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We present an unsteady Hele–Shaw model of the fluid–fluid displacements that take place

during primary cementing of an oil well, focusing on the case where one Herschel–Bulkley

fluid displaces another along a long uniform section of the annulus. Such unsteady models

consist of an advection equation for a fluid concentration field coupled to a third-order non-

linear PDE (Partial differential equation) for the stream function, with a free boundary at

the boundary of regions of stagnant fluid. These models, although complex, are necessary for

the study of interfacial instability and the effects of flow pulsation, and remain considerably

simpler and more efficient than computationally solving three-dimensional Navier–Stokes

type models. Using methods from gradient flows, we demonstrate that our unsteady evolution

equation for the stream function has a unique solution. The solution is continuous with

respect to variations in the model physical data and will decay exponentially to a steady-state

distribution if the data do not change with time. In the event that density differences between

the fluids are small and that the fluids have a yield stress, then if the flow rate is decreased

suddenly to zero, the stream function (hence velocity) decays to zero in a finite time. We

verify these decay properties, using a numerical solution. We then use the numerical solution

to study the effects of pulsating the flow rate on a typical displacement.

1 Introduction

Primary cementing is an operation carried out at least once during construction of

every oil and gas well. The aim of the operation is to cement a steel casing into the

drilled wellbore. The hardened cement both provides structural support for the well and

produces an hydraulic seal. The latter prevents migration of formation fluids from one rock

stratum to another, which can result in lost productivity as well as having environmental

consequences if the fluids leak to surface. The operation proceeds by pumping washes,
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spacer fluids and liquid cement slurries, in sequence, down the inside of the steel casing

from surface. At the bottom of the hole, these fluids enter the annulus and displace

upwards whatever fluids are in place, typically a drilling mud. Problems arise due to the

eccentricity of the annulus and the rheological and physical parameters of the fluids. For

example, a fluid with a yield stress is susceptible to becoming stuck on the narrow side of

the annulus, bridging the gap between the casing and formation.

In [3, 15–17] we have studied primary cementing displacements along an eccentric

annulus, using a Hele–Shaw type model. Although, in general, a sequence of fluids

is pumped along the annulus, each fluid displacing the one in front, the fluid volumes

pumped are relatively large and the annular geometry changes slowly in the axial direction.

Therefore, the essential dynamics of the displacement may be studied by considering what

happens between any two fluids on an annular section of constant geometry. In [3, 15–17]

this simpler situation has been modelled by the following two-dimensional elliptic PDE,

in azimuthal and axial spatial directions:

∇ · [Ss + f ] = 0, (1.1)

Ss =

[
χ(|∇Ψs|) + τY /H

|∇Ψs|

]
∇Ψs ⇐⇒ |Ss| >

τY

H
, (1.2)

|∇Ψs| = 0 ⇐⇒ |Ss| �
τY

H
. (1.3)

Here Ψs is the stream-function, the unwrapped narrow annular space is (φ, ξ) ∈ (0, 1) ×
(0, Z), the annular gap half-width is H(φ) = 1 + e cos πφ, and e ∈ [0, 1) is the eccentricity

(see Figure 1). The function χ is a positive increasing function of |∇Ψs|, which represents

the viscous part of frictional pressure gradient. The exact form of χ depends on the

local width of the annular gap, H , and on the rheological parameters that characterise

the fluid; τY is the fluid yield stress. Typical functions χ are plotted in Figure 2 for

a Herschel–Bulkley over a range of parameters. The vectorfield f , which represents the

buoyancy forces, and the rheological properties of the fluids may depend on time and

space via the mixture concentrations, which in the case of two fluids can be characterised

by the concentration of fluid 1, say c̄(φ, ξ, t). In [3] the concentration is simply advected

along the annulus:

1

ε

∂

∂t
[Hc] +

∂

∂φ
[Hvs c] +

∂

∂ξ
[Hws c] = 0, (1.4)

where ε denotes a timescale ratio (defined later), and the gap-averaged velocities are

defined in terms of the stream function by the following:

vs = − 1

H

∂Ψs

∂ξ
, ws =

1

H

∂Ψs

∂φ
. (1.5)

The system (1.1)–(1.5), which is essentially a Hele–Shaw model, has proven itself useful

for understanding many features of the primary cementing operation. For example, we

are able to identify the important case when there is a steady displacement front that

advances as a travelling wave along the well. For some parameter ranges we are even

able to provide an analytical description of the steady-state shape. If there is no steadily
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Figure 1. Cementing geometries: (a) schematic of fluid stages pumped during a typical primary

cementing displacement; (b) uniform section of eccentric annulus; (c) eccentric annular cross-section;

(d) periodic eccentric annular Hele–Shaw cell; (e) final computational domain, assuming symmetry

at wide and narrow sides of the annulus.
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Figure 2. Examples of the function χ(|∇Ψ |) for a Herschel–Bulkley fluid: (a) H = 1, τY = 1, κ= 1,

n= 1, 1/2, 1/3, 1/4, 1/5; (b) H = 1, τY = 1, 2, 3, 4, 5, κ= 1, n= 1/2.

advancing front, we can identify two possibilities: (i) an unsteady displacement front

advances along the wide side of the annulus faster than along the narrow side and (ii) the

displaced fluid becomes stuck on the narrow side of the annulus. These results and others
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are described in the sequence of papers [3, 15–17]. The focus of this paper is on a

two-dimensional time-dependent extension of (1.1), which we define and derive below, in

Section 2.

There are a number of practical situations that warrant consideration of a transient

model for Ψ . First, pulsation techniques have been advocated at different times for

primary cementing, e.g. [5], with different claimed benefits. To pulse the flow rate is

possible with the steady model (1.1), via the boundary conditions. However, since time

dependency enters Ψs only via the concentration and boundary conditions, the pulsation

appears to simply superimpose an axial oscillation on the flow, i.e. the coupling is in one

direction only. To study, for example, whether pulsation can aid in the removal of static

mud channels that form on the narrow side of the eccentric annulus, it appears necessary

to allow transient evolution of the stream-function.

Secondly as shown in [17], for certain rheological combinations an unsteady displace-

ment front evolves that advances up the wide side of the annulus faster than up the narrow

side, with the interface eventually becoming pseudo-parallel to the annulus axis. Although

this situation is believed to be very bad for the displacement process, such an assessment

may be premature. For example, Tehrani et al. report observing interfacial instabilities

for some of these situations [18]. If these interfacial instabilities lead to azimuthal mixing

around the annulus, then in fact the displacement may still be effective. In place of un-

steady fingering, we will have axial dispersion, which may grow at an acceptably slow rate,

e.g. ∼t1/2 rather than ∼t. Thus, the study of interfacial instabilities in parallel multi-layer

annular Hele–Shaw flows is a problem of considerable practical interest, and requires a

transient model in place of (1.1). This is the subject of a companion paper [14].

In this paper we focus on derivation of a well-posed transient extension of (1.1), and its

application to the problem of flow pulsation during primary cementing. A brief outline of

our paper is as follows. The model derivation is dealt with in Section 2 below, terminating

with the classical formulation of the unsteady Hele–Shaw model for the stream function.

Section 3 contains the key mathematical results of the paper. After casting the problem

in a functional analytical setting, we show that there exists a unique solution to both the

steady and transient problems. Various continuity results are given, and we also examine

decay of the transient solution to a steady state, with and without an imposed flow rate.

Much of the detail of these results is confined to [13]. Computational results are presented

in Section 4. We test our numerical algorithm against the decay results and then apply

the algorithm to the study of pulsatile flows. The paper concludes with a short discussion

in Section 5.

2 Modelling transient bulk flow cementing displacements

The aim of our modelling is to allow for the possibility of coupled temporal effects between

the velocity field and fluid concentration field, whilst retaining the relative simplicity of the

Hele–Shaw approach. In [3], time derivatives in the momentum balance were neglected by

considering the limit of a short viscous timescale, t̂v, relative to the advective timescale, t̂a.

Here these time derivatives are retained, but the modelling approach is otherwise similar

to that of [3], to which the reader is referred for details; see also [13]. Below we give only

a brief overview of the derivation.
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Table 1. Notation for scaled variables, velocities and domain

Independent variable Scaled variables Velocity Range

Radial y u [0, H(φ)]

Azimuthal φ v [0, 1]

Axial ξ w [0, Z]

When a steel casing is inserted into a borehole, the annulus geometry typically satisfies

[mean annular gap] � [mean circumference] � [length of annulus].

Here we consider only a short section of uniform eccentric annulus (part of the well or a

laboratory experiment), and assume that fluid 1 (c̄= 1) displaces fluid 2 (c̄= 0) upwards

along the annulus. The section of the annulus is assumed long enough so that intermediate

concentrations are found only in the interior.

2.1 Reduced shear flow model

We follow the classical Hele–Shaw approach. Velocities in azimuthal and axial directions

are scaled with the mean flow velocity ŵa, derived from a representative imposed flow rate.

Lengths in these directions are scaled with the half-circumference, πr̂a, where r̂a = (r̂o+r̂i)/2

is the mean radius. The annulus is eccentric, with eccentricity e, and is inclined at angle

β to the vertical (see Figure 1). Only half of the annulus circumference is considered. The

ratio of mean half-gap to mean radius is denoted δ = (r̂o − r̂i)/(r̂o + r̂i), and the Hele–Shaw

approach requires that δ/π � 1, i.e. this is a narrow annulus. The radial distance from

the centreline of the annulus to the walls is scaled with δr̂a, and the radial velocity

accordingly to preserve continuity. Stresses and pressure scales are chosen to balance the

maximal shear-stresses in the usual fashion; see [3]. Time is scaled with t̂v. In this way, it

is straightforward to derive the following dimensionless reduced shear flow model,

ρ
∂v

∂t
= − ∂p

∂φ
+

∂

∂y
τφy + gφ, (2.1)

ρ
∂w

∂t
= − ∂p

∂ξ
+

∂

∂y
τξy + gξ, (2.2)

∂p

∂y
= 0, (2.3)

in which all quantities are O(1). Here ρ is the fluid density, (v, w) are the azimuthal and

axial velocity components, p is the pressure and (gφ, gξ) denotes the scaled gravitational

acceleration vector. The azimuthal coordinate is φ ∈ [0, 1], where φ= 0 denotes the wide

(upper) side of the annulus and φ= 1 denotes the narrow (lower) side of the annulus. The

axial coordinate is ξ ∈ [0, Z]. Table 1 gives the ranges of the scaled independent variables,

the velocities and their domain. As usual, only the principal shear stresses (τφy, τξy) are

retained, and the constitutive relations are discussed below in Section 2.2. The scaled
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radial coordinate is y and the annulus walls are denoted by y= ∓ H(φ), where

H(φ) = 1 + e cos πφ.

Because the annulus is relatively narrow and the walls are stationary, we make the

simplifying assumption that the velocity (v, w) is symmetric about the centreline y= 0,

and thus consider only y ∈ [0, H]. Coupled to (2.1)–(2.3) is the leading-order continuity

equation:

0 =
∂u

∂y
+

∂v

∂φ
+

∂w

∂ξ
. (2.4)

2.2 Rheological assumptions

The fluids used in cementing are shear-thinning generalised Newtonian fluids, often with

a yield stress. After the Hele–Shaw scaling, the principal components of the rate of strain

are1 γ̇φy ∼ vy and γ̇ξy ∼ wy . Thus at the leading order, the second invariant of the rate of

strain γ̇ is given by γ̇= [v2
y + w2

y]
1/2. For generalised Newtonian fluids the leading-order

shear stresses and rates of strain are related by a law of form:

τij = η(γ̇)γ̇ij , ij = φy, ξy, (2.5)

where η is referred to as the effective viscosity. When the fluid has a yield stress, η(γ̇) → ∞
as γ̇ → 0, and τij becomes indeterminate. In [3, 15–17] we have assumed that the fluids are

characterisable as Herschel–Bulkley fluids, which are parameterised by three parameters:

κ, n and τY , which are the consistency, power-law index and yield stress of the fluid,

respectively. Here we extend the Herschel–Bulkley model slightly, by addition of a high-

shear viscosity, µ∞, and work with the constitutive law

τij =

[
µ∞ + κγ̇n−1 +

τY

γ̇

]
γ̇ij , τ > τY ,

γ̇= 0, τ � τY .

(2.6)

In practice, we shall suppose that µ∞ is small. Since the fluids are shear-thinning, we

consider 0 < n � 1. Lastly, we note that for computational purposes, the fluid properties

κ, n, τY and µ∞ must be specified as functions of the concentration c̄, and as functions of

the physical properties of the pure fluids 1 and 2.

There are two motivations for this modified rheological model. First from the physical

perspective, the Herschel–Bulkley model (set µ∞ = 0 above) implies an effective viscosity:

η(γ̇) = κγ̇n−1+τY /γ̇ → 0, as γ̇ → ∞. This is unrealistic, since suspension viscosities commonly

approach a Newtonian plateau for large γ̇, i.e. the Herschel–Bulkley model is really

intended to model low-shear behaviour. The second motivation is mathematical. Without

1 For fluids with a yield stress, this statement needs modifying. Within the psuedo-plug region at

the channel centre (where the leading-order shear stresses nominally vanish) the extensional stresses

are of the same order as the shear stresses. However, both rates of strain are of first order in the

aspect ratio, i.e. small, and therefore this does not affect computation of the gap-averaged velocities,

at leading order. See [17] for a more thorough discussion of this and the effects of the so-called

lubrication paradox in the context of our model.
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the high-shear viscosity we will later be forced to work in subspaces of L1+n and W 1,1+n,

rather than L2 and H1. Although most of what we prove in the Hilbert space setting can

be extended to L1+n and W 1,1+n, it is less convenient and involves additional analysis.

From the numerical perspective this is anyway unnecessary, since numerically we end up

working in finite-dimensional subspaces, which lie in both {L1+n,W 1,1+n} and in {L2, H1}.

2.3 Transient Hele–Shaw model derivation

We first integrate (2.4) across the annular gap, using no-slip boundary conditions at the

annulus walls, to eliminate the radial velocity u:

0 =
∂

∂φ
[Hv̄] +

∂

∂ξ
[Hw̄],

(recall that the overbar denotes a quantity averaged across the annular gap). This prompts

definition of a stream function Ψ (φ, ξ, t), for the gap-averaged flow:

Hw̄ =
∂Ψ

∂φ
, Hv̄ = −∂Ψ

∂ξ
. (2.7)

As is usual in the Hele–Shaw approach, we would like to derive a closure of the system

(2.1) and (2.2), in terms of either the stream function or the pressure. In [3, 15–17]

we have chosen the stream function as the base variable, since the pressure gradient is

indeterminate in areas of the annulus where the yield stress is not exceeded, and hence

adopt the same choice here.

We may observe that averaging (2.1) and (2.2) across the annular gap does not lead

to a closure in terms of the stream function. The reduced shear flow model is properly

three-dimensional. Although it is possible to still work with this model, and solution is

certainly faster than solving the Navier–Stokes equations, we have lost the advantage of

two dimensionality. One way to resolve this is to replace the time derivatives in (2.1) and

(2.2) with the time derivatives of the gap-averaged velocities, i.e. we consider the system:

ρ
∂v̄

∂t
= − ∂p

∂φ
+

∂

∂y
τφy + gφ, (2.8)

ρ
∂w̄

∂t
= − ∂p

∂ξ
+

∂

∂y
τξy + gξ. (2.9)

In doing this, we essentially commute the spatial averaging and time-derivative operators.

In [13] we show that the L1 norm of the velocity solutions of (2.8) and (2.9) (evaluated

across the annular gap) remains close to that of (2.1) and (2.2), provided that the data

change sufficiently slowly.2 As we want to work anyway with the gap-averaged velocities,

this is sufficient for our needs.

2 The approach in [13] involves considering the variational problems related to solution of (2.8)

and (2.9) and comparing with the variational problem that stems from (2.1) and (2.2). Essentially,

if the data change sufficiently slowly, both of these problems decay to the same pseudo-steady

solution. We show that if the data changes are uniformly O(ε) over a slow timescale, we can expect

that ‖ū − u‖L1 (t) =O(ε) also. Physically, this means that provided the flow has sufficient time for

viscosity to act, before the fluid properties or any other process features change locally, then the

derivative of the average is close to the average of the derivative. Evidently, in the case that we have
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Turning now to the system (2.8) and (2.9), the acceleration, pressure and gravitational

terms do not vary with y. The gravitational acceleration terms are

(gφ, gξ) =

(
ρ sin β sin πφ

St∗
,−ρ cos β

St∗

)
, (2.10)

where St∗ is the Stokes number, defined below in Section 2.3.3. Integrating (2.8) and (2.9)

from zero to y and using the symmetry condition (τ = 0 at y= 0), we have

τ (y, φ, ξ, t) = −(G − ρūt)y. (2.11)

Note that the shear stress is linear in y. The position in the annular gap where |τ | = τY is

called the yield surface, and separates the fluid layer into yielded (|τ | > τY ) and unyielded

(τY /A < y � H) regions.

Using (2.6), we may uniquely define the strain rate for a given shear stress |τ |, and thus

define the effective viscosity via the relation

|τ | = η(γ̇)γ̇ ⇒ γ̇ = |τ |/η(γ̇).

From (2.6) we may see that as |τ | → τY (which occurs as y → τY /A), η(γ̇) → ∞. Using

γ̇ to define the velocity gradient, and integrating with respect to y (using also (2.11) and

(2.6)), we have the velocity:

u(y, φ, ξ, t) = [G − ρūt]

∫ H

y

ỹ

η(γ̇(ỹ))
dỹ, (2.12)

where u = (v, w) and

G =

(
− ∂p

∂φ
+

ρ sin β sin πφ

St∗
,− ∂p

∂ξ
− ρ cos β

St∗

)
. (2.13)

Note that the integral in the right-hand side of (2.12) is defined for all y ∈ [0, H], but since

η(γ̇) → ∞ as y → τY /A, the integrand will have zero contribution within the unyielded

fluid layer.

We see that u is instantaneously parallel to G − ρūt. Writing s(y) = |u|(y), at each fixed

(φ, ξ, t), the speed s is related to the modified pressure gradient, A, via the one-dimensional

shear flow problem:

−A =
d

dy

[
η

(∣∣∣∣ ds

dy

∣∣∣∣
)

ds

dy

]
.

For generalised Newtonian fluids, this problem is straightforwardly solved, either analytic-

ally, or numerically by simple quadrature. However, we are interested in the gap-averaged

large variations in the data over a faster timescale, we would not expect any convergence. We note

in passing that a similar interchange of averaging and derivative operations is commonly carried

out in hydraulics problems (usually to model inertial effects), with the (pragmatic) introduction of

a correction factor.
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speed:

|∇Ψ | = Hs̄ =

∫ H

0

s(y) dy = −
∫ H

0

y
ds

dy
(y) dy,

=

∫ H

0

yγ̇(y) dy =
1

A2

∫ AH

τY

τγ̇(τ) dτ, (2.14)

where from (2.6), for τ � τY ,

τ(γ̇) = µ∞γ̇ + κγ̇n + τY , (2.15)

and γ̇(τ) is obtained by inverting this monotone function. We may observe that γ̇(τ) is

a strictly monotone C∞ function of τ > τY . If n < 1, then as τ→ τY , γ̇(τ) → 0 and the

Herschel–Bulkley term dominates: γ̇ ∼
[
(τ − τY )/κ

]1/n
. As τ→ ∞, the high-shear viscous

term dominates: γ̇ ∼ (τ − τY )/µ∞. In between these limits, numerical inversion is needed

to define γ̇(τ).

The expression (2.14) defines the closure relationship between the gap-averaged flow

rate |∇Ψ | and the modified pressure gradient A. Evidently, as A→ τY /H the range of the

integral vanishes and |∇Ψ | → 0. Since the integrand, τγ̇(τ), is strictly positive, increasing

faster than linear, and is C∞, for τ > τY /H we see that |∇Ψ |(A) is also C∞ and increases

strictly monotonically, for A > τY /H . Inverting this relation, we may write A=A(|∇Ψ |).
For |∇Ψ | > 0 we have that A(|∇Ψ |) is strictly positive (bounded strictly below by τY /H),

and strictly monotone. It is convenient to separate the yield stress effects. Below, we shall

write

A(|∇Ψ |) = χ(|∇Ψ |) +
τY

H
.

Thus, χ(|∇Ψ |) represents the part of the modified pressure gradient surplus to that required

to overcome the yield stress locally. We may rewrite (2.14) as

|∇Ψ | =
1

[χ + τY /H]2

∫ Hχ+τY

τY

τγ̇(τ) dτ. (2.16)

Although we have focused on the relation between |∇Ψ | and A (equivalently χ), we note

that via the constitutive law and the limits on the integration in (2.14) and (2.16), we have

the following parametric dependency of these functions:

|∇Ψ | = |∇Ψ |(χ;H, τY , κ, n, µ∞), χ = χ(|∇Ψ |;H, τY , κ, n, µ∞).

Returning to (2.12), we average across the half-gap, y ∈ [0, H], to give

ū = [G − ρūt]
1

H

∫ H

0

∫ H

y

ỹ

η(ỹ)
dỹ dy, (2.17)

from which we see that ū is also instantaneously parallel to the vector [G − ρūt]:(
−∂Ψ

∂ξ
,

∂Ψ

∂φ

)
|∇Ψ | =

(
ρ

H

∂2Ψ

∂ξ∂t
− ∂p

∂φ
+ gφ,−

ρ

H

∂2Ψ

∂φ∂t
− ∂p

∂ξ
+ gξ

)
A

. (2.18)
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For |∇Ψ | > 0, replacing A with χ + τY /H , this implies that

ρ

H

∂2Ψ

∂ξ∂t
− ∂p

∂φ
+

ρ sin β sin πφ

St∗
= −

(
χ(|∇Ψ |) + τY /H

|∇Ψ |

)
∂Ψ

∂ξ
,

− ρ

H

∂2Ψ

∂φ∂t
− ∂p

∂ξ
− ρ cos β

St∗
=

(
χ(|∇Ψ |) + τY /H

|∇Ψ |

)
∂Ψ

∂φ
.

Cross-differentiating to eliminate the pressure, we finally arrive at

∇ ·
[
ρ

H
∇Ψt

]
= −∇ ·

[(
χ(|∇Ψ |) + τY /H

|∇Ψ |

)
∇Ψ + f

]
, (2.19)

where f contains the buoyancy terms:

f =

(
ρ(c)

cos β

St∗
, ρ(c)

sin β sin πφ

St∗

)
. (2.20)

If |∇Ψ | = 0, we may still cross-differentiate to eliminate the pressure, except that the

right-hand side of this system is multi-valued. Thus, we may write

∇ ·
[
ρ

H
∇Ψt

]
= −∇ · [S + f ] , (2.21)

where

S =

(
χ(|∇Ψ |) + τY /H

|∇Ψ |

)
∇Ψ ⇔ |S| > τY /H, (2.22)

|∇Ψ | = 0 ⇔ |S| � τY /H. (2.23)

We note also that

S =

(
− ρ

H

∂2Ψ

∂φ∂t
− ∂p

∂ξ
− ρ cos β

St∗
,− ρ

H

∂2Ψ

∂ξ∂t
+

∂p

∂φ
− ρ sin β sin πφ

St∗

)
. (2.24)

Equation (2.21) is the classical formulation of our evolution problem for Ψ (effectively

giving the gap-averaged velocity in the annulus). We shall consider this in a more rigorous

setting below in Section 3.

2.3.1 Boundary conditions

Equation (2.21) is supplemented with the following boundary conditions:

Ψ (0, ξ, t) = 0, (2.25)

Ψ (1, ξ, t) = Q(t), (2.26)

on the wide (φ= 0) and narrow (φ= 1) sides of the annulus, respectively. Here Q(t) =Os(1)

represents the total flow rate through the annulus, appropriately scaled. In a typical well

with an inclined borehole, the heavy steel casing lies eccentrically towards the lower side

of the hole. Thus, the wide side is taken as the upper side of the annular section, with each



Transient effects in oilfield cementing flows 487

annular section being symmetric about the (vertical) direction of gravity. As we consider

slow flows, we assume that the flow in each half of the annulus is symmetric and for

simplicity model only half the annulus, see [3]. Boundary conditions (2.25) and (2.26) fix

the flow rate through the annulus and assure that azimuthal velocity is zero on wide and

narrow sides, as corresponds to the supposed symmetry of the solution.

Conditions at the ends of the annulus are harder to specify, and depend largely on

the situation that we are modelling. In general, we shall suppose that large variations in

the fluid concentration occur away from the ends, i.e. we are interested in displacement

phenomena away from the ends. Thus, if we consider that the concentration does not

change close to the ends of the annulus the flow is parallel and the azimuthal component

of the velocity is zero. If we consider our constant geometry section to be a section of the

well, then appropriate conditions are

Sξ = 0 ⇒ ∂Ψ

∂ξ
(φ, 0, t) = 0. (2.27)

Sξ = 0 ⇒ ∂Ψ

∂ξ
(φ,Z, t) = 0, (2.28)

since the axial flow of a single fluid along a duct will have parallel streamlines. Altern-

atively, if we model a lab-scale pilot experiment, we may impose, e.g. the uniform inflow

condition

Ψ (φ, 0, t) = Q(t), (2.29)

in place of (2.27), retaining the outflow condition (2.28). Finally, if we consider Z � 1 so

that the flow close to the ends of the annulus is far from any concentration variations, we

may calculate appropriate one-dimensional flows at the ends, which correspond to stream

functions: Ψin(φ) at ξ = 0, and Ψout(φ) at z =Z , respectively. We might then impose

Ψ (φ, 0, t) = Ψin(φ, t), (2.30)

Ψ (φ,Z, t) = Ψout(φ, t), (2.31)

in place of (2.27) and (2.28). The Dirichlet conditions (2.30) and (2.31) are easiest to

handle analytically, and we assume this below unless otherwise stated.

2.3.2 Evolution of the fluid concentration

The gap-averaged fluid concentration evolves according to

1

ε

∂

∂t
[Hc] +

∂

∂φ
[Hvs c] +

∂

∂ξ
[Hws c] = 0, (2.32)

which is derived exactly as in [3]. At ξ = 0, the inflow boundary condition is c̄= 1.

2.3.3 Dimensionless parameters

Apart from the O(1) dimensionless fluid properties, there are four dimensionless paramet-

ers that govern the model: the eccentricity e, the inclination angle β, the timescale ratio ε
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and the Stokes number St∗. The first two are defined in Figure 1. The timescale ratio is

defined as ε= t̂v/t̂a, where the viscous and advective timescales are defined as

t̂v =
ρ̂∗(δπr̂a)

2

µ̂∗ , t̂a =
πr̂a
ŵa

;

ρ̂∗ and µ̂∗ are density and viscosity scales, respectively. When the viscous timescale is

relatively short, we may rescale time with ε and take ε→ 0 to recover the steady model of

[3]. For a given fluid pair, ε is sensitive to flow rate changes: as the flow rate increases, t̂a
decreases and t̂v increases, thus ε increases. Formally, the model in [3] is a model valid at

low flow rates. Here we do not necessarily assume ε� 1. The Stokes number is defined by

St∗ =
µ̂∗ŵa

ρ̂∗ĝ[r̂aδ]2
, (2.33)

and represents the ratio of viscous to buoyancy forces, over the scale of the annular gap

(ĝ is the gravitational acceleration). Typically, St∗ < 1, say in the range St∗ ∈ [0.02, 0.5].

3 Existence and uniqueness of Ψ

Our full transient displacement model is given by (2.21)–(2.23), with boundary conditions

(2.25), (2.26), (2.30) and (2.31), coupled to the concentration evolution equation (2.32).

Our focus in this section is to establish that this model is in fact well-posed. We observe

that equation (2.21) is not well-defined everywhere, as there may be regions of immobile

fluid governed by the transition between (2.22) and (2.23). Thus, in essence we have a free

boundary as part of the evolution problem for Ψ . As (2.32) represents pure advection,

it is clear that the main difficulty with our model is in the problem for Ψ , equations

(2.21)–(2.23). For this section we therefore ignore (2.32), and ask whether the evolution

problem for Ψ is well-posed for a given fixed concentration field (i.e. formally we consider

the limit ε→ 0).

For some simple mathematical intuition into the nature of (2.21), observe that if n= 1,

and if we consider a constant concentration, zero yield stress and a concentric annulus,

then (2.21) is simply:
ρ

H
�Ψt = −3(κ + µ∞)�Ψ,

with suitable boundary conditions and initial condition. Evidently, it is possible to solve

this simple linear problem, even analytically. The difficulties with (2.21) therefore come

from both the non-linearity of the operator and a potential free boundary (between static

and mobile fluid).

Our analysis proceeds as follows. We start with some initial assumptions and preliminary

results that establish the relevant functional space for Ψ . We then characterise S as the

subdifferential of a given functional and give a more rigorous definition of the evolution

problem for Ψ . We demonstrate that there exists a unique solution to the free boundary

problem for Ψ . This is followed by a number of continuity results, with respect to the

problem data, and finally by some qualitative results on decay to the steady state.
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3.1 Preliminary assumptions and results

The following physically motivated assumptions are adopted throughout.

A1 The concentration c̄(φ, ξ) ∈ H1(Ω), and is bounded by 0 and 1. The physical properties

of the fluid are all smooth functions of c̄; µ∞, κ, ρ and n are strictly positive, τY is

semi-positive. All are bounded above and in particular n � 1.

A2 The flow rate through the annulus, Q(t), and the various pressure gradients in the

annulus are bounded. With A1 above, this implies that (S+ρ∇Ψt) ∈ [L∞(Ω)]2, since

we have that

S +
ρ

H
∇Ψt =

(
− ∂p

∂ξ
− ρ cos β

St∗ ,
∂p

∂φ
− ρ sin β sin πφ

St∗

)
. (3.1)

A3 The annulus eccentricity e satisfies 0 � e < 1, which implies that 1 + e � H(φ) �
1 − e > 0.

A4 As ξ → 0 and ξ →Z , the physical properties of the fluid, τY , µ∞, κ, ρ and n all

approach constant values.

3.1.1 Properties of χ(|∇Ψ |)

Proposition 1 For |∇Ψ | > 0 we have that χ(|∇Ψ |) is C∞, strictly positive and strictly

monotone; χ(|∇Ψ |) → 0 as |∇Ψ | → 0.

Proposition 2 The function χ(|∇Ψ |) is bounded below by χN(|∇Ψ |), χB(|∇Ψ |) and

χHB(|∇Ψ |), defined implicitly for |∇Ψ | � 0 as follows:

|∇Ψ | =
H3χN

3µ∞
, (3.2)

|∇Ψ | =
H3χ2

B

3µ∞

(χB + 1.5τY /H)

(χB + τY /H)2
, (3.3)

|∇Ψ | =
Hm+2

(m + 2)κ

χm+1
HB

(χHB + τY /H)2

(
χHB +

m + 2

m + 1

τY

H

)
, m = 1/n. (3.4)

Remarks:

(1) See [13] for complete proofs of the above, which are essentially algebraic. In out-

line, proposition 1 follows directly from the properties of A(|∇Ψ |), as discussed in

Section 2.3. Proposition 2 follows from (2.15) and (2.16). For the bound with χN , we

bound τ(γ̇) below for τ � τY , by neglecting the yield stress terms as well as the term

κγ̇n. For χB , we bound τ(γ̇) below by neglecting the term κγ̇n, and for χHB , we bound

τ(γ̇) below by neglecting the term µ∞γ̇. We insert the resulting bounds into (2.16) and

perform the integrations; (3.2), (3.3) and (3.4) follow directly.

(2) The asymptotic behaviour as |∇Ψ | → ∞ is of most interest. For χHB , following [15],

we have χHB ∼ CHB |∇Ψ |n, whereas evidently χN ∼ CN |∇Ψ | and χB ∼ CB |∇Ψ |, where

CHB = (Hm+2/(κ(m + 2)))(−n) and CN =CB = 3µ∞/H
3.
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(3) It is also relatively straightforward to provide an upper bound for χ. For example,

writing

τ(γ̇) � 2max{µ∞γ̇, κγ̇
n} + τY ,

implies that γ̇(τ) � γ̇m(τ), where

γ̇m(τ) = min

{
τ − τY

2µ∞
,
[τ − τY

2κ

]1/n
}
.

Therefore, defining χM implicitly via

|∇Ψ | =
1

[χM + τY /H]2

∫ χMH+τY

τY

τγ̇m(τ) dτ,

leads to χ(|∇Ψ |) � χM(|∇Ψ |). Furthermore, we can see that at large τ,

γ̇m(τ) =
τ − τY

2µ∞

so that

|∇Ψ | ∼ H3χ2
M

6µ∞

(χM + 1.5τY /H)

(χM + τY /H)2
⇒ χM ∼ 6µ∞|∇Ψ |

H3
.

With the lower bounds in the above proposition, this demonstrates that χ(|∇Ψ |) is

linear in the limit |∇Ψ | → ∞.

(4) If we consider also the limit |∇Ψ | → 0, when χ(|∇Ψ |) → 0, from the lower bound

χHB(|∇Ψ |) and from the results in [15], we can establish that χ(|∇Ψ |) � C|∇Ψ |1/(1+m)

for positive C in this limit. This may be used to establish the ellipticity of the steady

problem.

3.1.2 Behaviour of ‖Ψ‖

Lemma 1 Provided that assumptions A1, A2 and A3 hold, then the solution Ψ of (2.21),

satisfying boundary conditions (2.25), (2.26), (2.30) and (2.31) lies in the space

Ψ ∈ L∞([0,∞], H1(Ω)).

Proof First, let us comment that the boundary conditions (2.25), (2.26), (2.30) and (2.31)

are compatible and give a boundary stream function that is continuous at the corners of

the rectangular domain (and C1 elsewhere).

Multiplying (2.21) by Ψ and integrating over Ω, using the divergence theorem:∫
Ω

ρ

H
∇Ψ · ∇Ψt dΩ =

∫
∂Ω

Ψ [
ρ

H
∇Ψt + S] · ν ds −

∫
Ω

∇Ψ · S − Ψ∇ · f dΩ, (3.5)

where ν denotes the outward normal to Ω. Using (3.1), we have∫
∂Ω

Ψ [
ρ

H
∇Ψt + S] · ν ds =

∫
∂Ω

Ψ

(
− ∂p

∂ξ
+ gξ,

∂p

∂φ
− gφ

)
· ν ds

� ‖∇p − (gφ, gξ)‖L∞(∂Ω)

∫
∂Ω

|Ψ | ds

� C0‖∇p − (gφ, gξ)‖L∞(∂Ω)‖Ψ‖H1
s
. (3.6)
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The first inequality follows from assumptions A1 and A2, using the Hölder inequality.

The last line follows from

∫ L

−L

∣∣∣∣∂Ψ

∂ξ

∣∣∣∣ dφ � |Ψin| − |Ψout|

⇒
∫
Ω

∣∣∣∣∂Ψ

∂ξ

∣∣∣∣ dΩ �

∫
∂Ω1

|Ψin| dφ +

∫
∂Ω3

|Ψout| dφ∫
Ω

∣∣∣∣∂Ψ

∂φ

∣∣∣∣ dΩ �

∫
∂Ω2

|Ψ (1, ξ, t)| dξ +

∫
∂Ω4

|Ψ (0, ξ, t)| dξ

⇒ 2

∫
Ω

|∇Ψ | dΩ �

∫
∂Ω

|Ψ | ds

From Proposition 2 we have that

χ(|∇Ψ |) �
3µ∞
H3

|∇Ψ |. (3.7)

Combining all this

d

dt

∫
Ω

ρ

2H
|∇Ψ |2 dΩ � C0‖∇p − (gφ, gξ)‖L∞(∂Ω)‖Ψ‖H1

s
+ ‖∇ · f‖L2‖Ψ‖L2

−3 inf
Ω

{µ∞
H3

}
‖Ψ‖2

H1
s

− inf
Ω

{τY

H

}
‖Ψ‖H1

s
, (3.8)

where

‖Ψ‖H1
s

=

[∫
Ω

|∇Ψ |2 dΩ

]1/2

.

Since Ψ = 0 along φ= 0, the seminorm ‖Ψ‖H1
s

is equivalent to ‖Ψ‖H1 , and evidently

‖Ψ‖L2 � ‖Ψ‖H1 . Therefore, we can find constants C1 � 0 and C2 > 0, for which

d

dt

∫
Ω

ρ

2H
|∇Ψ |2 dΩ � C1‖Ψ‖H1 − C2‖Ψ‖2

H1 . (3.9)

Integrating (3.9) with respect to t, we can find C3 > 0 for which

C3‖Ψ‖2
H1 (t) � inf

Ω
{ ρ

2H
}‖Ψ‖2

H1
s
(t)

�

∫
Ω

ρ

2H
|∇Ψ |2 dΩ

∣∣∣∣
t=0

+

∫ t

0

C1‖Ψ‖H1 (s) − C2‖Ψ‖2
H1 (s) ds.

We see that the integrand becomes negative if

‖Ψ‖H1 (t) �
C1

C2
,

and consequently ‖Ψ‖H1 (t) is bounded for all t > 0. �
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3.1.3 I(u), ∂Iv and the steady-state problem

Denote by V the subspace of H1(Ω) containing functions that satisfy boundary conditions

(2.25), (2.26), (2.30) and (2.31). The space V is non-empty since for example Ψ ∗ ∈V ,

where Ψ ∗ = (Ψin(φ, t)[ρout − ρ(c̄)] + Ψout(φ, t)[ρ(c̄) − ρin])/(ρout − ρin), and ρin & ρout

are the density of pure fluids 1 and 2, at the inflow and outflow, respectively. Note

that the boundary streamfunctions, Ψin & Ψout must satisfy Ψin(0, t) =Ψout(0, t) = 0 and

Ψin(1, t) =Ψout(1, t) =Q(t).

We now denote by V0 the subspace of H1(Ω) containing functions that are zero at ∂Ω,

i.e. V0 =H1
0 (Ω). Note that V is an affine space, i.e. for any Ψ ∗ ∈ V : V =Ψ ∗ + V0. Except

where stated below, we shall now regard Ψ ∗ as fixed and in particular time-invariant,

i.e. the flow rate is constant.

We denote the usual L2(Ω) inner product by 〈·, ·〉v. For Ψ ∗ ∈ V and u ∈ L2(Ω), consider

the following functional, I(u):

I[u] := I1[u] + I2[u]: u ∈ L2(Ω), (3.10)

where

Ik[u] =

{∫
Ω
Lk(∇u) dΩ, k = 1, 2, u ∈ V0,

+∞ otherwise,
(3.11)

with

L1(∇u) =
1

2

∫ |∇Ψ ∗+∇u|2

0

χ
(
s1/2

)
s1/2

ds + ∇(Ψ ∗ + u) · f , (3.12)

L2(∇u) =
τY

H
|∇Ψ ∗ + ∇u|. (3.13)

The sub-differential of I is denoted ∂Iv and defined as follows:

∂Iv[u] := {v ∈ L2(Ω) : I[w] � I[u] + 〈v, w − u〉v ∀ w ∈ V0}. (3.14)

We now give some results concerning the functional I(u) and its sub-differentials. The

following two results are proven in [13].

Proposition 3 The functional I(u) is strictly convex on L2(Ω), proper and lower semi-

continuous on L2(Ω); ∂Iv[u] is monotone.

Proof Note that L(∇u) = L1(∇u) + L2(∇u) is convex. Therefore, L(∇u) is weakly lower

semi-continuous. The lower semi-continuity follows from the weak lower semi-continuity.

Lastly, since I[u] is convex, proper and lower semi-continuous, ∂I[u] is monotone. �

Proposition 4 For u ∈ V0, let I[u] = I1[u] + I2[u], with I1[u] Gâteaux-differentiable and

∂I1,V [u] single valued. Then if v1 ∈ ∂I1,V [u]

v = v1 + v2 ∈ ∂(I1,V [u] + I2,V [u]) ⇔ v2 ∈ ∂I2,V [u].
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Proof ⇒: Because v1 ∈ ∂I1[u] and I1[u] is Gâteaux-differentiable, we have

I1[u] − I1[w] � (w − u,−v1), ∀w ∈ VI,0, (3.15)

i.e. because ∂I1[u] is single valued. We know that v1 + v2 ∈ ∂(I1[u] + I2[u]), thus

I1[w] − I1[u] + I2[w] − I2[u] � (w − u, v1 + v2) ∀w ∈ VI,0. (3.16)

Adding (3.15) and (3.16), we get

I2[w] − I2[u] � (w − u, v2) ∀w ∈ VI,0. (3.17)

Therefore, v2 ∈ ∂I2[u].

⇐: By assumption ∂I1[u] is single valued and v1 ∈ ∂I1[u]. Therefore, because v2 ∈ ∂I2[u],

(3.16) and (3.17) are satisfied. Hence v1 + v2 ∈ ∂(I1[u] + I2[u]). �

In Proposition 4, ∂Ik,V [u] denotes the sub-differential of Ik[u], with respect to the inner

product 〈·, ·〉v, defined as per (3.14). We may now characterise the sub-differential ∂IV [u].

The first functional I1[u] is Gâteaux-differentiable, consequently ∂I1,V [u] = I ′
1,V [u], and we

find that

I1[w] � I1[u] −
∫
Ω

(w − u)∇ ·
(
χ(|∇Ψ ∗ + ∇u|)

|∇Ψ ∗ + ∇u| (∇Ψ ∗ + ∇u) + f

)
dΩ (3.18)

for u ∈ V0, ∀w ∈ V0. For the second functional (see [1]), if u ∈ V0, then ∂I2,V [u] is

characterized by

−∇ ·
(
τY

H

(∇Ψ ∗ + ∇u)
|∇Ψ ∗ + ∇u|

)
,

which is set-valued for |∇Ψ ∗ + ∇u| = 0. Thus

I2[w] � I2[u] −
∫
Ω

(w − u)∇ ·
(
τY

H

(∇Ψ ∗ + ∇u)
|∇Ψ ∗ + ∇u|

)
dΩ. (3.19)

We now combine these two terms, using Proposition 4, to give

I[w] � I[u] −
∫
Ω

(w − u)∇ · (S[u] + f ) dΩ, u ∈ VI,0, ∀w ∈ VI,0 (3.20)

i.e. v ∈ ∂IV [u] ⇒ v ∈ −∇ · (S[u] + f ).

3.2 Steady-state problem

We may now consider the steady problem for Ψ , which may be written as

∇ · (S + f ) � 0, (3.21)

with boundary conditions (2.25), (2.26), (2.30) and (2.31).
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Theorem 1 [Steady-state problem] There exists a unique solution Ψs ∈ VI to (3.21), where

Ψ =Ψ ∗ + us, and us is the minimiser of

inf
v∈V0

I[v]. (3.22)

Proof This is essentially the same result as in [15] except that, due to adoption of (2.6),

we are now in the Hilbert space setting. �

3.3 Solution to the transient problem

We now consider the existence of a solution to the transient problem. For simplicity we

assume a constant flow rate and again consider Ψ ∗ to be fixed. We shall need to consider

the elliptic problem

E[z] = −v : E[z] = ∇ ·
[
ρ

H
∇z

]
, in Ω, z = 0 on ∂Ω. (3.23)

Since assumptions A1–A3 are satisfied, 0 < ρmin

1+e
� ρ(c̄)

H
� ρmax

1−e
. Therefore, E is a strictly

elliptic operator with bounded coefficients, and for v ∈ H−1(Ω), this problem has a unique

solution z ∈ H1
0 (Ω) (see [10], Theorem 8.3 and Corollary 8.7, p. 171). Associated with

this elliptic problem, we denote by U0 =H1
0 (Ω), the Hilbert space equipped with the inner

product 〈·, ·〉U:

〈v, w〉U =

∫
Ω

ρ

H
∇v · ∇w dΩ, ∀v, w ∈ U0. (3.24)

We shall denote the seminorm associated with (3.24) by ‖ · ‖U . Since 0 < ρmin � ρ � ρmax

and 1 − e � H � 1 + e, the associated seminorm is equivalent to ‖ · ‖H1 on U0, and in

fact we can show that U0 =H1
0 (Ω). We define E−1 : H−1(Ω) �→ U0 as the solution to

(3.23), i.e. E−1[v] = z. Note that for any Ψ ∗ ∈ V , since V0 =H1
0 (Ω) =U0, we have that

V =Ψ ∗ + U0.

Evidently, I[u] is defined for u ∈ U0. The sub-differential of I[u] with respect to U0 is

defined as

∂IU[u] := {z ∈ U0 : I[w] � I[u]+ < z, w − u >U, ∀w ∈ U0, u ∈ U0}.

Suppose that z ∈ ∂IU[u]. It follows that for u ∈ U0 and ∀w ∈ U0, we have that

I[w] � I[u]+ < z, w − u >U

I[w] � I[u]− < E[z], w − u >v,

and therefore, −E[z] ∈ ∂IV [u]. According to our characterisation of ∂IV [u], this implies

that

E[z] = ∇ · (S[u] + f ).

Conversely, suppose that v ∈ ∂IV [u], which we have characterised by −∇ · (S[u]+ f ). Then,

we have that v ∈ −∇ · (S[u] + f ) ⊂ L2(Ω), which is embedded in H−1(Ω), so that E−1[v] is
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well-defined. From (3.20) we can write

−
∫
Ω

(w − u)∇ · (S[u] + f ) dΩ = −
∫
Ω

(w − u)E[E−1∇ · (S[u] + f )] dΩ,

= −
∫
Ω

(w − u)∇ ·
(

ρ

H
∇[E−1∇ · (S[u] + f )]

)
dΩ,

=

∫
Ω

ρ

H
∇(w − u) · ∇[E−1∇ · (S[u] + f )] dΩ.

Therefore, if v ∈ ∂IV [u] ⇒ E−1[−v] ∈ ∂IU[u]. Similarly, we may show that if u ∈ D(∂IV )

then u ∈ D(∂IU).

We are now in a position to demonstrate existence of a solution. Consider the differential

equation: {
u′(t) + A[u(t)] � 0 t � 0,

u(0) = u0,
(3.25)

where u′(t) denotes the time derivative of u, u0 ∈ H is given and H is a Hilbert space;

A= ∂I is the subgradient of I , which may be non-linear and perhaps multi-valued. Our

result follows from the application of the following theorem.

Theorem 2 For each u0 ∈ D(∂I) there exists a unique function

u ∈ C([0,∞);H) with u′ ∈ L∞(0,∞;H),

such that,

(1) u(0) = u0,

(2) u(t) ∈ D(∂I) for each t > 0, and

(3) −u′(t) ∈ ∂I for a.e. t � 0.

Proof See [7] (p. 529–533).

We now apply this theorem to the differential equation{
u′(t) + ∂IU[u(t)] � 0 t � 0,

u(0) = u0.
(3.26)

It follows that there exists a unique function

u ∈ C([0,∞);U0) with u′ ∈ L∞(0,∞;U0)

such that

(1) u(0) = u0,

(2) u(t) ∈ D(∂IU) for each t > 0, and

(3) −u′(t) ∈ ∂IU for a.e. t � 0.
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We have seen that if z ∈ ∂IU , then −E[z] ∈ ∂Iv. It follows that we have u satisfying:

E[u′(t)] ∈ ∂Iv for a.e. t � 0 =⇒ E[u′(t)] + ∇ · (S[u] + f ) � 0. (3.27)

The latter is our evolution equation for Ψ (note that E[u′(t)] =E[Ψ ′(t)]). Therefore

equation (2.21), in the above form, has a unique solution u ∈ C([0,∞);U0) and (see earlier

comments), U0 is H1
0 (Ω).

3.4 Continuity with respect to physical parameters

It is possible to prove the continuity of the solution with respect to many of the physical

parameters. The proofs of the following results are lengthy and mostly technical; they may

be found in [13]. In what follows, we assume that Ψ1, Ψ2 ∈ H1(Ω) are two solutions that

correspond to variation of a single physical properties, as indicated, e.g. varying density:

ρ1(φ, ξ) �→ Ψ1 and ρ2(φ, ξ) �→ Ψ2, with all other physical properties remaining identical.

The solutions Ψ1 and Ψ2 may be shown to satisfy the following continuity bounds.

Proposition 5 [Steady problem] For two steady solutions for which one of the physical

properties varies, we may find strictly positive constants C , independent of the solutions,

such that

‖ρ1 − ρ2‖L∞ � C‖∇(Ψ1 − Ψ2)‖2
L2 ,

‖τY ,1 − τY ,2‖L∞ � C‖∇(Ψ1 − Ψ2)‖2
L2 ,

‖κ1 − κ2‖L∞ � C‖∇(Ψ1 − Ψ2)‖2
L2 ,

‖µ∞,1 − µ∞,2‖L∞ � C‖∇(Ψ1 − Ψ2)‖2
L2 .

Proposition 6 [Transient problem] For two transient solutions for which one of the physical

properties varies, we may find strictly positive constants C , independent of the solutions, such

that for t < T :

‖ρ1 − ρ2‖L∞ + ‖∇(Ψ1 − Ψ2)‖2
L2 (0) � C‖∇(Ψ1 − Ψ2)‖2

L2 (t),

‖τY ,1 − τY ,2‖L∞ + ‖∇(Ψ1 − Ψ2)‖2
L2 (0) � C‖∇(Ψ1 − Ψ2)‖2

L2 (t),

‖κ1 − κ2‖L∞ + ‖∇(Ψ1 − Ψ2)‖2
L2 (0) � C‖∇(Ψ1 − Ψ2)‖2

L2 (t),

‖µ∞,1 − µ∞,2‖L∞ + ‖∇(Ψ1 − Ψ2)‖2
L2 (0) � C‖∇(Ψ1 − Ψ2)‖2

L2 (t).

We note that we have not been able to establish continuity results with respect to

variations in the power law index between two solutions.

3.5 Decay to the steady state

If the concentration field and flow rate remain steady, we might expect that the solution

of the transient model will decay to that of the steady model, as t → ∞. This is indeed

the case, as we see below.
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For the rest of this section, we assume that Ψ ∗ =Ψs (the steady solution). Multiplying

(1.1) by (Ψ − Ψs) and integrating by parts gives us

∫
Ω

(
χ(|∇Ψs|)

|∇Ψs|
∇Ψs

)
· ∇(Ψ − Ψs) +

τY

H
(|∇Ψ | − |∇Ψs|) + f · ∇(Ψ − Ψs) dΩ � 0. (3.28)

Note that (Ψ − Ψs) vanishes on the boundary. We also multiply (2.21) by (Ψs − Ψ ) and

integrate by parts:

∫
Ω

ρ

H
∇Ψt · ∇(Ψs − Ψ ) dΩ +

∫
Ω

(
χ(|∇Ψ |)

|∇Ψ | ∇Ψ
)

· ∇(Ψs − Ψ ) dΩ

+

∫
Ω

τY

H
(|∇Ψs| − |∇Ψ |) + f · ∇(Ψs − Ψ ) dΩ � 0. (3.29)

In [13] (see proposition 10, p. 65), it is shown that

∫
Ω

(
χ(|∇Ψs|)

|∇Ψs|
∇Ψs − χ(|∇Ψ |)

|∇Ψ | ∇Ψ
)

· ∇(Ψs − Ψ ) dΩ � −C‖∇(Ψ − Ψs)‖2
L2 , (3.30)

for C > 0 and independent of the solutions. Summing (3.28) and (3.29), we have∫
Ω

ρ

H
∇Ψt · ∇(Ψs − Ψ ) dΩ − C‖∇(Ψ − Ψs)‖2

L2 � 0. (3.31)

Because ∂Ψs

∂t
= 0, (3.31) states that

1

2

d

dt

∫
Ω

ρ

H
|∇(Ψs − Ψ )|2 dΩ + C‖∇(Ψ − Ψs)‖2

L2 � 0. (3.32)

Since ρ is positive and bounded, we have via Gronwall’s lemma:

‖Ψ − Ψs‖U(t) � ‖Ψ − Ψs‖U(0)e−Kt

which translates to

‖∇(Ψ − Ψs)‖L2 (t) � Rρ‖∇(Ψ − Ψs)‖L2 (0)e−Kt (3.33)

where

Rρ =
ρmax(1 + e)

ρmin(1 − e)
and K = 2C.

Thus, we have exponential decay to the steady state solution, as expected.

3.5.1 Finite time decay

A special case of the above occurs when the steady-state solution is Ψs = 0. It is obvious

that a necessary condition for this to happen is that Q= 0, in which case all the boundary

values are zero. To find a sufficient condition, we multiply (3.21) by Ψs and integrate by
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parts to give ∫
Ω

χ(|∇Ψs|)|∇Ψs| dΩ = −
∫
Ω

τY

H
|∇Ψs| dΩ +

∫
Ω

Ψs∇ · f dΩ

� −
(
τY ,min

1 + e
− ‖∇ · f‖L∞(Ω)

2

)∫
Ω

|∇Ψs| dΩ. (3.34)

Therefore, for Q= 0 and

τY ,min

1 + e
�

‖∇ · f‖L∞(Ω)

2
, (3.35)

we have that Ψs = 0.

Let us assume that (3.35) holds. Considering now our decay results above for the

transient problem, we know that Ψ → 0 at least exponentially. From the variational form

of the transient problem, we have∫
Ω

ρ

H
∇Ψt · ∇Ψ dΩ = −

∫
Ω

χ(|∇Ψ |)|∇Ψ | +
τY

H
|∇Ψ | dΩ +

∫
Ω

Ψ∇ · f dΩ. (3.36)

Using proposition 10 in [13] we have

1

2

d

dt
‖Ψ‖2

U � −C‖Ψ‖2
Ḣ1(Ω) −

(
τY ,min

1 + e
− ‖∇ · f‖L∞(Ω)

2

)∫
Ω

|∇Ψ | dΩ

� −CCΩ‖Ψ‖2
L2(Ω) − BΩ

(
τY ,min

1 + e
− ‖∇ · f‖L∞(Ω)

2

)
‖Ψ‖L2(Ω), (3.37)

where CΩ is the Poincaré constant for Ω and BΩ is defined by

BΩ = inf
v∈U, v�0

∫
Ω

|∇v| dΩ
‖v‖L2(Ω)

.

We may calculate that (for Z > 1, as is usual), CΩ = π2 and BΩ = 2. Integrating with

respect to t gives us

ρminπ2

2(1 + e)
‖Ψ‖2

L2(Ω)(t) �
1

2
‖Ψ‖2

U(t)

�
1

2
‖Ψ‖2

U(0) − π2C

∫ t

0

‖Ψ‖2
L2(Ω)(s) ds

−2

[
τY ,min

1 + e
− ‖∇ · f‖L∞(Ω)

2

] ∫ t

0

‖Ψ‖2
L2(Ω)(s) ds. (3.38)

If we take equality in the above, we have z(t) � 0 satisfying

z2(t) = z2
0 + 2

∫ t

0

α1z
2(s) + α2z(s) ds, (3.39)

with

z0 =
‖Ψ‖U(0)(1 + e)

π
√
ρmin

, α1 =
C(1 + e)

ρmin
, α2 =

2(1 + e)

ρminπ2

[
τY ,min

1 + e
− ‖∇ · f‖L∞(Ω)

2

]
.
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The solution of this integral equation is for 0 � t � ts:

z(t) =

(
z0 +

α2

α1

)
e−α1t − α2

α1
,

and z(t) = 0 for t > ts, where

ts =
1

α1
ln

[
1 +

z0α1

α2

]
. (3.40)

Thus, we may expect ‖Ψ‖L2(Ω)(t) = 0 for t > ts. This bound is primarily of use as

a computational test problem. For example, if we have a Bingham fluid with uniform

physical properties initially flowing in a concentric annulus, then we have that C � κ,

∇ · f = 0, and we have

ts =
ρ

κ
ln

[
1 +

πκ‖Ψ‖U(0)

2τY

]
∼ πρ‖Ψ‖U(0)

2τY
, as τY → ∞.

4 Computational results

We now consider solution of the fully coupled transient model:

∇ ·
[
ρ

H
∇Ψt

]
= −∇ · [S + f ], (4.1)

where

S =

(
χ(|∇Ψ |) + τY /H

|∇Ψ |

)
∇Ψ ⇔ |S| > τY /H, (4.2)

|∇Ψ | = 0 ⇔ |S| � τY /H, (4.3)

Ψ (0, ξ, t) = 0, (4.4)

Ψ (1, ξ, t) = Q(t), (4.5)

Ψ (φ, 0, t) = Ψin(φ, t), (4.6)

Ψ (φ,Z, t) = Ψout(φ, t), (4.7)

1

ε

∂

∂t
[Hc] +

∂

∂φ
[Hv c] +

∂

∂ξ
[Hw c] = 0. (4.8)

The system (4.1)–(4.8) is supplemented with closure laws for the fluid properties. For

simplicity, we follow [3] and assume linear interpolation between the constant values of

the pure fluids.

For the case where the flow rate and concentration are constant, we have established in

the previous section that this model is well-posed. We first compute some test problems,

verifying the decay results of Section 3.5, and then look at the problem of removing a

static narrow-side mud channel via flow rate pulsation; see Section 4.3.

4.1 Computational method outline

To solve the system (4.1)–(4.8) numerically, a hybrid method is used. We discretise

(φ, ξ) ∈ [0, 1] × [0, Z], using a rectangular mesh. The concentration equation is discretised
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using a conservative finite volume approximation at the middle point of each element and

solved using a Flux Corrected Transport scheme. The FCT scheme is used to minimize

both numerical dispersion and diffusion, see [19]. Although more sophisticated schemes

are available, the primary limitations in terms of accuracy and computational speed come

from solving (4.1).

There are two key problems in solving (4.1). Firstly, how to handle the yielding

behaviour, i.e. the free boundary between static and mobile fluids. Secondly, how to

handle the time evolution. In its steady form, (4.1) resembles the Dirichlet problem for

the flow of a visco-plastic fluid through a duct (with in this case, Ψ representing the axial

velocity). The key issue for such flows is whether or not it is necessary to accurately model

the unyielded flow regions, or whether it is adequate to use a regularisation method.

In the present case, unyielded flow typically corresponds to unyielded drilling mud, and

hence this is of importance. Consequently, we use the augmented Lagrangian method

of [8, 11] on each time step. The time derivative is handled fully implicitly, which is

known to preserve some of the time decay properties of systems such as (4.1)–(4.7),

e.g. we would expect finite-time decay of Ψ → 0 in the event that we set Q(t) = 0. The

spatial discretisation is with bilinear basis functions on quadrilateral finite elements. The

disadvantage of the augmented Lagrangian approach is the large number of iterations

that are needed. Further details of the implementation may be found in [13].

4.2 Test computations

There are no known non-trivial analytical (or semi-analytical) solutions to the system

(4.1)–(4.8). For the steady problem, it is possible to find analytical solutions for steadily

advancing displacements in concentric annuli (travelling wave solutions) and also asymp-

totic approximations may be used to extend these solutions to slightly eccentric annuli,

e� 1; see [15]. If the fluid properties are constant throughout the annulus, then there

exists a uni-directional flow solution, in which the streamlines are all parallel to the ξ-axis.

Such solutions can be computed via solution of a single monotone non-linear equation,

i.e. these are semi-analytical solutions. It is such uni-directional flow solutions that are

used to define the end conditions, Ψin(φ, t) and Ψout(φ, t) in (4.6) & (4.7). These test

solutions are however not ideally suited to the transient problem.

Instead, as a first test for the transient numerical solution, we use the decay results from

Section 3.5. We freeze the concentration field and compute a steady solution, Ψs, using

the same spatial discretisation and augmented Lagrangian algorithm as for the transient

problem. We then solve the transient problem (4.1)–(4.7) and show that Ψ →Ψs as t→ ∞
in the H1 norm.

The rheological and physical parameters for fluid 1 are τY ,1 = 1, κ1 = 1, ρ1 = 1, m1 = 1,

µ1,∞ = 0; for fluid 2 the properties are τY ,2 = 1, κ2 = 1, ρ2 = 1, m2 = 2, µ2,∞ = 0. The annulus

is vertical, β = 0, and is eccentric, e = 0.4. The domain is (φ, ξ) ∈ [0, 1] × [0, 5] and we

allow the steady concentration to vary from 0 to 1 between ξ = 2 and ξ = 3 (see Figure 3a).

The steady state solution, Ψs(φ, ξ), is shown in Figure 3(b), and shows a smooth variation

between the two parallel stream function solutions at inflow and outflow.

For the transient problem we maintain a steady flow rate Q(t) = 1 and set as initial

condition:

Ψ (φ, ξ, 0) = sin(πφ) sin(ξπ). (4.9)



Transient effects in oilfield cementing flows 501

0
0.2

0.4
0.6

0.8
1

0

1

2

3

4

5
0

0.2

0.4

0.6

0.8

1

φξ

c̄(φ,ξ)

φ

z

Steady state

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5(b)(a)

Figure 3. (a) the steady concentration field assumed for our test computation; (b) the steady-state

solution Ψs(φ, ξ), with contours at intervals ∆Ψs = 0.05.

Figures 4(a)–(c) show decay of the streamfunction towards the steady state at different

times. Decay of ‖Ψ − Ψs‖L2(Ω) as time evolves is shown in Figure 4(d), which we can see

approaches an exponential decay, as predicted.

As a second test problem, we assume the same physical parameters and initial condition

(4.9). We impose as flow rate, Q(t) = 0, and we may deduce that Ψs = 0 for these physical

parameters. We therefore expect to find finite time decay of the transient solution, following

our analysis of the previous section. This is indeed found to be the case. Figure 5 shows

the decay of ‖Ψ‖L2(Ω)(t) → 0.

4.3 Static mud channel removal

For certain combinations of dimensionless parameters, it is possible for one of the fluids

to be stationary on the narrow side of the annulus. Physically, this occurs wherever the

wall shear stress is not large enough to overcome the yield stress of the fluid. From the

industrial perspective this can be a serious problem if stationary drilling mud forms a

long channel along the narrow side of the annulus. As the cement sets, water is sucked

from the mud, which dries into a porous conduit along the length of the well. Such

conduits connect reservoirs of different pressure, reducing productivity, and can also

allow subsurface fluids to percolate towards the surface. We would like to know if such

static channels can be removed or reduced by any means. In a companion paper we

study whether interfacial instability might occur during the actual displacement, as the

front elongates into a (pseudo-)parallel finger [14]. In this paper we investigate whether

pulsation of the flow can reduce mud channel formation. As the problem is intractable

analytically, we study it via numerical simulation.

For all the numerical results we show below, we set µk,∞ = 0. This is simpler (and quicker)

to work with than µ∞ > 0, as χ can be defined via an implicit algebraic expression; see [3].

The inclusion of µ∞ > 0 affects the high-shear behaviour, whereas mud channel formation

is related to the low-shear viscosity and the yield stress. Mathematically, when µ∞ = 0 we
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Figure 4. Contours of Ψ (φ, ξ, t) for the test problem: (a) t= 1, (b) t= 5, (c) t= 10; (d) decay of

‖Ψ − Ψs‖L2(Ω)(t).

are no longer in a Hilbert space setting. Instead the steady model has a solution which

lives in the space W 1,1+n(Ω). The solution of the transient model (2.21), is in H1(Ω) for

finite time. Numerically we work in finite-dimensional subspaces, which are anyway in

H1(Ω). For example, in the case of the finite element discretisation we consider basis

functions in a subspace of H1(Ω), which is compactly embedded in W 1,1+n(Ω). Therefore,

there is no penalty in taking µk,∞ = 0.

We will consider a varying flow rate, such as would be possible with pressure pulsing

at the pump, and investigate the effect of pulsing the flow rate on the displacement. The

model is as before, but with boundary condition (4.5) replaced by

Ψ (1, ξ, t) = 1 + δp sinωt. (4.10)

In the next two subsections we consider two possibilities. First, we consider what happens

if we pulsate the flow rate after the mud channel has already been formed. Secondly, what

happens when the pulsating flow rate is applied from the beginning of the displacement,

i.e. as the interface advances.
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Figure 5. Finite-time decay of ‖Ψ‖L2(Ω)(t) → 0, for zero-imposed flow rate, Q(t) = 0.

4.3.1 Pulsation after mud channel forms

As physical and rheological parameters, we consider the following κ1 = 0.5, κ2 = 0.4,

m1 = 1, m2 = 1.2, ρ1 = 1, ρ2 = 0.9, τY ,1 = 0.9, τY ,2 = 0.7, where k= 1 corresponds to cement

and k= 2 corresponds to mud. We suppose that the well is vertical and mildly eccentric:

β = 0, e= 0.3. As time-scale ratio, we take ε= 0.6 so that viscous and advective timescales

are comparable. As oscillation frequency, we adopt ω= 10, so that relative to the advective

time-scale, the period of oscillation, T = 2π/(εω), is also of order unity. Therefore, we

expect that transient effects will be fully coupled.

For these parameters, we may verify numerically that there exists a parallel flow of the

two fluids, with interface at φ= 0.8, such that the displaced fluid is completely static. We

take this as an initial condition and simulate the displacement through one full oscillation

of the flow rate, at a 20% amplitude of pulsation, δp = 0.2. We perform the simulation,

using both steady and transient models for the stream-function.

Figure 6 shows the effects of the pulsation on the displacement flow, using the steady

state velocity model. As we go over the full period of the pulsation the model predicts

that the mud channel will remain static for all time. At all times the velocity field appears

to remain parallel. As there exists a parallel flow solution at each flow rate during the

pulsation, Ψs =Ψs(φ,Q(t)), this is not surprising. The azimuthal component of velocity is

therefore always zero and the interface is not disturbed.

In Figure 7 we show the results of the same simulation, but using the transient model.

As we go over the full period of the pulsation the mud channel slowly begins to yield

until it is fully moving, then goes back to the static mud channel after the pulsation

period is over. Thus, in each pulsation the mud channel will yield, move up the narrow

side for a short period of time and stop again. As with the steady state velocity model

the interface remains parallel. An interesting behaviour is that it seems that the interface

is stable and unperturbed. In a companion paper we study interfacial stabilities and find

that the interface remains stable in a steady flow if the narrow side channel remains
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Figure 6. Displacement flow in an eccentric annulus with static mud channel and pseudo steady

velocity model. Period T = 2π/ω, ω= 10, and δp = 0.2. Interface position and velocity field for times:

(a)–(b) T/4. (c)–(d) T/2. (e)–(f) 3T/4. (g)–(h) T . Physical and rheological parameters: κ1 = 0.5,

κ2 = 0.4, m1 = 1, m2 = 1.2, ρ1 = 1, ρ2 = 0.9, τY ,1 = 0.9, τY ,2 = 0.7 e= 0.3, β = 0. Mud-white, cement-grey.

unyielded. Although the mud channel does move on each cycle, it may be that the time

period when the fluid is yielded is not long enough for instabilities to grow, or that for

these parameters the flow is in fact stable.

To summarise, our results indicate that if the static mud channel is allowed to form,

it is unlikely to become unstable and be removed via pulsation. We turn therefore to the

study of the effects of pulsation during the displacement itself.
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Figure 7. Displacement flow in eccentric annulus with a static mud (white) channel using the

transient velocity model. Period T = 2π/ωε, ω= 10, δp = 0.2, and ε= 0.6. Interface position and

velocity field for times: (a)–(b) T/4. (c)–(d) T/2. (e)–(f) 3T/4. (g)–(h) T . Physical and rheological

parameters: κ1 = 0.5, κ2 = 0.4, m1 = 1, m2 = 1.2, ρ1 = 1, ρ2 = 0.9, τY ,1 = 0.9, τY ,2 = 0.7 e= 0.3, β = 0.

Mud-white, cement-grey.

4.3.2 Pulsation as the displacement front passes

We simulate the effects of pulsation on a displacement front that is initially perpendicular

to the annulus axis, for 10% and 20% pulsation amplitudes. Figures 8 and 9 show the

width of the mud channel with pulsation amplitudes δp = 0.1 and δp = 0.2 respectively, after
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Figure 8. Displacement flow in eccentric annulus, interface propagation. Mud channel formation.

Pseudo-steady velocity model. Period T = 2π/ω, ω= 10, and δp = 0.1. Interface position and velocity

field for times: (a)–(b) T/4. (c)–(d) T/2. (e)–(f) 3T/4. (g)–(h) T . Physical and rheological parameters:

κ1 = 0.5, κ2 = 0.4, m1 = 1, m2 = 1.2, ρ1 = 1, ρ2 = 0.9, τY ,1 = 0.9, τY ,2 = 0.7 e= 0.8, β = 0. Cement-white,

mud-grey.

solving the pseudo-steady model. There is no clear evidence of a change in the position

of the interface on the narrow side. Figures 10 and 11 show the effects of a pulsating

flow rate on the transient model with amplitudes, δp = 0.1 and δp = 0.2, respectively. The

narrow-side fluids move more than with the pseudo-steady model. In Figure 12 we show

a close-up of the velocity profiles at ξ = 1.5, comparing directly between pseudo-steady

and transient models. Even though the velocities are zero far upstream and downstream
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Figure 9. Displacement flow in eccentric annulus, interface propagation. Mud channel formation.

Pseudo-steady velocity model. Period T = 2π/ω, ω= 10, and δp = 0.2. Interface position and velocity

field for times: (a)–(b) T/4. (c)–(d) T/2. (e)–(f) 3T/4. (g)–(h) T . Physical and rheological parameters:

κ1 = 0.5, κ2 = 0.4, m1 = 1, m2 = 1.2, ρ1 = 1, ρ2 = 0.9, τY ,1 = 0.9, τY ,2 = 0.7, e= 0.8, β = 0. Cement-white,

mud-grey.

of the interface, the interface does move, via a burrowing motion (see also [16]), in which

the fluids are locally yielded close to the interface. This yielded region advances slowly

with the interface along the annulus. As we increase the magnitude of the pulsation, this

yielding motion expands further towards the narrow side of the annulus, and therefore a

decrease of the width of the mud channel is achieved.
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Figure 10. Displacement flow in eccentric annulus, interface propagation. Mud channel formation.

Transient velocity model. Period T = 2π/ωε, ω= 10, δp = 0.1, and ε= 0.6. Interface position and

velocity field for times: (a)–(b) T/4. (c)–(d) T/2. (e)–(f) 3T/4. (g)–(h) T . Physical and rheological

parameters: κ1 = 0.5, κ2 = 0.4, m1 = 1, m2 = 1.2, ρ1 = 1, ρ2 = 0.9, τY ,1 = 0.9, τY ,2 = 0.7, e= 0.8, β = 0.

Cement-white, mud-grey.

As a conclusion, the transient model (4.1)–(4.7) appears to lead to a reduction of the

mud channel. Therefore, pulsation of the flow rate at the beginning of the displacement

might be used as a tool to reduce mud channels along the annuli.
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Figure 11. Displacement flow in eccentric annulus, interface propagation. Mud channel formation.

Transient velocity model. Period T = 2π/ωε, ω= 10, δp = 0.2, and ε= 0.6. Interface position and

velocity field for times: (a)–(b) T/4. (c)–(d) T/2. (e)–(f) 3T/4. (g)–(h) T . Physical and rheological

parameters: κ1 = 0.5, κ2 = 0.4, m1 = 1, m2 = 1.2, ρ1 = 1, ρ2 = 0.9, τY ,1 = 0.9, τY ,2 = 0.7, e= 0.8, β = 0.

Cement-white, mud-grey.

5 Discussion

In this paper we have developed the mathematical foundations for a transient version of

the displacement model in [3, 15–17]. The basic building block of this type of model is
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Figure 12. Velocity profile at ξ = 1.5: (a)–(b) Pseudo-steady model, δp = 0.1, 0.2, respectively.

(c)–(d) Transient model, δp = 0.1, 0.2, respectively.

a Hele–Shaw model of a yield stress fluid. The porous media analogue of such flows is

a non-linear Darcy flow with limiting pressure gradients. Such flows have been studied

extensively by Entov and co-workers (see e.g. [2] and references therein). In this context, the

annular eccentricity corresponds to an anisotropic variation in the permeability and hence

flow law. What is perhaps interesting is that the porous media analogy concerns primarily

steady flows. For porous media flows, transient terms enter via the mass conservation

equation, as a pressure (density) time derivative for weakly compressible fluids. Here the

transient terms are accelerations.

Our model is essentially a hydraulics model, but in two dimensions. Inclusion of

the acceleration terms allows the pressure gradient to locally relax from the frictional
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pressure gradient of a steady laminar flow between parallel plates, i.e. the Hele–Shaw

approximation. This relaxation allows for different dynamics from those with the pseudo-

steady model, as we have seen in Section 4.3. In our companion paper we will also see

that the transient model admits interfacial instabilities whereas the pseudo-steady model

does not.

The approximations that we have made are typical of those made in hydraulics,

i.e. averaging across the annular gap, interchanging derivative and averaging operations.

A natural question to ask is whether the non-linear inertial terms could have been included

within this formulation? This is of course, possible, with the assumptions on being able

to approximate the averages of the spatial derivatives of the velocity with the spatial

derivatives of the averages. Equation (2.21) is replaced by

∇ ·
(

ρ

H
[∇Ψt + R̃eN(Ψ )]

)
= −∇ · [S + f ], (5.1)

N(Ψ ) = (ΨφΨφξ − ΨξΨφφ,ΨφΨξξ − ΨξΨφξ), (5.2)

where R̃e is an appropriately defined Reynolds number. The term ∇ · S is essentially

elliptic, second order in Ψ , whereas the new terms in ∇ · [ ρ
H

N(Ψ )] will contain third-order

spatial derivatives. It is not clear how (5.1) is changed by this. Intuitively we expect that

for R̃e� 1 we have a unique solution, perturbed from that we have considered and that

for larger R̃e this uniqueness will be lost. However, we have not developed any analysis

of this equation.

The numerical method we have used is one that is commonly used for transient flows

of visco-plastic fluids, but in the Navier–Stokes context. Here the yielding behaviour is

preserved in the gap-averaged model, but the time-derivative operates on E[Ψ ] which is

elliptic. The visco-plastic fluids analogy would be to study an unsteady one-dimensional

duct flow, but with the time derivative replaced by (minus) the time derivative of the

Laplacian. It is of interest to note that recently this method has been advocated as a way

to compute steady-state visco-plastic duct flows using the augmented Lagrangian method,

but giving convergence of the steady-state velocity approximations in H1 rather than in

L2 [12]. Of course, this is a purely numerical trick, with no physical basis. In contrast,

here we have the physical motivation for a very similar numerical problem.

Finally a comment on the effects of flow pulsation. We have shown in Section 4.3 that

pulsation using a transient model tends to make the fluids more mobile on the narrow

side of the annulus. Although the effects might not seem dramatic, it is important to

understand that unremoved drilling mud channels are a serious industrial problem, and

any help towards mobilising them is significant. For example, mobile drilling mud may

be contaminated by chemical additives on a faster time scale than static mud.
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