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This note proves the orbital stability in the energy space H1/2 of the sum of widely
spaced 1-solitons for the Benjamin–Ono equation, with speeds arranged so as to
avoid collisions. © 2009 American Institute of Physics. �DOI: 10.1063/1.3032578�

I. INTRODUCTION

In this article we study the stability problem of the sum of K solitons for the Benjamin–Ono
�BO� equation for u�t ,x� :R+�R→R,

ut = − �H�xu + u2�x, �1.1�

where H is the Hilbert transform operator defined by

Hf�x� = p.v.
1

�
�

R

f�y�
x − y

dy .

Alternatively, if we denote D=�−�x
2, we have H�x=−D and we can rewrite the Cauchy problem

for �1.1� as1

ut = �Du − u2�x,

�1.2�
u�0,x� = u0�x� .

This equation is a model for one-dimensional long waves in deep stratified fluids �Refs. 1 and 18�.
The BO equation is completely integrable and has infinitely many conserved quantities �Refs.

11 and 12�. Two of them are the L2 mass,

N�u� =
1

2
�

R
u2dx ,

and the energy,

E�u� = �
R

1

2
uDu −

1

3
u3dx .

a�Electronic mail: gustaf@math.ubc.ca.
b�Electronic mail: takaoka@math.sci.hokudai.ac.jp.
c�Electronic mail: ttsai@math.ubc.ca.

1The Fourier transform is given by f̂���= �1 /�2���Rf�x�e−ix�dx, f�x�= �1 /�2���R f̂���eix�d�, so that �xf̂���= i� f̂���, Hf̂���
=−i sgn��� f̂���, and Df̂���= ��� f̂���.
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The energy space, where E�u� is defined, is H1/2�R�. The existence of global weak solutions u
�C��0,�� ;H1/2�R���C1��0,�� ;H−3/2�R�� to �1.2� with energy space initial data u�0,x�=u0�x�
�H1/2�R� was shown by Saut19 �see also the paper of Ginibre and Velo7�. For the strong
Hs-solution, Ionescu and Kenig8 established global well posedness for s�0 �see also the paper of
Tao20�. This solution conserves the functional N�u� �and E�u� when s�1 /2�.

The BO equation admits “K-soliton” solutions.9 The 1-solitons are of the form

u�t,x� = Qc�x − ct − x0� �c � 0,x0 � R� ,

where

Qc�x� = cQ�cx�, Q�x� =
2

1 + x2 . �1.3�

They satisfy

H�xQc + Qc
2 = cQc, �1.4�

which can be verified by using Q̂���=�2�e−���. By the explicit form �1.3�, we have

� Q2 = 2�, � Q3 = 3�, �Q,DQ� =� Q�Q2 − Q� = � . �1.5�

By rescaling,

N�Qc� = cN�Q� = �c, E�Qc� = c2E�Q� = −
�

2
c2.

The orbital �i.e., up to translations� stability of the 1-soliton in the energy norm �H1/2� was
established in Ref. 3. See Refs. 2 and 4 for earlier stability results. Here we address the stability
of the sum of widely spaced 1-solitons, with speeds arranged so as to avoid collisions. Our main
result is the following theorem.

Theorem 1.1: �Orbital stability of the sum of K solitons� Let 0�c1
0� ¯ �cK

0 . There exist
L0, A0, �0�0, and 	0� �0,1� such that for any u0�H1/2�R�, L�L0, and 0����0, if

	u0 − 

k=1

K

Qck
0�·− xk

0�	H1/2�R� 
 � �1.6�

for some xk
0 satisfying

xk+1
0 − xk

0 � L �k = 1, . . . ,K − 1� , �1.7�

then there exist C1-functions xk�t�, k=1, . . . ,K, such that the solution of �1.2� satisfies

	u�t� − 

k=1

K

Qck
0�·− xk�t��	H1/2�R� 
 A0�� + L−	0�, ∀ t � 0.

Moreover,

�ẋk�t� − ck
0� 
 A0�� + L−	0�, ∀ t � 0.

Integrable system techniques �in particular, higher conservation laws� have been used to
establish the stability of exact K-soliton solutions �see Ref. 10 for Korteweg-de Vries �KdV� and
Ref. 17 for BO 2-solitons� against perturbations which are small in �necessarily� higher Sobolev
norms. Here we are considering a different problem: stability of sums of 1-solitons �configurations
which are not themselves solutions� in the energy space. Results of this type were obtained for
KdV-type equations and nonlinear Schrödinger �NLS� equations in Refs. 5, 6, 14, and 15, respec-
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tively. Our approach follows that in Ref. 14 for generalized KdV �gKdV�, which adds to the
energy method of Weinstein21 for the 1-soliton case, the monotonicity property of the L2-mass on
the right of each soliton. Here we encounter two new difficulties. First, and most importantly, the
operator H is nonlocal, necessitating commutator estimates. Second, the decay of the soliton Q�x�
is only algebraic, meaning that the error estimates are more delicate. In particular, we use cutoff
functions whose supports expand sublinearly at the rate O�t��, 2 /3���1, similar to Ref. 15.

After the paper was completed, we learned that Kenig and Martel13 have obtained an
asymptotic stability result independently and simultaneously.

II. THE STABILITY PROOF

Here we proven Theorem 1.1 using a series of lemmas whose proofs are given in Sec. III.
So we begin by fixing speeds 0�c1

0� ¯ �cK
0 , and we suppose u

�C��0,�� ;H1/2�R���C1��0,�� ;H−3/2�R�� solves �1.2� with initial data satisfying �1.6� and �1.7�
for ���0 and L�L0, where �0�1 and L01 will be determined �depending only on the speeds
�ck

0�� in the course of the proof.

A. Decomposition of the solution

Set

T = T��,L� ª supt � 0� sup
0
s
t

inf
yj�yj−1+L/2

	u�s, ·� − 

j=1

K

Qcj
0�·− yj�	H1/2 � ��� . �2.1�

If we take ��1, then since u�C��0,�� ;H1/2�, we have T�0. In what follows, we will estimate
on the time interval �0,T�, and in the end conclude �provided � sufficiently small, L sufficiently
large� that T=�.

The first step is a decomposition of the solution.
Lemma 2.1: �Decomposition of the solution� Let 0�c1

0� ¯ �cK
0 be fixed. There exist L1

�0, �1�0, and A1�0 such that if u�t ,x� is a solution of (1.2) with initial data satisfying (1.6)
and (1.7) for some ���1 and L�L1, then for T�0 defined by (2.1), there exist unique
C1-functions cj : �0,T�→ �0, +�� and xj : �0,T�→R such that

u�t,x� = 

j=1

K

Rj�t,x� + ��t,x� , �2.2�

where

Rj�t,x� ª Qcj�t�
�x − xj�t�� ,

where ��t ,x� satisfies the orthogonality conditions

∀ j, ∀ t � �0,T�, � Rj�t, ·���t, ·� =� �Rj�t, ·��x��t, ·� = 0. �2.3�

Moreover,

	��0, ·�	H1/2 + 
k
�xk�0� − xk

0� + 
k
�ck�0� − ck

0� 
 A1� , �2.4�

and for all t� �0,T�,

xk�t� − xk−1�t� � L/2, k = 2, . . . ,K , �2.5�

	��t, ·�	H1/2 + 

j=1

K

�cj�t� − cj
0� 
 A1

�� , �2.6�
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j=1

K

�ẋj�t� − cj
0� + �cj�t�� 
 A1��� + L−2� . �2.7�

We will use 	��t , ·�	H1/2 
1 in the rest of the proof.

B. Almost monotonicity of local mass

The size of the remainder ��t ,x� will be controlled by an “almost monotone” Lyapunov
functional which we now construct. Fix

� � �2/3,1� ,

and a non-negative ��x��C2�R� so that ��x�=1 for x�1, ��x�=0 for x�0, and ��x�C1. Set

x̄k
0
ª

xk−1�0� + xk�0�
2

, �k ª
ck−1

0 + ck
0

2
, k = 2, . . . ,K ,

�1�t ,x��1, and for k=2, . . . ,K,

�k�t,x� ª ��yk�, yk ª
x − x̄k

0 − �kt

�b + t�� , �2.8�

with bª �L /16�1/�, and, finally, set for k=1, . . . ,K,

Ik�t� ª
1

2
�

R
�k�t,x�u�t,x�2dx ,

which, roughly speaking, measures the L2 mass to the right of the kth soliton.
Setting

dk ª ck�0� − ck−1�0� �k = 2, . . . ,K�, d1 = c1�0� ,

the Lyapunov function we will use is

G�t� ª E�u�t�� + 

k=1

K

dkIk�t� . �2.9�

Note that E�u�t��=E�u0� by energy conservation. The “almost monotonicity” of this functional
comes from the following key estimate.

Lemma 2.2: �Almost monotonicity of mass on the right of each soliton� Under the decom-
position in (2.2), there is C2�0 such that

Ik�t� − Ik�0� 
 C2L1/�−3/2 + C2L1−1/� sup
t���0,t�

	��t��	L2
2 .

In light of �2.9�, this lemma implies the estimate

G�t� 
 G�0� + CL1/�−3/2 + CL1−1/� sup
t���0,t�

	��t��	L2
2 . �2.10�

C. Decomposition of the energy

As above, set RkªQck�t��x−xk�t��, Rª
k=1
K Rk, and define

�k�t,x� ª �k�t,x� − �k+1�t,x�, k = 1, . . . ,K − 1, �K�t,x� = �K�t,x�

�so �k is localized near the kth soliton�, and the �time-dependent� operator
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HK ª D − 2R + 

k=1

K

ck�t��k.

The functional G can be expanded as follows.
Lemma 2.3: �Energy decomposition� There is C3�0 such that

�G�t� − 

k

�E�Rk� + ck�0�N�Rk�� +
1

2
���t�,HK��t����


 C3�L−2 + 	��t�	L2

k

�ck�0� − ck�t�� + 	��t�	H1/2
3 � .

We also need the following.
Lemma 2.4: Let Fc�u�=E�u�+cN�u�. We have for some C�0 and c close to c0 that

0 
 Fc0�Qc0� − Fc0�Qc� 
 C�c − c0�2.

Combining Eq. �2.10� and Lemmas 2.3 and 2.4 yields

���t�,HK��t�� 
 C�
k
�ck�0� − ck�t��	��t�	L2 + 	��t�	H1/2

3 + 
k
�ck�0� − ck�t��2 + 	��0�	H1/2

2 + L1/�−3/2

+ L1−1/� sup
t���0,t�

	��t��	L2
2 � . �2.11�

Next we need quadratic control of ck�t�−ck�0�.
Lemma 2.5: �Quadratic control of speed change�


k
�ck�t� − ck�0�� � L1/�−3/2 + L1−1/� sup

0
�
t
	����	L2

2 + 	��t�	H1/2
2 + 	��0�	H1/2

2 .

Combining this lemma with �2.11� and setting 	0=1 /2�3 /2−1 /�� yields

���t�,HK��t�� � 	��t�	H1/2
3 + 	��0�	H1/2

2 + L−2	0 + L1−1/� sup
t���0,t�

	��t��	L2
2 . �2.12�

D. Lower bound on quadratic form and completion of the proof

We want to use the quadratic form �� ,HK�� to control 	�	H1/2
2 , as is done for 1-soliton stability.

Here we need a K-soliton version of this.
Lemma 2.6: �Positivity of the quadratic form� There exist L2 ,�2�0 such that if L�L2, then

�2	�	H1/2
2


 ��,HK�� .

Combining this lemma with �2.12� gives

	��t�	H1/2
2


 C�	��t�	H1/2
3 + 	��0�	H1/2

2 + L−2	0 + L1−1/� sup
t���0,t�

	��t��	L2
2 � .

So using �2.4�, this estimate implies, for � and 1 /L sufficiently small, that there is A0�0 such that

sup
t���0,T�

	��t��	H1/2 
 A0�� + L−	0� . �2.13�

Hence for � and 1 /L sufficiently small, we conclude that T=�, xk�t�, and ck�t� exist for all time,
and �2.13� gives the main estimate of the theorem. Finally, the last estimate of the theorem follows
from �3.2� and �3.4� in the proof of Lemma 2.1. �
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III. PROOFS OF LEMMAS

In this section, we shall prove lemmas mentioned in Sec. II.

A. Decomposition of the solution

Proof of Lemma 2.1: The existence of the functions cj�t� and xj�t� is established through the
implicit function theorem applied to the map F :H−3/2�R��RK� �R+�K→R2K defined by

F�u,y,c� ª ��R,u − R�,�Rx,u − R�� ,

where R�x�=
 j=1
K Rj�x� with Rj�x�=Qcj

�x−yj�, and boldface denotes K-vectors, e.g., y
= �y1 , . . . ,yK� and R�x�ª �R1�x� , . . . ,RK�x��. Here the inner product indicates H3/2−H−3/2 pairing.
F is easily seen to be a C1 map �note that it is affine in u�. For any y and �bounded� c,
F�R ,y ,c�= �0 ,0�, and as a 2K�2K matrix,

Dy,cF�R,y,c� = �� 0 − Id

diag�cj
3� 0

� + O��min
j�k

�yj − yk��−2� , �3.1�

is invertible, provided minj�k�yj −yk��L1 /2 �L1 a constant�. Thus there is �1�0 such that for any
y satisfying this condition, for u in an H−3/2-ball about 
 j=1

K Qcj
0�x−yj� of size �� �0,��1�, there

are unique C1�H−3/2 ;RK� functions x�u� and c�u� so that F�u ,x�u� ,c�u��=0, with

�c�u� − c0� + �x�u� − y� � � . �3.2�

So using the condition �2.1� for 0
 t
T, we take �=�� and set c�t�ªc�u�t�� and x�t�
ªx�u�t��. Since u�C1��0,�� ;H−3/2�, xj�t� and cj�t� are C1 functions of t�0. The equation
F�u ,x�t� ,c�t���0 is equivalent to the orthogonality conditions �2.3�. The estimates �2.6� follow
from �2.1� and �3.2�. An equation for ��t ,x� can be derived using �1.2� and �DRk−Rk

2�x−�tRk

= �ẋk−ck��xRk− ċk�cRk,

�t� = �x�D� − 2R� − �2 − 

j�k

RjRk� + 

k

�ẋk − ck��xRk − ċk�cRk. �3.3�

Computing �d /dt��Rk ,�� and �d /dt���xRk ,��, in turn, and using �3.1� and �2.6� yield

�ċ� + �ẋ − c� � 	�	H1/2 + L−2 � �� + L−2. �3.4�

This implies that c�t� and x�t� are C1 up to t=0 and, together with �3.2�, it gives �2.7�. Now � can
be taken sufficiently small and L sufficiently large, so that �1.6� and �1.7�, together with �3.2� with
�=�, imply �2.4�, which in turn implies that xk�0�−xk−1�0��L /2. Finally �2.5� follows from this
and �2.7� via

d

dt
�xk�t� − xk−1�t�� � ck

0 − ck−1
0 − A1��� + L−2� � 0

for � sufficiently small and L sufficiently large. �

B. Commutator estimates

We have to deduce several estimates for commutators. For two operators A and B, denote by
�A ,B�=AB−BA their commutator.

Lemma 3.1:

�i� Suppose ��Cc
1�R�. We have

	�D1/2,��u	L2�R� � 	���1/2�̂���	L1�d�� · 	u	L2. �3.5�

�ii� Suppose ��B�,1
2−2� with 0���1 /2, then
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�� ux�H,��ux� � 	�	Ḃ
�,1
2−2�	u	H1/2

2 . �3.6�

Proof:

�i� One can show ��p�1/2− �p−��1/2�� ���1/2 by considering the two cases �p��3��� and �p�
�3���. Thus

�D1/2�u�� − �D1/2u���L2�dx� = �� ��p�1/2 − �p − ��1/2�û�p − ���̂���d��L2�dp� � ��û�*���1/2��̂��L2


 �û�2 � ����1/2�̂�L1.

�ii� First assume ��Cc
2�R�. Let �= ��1+�2+�3=0�. The integral is equal to

� ux�H,��ux = i�
�

�1�3m���û��1��̂��2�û��3� ,

where

m��� = sgn��2 + �3� − sgn��3� .

Decompose the integral into a sum by Littlewood–Paley decomposition



N1,N2,N3

�
�

�1�3m���ûN1
��1��̂N2

��2�ûN3
��3� ,

where Nj are dyadic numbers, Nj =2k for k�Z.

If N3N2, then m���=0. If N3�N2, then N1�N2 on �. Thus we may assume N1 ,N3�N2.
When �1+�2+�3=0, m���=m1���+m3���, where mj���=−sgn�� j� is constant when � j�0. By mul-
tilinear estimates �Ref. 16, Theorem 1.1�, we have

��
�

m����1ûN1
��1��̂N2

��2��3ûN3
��3�� 
 C	�uN1

	2	�N2
	�	�uN3

	2.

Thus

�� ux�H,��ux� � 

N1,N3�N2

N1N3	uN1
	2	�N2

	�	uN3
	2 � 
 N1

�N2
2−2�N3

�	uN1
	2	�N2

	�	uN3
	2

= 	�	Ḃ
�,1
2−2�	u	

Ḃ2,1
�

2
.

Since 	u	Ḃ2,1
� � 	u	H1/2 for 0���

1
2 , we have shown �3.6� for ��Cc

2.
For general ��B�,1

2−2�, take �R�x�=��x /R�, where ��x� is a fixed smooth function which
equals 1 for �x��1 and 0 for �x��2. We have

	��R	Ḃ
�,1
2−2� � 	�	L�	�R	Ḃ

�,1
2−2� + 	�R	L�	�	Ḃ

�,1
2−2�.

Sending R to infinity in �3.6� with the above estimate, we get �3.6� for ��B�,1
2−2�. �

Lemma 3.2: Suppose ��x��Cc
1�R� and D1/2�̂�L1. For all u�H1/2,

�
R

u3�2dx 
 C��
supp �

u2dx�1/2� ��D1/2u�2�2 + u2�2 + u2	D1/2�̂	L
�
1

2 �dx .

Here C is a constant independent of u and �.
Proof: First note the Gagliardo–Nirenberg inequality
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� u4dx �� �D1/2u�2dx� �u�2dx . �3.7�

This can be proven by first noting

	u	4 � 	û	4/3 
 	���1/2û	2	���−1/2	4 = C�	D1/2u	2 + 	u	2� ,

and then rescaling with a minimizing scaling parameter. By Hölder inequality and the above
inequality,

�� u3�2dx�2


 �
supp �

u2dx� �u��4dx 
 �
supp �

u2dx� �D1/2�u���2dx� u2�2dx .

By Eq. �3.5�, we conclude

�� u3�2dx�2

� �
supp �

u2dx� u2�2dx�� �D1/2u�2�2dx +� u2dx	���1/2�̂	L1
2 � ,

from which the lemma follows. �

C. Almost monotonicity

Proof of Lemma 2.2: We may assume u is smooth since the general case follows from
approximation. We may assume k�2 since I1�t� is constant. Denote �=�k�t ,x�=��yk� for sim-
plicity of notation. Note ��B�,1

2− and

�x = �b + t�−����yk�, supp �x � x̄k
0 + �kt + �0,�b + t��� . �3.8�

Consider

d

dt
Ik�t� =� − �u�Hux + u2�x +

1

2
u2�t�dx

=� ��xu + �ux�Hux +
2

3
u3�x −

1

2
u2��k�x + ���yk�

�

b + t
yk�dx .

By H�x=−D and by Lemma 3.1 part �i� with �=�x, we have

� �xuHux = −� �x�D1/2u�2 −� �D1/2u��D1/2,�x�u = −� �x�D1/2u�2 + O�	u	H1/2
2 	���1/2�x

̂	L1� .

Since ��uxHux=−�uxH��ux�=−��uxHux−�ux�H ,��ux, by Lemma 3.1 part �ii�,

� �uxHux = −
1

2
� ux�H,��ux = O�	u	H1/2

2 	�	Ḃ
�,1
2−2�� .

Here we choose �� �0, 1
4

�. By Lemma 3.2 with �x=�2,

� 2

3
u3�x � 	u	L2�supp �x�� ��D1/2u�2 + u2��x + u2	���1/2F���x�	L

�
1

2 .

Now by �2.4� and �2.6� and the definition of �k, we have for all k,

dist�xk�t�, supp �x� �
1
3 �L + �0t� ,

where
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�0 ª
1
2 min

k=2,. . .,K
�c1

0,ck
0 − ck−1

0 � � 0,

and so

	u�t�	L2�supp �x� 
 C�L + �0t�−2 + 	��t�	H1/2�R� � 1.

The formula �x
̂���=e−i�x0+�t����̂��b+ t���� gives us

Ds�x�x� =
1

�b + t���1+s�� ei�x−x0−�t/�b + t�������s��̂���d� .

Thus

	���1/2�x
̂	L

�
1 � �b + t�−3�/2, 	�	Ḃ

�,1
2−2� � �b + t�−2��1−��.

Similarly,

	���1/2F���x�	L
�
1

2
� �b + t�−2�.

We can also found

�

b + t
�yk� 


�k

4�b + t�� +
C�2yk

2

�k�b + t�2−�

and

� u2���yk�
�2yk

2

�k�b + t�2−� 
 C�b + t�−2+��	�	L2
2 + �L + �0t�−2� .

Summing the estimates, we get

d

dt
Ik�t� 
 −

1

2
� �x�D1/2u�2 −

�k

4
� �xu

2 + C�b + t�−3�/2	u	H1/2
2 + C�b + t�−2+��	�	L2

2 + �L + �0t�−2� .

Integrating in time and noting 2 /3���1, we get the lemma. �

D. Energy decomposition

Proof of Lemma 2.3: Note ck�0�=d1+ ¯ +dk and



k=1

K

dk�k = 

k=1

K

dk��k + ¯ + �K� = 

k=1

K

ck�0��k.

So

G�t� = E�u�t�� + 

k=1

K

dkIk�t� = E�u�t�� + �
R


k=1

K
1

2
ck�0��ku

2dx .

Using the decomposition u=R+� and R=
k=1
K Rk, we can decompose G�t� according to orders in �,

G�t� = G0 + G1 + 1
2 ���t�, HK��t�� + 1

2 ���t�, 
k
�ck�0� − ck�t���k��t�� − 1

3�
R

��t�3,

where G0 denotes terms without �,
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G0 = E�R� +
1

2
�

R


k=1

K

ck�0��kR
2,

G1 denotes terms linear in �,

G1 = �
R

��DR − R2 + 

k=1

K

ck�0��kR� ,

and HK denotes the linear operator

HK = D − 2R + 

k=1

K

ck�t��k.

We can further decompose

G0 = 

k=1

K

E�Rk� +� 

j�k

RjDRk −
1

3
�R3 − 


k=1

K

Rk
3� +

1

2

k=1

K

ck�0�Rk
2 +

1

2

k=1

K

ck�0���kR
2 − Rk

2� .

Using DRk−Rk
2+ck�t�Rk=0, we have

G1 =� ���

k=1

K

Rk
2� − R2� + 


k=1

K

�ck�0�Rk��k − 1� + ck�0��k�R − Rk� + �ck�0� − ck�t��Rk�� .

Note

	Rm − 

k=1

K

Rk
m	L1�L��R� 
 CL−2 �m = 2,3� ,

	Rk��k − 1�	L2�L��R� + 	�k�R − Rk�	L2�L��R� 
 CL−2.

Thus

�G1�t�� 
 CL−2 + C
k
�ck�0� − ck�t��	�	L2. �3.9�

Also, since RjDRk=Rj�ck�t�Rk−Rk
2�,

	RjDRk	L1�L��R� 
 CL−2 �j � k� .

We have

�G0�t� − 
k
E�Rk� − 
k

ck�0�N�Rk�� 
 CL−2. �3.10�

Finally,

�1

2��,
k
�ck�0� − ck�t���k�� −

1

3
� �3� 
 C
k

�ck�0� − ck�t��	�	L2
2 + C	�	H1/2

3 , �3.11�

completing the proof of Lemma 2.3. �

Proof of Lemma 2.4: First proof: By energy decomposition around Qc0, we have for real-
valued � small in H1/2 that
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Fc0�Qc0 + �� = Fc0�Qc0� + 1
2 ��, Hc0

�� + O�	�	H1/2
3 � .

In particular, for �=Qc−Qc0 we get the lemma. In fact, ���c−c0��0 with �0=�c �c=c0Qc and
1
2 ��0 ,Hc0

�0�= 1
2 ��0 ,−Qc0�=− 1

4�c�Qc
2=−� /2.

Second proof: By the scaling property and �1.5�,

Fc0�Qc� = c2E�Q� + cc0N�Q� = −
�

2
c2 + cc0�, Fc0�Qc0� = �c0�2�

2
.

Thus Fc0�Qc0�−Fc0�Qc�= �� /2��c−c0�2. �

E. Quadratic control of ck„t…−ck„0…

Proof of Lemma 2.5: As in the energy expansion above, with u=R+�, R=
 jRj, and using
�� ,Rj��0 and �xj�t�−xk�t���L /2 for j�k, we have

�E�u� − 

j

E�Rj�� � L−2 + 	�	H1/2
2 + 	�	H1/2

3 .

Now using the conservation of energy, the fact E�Rj�=acj
2, and 	��t�	H1/2 
1, we get

�
k
��ck�t��2 − �ck�0��2�� � L−2 + 	��t�	H1/2

2 + 	��0�	H1/2
2 . �3.12�

Since �k=�k−�k+1, we have

I j�t� =
1

2
� u2� jdx =

1

2
� u2


k=j

K

�kdx = 

k=j

K �
R

1

2
�ku

2dx .

Again using �� ,Rj��0 and �xj�t�−xk�t���L /2 for j�k, we see easily that

�1

2
� �ku

2dx − N�Rk�� � L−2 + 	�	H1/2
2 .

So using N�Rk�=ckN�Q1�=ck� and the local monotonicity Lemma 2.2, we get

�k�t� ª 

j=k

K

�cj�t� − cj�0�� � g�t�, k = 1, . . . ,K , �3.13�

where

g�t� = L1/�−3/2 + L1−1/� sup
0
�
t

	����	L2
2 + 	��t�	H1/2

2 + 	��0�	H1/2
2 .

Denote �K+1=0 and c0�0�=0. Using ���
−�+2�+ for any ��R and �3.13�, we get



k=1

K

��k�t�� � 

k=1

K

�ck�0� − ck−1�0����k�t�� 
 

k=1

K

�ck�0� − ck−1�0���− �k�t� + Cg� . �3.14�

By Abel resummation,

− 

k=1

K

�ck�0� − ck−1�0���k�t� = − 

k=1

K

ck�0���k�t� − �k+1�t�� = 

k=1

K

ck�0��ck�0� − ck�t��

=
1

2
k
��ck�0��2 − �ck�t��2� +

1

2
k
�ck�t� − ck�0��2.

Using �3.14�, the above equality, and �3.12�, we arrive at
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k
��k�t�� � g�t� + 
k

�ck�t� − ck�0��2.

Since �ck�t�−ck�0��
 ��k�t��+ ��k+1�t��, we have


k
�ck�t� − ck�0�� � g�t� + 
k

�ck�t� − ck�0��2.

By the continuity of ck�t� and the smallness of g�t�, we get Lemma 2.5. �

F. Lower bound for the quadratic form

We first recall the 1-soliton case. Suppose a function u�x� is a perturbation of Qc�x−a� of the
form

u�x� = Qc�x − a� + ��x� ,

where ��x� is small in some sense. Then

�E + cN��u� = �E + cN��Qc� +
1

2
��,Hc,a�� −

1

3
� �3.

Here Hc,a=D+c−2Qc�x−a�.
Lemma 3.3: �Reference 3� Let H=D+1−2Q with Q�x�=2 / �1+x2�. Its continuous spectrum is

�1,��. Its eigenvalues are 0, 1, and ��= 1
2 �−1��5�, with corresponding normalized eigenfunc-

tions

�0 =
− 4
��

x

�1 + x2�2 =
1

��
Qx,

�1 =
2

��

x�x2 − 1�
�1 + x2�2 =

1
��

�xQ + Qx� ,

�� = N��1 � �5

1 + x2 −
4

�1 + x2�2� = N���1 + ���Q − Q2� .

Here N�= �1 /����1� �2 /�5��1/2. Moreover, there is �0� �0,1� so that if ��H1/2 satisfies
�� ,Q�= �� ,Qx�=0, then

�0	�	H1/2
2


 ��,H�� . �3.15�

This lemma, except �3.15�, is due to Ref. 3. We have reformulated it in a form convenient to
us. To prove Eq. �3.15�, decompose �=a�−+h with h��− ,Qx. Thus

��,H�� = �−a2 + �h,Hh� � �−a2 + �+�h,h� = �+��,�� − ��+ − �−�a2.

Now decompose �−=bQ+k with k�Q and hence

a2 = ��,�−�2 = ��,k�2 
 ��,���k,k� .

Thus

��,H�� � ���,��, � = �+ − ��+ − �−��k,k� .

One can compute �k ,k�=1 /2−1 /�5 and �=1 /2, and Eq. �3.15� follows with �0=1 /9.
We can rescale �3.15� and get the following: Let R�x�=Qc�x−a�. If ��H1/2�R� satisfies

�� ,R�= �� ,Rx�=0, then
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�0��,�D + c��� 
 ��,�D + c − 2R��� . �3.16�

Proof of Lemma 2.6: This is a time-independent statement and everything is evaluated at t,
e.g., ck=ck�t�. Let ��x� be a non-negative smooth function supported in �x�
2, ��x�=1 for �x�

1, and �2�x�
1 /2 if and only if �x��3 /2. Let �k�x�=���x−xk� /L2 /16�. In particular, �k�x�
=1 when �k�x��0 and �k�x��2�k

2�x� when �k
2�x�
1 /2. Decompose

��,HK�� = 
k
��k�,�D + ck − 2Rk���k��� + ��,D�� − 
k

��k�,D��k��� + 
k
ck��,��k − �k

2���

+ ��,− 
k
2Rk�1 − �k

2��� ¬ I1 + I2 + I3 + I4.

It follows from Lemma 3.3 that

I1 � 
k
�0��k�,�D + c1���k��� . �3.17�

By Lemma 3.1,

���k�,D��k���1/2 − 	�kD
1/2�	L2� 
 	�D1/2,�k��	L2 
 	���1/2�̂k���	L1�d��	�	L2.

By definition of �k,

	���1/2�̂k���	L1�d�� 
 CL2
−1/2.

Thus

I1 � RHS of �3.17� �
�0

2 
k
	�kD

1/2�	L2
2 − CL2

−1	�	L2
2 + �0c1
k

	�k�	L2
2 ,

and

I2 � ��,D�� − �1 +
�0

4
�
k

	�kD
1/2�	L2

2 − CL2
−1	�	L2

2

=� �1 − �1 +
�0

4
�
k

�k
2��D1/2��2 − CL2

−1	�	L2
2 .

We also have

I3 � 
k
c1��,�k1��k

2 
 1/2��� = c1�

k�k

2

1/2

�2,

�I4� 
 CL2
−2��,�� .

Summing up, we have

��,HK�� �
�0

4
��,D�� − CL2

−1	�	2
2 + �0c1
k

	�k�	L2
2 + c1�


k�k
2

1/2

�2

which is greater than ��0 /4��� , �D+c1��� if L2 is sufficiently large. �
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