We have the equation

0,g=Lig+ PC‘:l [sin 020077 + (1 — Pf‘)iér] + " Pf‘ﬁ]. (3.9)

We want g(f) — 0 as 1 — oo in some sense.
Summarizing, we write the solution (¢) in the form

v() = {01 + Ry + RE{a()® + (1o ®)
+ U (€' o + (1) | €170, (3.9)
with a(?), 6(¢), a(t), B(f), and g(r) satisfying Egs. (3.2)~(3.5) and (3.8),
respectively.
The main term of F is
Fy =10, (2167 + &) + 1EPE &0 = Upye b

Notice that, if [|Ex |l g2ap2t < € K 1, then &(¢) satisfies

IEO 2 < C)e,  NIED Iy < Cm)elt] ™2,
IEPED 2 < Cm)ed (1) 2.
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Here we have used the boundedness and decay estimates for ¢’“' PX' in
Theorem 2.2 (6)—(7). Since Q; is fixed, it does not matter that the constant
depends on n. The main term of F is quadratic in &. Hence

IFo (D)l < Ce*(1) .

As it will become clear, we have the freedom to choose &, and
Bo = B(0). We require that &, € H.(£,) and

sl zprpat <& |Bol < &°/4, (3.10)

with & < go(n) sufficiently small. With given &, and f,, we will define a
contraction mapping 2 in the following space

A={(a6.ap.8) :[0,00) > RxRx CxC x (H(Ly)NH),
la(t)l, ()1, 1B, < (14172,
gl < &4+ 0774160 < 26741+ 07"}

For convenience, we introduce a variable » = 6. Our map £ is defined by

Q:(a0,a, p.n)— (@ ,0%a% B ),

a* (1) = / t (¢;0,, Im(F + bh)) ds,

0°(1) = /t b(s) ds,

o0

!
a®(t) = / eI p "V (F + b(aR + h)) ds,

[e ]

t
BE() = e ' By + / eI Py (F + b(aR + h)) ds,
0

t
g0 = / A { sin 021017 + (1 — P{)iby

oo

+ ¢PET (F + b(aR + ;))} ds,
where ¢; = (Q,, R,)™", F = F(aR + h) is defined in Eq. (3.1), and

h(t) = ¢(1) + n(2),
¢(1) = RE{a()® + B()o3 @}, n(t) = Uyy(e™ &x + £(2)),
b(l) = —[Cl =+ (C]R] , Re F)][l =+ (C]R] , Rl)a + (C]R] , Re /’l)]_l.
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We will use Strichartz estimate for the term sin621Q7%7 in the
g-integral:

!
H / I RES (s, ) ds
[o¢]

¢ , 1/q
< C(n){/ | /s, ds} 3.11)
12 o0 .

for3/r+2/q =3/2,2 < q < co. Here ' means the usual conjugate exponent.
Equation (3.11) can be proved by either using wave operator to map ¢“! to
e "=A=E) or by using the decay estimate Theorem 2.2 (7) and repeating the
usual proof for Strichartz estimate. We will also use

@l ~ 1£19ll2 for ¢ e He(Ly),

which follows from the spectral gap Eq. (2.64). Since sin 621077 is local and
bounded by C(n)e””*(1)~'e(r)~>/?, by choosing q large we have

t
H / E1UIPE sin 620077 ds
oo

H?

t
< CH f FUTIPE L sin 020077 ds

oo

1%
t , 1/d ,
< c{/ [e"/4(1 4 5) O/ ds} = Ce'V4(1 4 1)V

Here C = C(n). In particular, we get C(n)e'/*(1 + 1)~"/* by choosing ¢ = 4.
Note that we would only get #~*/? if we estimate this term directly without
using Eq. (3.11).

Note |b(7)] <2|a(r)]. Since t—s<0 in the integrand of «,
Rew,(t —s) < 0 and the a-integral converges. Similarly Re w,(f — s) > 0 in
the integrand of 8 and hence the B-integration converges. Observe that we
have the freedom of choosing B, and &.,. Since e~ **' B, decays exponentially,
the main term of B(f) when ¢ large is given by F,, not ¢ “'B,. Direct
estimates show that

(1)) < C)E*(1+ 172, B0 < e /4 + Cme*(1 4 1),
la(t)], 1b(D)] < Cm)e*(1+ 072, 16()] < Cm)e*(1+ 07",
lg®)] 2 = CoE*(1 + 1)~ 7%,

It is easy to check that the map €2 is a contraction if ¢ is sufficiently small.
Thus we have a fixed point in A, which gives a solution to the system
(3.2)—(3.5), and (3.8). Since it lies in A, we also have the desired estimates.
We obtain «(0), a(0), and 6(0) as functions of &, and B,.
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Recall () = Qe B+ 4 o=iEiloilie and we have
Y(0) = [Q1 + Upe el e 0 077 in - H.
Since PX'(1 — ) = 0(0(1)) = O(t™"), by the definition (3.6) of Uy,
Upye™ oo = [1 + P21 — e")e“ 6, + O(t7)
=2 — ") e + (1 =PO)(1 — ) ME + 0(7)

in H?. Since (1-— Pf]) is a local operator, (1 — Ef‘)(l — eie)etcléoo =
o' - 1737%). Also, ¢’2—e")=14+0*) =1+ 0(?). Hence we have
(1) — Yros(1) = O™ 4) in H>. We have proven Theorem 1.1 under assump-
tion (R).

We now sketch the proof for the non-resonant case. The only
difference is that we define () as RE «(f)® and write ¥(¢) in the form

Y(©) = {01+ alOR) + RE@D®) + Uy (€6 + (o) J .

The function «(¢) still satisfies Eq. (3.4) but with a purely imaginary
eigenvalue w,. The previous proof will go through if we remove all terms
related to B.

4. APPENDIX

In this appendix we prove Proposition 1.2 on the existence of vanish-
ing solutions. Recall Hy = —A + V. The propagator ¢ 7' is bounded in
H’, s > 0, and satisfies the decay estimate,

e o Py, . < CleI gl (4.1)

under assumption Al. See Refs. [9,10,13,27].
For any &, # 0 € H.(Hy) with ||Exllg2an21 = € small, we want to
construct a solution ¥(¢) of Eq. (1.1) with the form

W(t) = e e+ g(1), g(t) = error. 4.2)
Let £(r) = e '¢_ . By Eq. (4.1) we have,

1D < Cres 16D~ < Creld ™2, €D, < G077,
for some constant C;. The error term g(¢) satisfies

0,g = —iHyg + F,
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with g(f) — 0 as t — oo in certain sense, and

F(ty=—iyly.  y=80+g0., &0 =", (4.3)
We define a solution by Eq. (4.3) and
g() = / f e =9 F(g) ds. (4.4)

Note that g(¢) belongs to L?* and is not restricted to the continuous spectrum
component of H,. Also note that the main term in F is |£]°£(¢), which is of
order /= in H?. Hence g(¢) <t >.

We define a contraction mapping in the following class

A= g(t) : [0, 00) = HARY), [h(Dll 2 < C1°(1+ )72}

This class is not empty since it contains the zero function. We also define the
norm

lglla := sup(l + 018Dl g
1>

For g(t) € A we define

!

Q: g(1)— g2(1) = —in f I (& 4 g2(E + 9))(s) ds.

o]

It is easy to check that

0@
18] ,,- < / IF (o)l ds
t
5/ Cie3(s) 2 +Ce% ()P ds < C¥ (072,
t

if gy is sufficiently small. This shows that the map Q2 maps A into itself.
Similarly one can show |[Qg; — Qg,|4 < %Hgl —olla if g1, € A
Therefore our map is a contraction mapping and we have a fixed point.
Hence we have a solution (7) of the form (4.2) with ¢ "¢, as the main
profile.

Remark. The above existence result holds no matter how many bound states
H, has. The situation is different if we linearize around a nonlinear excited
state. In that case, the propagator e’“!, (£, is the linearized operator), may
not be bounded in whole L°.
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