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Abstract: We prove in this paper the stability and asymptotic stability in H 1 of a decou-
pled sum of N solitons for the subcritical generalized KdV equations ut + (uxx + up)x
= 0 (1 < p < 5). The proof of the stability result is based on energy arguments and
monotonicity of the local L2 norm. Note that the result is new even for p = 2 (the KdV
equation). The asymptotic stability result then follows directly from a rigidity theorem
in [16].

1. Introduction

In this paper, we consider the generalized Korteweg–de Vries equations{
ut + (uxx + up)x = 0, (t, x) ∈ R × R,

u(0, x) = u0(x), x ∈ R,
(1)

for 1 < p < 5 and u0 ∈ H 1(R). This model for p = 2 was first introduced in the study
of waves on shallow water, see Korteweg and de Vries [10]. It also appears for p = 2
and 3, in other areas of physics (see e.g. Lamb [11]).

Recall that (1) is well-posed in the energy space H 1. For p = 2, 3, 4, it was proved
by Kenig, Ponce and Vega [9] (see also Kato [8], Ginibre and Tsutsumi [6]), that for
u0 ∈ H 1(R), there exists a unique solution u ∈ C(R, H 1(R)) of (1) satisfying the
following two conservation laws, for all t ∈ R:∫

u2(t) =
∫

u2
0, (2)

E(u(t)) = 1

2

∫
u2
x(t) − 1

p + 1

∫
up+1(t) = 1

2

∫
u2

0x − 1

p + 1

∫
u
p+1
0 . (3)
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For p = 2, 3, 4, global existence of all solutions in H 1, as well as a uniform bound in
H 1, follow directly from the Gagliardo–Nirenberg inequality,

∀v ∈ H 1(R),

∫
|v|p+1 ≤ C(p)

(∫
v2
) p+3

4
(∫

v2
x

) p−1
4

,

and relations (2), (3), giving a uniform bound in H 1 for any solution.
This is in contrast with the case p = 5, for which there exist solutions u(t) of (1)

such that |u(t)|H 1 → +∞ as t → T , for 0 < T < +∞, see [20] and [18]. For p > 5
such behavior is also conjectured. Thus, for the question of global existence and bound
in H 1, the case 1 < p < 5 is called the subcritical case, p = 5 the critical case and
p > 5 the supercritical case.

Equation (1) has explicit traveling wave solutions, called solitons, which play a fun-
damental role in the generic behavior of the solutions. Let

Q(x) =

 p + 1

2 ch2
(
p−1

2 x
)



1
p−1

(4)

be the only positive solution in H 1(R) (up to translation) of Qxx + Qp = Q, and for

c > 0, let Qc(x) = c
1

p−1 Q
(√

cx
)
. The traveling waves solutions of (1) are

u(t, x) = Qc(x − ct) = c
1

p−1 Q
(√

c(x − ct)
)
,

where c > 0 is the speed of the soliton.
For the KdV equation (p = 2), there is a much wider class of special explicit so-

lutions for (1), called N -solitons. They correspond to the superposition of N traveling
waves with different speeds that interact and then remain unchanged after interaction.
The N -solitons behave asymptotically in large time as the sum of N traveling waves, and
as for the single solitons, there is no dispersion. We refer to [21] for explicit expressions
and further properties of these solutions. For p �= 2, even the existence of solutions
behaving asymptotically as the sum of N solitons was not known.

Important notions for these solutions are the stability and asymptotic stability with
respect to initial data.

For c > 0, the soliton Qc(x − ct) is stable in H 1 if:

∀δ0 >0, ∃α0 > 0/|u0 − Qc|H 1 ≤ α0 ⇒∀t ≥ 0, ∃x(t) / |u(t)−Qc(. − x(t))|H 1 ≤δ0.

The family of solitons {Qc(x − x0 − ct), c > 0, x0 ∈ R} is asymptotically stable if:

∃α0 > 0 / |u0 − Qc|H 1 ≤ α0 ⇒ ∃c+∞, x(t) / u(t, . + x(t)) ⇀
t→+∞Qc+∞ in H 1.

We recall previously known results concerning the notions of stability of solitons and
N solitons:

– In the subcritical case: p = 2, 3, 4, it follows from energetic arguments that the
solitons are H 1 stable (see Benjamin [1] and Weinstein [25]). Moreover, Martel and
Merle [16] prove the asymptotic stability of the family of solitons in the energy space.
The proof relies on a rigidity theorem close to the family of solitons, which was first
given for the critical case ([14]), and which is based on nonlinear argument. (Pego and
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Weinstein [22] prove the asymptotic stability result for p = 2, 3 for initial data with
exponential decay as x → +∞.)

In the case of the KdV equation, Maddocks and Sachs [13] prove the stability in
HN(R) of N -solitons (recall that there are explicit solutions of the KdV equation): for
any initial data u0 close in HN(R) to an N -soliton, the solution u(t) of the KdV equation
remains uniformly close in HN(R) for all time to an N soliton profile with the same
speeds. Their proof involves N conserved quantities for the KdV equation, and this is
the reason why they need to impose closeness in high regularity spaces. Note that this
result is known only with p = 2 and with this regularity assumption on the initial data.
Asymptotic stability is unknown in this context.

As it is noted in [13], multi-solitons of the KdV equations can serve as examples of
exact solutions of nonlinear wave interactions. The stability and asymptotic stability of
such solutions are thus important properties from the physical point of view and produce
more examples of well understood solutions (see references in [13]). We also refer to
S.-I. Ei and T. Ohta [5] for a study of the motion of two interacting pulses in the case of
the KdV equations (Part III of [5]) and of other dissipative and dispersive systems.

– In the critical case p = 5, any solution with negative energy initially close to the
soliton blows up in finite or infinite time in H 1 (Merle [20]), and actually blows up in
finite time if the initial data satisfies in addition a polynomial decay condition on the
right in space (Martel and Merle [18]). (Note that E(Q) = 0 for p = 5.) Of course this
implies the instability of the soliton. These results rely on rigidity theorems around the
soliton.

– In the supercritical case p > 5, Bona, Souganidis, and Strauss [2] proved, using
Grillakis, Shatah, and Strauss [7] type arguments, H 1 instability of solitons. Moreover,
numerical experiments, see e.g. Dix and McKinney [4], suggest existence of blow up
solutions arbitrarily close to the family of solitons.

In this paper, for p = 2, 3, 4, using techniques developed for the critical and subcrit-
ical cases in [14] and [16] as well as a direct variational argument in H 1, we prove the
stability and asymptotic stability of the sum

N∑
j=1

Qc0
j
(x − xj ), where 0 < c0

1 < · · · < c0
N, x1 < · · · < xN , (5)

in H 1(R), for t ≥ 0.

Theorem 1 (Asymptotic stability of the sum of N solitons). Let p = 2, 3 or 4. Let
0 < c0

1 < · · · < c0
N. There exist γ0, A0, L0, α0 > 0 such that the following is true: Let

u0 ∈ H 1(R) and assume that there exist L > L0, α < α0, and x0
1 < · · · < x0

N , such
that∣∣∣∣∣∣u0 −

N∑
j=1

Qc0
j
(. − x0

j )

∣∣∣∣∣∣
H 1

≤ α, and x0
j > x0

j−1 + L, for all j = 2, . . . , N. (6)

Let u(t) be the solution of (1). Then, there exist x1(t), . . . , xN(t) such that
(i) Stability of the sum of N decoupled solitons,

∀t ≥ 0,

∣∣∣∣∣∣u(t) −
N∑

j=1

Qc0
j
(x − xj (t))

∣∣∣∣∣∣
H 1

≤ A0

(
α + e−γ0L

)
. (7)
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(ii) Asymptotic stability of the sum ofN solitons. Moreover, there exist c+∞
1 , . . . , c+∞

N ,
with |c+∞

j − c0
j | ≤ A0

(
α + e−γ0L

)
, such that∣∣∣∣∣∣u(t) −

N∑
j=1

Qc+∞
j

(x − xj (t))

∣∣∣∣∣∣
L2(x>c0

1 t/10)

→ 0, ẋj (t) → c+∞
j as t → +∞. (8)

Remark 1. One of the interests of studying the stability and asymptotic stability of the
sums (5) rather than the explicit N -soliton solutions is that we can consider any sub-
critical generalized KdV equation. Indeed, the result does not depend on the existence
of a special family of solutions behaving as the N -solitons. For p �= 2, note that the
existence of solutions behaving in L2 as t → +∞ as the sum of N solitons is an open
problem.

The asymptotic stability result (ii) proves that the family of sums (5) attracts as
t → +∞ the orbits that are sufficiently close to it. We believe that it is an important
qualitative information for the flow of the generalized KdV equations, both from mathe-
matical and physical point of view. For p = 2, it implies in particular the stability and as-
ymptotic stability of the explicit N -solitons solutions in the energy space (see Corollary
1 below).

Remark 2. It is well-known that for p = 2 and p = 3, (1) is completely integrable. In-
deed, for suitable u0 (u0 and its derivatives with exponential decay at infinity) there exist
an infinite number of conservation laws, see e.g. Lax [12] and Miura [21]. Moreover,
many results on these equations rely on the inverse scattering method, which transform
the problem in a sequence of linear problems (but requires a strong decay assumption
on the solution). The result in [13] does not use this transformation but the existence of
many conservation laws for the KdV equation. In this paper, we do not use integrability
and we work in the energy space H 1, with no decay assumption on u0.

Remark 3. For Schrödinger type equations, Perelman [23] and Buslaev and Perelman
[3], with strong conditions on initial data and nonlinearity, and using a linearization
method around the soliton, prove asymptotic stability results by a fixed point argument.
Unfortunately, this method breaks down without a decay assumption on the initial data.

Remark 4. In Theorem 1 (ii), we cannot have convergence to zero in L2(x > 0). Indeed,
assumption (6) on the initial data allows the existence in u(t) of an additional soliton of
size less than α (thus traveling at arbitrarily small speed). For p = 2, an explicit example
can be constructed using the N -soliton solutions.

Recall that for p = 2 any N -soliton solution has the form v(t, x) = U(N)(x; cj , xj −
cj t), where {U(N)(x; cj , yj ); cj > 0, yj ∈ R} is the family of explicit N -soliton pro-
files (see e.g. [13], Sect. 3.1). As a direct corollary of Theorem 1, for p = 2, we prove
stability and asymptotic stability of this family.

Corollary 1 (Asymptotic stability in H1 of N-solitons for p = 2). Let p = 2. Let
0 < c0

1 < . . . < c0
N and x0

1 , · · · , x0
N ∈ R. For all δ1 > 0, there exists α1 > 0 such that

the following is true: Let u(t) be a solution of (1). If |u(0)−U(N)( . ; c0
j ,−x0

j )|H 1 ≤ α1,

then there exist xj (t) such that

∀t > 0, |u(t) − U(N)( . ; c0
j ,−xj (t))|H 1 ≤ δ1. (9)
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Moreover, there exist c+∞
j > 0 such that

∣∣∣u(t) − U(N)( . ; c+∞
j ,−xj (t))

∣∣∣
L2(x>c0

1 t/10)
→ 0, ẋj (t) → c+∞

j as t → +∞.

(10)

Note that this improves the result in [13] in two ways. First, stability is proved in H 1

instead of HN . Second, we also prove asymptotic stability as t → +∞. Corollary 1 is
proved at the end of Sect. 4.

Let us sketch the proof of these results. Note first that the main result, i.e. the stability
result Theorem 1 (i) is self-contained, whereas the asymptotic stability result Theorem
1 (ii) relies on the proof for the case N = 1 ([16]).

For Theorem 1, using modulation theory, u(t) = ∑N
j=1 Qcj (t)(x − xj (t)) + ε(t, x),

where ε(t) is small in H 1, and xi(t), ci(t) are geometrical parameters (see Sect. 2). The
stability result (i) is equivalent to control both the variation of cj (t) and the size of ε(t)
in H 1 (Sect. 3).

Our main arguments are based on L2 properties of the solution. From [14] and [16],
the L2 norm of the solution at the right of each soliton is almost decreasing in time. This
property together with an energy argument allows us to prove that the variation of cj (t)
is quadratic in |ε(t)|H 1 , which is a key of the problem.

Let us explain the argument formally by taking ε = 0 and so u(t) = ∑
Qcj (t)(x −

xj (t)). The energy conservation becomes

∑
c
β+ 1

2
j (t) =

∑
c
β+ 1

2
j (0),

where β = 2
p−1 . The monotonicity of the L2 norm at the right of each soliton gives us

#j(t) =
N∑

k=j

c
β− 1

2
k (t) − c

β− 1
2

k (0) ≤ 0.

We claim that cj (t) = cj (0) by a convexity argument. Indeed,

0 =
∑

c
β+ 1

2
j (t) − c

β+ 1
2

j (0) ∼ 2β + 1

2β − 1

∑
cj (0)

(
c
β− 1

2
j (t) − c

β− 1
2

j (0)

)

= 2β + 1

2β − 1

∑
(cj (0) − cj+1(0))#j (t) ≥ σ0

∑
|#j(t)| ≥ σ1

∑
|cj (t) − cj (0)|.

Thus cj (t) is a constant at the first order. In fact, we prove that the variation in time of
cj (t) is of order 2 in ε(t).

Then we control the variation of ε(t) in H 1 by a refined version of this argument,
using suitable orthogonality conditions on ε.

The asymptotic stability result (ii) follows directly from a rigidity property of the
flow of Eq. (1) around the solitons (see Theorem following Proposition 2 in Sect. 4 of
this paper and [16]) and monotonicity properties of the mass (see Sect. 2.2 and Sect. 4).
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2. Decomposition and Properties of a Solution Close to the Sum of N Solitons

2.1. Decomposition of the solution and conservation laws. Fix 0 < c0
1 < · · · < c0

N and
let

σ0 = 1

2
min(c0

1, c
0
2 − c0

1, c
0
3 − c0

2, . . . , c
0
N − c0

N−1).

From modulation theory, we claim

Lemma 1 (Decomposition of the solution). There exists L1, α1,K1 > 0 such that the
following is true: If for L > L1, 0 < α < α1, t0 > 0, we have

sup
0≤t≤t0


 inf

yj>yj−1+L



∣∣∣∣∣∣u(t, .) −

N∑
j=1

Qc0
j
(. − yj )

∣∣∣∣∣∣
H 1




 < α, (11)

then there exist unique C1 functions cj : [0, t0] → (0,+∞), xj : [0, t0] → R, such
that

ε(t, x) = u(t, x) −
N∑

j=1

Rj (t, x), where Rj (t, x) = Qcj (t)(x − xj (t)), (12)

satisfies the following orthogonality conditions:

∀j,∀t ∈ [0, t0],
∫

Rj (t)ε(t) =
∫

(Rj (t))xε(t) = 0. (13)

Moreover, there exists K1 > 0 such that ∀t ∈ [0, t0],

|ε(t)|H 1 +
N∑

j=1

|cj (t) − c0
j | ≤ K1α, (14)

∀j, ∣∣ċj (t)∣∣ + ∣∣ẋj (t) − cj (t)
∣∣ ≤K1

(∫
e−√

σ0|x−xj (t)|/2ε2(t)

)1/2

+K1e
−√

σ0(L+σ0t)/4.

(15)

Proof. Lemma 1 is a consequence of Lemma 8 (see Appendix) and standard arguments.
We refer to [15] Sect. 2.3 for a complete proof in the case of a single soliton. In particular,
ε(t) satisfies ∀t ∈ [0, t0],

εt + εxxx = −
N∑

j=1

ċj

2cj

(
2Rj

p − 1
+ (x − xi)(Rj )x

)

+
N∑

j=1

(ẋj − cj )Rjx −



ε +

N∑
j=1

Rj




p

−
N∑

j=1

R
p
j




x

.

By taking (formally) the scalar product of this equation by Rj and (Rj )x , and using
calculations in the proof of Lemma 8, we prove

|ċj (t)|+|ẋj (t)−cj (t)| ≤ C

(∫
e−√

σ0|x−xj (t)|/2ε2(t)

)1/2

+C
∑
k �=j

e−√
σ0|xk(t)−xj (t)|/2.
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For α > 0 small enough, and L large enough, we have |xk(t) − xj (t)| ≥ L
2 + σ0t, and

this proves (15).
Next, by using the conservation of energy for u(t), i.e.

E(u(t)) :=
∫

1

2
u2
x(t, x) − 1

p + 1
up+1(t, x) dx = E(u0),

and linearizing the energy around R = ∑N
j=1 Rj , we prove the following result.

Lemma 2 (Energy bounds). There exist K2 > 0 and L2 > 0 such that the following is
true: Assume that ∀j , cj (t) ≥ σ0, and xj (t) − xj−1(t) ≥ L ≥ L2. Then, ∀t ∈ [0, t0],∣∣∣∣∣∣

N∑
j=1

[
E(Rj (t)) − E(Rj (0))

] + 1

2

∫
(ε2

x − pRp−1ε2)(t)

∣∣∣∣∣∣
≤ K2

{
|ε(0)|2

H 1 + |ε(t)|3
H 1 + e−√

σ0L/2
}
, (16)

where K2 is a constant.

Proof. Insert (12) into E(u(t)) and integrate by parts. We have

E(u(t)) =
∫

1

2
R2

x − 1

p + 1
Rp+1 dx −

∫ (
Rxx + Rp

)
ε dx (17)

+
∫

1

2
ε2
x − p

2
Rp−1ε2 dx

+
∫

1

p + 1

(
−(R + ε)p+1 + Rp+1

)
+ Rpε + p

2
Rp−1ε2 dx. (18)

We first observe that |(18)| ≤ C ‖ε‖3
H 1 .Next, remark that σ0 ≤ cj (t), xj (t)−xj−1(t) ≥

L, implies |Rj (x, t)| + |(Rj )x(x, t)| ≤ Ce−√
σ0|x−xj (t)|, and so∣∣∣∣

∫
Rj (t) Rk(t) dx

∣∣∣∣ +
∣∣∣∣
∫

(Rj )x(t) (Rk)x(t) dx

∣∣∣∣ ≤ Ce−√
σ0L/2 if j �= k. (19)

Thus, by (Rj )xx + R
p
j = cjRj , we have∣∣∣∣∣∣(17) −

N∑
j=1

E(Rj (t)) +
∫ ∑

j

cjRj ε(t) − 1

2

∫
(ε2

x − pRp−1ε2)(t)

∣∣∣∣∣∣ ≤ Ce−√
σ0L/2.

(20)

From
∫
Rj (t)ε(t) = 0, we obtain∣∣∣∣∣∣E(u(t)) −

N∑
j=1

E(Rj (t)) − 1

2

∫
(ε2

x − pRp−1ε2)(t)

∣∣∣∣∣∣ ≤ Ce−√
σ0L/2 + C ‖ε(t)‖3

H 1 .

Since E(u(t)) = E(u(0)), applying the previous formula at t = 0 and at t , we prove
the lemma.
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2.2. Almost monotonicity of the mass at the right. We follow the proof of Lemma 20 in
[14]. Let

φ(x) = cQ(
√
σ0x/2), ψ(x) =

∫ x

−∞
φ(y)dy, where c =

(
2√
σ0

∫ ∞

−∞
Q

)−1

.

(21)

Note that ∀x ∈ R, ψ ′ > 0, 0 < ψ(x) < 1, and lim
x→−∞ψ(x) = 0, lim

x→+∞ψ(x) = 1. Let

j ≥ 2, Ij (t) =
∫

u2(t, x)ψ(x − mj(t)) dx, mj (t) = xj−1(t) + xj (t)

2
. (22)

Lemma 3 (Almost monotonicity of the mass on the right of each soliton [14]). There
exist K3 = K3(σ0) > 0, L3 = L3(σ0) > 0 such that the following is true: Let
t1 ∈ [0, t0]. Assume that ∀t ∈ [0, t1], ∀j ,

ẋ1(t) ≥ σ0, ẋj (t) − ẋj−1(t) ≥ σ0, cj (t) > σ0, and |ε(t)|p−1
H 1 ≤ σ0

8 · 2p−1 .

(23)

If for L > L3, ∀j ∈ {2, . . . , N}, xj (0) − xj−1(0) ≥ L, then

Ij (t1) − Ij (0) ≤ K3 e
−√

σ0L/8.

Proof. Let j ∈ {1, . . . , N}. Using Eq. (1) and integrating by parts several times, we
have (see [16] Eq. (20)),

d

dt
Ij (t) =

∫ (
−3u2

x − ṁu2 + 2p

p + 1
up+1

)
ψ ′ + u2ψ(3).

By definition of ψ , ψ(3) ≤ σ0
4 ψ ′, so that∫
u2ψ(3) ≤ σ0

4

∫
u2ψ ′. (24)

To bound
∫
up+1ψ ′, we divide the real line into two regions: I = [a, b] and its com-

plement IC , where a = a(t) = xj−1(t) + L
4 and b = b(t) = xj (t) − L

4 . Inside the
interval I we have ∣∣∣∣

∫
I

up+1ψ ′
∣∣∣∣ ≤

∫
u2ψ ′ · sup

I

|u|p−1.

Since for x ∈ I , for all k = 1, 2, . . . , N , |x − xk(t)| ≥ L
4 , we have

|u(t, x)|p−1 =
∣∣∣∣∣

N∑
k=1

Rk(t, x) + ε(t, x)

∣∣∣∣∣
p−1

≤ Ce−√
σ0L/4 + 2p−1|ε(t)|p−1

L∞ ≤ σ0

4
,

for L > L3(σ0). Thus, ∣∣∣∣
∫
I

up+1ψ ′
∣∣∣∣ ≤ σ0

4

∫
u2ψ ′. (25)
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Next, in IC , by the Gagliardo Nirenberg inequality,∫
IC

up+1ψ ′ dx ≤
∫

up+1 dx · sup
IC

ψ ′

≤ C ‖u‖p+1
H 1 · exp

{
−

√
σ0

4

[
xj (t) − xj−1(t) − L

2

]}

≤ Ce−
√
σ0
8 (2σ0t+L), (26)

by xj (t) − xj−1(t) ≥ xj (0) − xj−1(0) + σ0t ≥ L + σ0t . From ṁ ≥ σ0, (24), (25) and
(26), we obtain

d

dt
Ij (t) ≤

∫ (
−3u2

x − σ0

2
u2
)
ψ ′ dx + Ce−

√
σ0
8 (2σ0t+L) ≤ Ce−

√
σ0
8 (2σ0t+L).

Thus, by integrating between 0 and t1, we obtain the conclusion. Note that K3 and L3
are chosen independently of t1.

2.3. Positivity of the quadratic form. By the choice of orthogonality conditions on ε(t)

and standard arguments, we claim the following lemma.

Lemma 4 (Positivity of the quadratic form). There exists L4 > 0 and λ0 > 0 such
that if ∀j , cj (t) ≥ σ0, xj (t) ≥ xj−1(t) + L4 then, ∀t ∈ [0, t0],∫

ε2
x(t) − pRp−1(t)ε2(t) + c(t, x)ε2(t) ≥ λ0|ε(t)|2H 1 , (27)

where c(t, x) = c1(t) + ∑N
j=2(cj (t) − cj−1(t))ψ(x − mj(t)).

Proof of Lemma 4. It is well known that there exists λ1 > 0 such that if v ∈ H 1(R)

satisfies
∫
Qv = ∫

Qxv = 0, then∫
v2
x − pQp−1v2 + v2 ≥ λ1|v|2H 1 . (28)

(See the proof of Proposition 2.9 in Weinstein [24].) Now we give a local version of
(28). Let / ∈ C2(R), /(x) = /(−x), /′ ≤ 0 on R+, with

/(x) = 1 on [0, 1]; /(x) = e−x on [2,+∞), e−x ≤ /(x) ≤ 3e−x on R+.

Let /B(x) = /
(
x
B

)
. The following claim is similar to a part of the proof of some local

Virial relation in Sect. 2.2 of [17]; see Appendix A, Steps 1 and 2, in [17] for its proof.

Claim. There exists B0 > 0 such that, for all B > B0, if v ∈ H 1(R) satisfies
∫
Qv =∫

Qxv = 0, then∫
/B

(
v2
x − pQp−1v2 + v2

)
≥ λ1

4

∫
/B(v

2
x + v2). (29)
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We finish the proof of Lemma 4. Let B > B0 to be chosen later and L4 = 4kB,
where k > 1 integer is to be chosen later. We have

∫
ε2
x − pRp−1ε2 + c(t, x)ε2 =

N∑
j=1

∫
/B(x − xj (t))

(
ε2
x − pR

p−1
j ε2 + cj (t)ε

2
)

−p

∫ 
Rp−1 −

N∑
j=1

/B(x − xj (t))R
p−1
j


 ε2

+
N∑

j=1

∫
/B(x − xj (t))(c(t, x) − cj (t))ε

2

+
∫ 

1 −
N∑

j=1

/B(x − xj (t))


 (ε2

x + c(t, x)ε2).

Next, we make the following observations:

(i) By (29), we have ∀j ,

∫
/B(x − xj (t))

(
ε2
x − pR

p−1
j ε2 + cj (t)ε

2
)

≥ λ1

4

∫
/B(x − xj (t))(ε

2
x + cj (t)ε

2).

(ii) Since /B(x) = 1 for |x| < B, by the decay properties of Q, we have

0 ≤ Rp−1 −
N∑

j=1

/B(x − xj (t))R
p−1
j ≤ |R|p−1

L∞(|x−xj (t)|>B) + C
∑
j �=k

RjRk ≤ Ce−√
σ0B.

(iii) Note that c(t, x) = ∑N
j=1 cj (t)ϕj (t, x), where ϕ1(t, x) = 1 − ψ(x − m2(t)),

for j ∈ {2, . . . , N − 1}, ϕj (t, x) = ψ(x − mj(t)) − ψ(x − mj+1(t)) and ϕN(t, x) =
ψ(x − mN(t)). Since /B(x) ≤ 3e− |x|

B , by the properties of ψ , and |mj(t) − xj (t)| ≥
L4/2 ≥ 2kB, we obtain∣∣/B(x − xj (t))(c(t, x) − cj (t))

∣∣ ≤ |c(t, x) − c(t)|L∞(|x−xj (t)|≤kB) + Ce−k

≤ Ce−√
σ0kB/2 + Ce−k.

(iv) 1 − ∑N
j=1 /B(x − xj (t)) ≥ 0.

Therefore, with λ0 = 1
2 min( λ1

4 , λ1
4 σ0, 1, σ0), for B and k large enough,

∫
ε2
x − pRp−1ε2 + c(t, x)ε2 ≥ 2λ0

∫
(ε2

x + ε2) − C
(
e−√

σ0B/2 + e−k
) ∫

ε2

≥ λ0

∫
(ε2

x + ε2).

Thus the proof of Lemma 4 is complete.
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3. Proof of the Stability in the Energy Space

This section is devoted to the proof of the stability result. The proof is by a priori estimate.
Let 0 < c0

1 < · · · < c0
N , σ0 = 1

2 min(c0
1, c

0
2 − c0

1, c
0
3 − c0

2, . . . , c
0
N − c0

N−1) and
γ0 = √

σ0/16. For A0, L, α > 0, we define

VA0(L, α)=

u ∈ H 1(R); inf

xj−xj−1≥L

∣∣∣∣∣∣u−
N∑

j=1

Qc0
j
(. − xj )

∣∣∣∣∣∣
H 1

≤ A0

(
α+e−γ0L/2

)
 .

(30)

We want to prove that there exists A0 > 0, L0 > 0, and α0 > 0 such that, ∀u0 ∈
H 1(R), if for some L > L0, α < α0,

∣∣∣u0 − ∑N
j=1 Qc0

j
(. − x0

j )

∣∣∣
H 1

≤ α, where x0
j >

x0
j−1 + L, then ∀t ≥ 0, u(t) ∈ VA0(L, α) (this proves the stability result in H 1).

By a standard continuity argument (described just below Proposition 1), it is a direct
consequence of the following proposition.

Proposition 1 (A priori estimate). There exists A0 > 0, L0 > 0, and α0 > 0 such that,
for all u0 ∈ H 1(R), if ∣∣∣∣∣∣u0 −

N∑
j=1

Qc0
j
(. − x0

j )

∣∣∣∣∣∣
H 1

≤ α, (31)

where L > L0, 0 < α < α0, x0
j > x0

j−1 + L, and if for t∗ > 0,

∀t ∈ [0, t∗], u(t) ∈ VA0(L, α), (32)

then

∀t ∈ [0, t∗], u(t) ∈ VA0/2(L, α). (33)

Note that A0, L0 and α > 0 are independent of t∗.
Proposition 1 implies the stability result (i) of Theorem 1. Indeed, let A0, L0, α0 be

chosen as in Proposition 1. Suppose that u0 satisfies the assumptions of Theorem 1.
Then, by continuity of u(t) in H 1, u(t) ∈ VA0(L, α) for 0 < t < τ0 for some τ0 > 0.
Let

t∗ = sup{t ≥ 0, u(t ′) ∈ VA0(L, α), ∀t ′ ∈ [0, t]}.
Assume for the sake of contradiction that t∗ is finite. Then, by Proposition 1, we have
∀t ∈ [0, t∗], u(t) ∈ VA0/2(L, α). Therefore, by continuity of u(t) in H 1, there exists
τ > 0 such that ∀t ∈ [0, t∗ + τ ], u(t) ∈ V2A0/3(L, α), which contradicts the definition
of t∗. The stability result follows.

Proof of Proposition 1. Let A0 > 0 to be fixed later. First, for 0 < α0 < αI (A0) and
L0 > LI (A0) > L1, we have

A0

(
α0 + e−γ0L0/2

)
≤ α1, (34)
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where α1 and L1 are defined in Lemma 1. Therefore, by (32) and Lemma 1, there exist
cj : [0, t∗] → (0,+∞), xj : [0, t∗] → R, such that

ε(t, x) = u(t, x) −
N∑

j=1

Rj (t, x), where Rj (t, x) = Qcj (t)(x − xj (t)), (35)

satisfies ∀j , ∀t ∈ [0, t∗],∫
Rj (t)ε(t) =

∫
(Rj (t))xε(t) = 0, (36)

|cj (t) − c0
j | + |ċj | + |ẋj − c0

j | + |ε(t)|H 1 ≤ K1(A0 + 1)
(
α0 + e−γ0L0

)
. (37)

Note that by (31), Lemma 8 (see Appendix) and assumptions of the proposition,

|ε(0)|H 1 +
N∑

j=1

|cj (0) − c0
j | ≤ K1α, xj (0) − xj−1(0) ≥ L

2
. (38)

From (37) and (38), for α0 < αII (A0) and L0 > LII (A0) > 2 max(L2, L3, L4) (L2,
L3 and L4 are defined in Lemmas 3 and 4), we have ∀t ∈ [0, t∗],

c1(t) ≥ σ0, ẋ1(t) ≥ σ0, cj (t) − cj−1(t) ≥ σ0, ẋj (t) − ẋj−1(t) ≥ σ0, (39)

xj (t) − xj−1(t) ≥ L/2 ≥ max(L3, L4), |ε(t)|H 1 ≤ 1

2

(σ0

8

) 1
p−1

. (40)

Therefore, we can apply Lemmas 2, 3 and 4 for all t ∈ [0, t∗].

Let α0 = min(αI (A0), αII (A0)) andL0 = max(LI (A0), LII (A0)).Now, our objec-
tive is to give a uniform upper bound on |ε(t)|H 1 and |cj (t)−cj (0)| on [0, t∗] improving
(37) for A0 large enough.

In the next lemma, we first obtain a control of the variation of cj (t) which is quadratic
in |ε(t)|H 1 . This is the key step of the stability result, based on the monotonicity property
of the local L2 norm and energy constraints. It is essential at this point to have chosen
by the modulation

∫
Rjε = 0.

Lemma 5 (Quadratic control of the variation of cj (t)). There exists K4 > 0 indepen-
dent of A0, such that, ∀t ∈ [0, t∗],

N∑
j=1

∣∣cj (t) − cj (0)
∣∣ ≤ K4

(
|ε(t)|2

H 1 + |ε(0)|2
H 1 + e−γ0L

)
. (41)

Proof.
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Step 1. Energetic control. Let β = 2
p−1 . There exists C > 0 such that

∣∣∣∣∣∣
N∑

j=1

cj (0)
[
c
β−1/2
j (t) − c

β−1/2
j (0)

]∣∣∣∣∣∣ ≤ C
(
|ε(t)|2

H 1 + |ε(0)|2
H 1 + e−γ0L

)

+C

N∑
j=1

[
cj (t) − cj (0)

]2
. (42)

Let us prove (42). By (16), we have∣∣∣∣∣∣
N∑

j=1

[
E(Rj (t)) − E(Rj (0))

]∣∣∣∣∣∣ ≤ C
(
|ε(t)|2

H 1 + |ε(0)|2
H 1 + e−γ0L

)
. (43)

Since E(Qc) = − κ
2 cβ+1/2

∫
Q2, where κ = 5−p

p+3 , we have

−
N∑

j=1

[
E(Rj (t)) − E(Rj (0))

] = κ

2

(∫
Q2

) N∑
j=1

[
c
β+1/2
j (t) − c

β+1/2
j (0)

]
.

By linearization, we have cβ+1/2
j (t)−c

β+1/2
j (0)= 2β+1

2β−1cj (0)
[
c
β−1/2
j (t) − c

β−1/2
j (0)

]
+

O
([

cj (t) − cj (0)
]2
)
. Note that 2β+1

2β−1 = 1
κ

. Therefore,

∣∣∣∣∣∣
N∑

j=1

[
E(Rj (t)) − E(Rj (0))

] + 1

2

(∫
Q2

) N∑
j=1

cj (0)
[
c
β−1/2
j (t) − c

β−1/2
j (0)

]∣∣∣∣∣∣
≤ C

N∑
j=1

[
cj (t) − cj (0)

]2
, (44)

and from (43), we obtain (42).

Step 2. L2 mass monotonicity at the right of every soliton. Let

dj (t) =
N∑

k=j

c
β−1/2
k (t).

We claim(∫
Q2

) ∣∣dj (t) − dj (0)
∣∣ ≤ −

(∫
Q2

)
(dj (t) − dj (0)) + C

[∫
ε2(0) + e−γ0L

]
.

(45)

Let us prove (45). Recall that using the notation of Sect. 2.3, we have

Ij (t) ≤ Ij (0) + K3e
−γ0L, where Ij (t) =

∫
ψ(x − mj(t))u

2(t, x)dx.
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Since
∫
R2

j (t) = c
β−1/2
j (t)

∫
Q2,

∫
Rj (t)ε(t) = 0, by similar calculations as in

Lemma 2, we have

∣∣∣∣Ij (t) −
(∫

Q2
)
dj (t) −

∫
ψ(. − mj(t))ε

2(t)

∣∣∣∣ ≤ Ce−γ0L. (46)

Therefore,

(∫
Q2

)
(dj (t) − dj (0)) ≤

∫
ψ(. − mj(0))ε

2(0) −
∫

ψ(. − mj(t))ε
2(t) + Ce−γ0L.

(47)

Since the second term on the right-hand side is negative, (45) follows easily. Note that
by conservation of the L2 norm

∫
u2(t) = ∫

u2(0) and

∫
u2(t) =

∫
R2(t) +

∫
ε2(t) + 2

∫
R(t)ε(t) =

∫
R2(t) +

∫
ε2(t)

= d1(t) +
∫

ε2(t) + O(e−γ0L),

we obtain

(∫
Q2

)
(d1(t) − d1(0)) ≤

∫
ε2(0) −

∫
ε2(t) + Ce−γ0L. (48)

Step 3. Resummation argument. By the Abel transform, we have

N∑
j=1

cj (0)
[
c
β−1/2
j (t) − c

β−1/2
j (0)

]

=
N−1∑
j=1

cj (0)
[
dj (t) − dj+1(t) − (dj (0) − dj+1(0))

] + cN(0) [dN(t) − dN(0)]

= c1(0) [d1(t) − d1(0)] +
N∑

j=2

(cj (0) − cj−1(0))(dj (t) − dj (0)). (49)

Therefore, by Step 1,

−

c1(0) [d1(t) − d1(0)] +

N∑
j=2

(cj (0) − cj−1(0))(dj (t) − dj (0))




≤ C
(
|ε(t)|2

H 1 + |ε(0)|2
H 1 + e−γ0L

)
+ C

N∑
j=1

[
cj (t) − cj (0)

]2
. (50)
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Since c1(0) ≥ σ0, cj (0) − cj−1(0) ≥ σ0, by (45), we have

σ0

N∑
j=1

∣∣dj (t) − dj (0)
∣∣

≤ c1(0)|d1(t) − d1(0)| +
N∑

j=2

(cj (0) − cj−1(0))|dj (t) − dj (0)|

≤ −

c1(0) [d1(t) − d1(0)] +

N∑
j=2

(cj (0) − cj−1(0))(dj (t) − dj (0))




+ C

∫
ε2(0) + Ce−γ0L.

Thus, by (50), we have

N∑
j=1

∣∣dj (t) − dj (0)
∣∣ ≤ C

(
|ε(t)|2

H 1 + |ε(0)|2
H 1 + e−γ0L

)
+ C

N∑
j=1

[
cj (t) − cj (0)

]2
.

Since

|cj (t) − cj (0)| ≤ C|cβ−1/2
j (t) − c

β−1/2
j (0)|

≤ C(|dj (t) − dj (0)| + |dj+1(t) − dj+1(0)|),

we obtain,

N∑
j=1

∣∣cj (t) − cj (0)
∣∣ ≤ C

(
|ε(t)|2

H 1 + |ε(0)|2
H 1 + e−γ0L

)
+ C

N∑
j=1

[
cj (t) − cj (0)

]2
.

Choosing a smaller α0(A0) and a larger L0(A0), by (37), we assume C|cj (t)− cj (0)| ≤
1/2 and so

N∑
j=1

∣∣cj (t) − cj (0)
∣∣ ≤ C

(
|ε(t)|2

H 1 + |ε(0)|2
H 1 + e−γ0L

)
. (51)

Thus, Lemma 5 is proved.
Now, we prove the following lemma, giving uniform control on |ε(t)|H 1 on [0, t∗].

Lemma 6 (Control of |ε(t)|H 1 ). There exists K5 > 0 independent of A0, such that,
∀t ∈ [0, t∗],

|ε(t)|2
H 1 ≤ K5

(
|ε(0)|2

H 1 + e−γ0L
)
.

Proof. It follows from direct calculation on the energy, and the previous estimates
obtained by the Abel transform, freezing the cj (t) at the first order.
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By (16), (44), (49) and (51), we have

1

2

∫
ε2
x(t) − pRp−1(t)ε2(t)

≤ −
N∑

j=1

[
E(Rj (t)) − E(Rj (0))

] + K2

(
|ε(0)|2

H 1 + |ε(t)|3
H 1 + e−γ0L

)

≤ 1

2

(∫
Q2

) N∑
j=1

cj (0)
[
c
β−1/2
j (t) − c

β−1/2
j (0)

]
+ C

N∑
j=1

[
cj (t) − cj (0)

]2

+K2

(
|ε(0)|2

H 1 + |ε(t)|3
H 1 + e−γ0L

)

≤ 1

2

(∫
Q2

)
c1(0) [d1(t) − d1(0)] +

N∑
j=2

(cj (0) − cj−1(0))(dj (t) − dj (0))




+C
(
|ε(0)|2

H 1 + |ε(t)|3
H 1 + e−γ0L

)
.

Therefore, using (47) and (48), and again Lemma 5, we have

∫
ε2
x(t) − pRp−1(t)ε2(t)

≤ −

c1(0)

∫
ε2(t) +

N∑
j=2

(cj (0) − cj−1(0))
∫

ψ(x − mj(t))ε
2(t)




+ C
(
|ε(0)|2

H 1 + |ε(t)|3
H 1 + e−γ0L

)
≤ −

∫
c(t, x)ε2(t) + C

(
|ε(0)|2

H 1 + |ε(t)|3
H 1 + e−γ0L

)
, (52)

where c(t, x) = c1(t) + ∑N
j=2(cj (t) − cj−1(t))ψ(x − mj(t)).

By Lemma 4,

∫
ε2
x(t) − pRp−1(t)ε2(t) + c(t, x)ε2(t) ≥ λ0|ε(t)|2H 1 .

Therefore, from (52), we obtain

|ε(t)|2
H 1 ≤ C

(
|ε(0)|2

H 1 + |ε(t)|3
H 1 + e−γ0L

)
,

and so

|ε(t)|2
H 1 ≤ K5

(
|ε(0)|2

H 1 + e−γ0L
)
,

for some constant K5 > 0, independent of A0. Thus Lemma 6 is proved.
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We conclude the proof of Proposition 1 and of the stability result. By (38) and Lemmas
5 and 6, we have∣∣∣∣∣∣u(t) −

N∑
j=1

Qc0
j
(x − xj (t))

∣∣∣∣∣∣
H 1

≤
∣∣∣∣∣∣u(t) −

N∑
j=1

Rj (t)

∣∣∣∣∣∣
H 1

+
∣∣∣∣∣∣

N∑
j=1

Rj (t) −
N∑

j=1

Qc0
j
(x − xj (t))

∣∣∣∣∣∣
H 1

≤ |ε(t)|H 1 + C

N∑
j=1

|cj (t) − c0
j |

≤ |ε(t)|H 1 + C

N∑
j=1

|cj (t) − cj (0)| + C

N∑
j=1

|cj (0) − c0
j |

≤ |ε(t)|H 1 + CK4(|ε(0)|2H 1 + e−γ0L) + CK1α

≤ K6

(
α + e−γ0L/2

)
,

where K6 > 0 is a constant independent of A0.
Choosing A0 = 4K6, we complete the proof of Proposition 1 and thus the proof of

Theorem 1 (i).

4. Proof of the Asymptotic Stability Result

This section is devoted to the proof of the asymptotic stability result (Theorem 1 (ii)).

4.1. Asymptotic stability around the solitons. In this subsection, we prove the following
asymptotic result on ε(t) as t → +∞.

Proposition 2 (Convergence around solitons, p = 2, 3, 4). Under the assumptions of
Theorem 1, the following is true:

(i) Convergence of ε(t): ∀j ∈ {1, . . . , N},

ε(t, . + xj (t)) ⇀ 0 in H 1(R) as t → +∞. (53)

(ii) Convergence of geometric parameters: there exists 0 < c+∞
1 < · · · < c+∞

N , such
that

cj (t) → c+∞
j , ẋj (t) → c+∞

j as t → +∞.

The proof of this result is very similar to the proof of the asymptotic stability of a
single soliton in Martel and Merle [16] for the subcritical case (see also the previous
paper [14] concerning the critical case p = 5). The proof is based on the following
rigidity result of solutions of (1) around solitons.
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Theorem (Liouville property close to Rc0 for p = 2, 3, 4 [16]). Let p = 2, 3 or 4,
and let c0 > 0. Let u0 ∈ H 1(R), and let u(t) be the solution of (1) for all time t ∈ R.
There exists α0 > 0 such that if |u0 − Rc0 |H 1 < α0, and if there exists y(t) such that

∀δ0 > 0, ∃A0 > 0/∀t ∈ R,

∫
|x|>A0

u2(t, x + y(t))dx ≤ δ0, (L2 compactness),

(54)

then there exists c∗ > 0, x∗ ∈ R such that

∀t ∈ R,∀x ∈ R, u(t, x) = Qc∗(x − x∗ − c∗t).

This result gives a classification of the solutions around the solitons that have a certain
property of uniform localization of the L2 mass around a center y(t) (54). Let us give a
few words on the proof of such a result (see [16]). First, (54) implies a much stronger
property on u(t):

∀t, x ∈ R, |u(t, x + y(t))| ≤ Ce−θ |x|, (55)

C, θ > 0, which is proved by using a functional of the type Ij (t) in Sect. 2.2. Note
that (55) is a purely nonlinear estimate. It implies strong localization properties in H 1,
which reduces the nonlinear problem for α0 small enough to a similar Liouville prob-
lem on a linear equation: wt + (Lw)x = 0, where L is the linearized operator Lw =
−wxx + w − pQp−1w. Finally, the linear Liouville property is proved by a Virial type
quantity (

∫
yw2) whose derivative in time involves an explicit quadratic form on w.

In [16], we prove that this theorem implies the asymptotic stability of a 1-soliton in
the following way. Suppose tn → +∞ and ũ0 satisfy that u(tn, x(tn) + .) ⇀ ũ0 in H 1

as n → +∞. Then we can prove that the solution associated to initial data ũ0 is L2

compact in the sense of (54) and hence ũ0 is a soliton. This concludes the proof.

Proof of Proposition 2 (i). Consider a solution u(t) satisfying the assumptions of The-
orem 1. Then, by Sect. 3, we known that u(t) is uniformly close in H 1(R) to the
superposition of N solitons for all time t ≥ 0. With the decomposition introduced in
Sect. 2, it is equivalent that ε(t) is uniformly small in H 1(R) and

∑N
j=1 |cj (t)− cj (0)|

is uniformly small. Therefore, we can assume that, ∀t ≥ 0,

c1(t) ≥ σ0, cj (t) − cj−1(t) ≥ σ0.

The proof of Proposition 2 is by contradiction. Let j ∈ {1, . . . , N}. Assume that for
some sequence tn → +∞, we have

ε(tn, . + xj (tn)) �⇀ 0 in H 1(R) as t → +∞.

Since 0 < σ0 < cj (t) < c̄ and |ε(t)|H 1 ≤ C for all t ≥ 0, there exists ε̃0 ∈ H 1(R),
ε̃0 �≡ 0, and c̃0 > 0 such that for a subsequence of (tn), still denoted (tn), we have

ε(tn, . + xj (tn)) ⇀ ε̃0 in H 1(R), cj (tn) → c̃0 as n → +∞. (56)

Moreover, by weak convergence and the stability result, |ε̃0|H 1 ≤ supt≥0 |ε(t)|H 1 ≤
C(α0 + e−γ0L0), and therefore |ε̃0|H 1 is as small as we want by taking α0 small and L0
large.

Let now ũ(0) = Qc̃0 + ε̃0, and let ũ(t) be the global solution of (1) for t ∈ R, with
ũ(0) as initial data. Let x̃(t) and c̃(t) be the geometrical parameters associated to the
solution ũ(t) (apply the modulation theory for a solution close to a single soliton).

We claim that the solution ũ(t) is L2 compact in the sense of (54).
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Lemma 7 (L2 compactness of the asymptotic solution).

∀δ0 > 0, ∃A0 > 0/∀t ∈ R,

∫
|x|>A0

ũ2(t, x + x̃(t))dx ≤ δ0. (57)

Assuming this lemma, we finish the proof of Proposition 2 (i). Indeed, by choosing α0
small enough and L0 large enough, we can apply the Liouville theorem to ũ(t). There-
fore, there exists c∗ > 0 and x∗ ∈ R, such that ũ(t) = Qc∗(x − x∗ − c∗t). In particular,
ũ(0) = Qc̃0 + ε̃0 = Qc∗(x − x∗). Since by weak convergence

∫
ε̃0(Qc0)x = 0, we

have easily x∗ = 0. Next, since
∫
ε̃0Q = 0, we have c∗ = c̃0 and so ε̃0 ≡ 0. This is a

contradiction.
Thus Proposition 2 (i) is proved assuming Lemma 7. The proof of Lemma 7 is based

only on arguments of monotonicity of the L2 mass in the spirit of [16, 17].

Proof of Lemma 7. We use the function ψ introduced in Sect. 2.2. For y0 > 0, we
introduce two quantities:

JL(t) =
∫

(1 − ψ(x − (xj (t) − y0)))u
2(t, x)dx,

JR(t) =
∫

ψ(x − (xj (t) + y0))u
2(t, x)dx. (58)

The strategy of the proof is the following. We prove first that JL(t) is almost increas-
ing and JR(t) is almost decreasing in time. Then, assuming by contradiction that ũ(t) is
not L2 compact, using the convergence of u(t) to ũ(t) for all time, we prove that the L2

norm of u(t) in the compact set [−y0, y0], for y0 large enough, oscillates between two
different values. This proves that there are infinitely many transfers of mass from the
right-hand side of the soliton j to the left-hand side of the soliton j . This is of course
impossible since the L2 norm of u(t) is finite.

Step 1. Monotonicity on the right and on the left of a soliton. We claim

Claim. There exists C1, y1 > 0 such that ∀y0 > y1, ∀t ′ ∈ [0, t],

JL(t) ≥ JL(t
′) − C1e

−γ0y0 , JR(t) ≤ JR(t
′) + C1e

−γ0y0 . (59)

We prove this claim. First note that it is sufficient to prove (59) for JL(t). Indeed,
since u(−t,−x) is also a solution of (1), and since 1 − ψ(−x) = ψ(x), we can ar-
gue backwards in time (from t to t ′) to obtain the result for JR(t). By using the same
argument as in Lemma 3, we prove easily, for y0 large enough, for all 0 < t ′ < t ,∫

ψ(. − (xj (t) − y0 − σ0
2 (t − t ′)))u2(t) ≤

∫
ψ(. − (xj (t

′) − y0))u
2(t ′) + C1e

−γ0y0

≤
∫

u2(t ′) − JL(t
′) + C1e

−γ0y0 .

Since
∫
u2(t) = ∫

u2(t ′) and∫
u2(t)−JL(t) =

∫
ψ(.−(xj (t)−y0))u

2(t) ≤
∫

ψ(.−(xj (t)−y0− σ0
2 (t−t ′)))u2(t),

we obtain the result.
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Step 2. Conclusion of the proof. Recall from [16] that we have stability of (1) by weak
convergence in H 1(R) in the following sense:

∀t ∈ R, u(t + tn, . + xj (t + tn)) −→ ũ(t, . + x̃(t)) in L2
loc(R) as n → +∞.

(60)

This was proved in [16] by using the fact that the Cauchy problem for (1) is well posed
both in H 1(R) and in Hs∗

(R), for some 0 < s∗ < 1, for any p = 2, 3, 4 (see [9]).

We prove Lemma 7 by contradiction. Let

m0 =
∫

ũ2(0) =
∫

ũ2(t).

Assume that there exists δ0 > 0 such that for any y0 > 0, there exists t0(y0) ∈ R, such
that ∫

|x|<2y0

ũ2(t0(y0), x + x̃(t0(y0)))dx ≤ m0 − δ0. (61)

Fix y0 > 0 large enough so that∫
(ψ(x + y0) − ψ(x − y0))ũ

2(0, x)dx ≥ m0 − 1

10
δ0, (62)

C1e
−γ0y0 + m0 sup

|x|>2y0

{ψ(x + y0) − ψ(x − y0)} ≤ 1

10
δ0.

Assume that t0 = t0(y0) > 0 and, by possibly considering a subsequence of (tn), that
∀n, tn+1 ≥ tn + t0.

Observe that, since 0 < ψ < 1 and ψ ′ > 0, by the choice of y0 and (61), we have∫
(ψ(x − (x̃(t0) − y0)) − ψ(x − (x̃(t0) + y0)))ũ

2(t0, x)dx

≤
∫

|x|<2y0

ũ2(t0, x + x̃(t0))dx + m0 sup
|x|>2y0

{ψ(x + y0) − ψ(x − y0)}

≤
∫

|x|<2y0

ũ2(t0, x + x̃(t0))dx + 1

10
δ0 ≤ m0 − 9

10
δ0. (63)

Then, by (62), (63) and (60), there exists N0 > 0 large enough so that ∀n ≥ N0,∫
(ψ(x − (xj (tn) − y0)) − ψ(x − (xj (tn) + y0)))u

2(tn, x)dx ≥ m0 − 1

5
δ0. (64)

∫
(ψ(x−(xj (tn+t0) − y0))−ψ(x − (xj (tn+t0) + y0)))u

2(tn+t0, x)dx ≤ m0− 4

5
δ0.

(65)

Recall that from Step 1, and the choice of y0, we have JR(tn + t0) ≤ JR(tn)+ 1
10δ0.

Therefore, by conservation of the L2 norm and (65), (64), we have

JL(tn + t0) ≥ JL(tn) + 1

2
δ0.
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Since JL(tn+1) ≥ JL(tn + t0) − 1
10δ0 by Step 1, we finally obtain

∀n ≥ N0, JL(tn+1) ≥ JL(tn) + 2

5
δ0.

Of course, this is a contradiction. Thus the proof of Lemma 7 is complete.

Proof of Proposition 2 (ii). The proof is similar to the proof of Proposition 3 in [16]. It
follows again from monotonicity arguments and the fact that we consider the subcritical
case 1 < p < 5.

Let δ > 0 be arbitrary. Since
∫
R2

j (t) = c

5−p
2(p−1)
j (t)

∫
Q2 and ε(t, . + xj (t)) → 0 in

L2
loc as t → +∞, there exists T1(δ) > 0 and y1(δ) such that ∀t > T1(δ), ∀y0 > y1(δ),∣∣∣∣
∫

(ψ(x − (xj (t) − y0)) − ψ(x − (xj (t) + y0)))u
2(t, x)dx − c

5−p
2(p−1)
j (t)

∫
Q2

∣∣∣∣ ≤ δ.

By Step 1 of the proof of Lemma 7, there exists y2(δ), such that we have, for all
0 < t ′ < t , ∀y0 > y2(δ),

JL(t) ≥ JL(t
′) − δ, JR(t) ≤ JR(t

′) + δ.

Fix y0 = max(y1(δ), y2(δ)), it follows that there exists T2(δ), J
+∞
L ≥ 0 and J+∞

R ≥ 0
such that

∀t ≥ T2(δ), |JL(t) − J+∞
L | ≤ 2δ, |JR(t) − J+∞

R | ≤ 2δ.

Therefore, by conservation of L2 mass, we have, for all 0 < max(T1, T2) < t ′ < t ,∣∣∣∣c 5−p
2(p−1)
j (t) − c

5−p
2(p−1)
j (t ′)

∣∣∣∣ ≤ C δ.

Since δ is arbitrary, it follows that c
5−p

2(p−1)
j (t) has a limit as t → +∞. Thus there exists

c+∞
j > 0 such that cj (t) → c+∞

j as t → +∞. The fact that ẋj (t) → c+∞
j is a direct

consequence of (15).

4.2. Asymptotic behavior on x > ct . In this subsection, using the same argument of
monotonicity of L2 mass, we prove the following proposition.

Proposition 3 (Convergence for x > c0
1t/10). Under the assumptions of Theorem 1,

the following is true:

|ε(t)|L2(x>c0
1 t/10) → 0 as t → +∞. (66)

Proof. By arguing backwards in time (from t to 0) and using the conservation of the L2

norm, we have∫
ψ(. − (xN(t) + y0))u

2(t) ≤
∫

ψ(. − (xN(0) + σ0
2 t + y0))u

2(0) + C1e
−γ0y0 .
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Therefore,∫
x>xN (t)+y0

ε2(t) ≤ 2
∫

ψ(. − (xN(0) + σ0
2 t + y0))u

2(0) + Ce−γ0y0 .

Since for fixed y0,
∫
xN (t)<x<xN (t)+y0

ε2(t) → 0 as t → +∞, we conclude
∫
x>xN (t)

ε2(t)

→ 0 as t → +∞.

Now, let us prove
∫
x>xj (t)

ε2(t) → 0 as t → +∞ by backwards induction on j .

Assume that for j0 ∈ {2, . . . , N}, we have
∫
x>xj0 (t)

ε2(t) → 0 as t → +∞. For t ≥ 0

large enough, there exists 0 < t ′ = t ′(t) < t , satisfying

xj0(t
′) − xj0−1(t

′) − σ0
2 (t − t ′) = 2y0.

Indeed, for t large enough, xj0(t)−xj0−1(t) ≥ σ0
2 t ≥ 2y0, and xj0(0)−xj0−1(0)− σ0

2 t <

0 < 2y0. Then,∫
ψ(.− (xj0−1(t)+y0)) u

2(t) ≤
∫

ψ(. − (xj0−1(t
′)+ σ0

2 (t−t ′)+y0))u
2(t ′)+Ce−γy0

≤
∫

ψ(. − (xj0(t
′) − y0))u

2(t ′)+Ce−γ0y0 . (67)

Let δ > 0 be arbitrary. By L2
loc convergence of ε(t, . + xj0(t)) and the induction

assumption, we have, for fixed y0,∫
x>xj0 (t)+2y0

ε2(t) → 0 as t → +∞.

Therefore, by Proposition 2, there exists T = T (δ) > 0, such that ∀t > T , ∀y0 > y0(δ),∣∣∣∣∣∣
∫

ψ(. − (xj0(t) − y0))u
2(t) −

(∫
Q2

) N∑
k=j0

(c+∞
k )

5−p
2(p−1)

∣∣∣∣∣∣ ≤ δ. (68)

Moreover, since t ′(t) → +∞ as t → +∞, by possibly taking a larger T (δ), we also
have ∣∣∣∣∣∣

∫
ψ(. − (xj0(t

′) − y0))u
2(t ′) −

(∫
Q2

) N∑
k=j0

(c+∞
k )

5−p
2(p−1)

∣∣∣∣∣∣ ≤ δ, (69)

and so∣∣∣∣
∫

ψ(. − (xj0(t) − y0))u
2(t) −

∫
ψ(. − (xj0(t

′) − y0))u
2(t ′)

∣∣∣∣ ≤ 2δ. (70)

Thus, by (67), we have∫
ψ(. − (xj0−1(t) + y0))u

2(t) ≤
∫

ψ(. − (xj0(t) − y0))u
2(t) + 2δ + Ce−γ0y0 .

(71)
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Since ψ(x) ≥ 1/2 for x > 0, by the decay properties of Q and (71), we obtain∫
xj0−1(t)+y0<y<xj0 (t)−y0

ε2(t)

≤ 2

(∫
ψ(.− (xj0−1(t)+y0))u

2(t)−
∫

ψ(. − (xj0(t) − y0))u
2(t)

)
+Ce−γ0y0

≤ 4δ + C′e−γ0y0 .

Thus,
∫
x>xj0−1(t)

ε2(t) → 0 as t → +∞.

Finally, we prove
∫
x>c0

1 t/10 ε
2(t) → 0 as t → +∞. Indeed, let 0 < t ′ = t ′(t) < t

be such that x1(t
′) − c0

1
20 (t + t ′) = y0. Then, for supt≥0 |ε(t)|H 1 small enough,

∫
ψ

(
x − c0

1

10
t

)
u2(t) ≤

∫
ψ

(
x −

(
c0

1

10
t ′ + c0

1

20
(t − t ′)

))
u2(t ′) + Ce−γ0y0

≤
∫

ψ(x − (x1(t
′) − y0))u

2(t ′) + Ce−γ0y0 .

Arguing as before, this is enough to conclude the proof.

Proof of Corollary 1. Note first that∣∣∣∣∣∣U(N)( . ; c0
j ,−yj ) −

N∑
j=1

Qc0
j
(. − yj )

∣∣∣∣∣∣
H 1

→ 0 as inf(yj+1 − yj ) → +∞. (72)

For γ0, A0, L0 and α0 as in the statement of Theorem 1, let α < α0, L > L0 be such
that A0

(
α + e−γ0L

)
< δ1/2 and∣∣∣∣∣∣U(N)( . ; c0

j ,−yj ) −
N∑

j=1

Qc0
j
(. − yj )

∣∣∣∣∣∣
H 1

≤ δ1/2, for yj+1 − yj > L. (73)

Let v(t, x) = U(N)(x; c0
j ,−(x0

j + c0
j t)) be an N -soliton solution. Let T > 0 be such

that

∀t ≥ T1,

∣∣∣∣∣∣v(t) −
N∑

j=1

Qc0
j
(. − (x0

j + c0
j t))

∣∣∣∣∣∣
H 1

≤ α/2, (74)

and ∀j, x0
j+1 + c0

j+1T ≥ x0
j + c0

j T + 2L.

By continuous dependence of the solution of (1) with respect to the initial data (see
[9]), there exists α1 > 0 such that if |u(0)−v(0)|H 1 ≤ α1, then |u(T )−v(T )|H 1 ≤ α/2.
Therefore, by (74) ∣∣∣∣∣∣u(T ) −

N∑
j=1

Qc0
j
(. − (x0

j + c0
j T ))

∣∣∣∣∣∣
H 1

≤ α.
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Thus, by Theorem 1 (i), there exists xj (t), for all t ≥ T such that

∀t ≥ T ,

∣∣∣∣∣∣u(t) −
N∑

j=1

Qc0
j
(. − xj (t))

∣∣∣∣∣∣
H 1

≤ A0

(
α + e−γ0L

)
< δ1/2.

Moreover, xj+1(t) > xj (t) + L. Together with (73), this gives the stability result.
Finally, Theorem 1 (ii) and (72) prove the asymptotic stability of the family of

N -solitons.

Appendix : Modulation of a Solution Close to the Sum of N Solitons

In this appendix, we prove the following lemma:
Let 0 < c0

1 < · · · < c0
N , σ0 = 1

2 min(c0
1, c

0
2 − c0

1, c
0
3 − c0

2, . . . , c
0
N − c0

N−1). For
α,L > 0, we consider the neighborhood of size α of the superposition of N solitons of
speed c0

j , located at a distance larger than L,

U(α, L) =

u ∈ H 1(R); inf

xj>xj−1+L

∣∣∣∣∣∣u −
N∑

j=1

Qc0
j
(. − xj )

∣∣∣∣∣∣
H 1

≤ α


 . (75)

(Note that functions in U(α, L) have no time dependency.)

Lemma 8 (Choice of the modulation parameters). There exists α1 > 0, L1 > 0 and
unique C1 functions (cj , xj ) : U(α1, L1) → (0,+∞)× R, such that if u ∈ U(α1, L1),
and

ε(x) = u(x) −
N∑

j=1

Qcj (. − xj ), (76)

then ∫
Qci (x − xi)ε(x)dx =

∫
(Qci )x(x − xi)ε(x)dx = 0. (77)

Moreover, there exists K1 > 0 such that if u ∈ U(α, L), with 0 < α < α1, L > L1, then

|ε|H 1 +
N∑

j=1

|cj − c0
j | ≤ K1α, xj > xj−1 + L − K1α. (78)

Proof. Let u ∈ U(α, L). It is clear that for α small enough and L large enough, the
infimum

inf
xj∈R

∣∣∣∣∣∣u −
N∑

j=1

Qc0
j
(. − xj )

∣∣∣∣∣∣
H 1

is attained for (xj ) satisfying xj > xj−1+L−Cα, for some constantC > 0 independent
of L and α. By using standard arguments involving the implicit function theorem, there
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exist α1, L1 > 0 such that there exist unique C1 functions (rj ) : U(α1, L1) → R, such
that for all u ∈ U(α, L), for 0 < α < α1, L > L1, we have∣∣∣∣∣∣u −

N∑
j=1

Qc0
j
(. − rj (u))

∣∣∣∣∣∣
H 1

= inf
xj∈R

∣∣∣∣∣∣u −
N∑

j=1

Qc0
j
(. − xj )

∣∣∣∣∣∣
H 1

≤ α.

Moreover, rj (u) − rj−1(u) > L − Cα.

For some cj , yj , u ∈ H 1(R), let

Qcj ,yj (x) = Qcj (x − rj (u) − yj ), ε(x) = u(x) −
N∑

j=1

Qcj ,yj (x).

Define the following functionals:

ρ1,j (c1, . . . , cN , y1, . . . , yN , u) =
∫

Qcj ,yj (x)ε(x)dx,

ρ2,j (c1, . . . , cN , y1, . . . , yN , u) =
∫

(Qcj ,yj )x(x)ε(x)dx,

and ρ = (ρ1,1, ρ2,1, . . . , ρ1,N , ρ2,N ). Let M0 = (c0
1, . . . , c

0
N, 0, . . . , 0,

∑N
j=1 Qc0

j ,0
).

We claim the following.

Claim. (i) ∀j ,

∂ρ1,j

∂cj
(M0) = − 5 − p

4(p − 1)
(c0

j )
7−3p

2(p−1)

∫
Q2,

∂ρ1,j

∂yj
(M0) = 0,

∂ρ2,j

∂cj
(M0) = 0,

∂ρ2,j

∂yj
(M0) = (c0

j )
p+3

2(p−1)

∫
Q2

x.

(ii) ∀j �= k,∣∣∣∣∂ρ1,j

∂ck
(M0)

∣∣∣∣ +
∣∣∣∣∂ρ1,j

∂yk
(M0)

∣∣∣∣ +
∣∣∣∣∂ρ2,j

∂ck
(M0)

∣∣∣∣ +
∣∣∣∣∂ρ2,j

∂yk
(M0)

∣∣∣∣ ≤ Ce−√
σ0L/2.

Proof of the claim. Since

∂Qcj ,yj

∂cj
|(c0

j ,0)
= 1

2c0
j

(
2

p − 1
Qc0

j ,0
+(x − rj )(Qc0

j ,0
)x

)
,
∂Qcj ,yj

∂yj
|(c0

j ,0)
= −(Qc0

j ,0
)x,

we have by direct calculations:

∂ρ1,j

∂cj
(M0) = −

∫
Qc0

j ,0

∂Qcj ,yj

∂cj
|(c0

j ,0)

= − 1

2c0
j

∫
Qc0

j ,0

(
2

p − 1
Qc0

j ,0
+ (x − rj )(Qc0

j ,0
)x

)

= −1

2
(c0

j )
7−3p

2(p−1)

∫
Q

(
2

p − 1
Q + xQx

)
= −1

2
(c0

j )
7−3p

2(p−1)
5 − p

2(p − 1)

∫
Q2,
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by change of variable and integration by parts. For j �= k,∣∣∣∣∂ρ1,j

∂ck
(M0)

∣∣∣∣ = 1

2c0
k

∣∣∣∣
∫

Qc0
j ,0

(
2

p − 1
Qc0

k ,0
+ (x − rk)(Qc0

k ,0
)x

)∣∣∣∣
≤ C

∫
e−√

σ0(|x−rj |+|x−rk |)dx ≤ e−√
σ0|rj−rk |/2 ≤ Ce−√

σ0L/2.

The rest is done in a similar way, using
∫
QQx = 0, and

∫
(Qc)

2
x = c

p+3
2(p−1)

∫
Q2

x .

It follows that ∇ρ(M0) = D + P , where D is a diagonal matrix with nonzero
coefficients of order one on the diagonal, and ‖P ‖ ≤ Ce−√

σ 0L/2. Therefore, for L large
enough, the absolute value of the Jacobian of ρ at M0 is larger than a positive constant
depending only on the c0

j . Thus, by the implicit function theorem, by possibly taking

a smaller α1, there exist C1 functions (cj , yj ) of u ∈ U(α1, L1) in a neighborhood
of (c0

1, . . . , c
0
N, 0, . . . , 0) such that ρ(c1, . . . , cN , y1, . . . , yN , u) = 0. Moreover, for

some constant K1 > 0, if u ∈ U(α, L1), where 0 < α < α1, then

N∑
j=1

|cj − c0
j | +

N∑
j=1

|yj | ≤ K1α.

The fact that |ε|H 1 ≤ K1α then follows from its definition. Finally, we choose xj (u) =
rj (u) + yj (u).
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er equations. (English) In: Spectral Theory, Microlocal Analysis, Singular Manifolds. Demuth,
Michael et al., eds., Math. Top. 14, Berlin: Akademie Verlag, 1997, pp. 78–137

24. Weinstein, M.I.: Modulational stability of ground states of nonlinear Schrödinger equations. SIAM
J. Math. Anal. 16, 472–491 (1985)

25. Weinstein, M.I.: Lyapunov stability of ground states of nonlinear dispersive evolution equations.
Comm. Pure. Appl. Math. 39, 51–68 (1986)

Communicated by P. Constantin


