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Consider axisymmetric strong solutions of the incompressible Navier–Stokes
equations in �3 with non-trivial swirl. Let z denote the axis of symmetry and r
measure the distance to the z-axis. Suppose the solution satisfies, for some 0 ≤ � ≤
1, �v�x� t�� ≤ C∗r−1+��t�−�/2 for −T0 ≤ t < 0 and 0 < C∗ < � allowed to be large.
We prove that v is regular at time zero.

Keywords Axisymmetric; Blow-up rate; Lower bounds; Navier–Stokes
equations; Regularity.

Mathematics Subject Classification 35Q30; 76D03.

1. Introduction

The incompressible Navier–Stokes equations in Cartesian coordinates are given by

�tv+ �v · ��v+ �p = �v� div v = 0� (N–S)

The velocity field is v�x� t� = �v1� v2� v3� 	 �3 × 
−T0� 0� → �3 and p�x� t� 	 �3 ×

−T0� 0� → � is the pressure. It is a long standing open question to determine if
solutions with large smooth initial data of finite energy remain regular for all time.

In this paper we consider the special class of solutions which are axisymmetric.
This means, in cylindrical coordinates r� �� z with �x1� x2� x3� = �r cos �� r sin �� z�,
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204 Chen et al.

that the solution is of the form

v�x� t� = vr�r� z� t�er + v��r� z� t�e� + vz�r� z� t�ez� (1.1)

In this coordinate system r = √
x2
1 + x2

2. The components vr� v�� vz do not depend
upon � and the basis vectors er� e�� ez are

er =
(x1

r
�
x2

r
� 0

)
� e� =

(
−x2

r
�
x1

r
� 0

)
� ez = �0� 0� 1��

The main result of our paper shows that axisymmetric solutions must blow up faster
than the scale invariant rates which appear in Theorem 1.1 below.

For R > 0 define B�x0� R� ⊂ �3 as the ball of radius R centered at x0. The para-
bolic cylinder is Q�X0� R� = B�x0� R�× �t0 − R2� t0� ⊂ �3+1 centered at X0 = �x0� t0�.
If the center is the origin we use the abbreviations BR = B�0� R� and QR = Q�0� R�.

Theorem 1.1. Let �v� p� be an axisymmetric strong solution of the Navier–Stokes
equations (N–S) in D = �3 × �−T0� 0� with initial datum v�t=−T0

= v0 ∈ H1/2 and
rv0��r� z� ∈ L�. Suppose the pressure satisfies p ∈ L5/3�D� and v is pointwise bounded
by one of the following inequalities:

�v�x� t�� ≤ C∗�t�−1/2� �x� t� ∈ D� (1.2)

There is an � ∈ 
0� 1� such that �v�x� t�� ≤ C∗r−1+��t�−�/2� �x� t� ∈ D� (1.3)

The constant C∗ < � is allowed to be large. Then v ∈ L��BR × 
−T0� 0�� for any R > 0.

We remark that the case � = 0 is addressed in the appendix; our proof in that
specific case was obtained after a preprint of [12] had appeared. The assumption
(1.2) is a special case of (1.3) with � = 1; it is singled out for its importance. We also
remark that the exponent 5/3 for the norm of p can be replaced, but it is the natural
exponent occurring in the existence theory for weak solutions, see e.g., [1].

Recall the natural scaling of Navier–Stokes equations: If �v� p� is a solution to
(N–S), then for any  > 0 the following rescaled pair is also a solution:

v�x� t� = v�x� 2t�� p�x� t� = 2p�x� 2t�� (1.4)

Suppose a solution v�x� t� of the Navier–Stokes equations blows up at X0 = �x0� t0�.
Leray [8] proved that the blow up rate in time is at least

�v�·� t��L�
x
≥ ��t0 − t�−1/2�

Theorem 1.1 in particular rules out singular axisymmetric solutions satisfying the
similar bound with � large.

The main idea of our proof is as follows. We shall first prove that either (1.2)
or (1.3) with � > 0 implies the following estimate:

�v� ≤ C∗�r
2 − t�−1/2+2��t�−�r−2�� (1.5)

This is the content of Sections 2 and 3. Note that � in (1.5) differs from that in (1.3).
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Axisymmetric Navier–Stokes Equations 205

If (1.5) is satisfied for � = 0, the regularity of v was proved in [3]. In Sections 4–6,
we extend the proof of [3] to include the case (1.5) for � > 0. Instead of following De
Giorgi andMoser’s methods [5, 10] used in [3], we now use Nash’s idea [6, 11] to prove
the Hölder regularity (Section 5). This simplifies some iteration arguments in [3], but
we still use De Giorgi–Moser’s method in the local maximum estimate in Section 4.
The estimates we obtained in Sections 4 and 5 requires assumptions weaker than (1.5).
Very recently Koch et al. [12] have sent us a manuscript that they have proved results
similar to Theorem 1.1 using a different approach based on Liouville theorems.

2. The Case �v� ≤ C�t�−1/2

Suppose we have �v� ≤ C�t�−1/2. Our goal is to replace the singularity of t by
singularity in r. We will derive this estimate from the equation for the � component
of the vorticity (2.7), which involves a source term �zv

2
�/r. Under the assumption

�v� ≤ C�t�−1/2, we have v2� ∼ �t�−1, singular in t as t → 0. This t singularity can be
weaken to �t�−� after the time integration. Since the equation is scaling invariant,
this improvement in the time singularity has to be offset by the space singularity.
This will be achieved in some weak form in (2.15). Finally, we can transfer estimates
on the vorticity to the velocity field and we thus obtain the estimate (1.5).

Recall that we always have the bound �rv�� ≤ C (see Proposition 1 in [2]). Hence
for some C1 > 0

�v�� ≤ C1 min�r−1� �t�−1/2�� �vr � + �vz� ≤ C1�t�−1/2� (2.1)

For p� q > 0, we will be using the notation

�v�L
q�p
t�x �QR�

= �v�L
q
t L

p
x �QR�

= �v�L
q
t L

p
x
= �v�L

q�p
t�x
�

These are the usual Lq�p spaces integrated over space and time. The domain will be
suppressed in our notation below when there is no risk of ambiguity.

We will next consider the vorticity field � = curl v:

��x� t� = �rer + ��e� + �zez� (2.2)

where

�r = −�zv�� �� = �zvr − �rvz� �z = ��r + r−1�v�� (2.3)

We can deduce the following bounds for the � component of vorticity.

Lemma 2.1. Suppose we have the pointwise bound

�v�y� s�� ≤ C1�s�−1/2� (2.4)

in QR�x� t�. Then for any � ∈ �0� 1� we can estimate � by

����L3�4
t�x

≤ CR3/4�t�−2/3 + CR5/12�t�−1/2� ����L6�8
t�x

≤ CR3/8�t�−5/6 + CR−7/24�t�−1/2�

(2.5)

where the integration is over Q�R�x� t� and the constant C depends on C1 and �.
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206 Chen et al.

Proof. We can rescale Lemma A.2 of [3] to get, for �� q ∈ �1��� and c = c��� q� ��,

��v�L�
t L

q
x�Q�R�

≤ c�f�L�
t L

q
x�QR�

+ cR−4+3/q�v�L�
t L

1
x�QR�

�

Using f = vivj and the assumption (2.4), the first integral on the right is bounded by

�v2�L�
t L

q
x�QR�

≤ R3/q

( ∫ t

−�
���−�d�

)1/�

= R3/q�t�1/�−1�

The second term R−4+3/q�v�L�
t L

1
x�QR�

is bounded by

R−1+3/q�R2�t�−�/2�1/� = R−1+3/q+2/��t�−1/2 = R3/q�t�1/�−1�R−2�t��1/2−1/��

These show (2.5). �

The following is our key lemma.

Lemma 2.2. Suppose that the velocity v satisfies the bound (2.1) and �v�L�
t L1

x
≤ C1 in

Q1. There is � ∈ �0� 1� such that, for any small � > 0 there is a constant C2 > 0 so that
�recall r = �x2

1 + x2
2�

1/2�

�v�x� t�� ≤ C2r
−1+2��t�−� in Q�� (2.6)

Proof. Step 1. We first bound the second moment of ��. Denote q = ��. Its
equation can be written as[

�t + b · � − �− vr

r

]
q + �zF = − q

r2
� F = −v2�

r
� (2.7)

See for instance [3]. Above the vector b is a part of v,

b = vrer + vzez� b · � = vr�r + vz�z� (2.8)

Note that

div b = 0� curl b = ��e�� (2.9)

The first equation for b is because b = v− v�e�, div v = 0 and div�v�e�� =
r−1��v� = 0. The second can be read from (2.2), (2.3) with v� replaced by 0. The
term q

r2
in (2.7) has a good sign and will drop out in our estimates below. For

any x0 fixed with r0 > 0, let ��x� be a smooth cutoff function at x0 with radius
R = r0/10. For any t, let ��x� s� = ��x���s� where ��t� is a smooth cutoff function
so that ��t� = 1 and ��t0� = 0 with t0 = t − R2. Let B be the characteristic function
of the ball centered at x0 with radius R and ��x� s� = B�x�1�t0 ≤ s ≤ t�.

Multiply (2.7) by �2q and integrate in �3 × �t0� t�. We get∫
�3

1
2 ��q�2�t�+

∫ t

t0

∫
�3

����q��2

≤
∫ t

t0

∫
�3

[
q2

(
b� · �� + ����2 + �2vr

r
− ��̇

)
+ �F�z��q�+ �Fq�z�

]
� (2.10)
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Axisymmetric Navier–Stokes Equations 207

where �̇ is the time derivative of �. The last term is bounded by∫ t

t0

∫
�3

�Fq�z� ≤
∫ t

t0

∫
�3

q2����2 + �2F 2�

The second term on the right-hand side of equation (2.10) can be bounded by

∫ t

t0

∫
�3

�F�z��q� ≤
∫ t

t0

∫
�3

[
�2F 2

2
+ 1

2
����q��2

]
�

Notice the support of � has a distance at least R from the z axis. From the
assumption on v�, we have for any 0 ≤ � ≤ 1

�F���x� s� ≤ CR−2+��s�−1/2−�/2��x� s��

Thus we have the integral bound for � > 0∫ t

t0

ds
∫

�F��2�x� s�dx ≤ CR−1+2��t�−��

Now we can derive the following bound from (2.10):

∫
�3

��q�2�t� ≤ 4
∫ t

t0

∫
�3

[
q2

(
�b� · ��� + ����2 + �2�vr �

r
+ ��̇�

)]
+ CR−1+2��t�−�� (2.11)

From the assumption (2.1), we also have for s < t

�b� · ��� ≤ C��s�−1/2R−1� ��̇� + ����2 ≤ CR−2��
�2�vr �

r
≤ C�2�s�−1/2R−1�

Thus we can bound the integral on the right-hand side of (2.11) to get∫
�3

��q�2�t� ≤
∫ t

t0

ds
∫
�3


s−1/2R−1 + R−2�q2�s��+ R−1+2��t�−�� (2.12)

We now assume �t� < R2. Thus R−2 � �s�−1/2R−1 in supp� and by Lemma 2.1,

�q��L3�4
t�x

≤ R3/4�t�−2/3�

This implies that∫∫
�3

ds s−1/2R−1q2�s�� ≤ R−1�s−1/2��L3�2
t�x
�q2��

L
3/2�2
t�x

≤ R2�t�−3/2�

Therefore, from (2.12) we have∫
�3

��q�2�t� ≤ R2�t�−3/2� (2.13)
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208 Chen et al.

Let �̃� B̃� �̃ be the functions similar to �� B� � with R replaced by cR for some
small constant c, say c = 1/100. Clearly, all previous results, in particular (2.12),
remain true if we added tildes. We also have∫

�3
q2�s�B̃ ≤ C

∫
�3

��q�2�s��

We can now use this bound in (2.12) (the tilde version) and obtain∫
�3

��q�2�t� ≤ R�t�−1� (2.14)

Notice that (2.14) is a better estimate than (2.13). We can repeat this procedure
in finite steps to show that, under the assumption �t� < R2,∫

�3
��q�2�t� ≤ R−1+2�t−�� (2.15)

Assume now �t� > R2. Thus �s�−1/2R−1 � R−2 in supp� and by Lemma 2.1,

�q��L3�4
t�x

≤ R5/12�t�−1/2�

We have ∫∫
ds R−2q2� ≤ R−2���L3�2

t�x
�q2��

L
3/2�2
t�x

≤ R�t�−1�

Thus ∫
��q�2�t� ≤ Rt−1 + R−1+2�t−� ≤ R−1+2��t�−��

which is (2.15).

Step 2. We now bound the fourth moment of q. Similar to the derivation
of (2.10), we now have

∫
�3

��q2�2�t�+
∫ t

t0

∫
�3

����q2��2 ≤
∫ t

t0

∫
�3

q4

(
b� · �� + ����2 + ���� + �2vr

r
+ ��̇�

)
+ ��qF�z��q

2�� + �q3F��z��� (2.16)

From the Schwarz inequality, we have

�qF�z��q
2� ≤ 1

2
�2q2F 2 + 1

2
����q2��2�

q3F��z� ≤ R−2�q4 + �R2F 4�

From (2.1), we have∫∫
�R2F 4 ≤

∫∫
�R−8+2�s−1−� ≤ R−5+2��t�−��
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Axisymmetric Navier–Stokes Equations 209

From the bound on
∫
�2q2 in (2.15)∫∫

�2q2F 2 � R−6
∫ t

t−R2
R−1+2�t−�ds ≤ R−5+2��t�−��

Therefore, we have∫
�3

��q2�2�t� ≤
∫∫

�3

s−1/2R−1 + R−2�q4�+ R−5+2��t�−�� (2.17)

We now assume �t� < R2. Using the bound on ����L6�8
t�x

≤ CR3/8t−5/6 in (2.5),
we have ∫

�3
��q2�2�t� ≤ R2�t�−7/2 + R−5+2��t�−�� (2.18)

Now plug (2.18) into (2.17), we obtain a better result. Repeat this procedure as in
Step 1 until we get ∫

�3
��q2�2�t� ≤ R−5+2��t�−�� (2.19)

under the assumption �t� < R2. For the other case �t� > R2, using Hölder and the
bound ����L6�8

t�x
≤ CR−7/24t−1/2 from (2.5) to estimate (2.17), we get∫

�3
��q2�2�t� ≤ R−1�t�−2 + R−5+2��t�−� ≤ R−5+2��t�−��

in one step.

Step 3. We now prove the pointwise bound (2.6) for v. Since we have already
good estimates for v�, it suffices to estimate b, which satisfies (2.8), (2.9) with �� = q.
Let � > 0 be a small number so that (2.15) and (2.19) are valid for �x0� t� ∈ Q8�.
Let J�x� be a smooth cut-off function for the ball of radius 4�, with J�x� = 1 for
�x� ≤ 2�. Define

��x� =
∫ 1

4��x − y�curl�Jqe���y�dy =
∫ (

�y

1
4��x − y�

)
× �Jqe���y�dy�

By the vector identity

−�b = curl curl b − � div b� (2.20)

the difference b − � is harmonic in the ball of radius 2� and hence

�b − ��L��B��
≤ �b − ��L1�B2��

≤ ���L1�B2��
+ �b�L1�B2��

�

The last term is bounded by order one since v is in L�
t L1

x. We now estimate �.
For x0 ∈ B2� let R = c̃r0 with c̃ sufficiently small and B�y� = 1��y − x0� < R�.

Omitting the t-dependence,

����x0� ≤
∫
�3

�Jq�y��
�x0 − y�2 dy ≤

∫
�3

�q�y��
�x0 − y�2B�y�dy +

∫
�3

�Jq�y��
�x0 − y�2 �1− B�y��dy� (2.21)
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210 Chen et al.

From the Hölder inequality and (2.19), the first term on the right hand side is
bounded by ∫

�3

�q�y��
�x0 − y�2B�y�dy ≤ R−1+�/2�t�−�/4�

From the Hölder inequality and (2.15), we have the following variation of (2.15)
for �x� < 8�

r−3
x

∫
�1��x − y� ≤ rx/200�q�y� t��dy ≤ r−2+�

x �t�−�/2� (2.22)

Multiply by

�x0 − x�−2 · 1��x0 − x� ≥ R/40� · 1��x� < 8��

and integrate over x to have∫∫
r−3
x

1��x − y� ≤ rx/200��q�y��1��x0 − x� ≥ R/40�
�x0 − x�2 1��x� < 8��dx dy�

≤
∫

dx
r−2+�
x t−�/21��x0 − x� ≥ R/40�

�x0 − x�2 ≤ CR−1+��t�−�/2�

The left-hand side is bounded below by∫
r−3
x

1��x − y� ≤ rx/200��q�y��1��x0 − x� ≥ R/40�
�x0 − x�2 1��x� < 8��dx dy

≥ C
∫

dx dyr−3
y 1��x − y� ≤ ry/400��Jq��y�

�1− B�y��

�x0 − y�2 ≥ C
∫

dy�Jq��y� �1− B�y��

�x0 − y�2 �

Above for the first inequality we have used that y is in a small neighborhood of x for
the integrand to be nonzero, in particular rx ∼ ry and �x0 − x� ∼ �x0 − y�. We have
thus proved that ∫

�x0 − y�−2�1− B�y���Jq�y��dy ≤ CR−1+��t�−�/2� (2.23)

Since all � > 0 in the proofs are arbitrarily small, this proves the same bound
for ���x0� t��. It follows that ���t��L1

x�B2��
≤ ∫

B2�
r−1+�
x t−�/2dx ≤ Ct−�/2 and we get the

pointwise bound for b in Q�. �

3. The Case �v� ≤ Cr−1+��t�−�/2

In this section, we prove the estimate (1.5) from the assumption �v� ≤ Cr−1+��t�−�/2.
Our main idea is the following Theorem 3.1 which states that the space singularity
can be replaced by the time singularity.

Theorem 3.1. Suppose for some � ∈ �0� 1/2� we have

�v�x�−t�� ≤ Cr−1+�t−�/2� �x�−t� ∈ Q1� (3.1)
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Then for any � ∈ �0� 1� and 0 < � < 1/2, there is a constant C such that

�v�x�−t�� ≤ Cr−2�t−1/2+�� �x�−t� ∈ Q�� (3.2)

Proof. We shall need the following lemma which exchanges the space singularity
with the time singularity by replacing � with 2�. The idea of the proof is to view
the Navier–Stokes equation as a linear equation with a source term v · �v. Since this
term is in the form v2, we naturally increase the time singularity to �t�−�. The spatial
singularity will come out correctly due to the scaling invariance of the Navier–
Stokes equation. This can be seen easily if we pretend that the kernel of the linear
Stokes equation is a heat kernel. The general case only involves a minor technicality
to deal with the divergence free condition.

Lemma 3.2. Suppose (3.1) holds in Q1. Then for any � ∈ �0� 1� there is a constant C
such that

�v�x�−t�� ≤ Cr−1+2�t−�� �x�−t� ∈ Q�� (3.3)

Note that (3.1)–(3.3) are all invariant under the natural scaling of (N–S).
Assuming this lemma, we now finish the proof of Theorem 3.1.

Suppose that (3.1) holds for some � ∈ �0� 1/2�. Then from Lemma 3.2, we can
increase � by a factor of two. In fact, (3.1) and (3.3) implies that

�v�x�−t�� ≤ Cr−1+�t−�/2� �x�−t� ∈ Q�� (3.4)

for all � ≤ � ≤ 2�. Iterating this procedure, we obtained that (3.2) holds for 0 < � <
�1− ��/2. It remains to show that �1− ��/2 can be replaced with 1/2.

We have shown that (3.2) holds for small �. Notice that for small � condition
(3.2) is very close to the assumption (1.2) (which is the case � = 0). One can easily
check that all arguments in Section 2 remain valid if the assumption (1.2) is replaced
by (3.2) if � is sufficiently small. Then the conclusion of Lemma 2.2 holds in this
case. So that we are able to conclude that (3.1) holds for arbitrarily small �. Iterating
this procedure proves that (3.2) holds for 0 < � < 1/2. �

To prove the lemma, we write the Navier–Stokes equations (N–S) as a Stokes
system with force

�tvi − �vi + �ip = �jfij� fij = −vivj�

Recall key steps in [3]: v = u+ ṽ where ṽ is defined as follows: Let P be the
Helmholtz projection in �3, i.e., �Pg�i = gi − RiRkgk. Let ��x� t� ∈ C���4�, � ≥ 0,
� = 1 on Q 1+�

2
and � = 0 on �3 × �−�� 0�−Q1. Notice that we cutoff at order one.

For a fixed i, define

ṽi�x� t� =
∫ t

−1
��x − y� t − s��j�Fij��y� s�dy ds�

where � is the heat kernel and Fij = fij� − RiRk�fkj��.
With this choice of ṽ, u satisfies the homogeneous Stokes system in Q 1+�

2
and

the following bounds:

��u�Ls
tL

q
x�Q��

≤ c�u�Ls
tL

1
x�Q1�

≤ c�v�Ls
tL

1
x�Q1�

+ c�ṽ�Ls
tL

1
x�Q1�

� (3.5)
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provided that 1 < s� q < �. One can check that the proof in [3] gives (3.5) for s = �.
The requirement s < � is for the estimates of ṽ.

Lemma 3.3. Under the assumption (3.1), we have

�ṽ�x0�−t�� ≤ Cr−1+2�
0 t−�� �x0� t� ∈ �3 × �0� 1�� (3.6)

Proof. Denote R = r0. Notice that assumption (3.1) implies (3.3) when R ≥ √
t.

Hence we may assume that R ≤ √
t. Let h = fij� and K = RiRj . Denote

�1�x�−t� =
∫ −t

−1

∫
�s�−2 exp

[
− �x − x̃�2
4�−t − s�

]
h�x̃� s�dx̃ ds

=
∫ 1−t

0

∫
s−2 exp

[
−�x − x̃�2

4s

]
h�x̃�−t − s�dx̃ ds�

�2�x�−t� =
∫ 1−t

0

∫
s−2 exp

[
−�x − x̃�2

4s

]
Kh�x̃�−t − s�dx̃ ds�

We can bound ṽ�x�−t� pointwisely by
∑

i�j�k ��k�x�−t��. Thus it suffices to show∑ ��k�x0� t�� ≤ CR−1+2�t−�. We shall only bound �2 since the bound for �1 is
identical. For x0 fixed, let

g�x� s� = exp
[
−�x0 − x�2

4s

]
s−3/2�

Since K is symmetric, we have

�2�x0�−t� =
∫ 1−t

0
s−1/2

∫
dx�Kg��x� s�h�x�−t − s�ds�

Let h1�x� a� = 1�r ≥ R�h�x� a� and h2�x� a� = 1�r ≤ R�h�x� a�. Then we have∫
dx�Kg��x� s�h1�x�−t − s�

≤
[∫

dx�Kg�p�x� s��x − x0�p
]1/p [∫

dx h
q
1�x�−t − s��x − x0�−q

]1/q
�

Recall �x�a is an Ap weight in �n provided that

−n < a < n�p− 1��

Thus for

0 ≤ p < 3p− 3�

we have [∫
dx�Kg�p�x� s��x − x0�p

]1/p
≤

[∫
dx gp�x� s��x − x0�p

]1/p
≤ �s�−1+3/�2p� = �s�−3/�2q�+1/2�
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Since h1 is supported in r ≥ R, we have for

�3− 2��q > 3� q > 1�

the following inequality:

[∫
dx h

q
1�x�−t − s��x − x0�−q

]1/q
≤ t−�

[∫
r≥R

dx r�−2+2��q�x − x0�−q

]1/q

≤ t−�R−3+2�+3/q�

where we have used (3.1) in the first inequality. Thus we have

s−1/2
∫

dx�Kg��x� s�h1�x�−t − s� ≤ t−�R−3+2�

(
R2

s

)3/�2q�

�

Therefore, we have

∫ R2

0
s−1/2

∫
dx�Kg��x� s�h1�x�−t − s�ds ≤ Ct−�R−3+2�

∫ R2

0
ds

(
R2

s

)3/�2q�

≤ Ct−�R−�1−2���

provided that

3/�2q� < 1� �3− 2��q > 3� q > 1� 0 ≤ p < 3p− 3� (3.7)

For any 0 < � < 1/2 fixed, we can solve the last condition by

q = �3/2�+� (3.8)

Similarly,

∫ 1

R2
s−1/2

∫
dx�Kg��x� s�h1�x�−t − s�ds ≤ Ct−�R−3+2�

∫ 1

R2
ds

(
R2

s

)3/�2q�

≤ Ct−�R−�1−2���

provided that

3/�2q� > 1� �3− 2��q > 3� q > 1� 0 ≤ p < 3p− 3� (3.9)

For any 0 < � < 1/2 fixed, we can solve the last condition by

q = �3/2�−� (3.10)

For any m > 0 and a� b dual we have∫
dx�Kg��x� s�h2�x� s�

≤
[∫

dx�Kg�a�x� s��x − x0�ma
]1/a [∫

dx hb
2�x�−t − s��x − x0�−mb

]1/b
�
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If

ma < 3a− 3�

then �x�ma is an Aa weight. Thus we have[∫
dx�Kg�a�x� s��x − x0�ma

]1/a
≤

[∫
dx ga�x� s��x − x0�ma

]1/a
≤ s−3/�2b�+m/2�

We can estimate the last integral by∫
dx hb

2�x�−t − s��x − x0�−mb ≤ t−�b
∫

dx r−�2−2��b1�r ≤ R��x − x0�−mb

= t−�bR−b�2+m−2��+3
∫
dx r−�2−2��b1�r ≤ 1��x − �x0/R��−mb

≤ Ct−�bR−b�2+m−2��+3�

where the equality is due to scaling and we have assumed that

�1− ��b < 1� 1 < mb < 3�

Therefore, we have∫ R2

0
s−1/2

∫
dx�Kg��x� s�h2�x�−t − s�ds ≤ Ct−�R−�3−2��

∫ R2

0
ds

(
R2

s

)3/�2b�−m/2+1/2

≤ Ct−�R−�1−2���

provided that

b >
3

m+ 1
� �1− ��b < 1� 1 < mb < 3� ma < 3a− 3� (3.11)

Since a and b are dual, the last condition is equivalent to m < 3/b, which is part of
the third condition. It is easy to check that the following condition implies (3.11)

1/2 < m�
3

m+ 1
< b <

3
m

� b <
1

1− �
� (3.12)

For any 0 < � < 1/2 fixed, we can solve the last condition by

b = 1
1− �

− �� m = 3− 3�� (3.13)

for � small enough.
Similarly, we have∫ 1

R2
s−1/2

∫
dx�Kg��x� s�h2�x�−t − s�ds

≤ Ct−�R−�3−2��
∫ 1

R2
ds

(
R2

s

)3/�2b�−m/2+1/2

≤ Ct−�R−�1−2���

b <
3

m+ 1
� �1− ��b < 1� 1 < mb < 3� ma < 3a− 3� (3.14)
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It is easy to check that the following condition implies (3.14)

1
m

< b <
3

m+ 1
� b <

1
1− �

� (3.15)

This equation has a solution provided that there is an m solving the equation

1− � < m < 2− 3��

This is clearly so for any 0 < � < 1/2 fixed. We have thus proved the lemma. �

We now conclude the proof of Lemma 3.2. Let � = 1−�
4 and denote

Qt
1 = B1�0�× �−1�−t�. For any �x0� t� ∈ Q�, Q2��x0� t� ⊂ Q 1+�

2
∩Qt

1 and hence u
satisfies the homogeneous Stokes system in Q2��x0� t�. By (3.5), assumption (3.1) and
Lemma 3.3, we have

��u�L�
t L4

x�Q��x0�t��
≤ c�u�L�

t L1
x�Q2��x0�t��

≤ c�v�L�
t L1

x�Q
t
1�
+ c�ṽ�L�

t L1
x�Q

t
1�
≤ ct−�/2 + ct−� ≤ ct−��

By the Sobolev inequality,

�u�L�
t L�

x �Q��x0�t��
≤ c��u�L�

t L4
x�Q��x0�t��

+ c�u�L�
t L1

x�Q2��x0�t��
≤ ct−��

Together with (3.6), we have thus proved Lemma 3.2.

4. Local Maximum Estimate

In Sections 2 and 3 we have proved the bound (1.5) under both assumptions (1.2)
and (1.3) with � > 0. Our goal in the remaining Sections 4–6 is to show that
the proof in the paper [3] can be extended in this case. This section proves local
maximum estimates assuming (1.5). These estimates will be used to obtain Hölder
continuity of rv� in Section 5 and to bound � = �̄�/r of the limit solution in
Section 6.

Suppose u is the smooth function satisfying

�tu− L∗u = 0� L = �+ 2
r
�r − b · �� (4.1)

We now derive parabolic De Giorgi type energy estimates for this equation under
the assumption

�b� ≤ C∗r
−1+2��t�−�� (4.2)

Above C∗ > 0 is an absolute constant which is allowed to be large, above � > 0 is
sufficiently small.

Consider a test function 0 ≤ �1�x� t� ≤ 1 defined on Q1 for which �1 = 0 on
�B1 × 
−12� 0� and �1 = 1 on Q� for 0 < � < 1. Suppose that �1�x�−1� = 0. Now
consider the rescaled test function ��x� t� = �1�x/R� t/R2� on QR. Define �u�± =
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max�±u� 0 for a scalar function u. Multiply (4.1) by p�u− k�
p−1
± �2 for 1 < p ≤ 2

and k ≥ 0 to obtain∫
BR

�2�u− k�
p
±
∣∣∣t
−R2

+ 4�p− 1�
p

∫ t

−R2
dt′

∫
BR

dx����u− k�
p/2
± ���2

= 2
∫ t

−R2
dt′

∫
BR

dx�u− k�
p
±

(
�
��

�t
+ ����2 + 2− p

p
��� − 2�

�r�

r
+ b̄ · ���

)
− 2

∫ t

−R2
dt′

∫
BR

dz �2�u− k�
p
±
∣∣∣
r=0

�

Notice that the last term is negative.
Let v± ≡ �u− k�

p/2
± . To estimate the term involving b we use Young’s inequality

∫
�3

v2±b� · �� ≤ �
R−1+�

1+ �

∫
�3

v2±�
2

∣∣∣∣b ( t

R2

)�
∣∣∣∣1+�

+ C�

�R−2+�1+��/�

1+ �

∫
�3

v2±�
2

[(
R2

t

)� ����
�

]�1+��/�

�

This holds for small � > 0 and � > 0 to be chosen. Further choose � to decay like
�1− �x�/R�n near the boundary of BR. If n is large enough (depending on �) we have

C�

�R−2+�1+��/�

1+ �

∫
�3

v2±�
2

[(
R2

t

)� ����
�

]�1+��/�

≤ CR−2

(
R2

t

)��1+��/� ∫
BR

v2±�

We also use the Hölder and Sobolev inequalities to obtain

�
R−1+�

1+ �

∫
�3

v2±�
2

∣∣∣∣b ( t

R2

)�
∣∣∣∣1+�

≤ �

(
R�−1+��3/2

∫
BR

∣∣∣∣b ( t

R2

)�
∣∣∣∣�1+��3/2

)2/3 ∫
�3

���v±���2

≤ �C
∫
�3

���v±���2�

For b satisfies (4.2), there is an � small enough so that the last inequality holds.
We conclude that

∫
�3

v2±b� · �� ≤ �C
∫
�3

���v±���2 + CR−2
∫
BR

(
R2

t

)��1+��/�

v2±� (4.3)

We have �r�/r = �!�/! since � is radial; so that the singularity 1/! is effectively
1/R. We thus have

sup
−�2R2<t<0

∫
B�R×�t 

��u− k�±�p +
∫
Q�R

���u− k�
p/2
± �2

≤ C∗
�1− ��2R2

∫
QR

(
R2

t

)��1+��/�

��u− k�±�p� (4.4)

Our goal will be to establish Lp to L� bounds for functions in this energy class.
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The estimates in this section will be proven for a general function u = �
satisfying (4.4).

Lemma 4.1. Suppose u satisfies (4.4) for 1 < p ≤ 2 with � > 0 sufficiently small. Then
for 0 < R ≤ 1 we have the estimate

sup
QR/2

u± ≤ C�p�C∗�
(
R−3−2

∫
QR

�u±�p
)1/p

�

Proof. For K > 0 to be determined and N a positive integer we define

kN = k±N = �1∓ 2−N �K� RN = �1+ 2−N �R/2� !N = R

2N+3
�

RN+1 < RN = �RN + RN+1�/2 < RN �

Notice that

RN − RN = �RN − RN+1�/2 = �2−N − 2−N−1�R/4 = !N �

Define QN = Q�RN� and QN = Q�RN� ⊂ QN . Choose a smooth test function �N
satisfying �N ≡ 1 on QN , � ≡ 0 outside QN and vanishing on it’s spatial boundary,
0 ≤ �N ≤ 1 and ���N � ≤ !−1

N in QN . Further let

A±�N� = �X ∈ QN 	 ±�u− kN+1��X� > 0 �

And AN�± = ∣∣A±�N�
∣∣. Let v± = �N �u− kN+1�

p/2
± .

Let � be a positive constant (to be chosen) such that �− 1 > 0 is very small.
Hölder’s inequality yields∫

QN+1

��u− kN+1�±�p ≤
∫
QN

�v±�2

≤
(∫

QN

�v±�2�n+2�/�n��

)n�/�n+2�

A
�2+n�1−���/�n+2�
N�± �

We will use the following Sobolev inequality which holds for functions vanishing
on �BR: ∫

QR

�u�2�n+2�/n ≤ C�n�

(
sup

−R2<t<0

∫
BR×�t 

�u�2
)2/n ∫

QR

��u�2�

See [9, Theorem 6.11, p. 112]. Above and below n is the spatial dimension, so that
n = 3.

Since v± vanishes on the spatial boundary of QN we have(∫
QN

�v±�2�n+2�/�n��

)n�/�n+2�

≤
(∫

QN

�v±�2�n+2�/�n��

)n�/�n+2�

≤ C

[(
sup

−R2
N<t<0

∫
B�RN �×�t 

�v±�2/�
)2/�n+2�( ∫

QN

���v±�1/��2
)n/�n+2�]�

�
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We use Young’s inequality to bound this above by

≤ C

[(
sup

−R2
N<t<0

∫
B�RN �×�t 

�v±�2/� +
∫
QN

���v±�1/��2
)]�

�

From (4.4) the above is bounded as

≤ C

[(
sup

−R2
N<t<0

∫
B�RN �×�t 

��u− kN+1�±�p/� +
∫
QN

���u− kN+1�
p/�2��
± �2

)

+ C

!2
N

∫
QN

��u− kN+1�±�p/�
]�

≤
[

C

!2
N

∫
QN

[
1+

(
R2

t

)��1+��/�
]
��u− kN+1�±�p/�

]�

≤
{

C

!2
N

∫
QN

��u− kN �±�p
} C

!2
N

∫
QN

[
1+

(
R2

t

)��1+��/�
]�


�/�

�

Above � is the dual exponent of �, i.e., 1
�
+ 1

�
= 1� For the upper bound above to

be finite we require that � < �/
��1+ ���. Since � ≥ 1 we have

∫
QN

[
1+

(
R2

t

)��1+��/�
]�

≤ C
∫
QN

[
1+

(
R2

t

)��1+���/�
]
≤ CR5

N �

From here our next upper bound is

≤ C

(
R5

N

!2
N

)�/� { 1

!2
N

∫
QN

��u− kN �±�p
}
≤ C

(
16R322N

)�/� { 1

!2
N

∫
QN

��u− kN �±�p
}
�

Further assume Kp ≥ R−n−2
∫
Q�R�

�u±�p. Now define

YN ≡ K−pR−n−2
∫
QN

��u− kN �±�p�

Since k±N are increasing for + or decreasing for − and QN are decreasing, YN is
decreasing.

Chebyshev’s inequality tells us that

AN�± = ∣∣�QN 	 ±�u− k±N+1� > 0 
∣∣ = ∣∣�QN 	 ±�u− k±N � > ±�k±N+1 − k±N � 

∣∣
= ∣∣�QN 	 ±�u− kN � > K/2N+1 

∣∣ ≤ 2p�N+1�Rn+2YN �

Putting all of this together yields

∫
QN+1

��u− kN+1�±�p ≤
(∫

QN

�v±�2�n+2�/�n��

)n�/�n+2�

A
�2+n�1−���/�n+2�
N�±

≤ C

(
1

!2
N

∫
QN

��u− kN �±�p
)
R3�/�22N�/�

(
2p�N+1�Rn+2YN

)�2+n�1−���/�n+2�
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≤ C

(
1

!2
N

KpRn+2YN

)
R3�/�22N�/�

(
2p�N+1�Rn+2YN

)�2+n�1−���/�n+2�

≤ C�C∗n�K
pRn+22qNY

1+�2+n�1−���/�n+2�
N �

We have just used R ≤ 1. Also the exponent is given by

q = 
2+ n�1− ���p

n+ 2
+ 2�

�
+ 2�

We have thus shown

YN+1 ≤ C�C∗� n�2
qNY

1+�2+n�1−���/�n+2�
N � (4.5)

We now choose � > 1 such that the exponent of YN is larger than one:
2+ n�1− �� > 0.

One can check that if " is large enough, then the following identity will be
preserved by (4.5):

YN ≤ 2−"N �

We are still free to choose K large enough such that the following initial condition
holds: Y1 ≤ 2−"� �

5. Hölder Continuity

In this section we prove a Hölder continuity of the function � = rv� at t = 0 under
the assumption (1.5). Earlier than t = 0, the function � is smooth. Additionally �

satisfies

d�

dt
− L� = 0� L = �− 2

r

�

�r
− b · �� (5.1)

Notice that ��r = 0� t� = 0 for all −1 ≤ t < 0. One can check, using this condition,
that both (4.4) and Lemma 4.1 hold. Together with (4.2) we then have

sup
−1≤t<0

���t��L��BR�
≤ C < ��

Our argument makes use Nash’s fundamental idea for a lower bound (Lemma 5.2).
We consider this interesting in particular because the lower bound is obtained for a
solution directly rather than the usual lower bound for a fundamental solution.

5.1. Preliminary Bounds

Let X = �x� t�. Define the modified parabolic cylinder at the origin

Q�R� �� = �X 	 �x� < R�−�R2 < t < 0 �
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Here R > 0 and � ∈ �0� 1�. We sometimes for brevity write QR = Q�R� = Q�R� 1�.
Let

m2 ≡ inf
Q�2R�

�� M2 ≡ sup
Q�2R�

�� M ≡ M2 −m2 > 0�

Notice that m2 ≤ 0 ≤ M2 since � �r=0 = 0.
Define

u ≡
{
2�� −m2�/M if −m2 > M2�

2�M2 − ��/M else.
(5.2)

In either case

0 ≤ u�x� t� ≤ 2� a ≡ u�r=0 ≥ 1� (5.3)

and u solves equation (5.1).
Since now u is nonnegative, we can make u positive by adding arbitrary small

constant to u. This part of argument is standard and from now on we assume that
u > 0.

5.2. Lower Bound on �u�p

Our goal in this section is to prove that there is a lower bound on u with a more
general assumption than that was used in our previous paper [3]. The bound that we
prove in this section will serve as an input for Nash’s argument as we shall describe
it later on. Actually, we only need a lower bound on �u�p for some 0 < p < 1.

Consider the following probability measure on QR

d� = R−2dtR−3dx� (5.4)

Define the norm

�f�L
q�p
t�x ��� 	=

(∫ 0

−R2

dt

R2

(∫
BR

dx

R3
�f �p

)q/p
)1/q

�

We will sometimes write Lp��� = L
p�p
t�x ���. Our main result in this section is the

following lemma.

Lemma 5.1. Suppose u solves (5.1) and satisfies condition (5.3). Assume that for some
small � > 1 we have

�b�
L
3/2��
t�x ���

≤ CR−1� (5.5)

Then for arbitrary p ∈ �0� 1� the following holds:

a ≤ C�u�p/�
Lp���� (5.6)

Above � is the dual exponent to �.
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Notice that for b satisfying (4.2) with any 0 ≤ � ≤ 1/2 fixed, there is a � such
that the condition (5.5) is satisfied. The following proof is a small modification of
the proof in [3].

Proof. We test the equation with pup−1�2 for 0 < p < 1 and � ≥ 0 to have

−I7 =
6∑

j=2

Ij�

where∫
Q�R�

pup−1�2
�u

�t
=

[ ∫
BR

�2up

]0

t1

−
∫
Q�R�

up2�
��

�t
≡ I1 + I2�∫

Q�R�
pup−1�2�−�u� = 4�p− 1�

p

∫
Q�R�

���up/2���2 +
∫
Q�R�

2up

[
− ����2 + p− 2

p
���

]
≡ I3 + I4�∫

Q�R�
pup−1�2b · �u = −

∫
Q�R�

2upb · ��� ≡ I5�∫
Q�R�

pup−1�2
2
r
�ru = −

∫
Q�R�

4up��!/!−
∫ 0

−R2
dt

∫
�
dz2��2up��r=0

≡ I6 + I7�

For arbitrary p ∈ �0� 1�, we see that I3 and I7 are both nonpositive.
Recall ! = �x�. We choose � = �1�!��2�t� where �1�!� = 1 in BR/2 and �1�!� has

compact support in BR; also �2�t� = 1 if t ∈ �− 7
8R

2�− 1
8R

2� and �2�t� has compact
support in �−R2� 0�. Thus I1 = 0 and we have

6
4
R3ap ≤ −I7 =

6∑
j=2

Ij�

Clearly,

I2 ≤
C

R2

∫
Q�R�

up� I3 ≤ 0� I4 + I6 ≤
C

R2

∫
Q�R�

up�

For any dual �� �, we now bound I5:

�I5� ≤ R5R−1�b�
L
3/2��
t�x ���

�up�L3��
t�x ����

We thus have for any � ≥ 3

ap ≤ C

R5

∫
Q�R�

up + �up�L3��
t�x ��� ≤ �up�L�

t�x��� ≤ �u�p
L�p����

Since p is arbitrary positive number less than one, this proves the lemma. Notice
that we only use I3 ≤ 0 in this case. �
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5.3. Nash Inequality

In this section we prove a Nash inequality. We shall need this inequality in the next
section when we prove a Nash lower bound estimate.

Consider a function f , which satisfies the bounds 0 ≤ f ≤ M for some M ≥ 1.
Let � be a probability measure. Now consider the average

� =
∫

log f d��

And define g = log f − �. We have the following inequality

�f�1
M

∣∣∣∣� − log
∫

f d�

∣∣∣∣ ≤ �g�2� (5.7)

Above we are using the following definition

�g�p 	=
(∫

�g�p d�
)1/p

�

In the rest of this section we will give a short proof.

Proof. For 0 ≤ � ≤ 1 we have

�� log
∫

e�gd� =
∫
ge�gd�∫
e�gd�

=
∫
gf�d�∫
f�d�

≤ �g�2�f��2
�f��1

≤ �g�2M�

�f��1
�

Additionally, since f is bounded, we have

∫
f�d� = M�

∫ (
f

M

)�

d� ≥ M�
∫ (

f

M

)
d� = M�−1�f�1�

We conclude

�� log
∫

e�gd� ≤ M�g�2
�f�1

�

This is all we need. Now integrate the above with respect to � from 0 to 1 to obtain

log
∫

egd� = log
∫

f d� − � ≤ M�g�2
�f�1

�

Hence we have (5.7). �

5.4. Nash’s Lower Bound

Consider solutions u to equation (5.1) which satisfy (5.3). Let v = − log u. Then v
solves the equation

�tv = �v− 2
r
�rv− �b · ��v− ��v�2�
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We will show that solutions to this equation satisfy one of the fundamental
inequalities in the work of Nash.

First we define ��x� to be smooth and radial with � = 1 on B1/2 and support
in B1. We rescale

�R�x� = ��x/R�R−3/2�

Further suppose that
∫
�3 �

2dx = 1. Now we may define the weighted spaces

�f�p
Lp��R�

=
∫
�3

�f �p�2Rdx�

Now we may state the following lemma.

Lemma 5.2. Suppose that for some 0 ≤ q < 1 we have

�b�s��L2��R�
≤ CR−1+q�s�−q/2� (5.8)

Then there is a � > 0 such that

−
∫
�3

log u�x� t��2Rdx ≤ C� for − �R2 ≤ t < 0� (5.9)

Notice that this implies the key step, equation (3.9) in [3], and thus proves the
Hölder continuity. In fact, since (5.9) holds for every time, it is stronger than (3.9)
which involves time integration. Further we remark that (4.2) is enough to ensure
(5.8) with q = 2� whenever � > 0.

Proof. We first rescale by a factor R for x and R2 for t. We define vR�x� t� =
v�Rx�R2t�, which satisfies

�svR = �vR − 2
r

�vR

�r
− �RbR · ��vR − ��vR�

2�

Above bR�x� t� = b�Rx�R2t�. Our goal is now to prove that

−
∫
�3

vR�
2dx ≤ C� for − � ≤ t < 0� (5.10)

The rescaled version of the assumption on b becomes

�RbR�·� s��L2��� ≤ C�s�−q/2� (5.11)

Since we will only use (5.11), we shall drop all R in the subscript from now on and
set R = 1. We have∫

�3
�sv�

2dx =
∫
�3

{
�v− 2

r
�rv− �b · ��v

}
�2dx −

∫
�3

��v�2�2dx�

We will estimate the terms in parenthesis.
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For the first term we use the Cauchy–Schwartz inequality∫
�3

�v�2dx = −2
∫
�3

�v · ��� dx ≤ 1
8

∫
�3

��v�2�2dx + 8
∫
�3

����2dx�

Next let

v̄ 	= v�s� x�− �v��s�� �v��s� 	=
∫
�3

v�s� x��2dx�

We now consider the middle term inside the parenthesis. Integrating by parts,
we have

−
∫
�3

2
r
�rv�

2dx = −
∫
�3

2
r
�r v̄�

2dx = −
∫ �

−�
2v̄�2dz

∣∣∣�
r=0

+
∫
�3

2
r
v̄�r�

2dx

≤ C − C�v��s�+ 4
∫
�3

v̄
�r�

r
� dx�

We have just used

−
∫ �

−�
2v̄�2dz

∣∣∣�
r=0

=
∫ �

−�
2v̄�2dz

∣∣∣
r=0

≤
∫ �

−�
2v�t� z� r = 0��2�z� r = 0�dz ≤ C − C�v��s��

We remark that the constant is u�t� z� r = 0� = a ≥ 1. Furthermore,

4
∫
�3

v̄
�r�

r
� dx ≤ 4�v̄�L2�����r�/r�L2�B1�

≤ C + 1
8
��v�2L2����

Here we used the spectral gap estimate∫
�3

��v�2�2dx ≥ c
∫
�3

v̄2�2dx�

Finally we consider the last term in parenthesis. We use the Cauchy–Schwartz
inequality together with (5.11) to obtain∫

�3
�b · ��v�2dx ≤ �b�L2�����v�L2��� ≤ 4�b�2L2��� +

1
4
��v�2L2���

≤ C�s�−q + 1
4
��v�2L2����

Combining the inequalities in this paragraph we have∫
�3

{
�v− 2

r
�rv− �b · ��v

}
�2dx − 1

2

∫
�3

��v�2�2dx ≤ C�1+ �s�−q − �v��s���

Thus there is a constant C such that∫
�3

�sv�s��
2dx ≤ C�1+ �s�−q − �v��s��− 1

2

∫
�3

��v�2�2dx�

We will use this inequality to prove the lemma.
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Axisymmetric Navier–Stokes Equations 225

We plug the Nash inequality (5.7) with M = 2 into the inequality above (also
using the spectral gap estimate) to obtain

�s�v��s� ≤ C�1+ �s�−q − �v��s��− C�u�s��2
L1���

M2

∣∣�v��s�+ log �u�s��L1���

∣∣2� (5.12)

This differential inequality will now be manipulated into a form which we find
useful. For some " > 0, (5.6) lets us conclude

�u�L1�Q1/2�
≥ "� (5.13)

Let � be the characteristic function of the non-empty set

W 	= �s 	 �u�s��L1�B1/2�
≥ "/10 �

Since u is bounded above by a constant M , it follows from (5.13) that

�W � ≥ "

10M
� (5.14)

Hence for some O�1� constants C ≥ 1 and � > 0 we have

�s�v��s� ≤ C�1+ �s�−q − �v��s��− C��s��u�s��2L1���

∣∣�v��s�+ log �u�s��L1���

∣∣2
≤ C�1+ �s�−q − �v��s��− ���s�

∣∣�v��s�+ log �u�s��L1���

∣∣2� (5.15)

Notice that, since q < 1, this inequality implies for s2 ≥ s1 that

�v��s2� ≤ eC�s1−s2��v��s1�+ CeC�s2��

Therefore we may assume that

�v��s� ≥ 4� log�10/"�� + 4C�1+ �s�−q�� for all −1 ≤ s ≤ −"/�20M�� (5.16)

Since, otherwise, we would have �v��s� ≤ C1 for some s0 in that range and then for
all times later on. This would prove the lemma.

Under assumption (5.16), we have for −1 ≤ s ≤ −"/�20M� and some positive
constant C1 that

�s�v��s� ≤ −C1��s��v��s�2� (5.17)

Divide both sides by �v��s�2 and integrate the inequality from −1 to t. We have for
t = − "

20M the following

�v��−1�−1 − �v��t�−1 ≤ −
∫ t

−1
C1��s�ds ≤ −C2� (5.18)

Notice that the range of t and (5.14) guarantee that C2 > 0. Since by assumption
(5.16), �v��−1� ≥ 0, this proves (5.9) at time t = − "

20M and hence all the time
later on. �
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5.5. Proof of Hölder Continuity

From Lemma 5.2, there is a 0 < � < 1 such that for any � > 0 there is an � so that

��X ∈ Q�R� �� 	 u�X� ≤ � � ≤ ��Q�R� ���� (5.19)

Let U = �− u, where � is the constant from (5.19). U is clearly a solution of (5.1)
and U �r=0 = �− a < 0. So we can apply Lemma 4.1 to conclude

sup
Q�d/2�

��− u� ≤
(

C

�Q�d��
∫
Q�d�

���− u�+�2
)1/2

� (5.20)

Let d = √
�R so that Q�d� ⊂ Q�R� ��. By (5.20) and (5.19),

�− inf
Q�d/2�

u ≤
(

C

�Q�d��
∫
Q�d�

���− u�+�2
)1/2

≤
(
C�2��Q�R� ���

�Q�d��
)1/2

= C��1/2 ���−3/4 �

which is less than �
2 if � is chosen sufficiently small. We conclude

inf
Q�d/2�

u ≥ �

2
�

This is the lower bound we seek.
We define

md ≡ inf
Q�d/2�

�� Md ≡ sup
Q�d/2�

��

Then from (5.2) we have

inf
Q�d/2�

u =
{
2�md −m2�/M if −m2 > M2�

2�M2 −Md�/M else�

Notice that both expressions above are non-negative in any case; thus we can add
them together to observe that

�

2
≤ 2

M
�M − osc��� d/2� �

Here osc��� d/2� = Md −md and osc��� 2R� = M2 −m2 = M . We rearrange the
above

osc��� d/2� ≤
(
1− �

4

)
osc��� 2R��

This is enough to produce the desired Hölder continuity via the standard argument.
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6. Proof of Main Theorem

In this section we prove Theorem 1.1 under the assumption (1.5). It is similar to [3]
Section 2, which assumes a stronger assumption �v� ≤ C∗�r2 − t�−1/2. First we show
that our solutions, which satisfy (1.5), are in fact suitable weak solutions. Recall that
a pair of suitable weak solution �v� p� satisfy

v ∈ L�
t L2

x�Q�� �v ∈ L2�Q�� p ∈ L3/2�Q�� (6.1)

and the local energy inequality.
Fix � ∈ �1� 5/3�. For t ∈ �−T0� 0�, we have by (1.5)∫

�3

�v�x� t��4
�x�� dx ≤

∫
�3

1
�x��

C∗r dr dz

�r2 − t�2−8�r8��t�4� �

= C
∫
�2

C∗r dr

�r2 − t�2−8�r�−1+8��t�4� = CC∗�t�−�1+��/2�

where we have used the scaling and � − 1+ 8� < 2 so that it is integrable. Define
Ri’s to be the Riesz transforms: Ri = �i√−�

. We consider the singular integral

p̃�x� t� =
∫ ∑

i�j

�i�j�vivj��y�
1

4��x − y� dy = ∑
i�j

RiRj�vivj��

Since �x�−� is a A2 weight function, we have∫ 1
�x�� �p̃�x� t��

2dx ≤ c
∫ 1

�x�� �v�x� t��
4dx ≤ c + c�t�−�1+��/2� (6.2)

With this estimate, the same argument as in [3] proves that p�x� t� = p̃�x� t� for all
x and for almost every t. Moreover, from (6.2) and � < 5/3 we conclude that

∫
Q1

�p�x� t��3/2dx dt ≤ c
∫ 0

−1

( ∫
B1

1
�x�� �p�x� t��

2dx

)3/4

dt ≤ C� (6.3)

Since � is arbitrarily small, the pointwise estimate (1.5) on v implies

v ∈ Ls
tL

q
x�Q1��

1
q
+ 1

s
>

1
2
� q <

1
�
� (6.4)

We will use �s� q� = �3� 3�. Thus the vector product of (N–S) with u# for any
# ∈ C�

c �Q1� is integrable in Q1 and we can integrate by parts to get

2
∫
Q
��v�2# =

∫
Q

{�v�2��t#+ �#�+ ��v�2 + 2p�v · �#} � ∀# ∈ C�
c �Q�� # ≥ 0� (6.5)

For any R ∈ �0� 1� and t0 ∈ �−R2� 0�, we can further choose a sequence of #
which converges a.e. in QR to the Heviside function H�t0 − t�. Since the limit of �t#
is the negative delta function in t, this gives us the estimate

ess sup
−R2<t<0

∫
BR

�v�x� t��2dx +
∫
QR

��v�2 ≤ CR

∫
Q1

��v�3 + �p�3/2�� (6.6)
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These estimates show that �v� p� is a suitable weak solution of (N–S) in QR. Note
that these bounds depend on C∗ of (1.5) only, not on �p�L5/3��3×�−T0�0��

.
To prove Theorem 1.1, it suffices to show that every point on the z-axis is

regular. Suppose now a point x∗ = �0� 0� x3� on the z-axis is a singular point of
v. Without loss of generality, we assume that x3 = 0. We will use the following
regularity criterion, a variant of the criterion in [1] and proven in [13], to obtain a
contradiction.

Lemma 6.1. Suppose that �v� p� is a suitable weak solution of (N–S) in Q�X0� 1�. Then
there exists an �1 > 0 so that X0 is a regular point if

lim sup
R↓0

1
R2

∫
Q�X0�R�

�v�3 ≤ �1� (6.7)

Let �v� p� be the rescaled solutions of (N–S) defined by

v�x� t� = v�x� 2t�� p�x� t� = 2p�x� 2t�� (6.8)

For �v� p� with 0 <  < 1, the pointwise estimate (1.5) is preserved:

�v�x� t�� ≤ C∗�r
2 − t�−1/2+2��t�−�r−2�� �x� t� ∈ �3 × �−T0� 0��

Fix R∗ > 0. Since we assume x∗ is a singular point, by Lemma 6.1 there is a sequence
k, k ∈ �, so that k → 0 as k → � and

1
R2∗

∫
QR∗

�vk �3 = 1
�R∗k�

2

∫
Q�x∗�R∗k�

�v�3 > �1� (6.9)

We will derive a contradiction to this statement.
Since �v� p� satisfies the pointwise estimate (1.5), we have v ∈ Lq�Q1� for

q ∈ �1� 4�. Moreover, the same argument as above provides the uniform bounds for
R < 1:

ess sup
−R2<t<0

∫
BR

�v�x� t��2dx +
∫
QR

��v�2 ≤ c
∫
Q1

�v�3 + �p�3/2 ≤ C� (6.10)

Following the same argument in Sections 2.3 and 2.4 of [3], we conclude from these
estimates that there is a subsequence of �vk � pk�, still denoted by �vk � pk�, weakly
converges to some suitable weak solution �v̄� p̄� of the Navier–Stokes equations in
QR and

vk → v̄�

strongly in Lq�QR� for all 1 ≤ q < 4 and 0 < R < 1.
Now the Hölder continuity of � = rv� at t = 0 proven in Section 5 implies∫

QR

∣∣v
�

∣∣ ≤ C� → 0 as  ↓ 0

for some � > 0. Thus the limit v̄ has no-swirl, v̄� = 0.
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Let �̄ = � × v̄ be the vorticity of v̄ and �̄� = �zv̄r − �r v̄z be the � component of
�̄. The function � = �̄�/r solves(

�t + b̄ · � − �− 2
r
�r

)
� = 0� (6.11)

where v̄� = 0 is used and b̄ = v̄rer + v̄zez = v̄�
Since v̄ is the limit of vk , it satisfies (1.5) and also satisfies (6.4). Following the

argument of Section 2.4 in [3], we conclude from (6.4) and the estimates for the
Stokes system that

��v̄�
L
5/4
t L

5/2
x �Q5/8�

≤ C�v̄�2
L
5/2
t L5

x�Q3/4�
+ C�v̄�L5/4�Q3/4�

≤ C�

Hence � has the bound

���L20/19�Q5/8�
≤ ��v̄�

L
5/4
t L

5/2
x �Q5/8�

�1/r�
L�

t L
20/11
x �Q5/8�

≤ C� (6.12)

Since b̄ satisfies (1.5), it also satisfies (4.2). We conclude from the local
maximum estimate Lemma 4.1 and (6.12) that

� ∈ L��Q5/16��

Furthermore we know that curl v̄ = �̄�e� ∈ L��Q5/16� from the above estimate on �
since v̄� = 0. Now we can apply the div-curl estimate

��k+1v�Lq�BR2
� ≤ c��kdiv v�Lq�BR1

� + c��kcurl v�Lq�BR1
� + c�v�L1�BR1

��

to obtain L� estimate for v̄. Since div v̄ = 0 and v̄ ∈ L�
t L1

x�Q5/16� by (1.5), we thus
conclude �v̄ ∈ L�

t L4
x�Q1/4� by taking q = 4 and k = 0 in the div-curl estimate. By

the Sobolev embedding, we have v̄ ∈ L��Q1/4�.
Now we can deduce regularity of the original solution from the regularity of

the limit solution. We have shown that

�v̄�x� t�� ≤ C ′
∗ in Q1/4�

Above C ′
∗ depends upon C∗ but not on the subsequence k. Since the constant can

be tracked, we may initially choose R∗ sufficiently small to guarantee that

1
R2∗

∫
QR∗

�v̄�3 ≤ �1/2�

where �1 is the small constant in Lemma 6.1. Since vk → v̄ strongly in L3, for k
sufficiently large we have

1
R2∗

∫
QR∗

�v�3 ≤ 1
R2∗

∫
QR∗

�v̄�3 + 1
R2∗

∫
QR∗

�v − v̄�3 ≤ �1�

But this is a contradiction to (6.9). We have proved Theorem 1.1.
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Appendix: The Case � = 0

In this appendix we prove Theorem 1.1 under the assumption �v�x� t�� ≤ C∗r−1, the
� = 0 case. The argument in this appendix was obtained after a preprint of [12]
appeared. Note that this argument does not take scaling limits and all bounds are
computable.

Let M be the maximum of �v� up to a fixed time t1. We will derive an upper
bound of M in terms of C∗ and independent of t1. We may assume M > 1. Define

vM�X� T� = M−1v�X/M� T/M2�� X = �X1� X2� Z��

For x = �x1� x2� z� and X = �X1� X2� Z�, let r = �x2
1 + x2

2�
1/2 and R = �X2

1 + X2
2�

1/2.
We have the following estimates for all r and R for time t ≤ t1 and T ≤ M2t1:

�v�x� t�� ≤ C/r� �vM�X� T�� ≤ C/R� ��kvM � ≤ Ck� (A.1)

The last inequality follows from �vM�L� ≤ 1 for t < t1 and the regularity theorem
of Navier–Stokes equations. Its angular component (we omit the time dependence
below) vM

� �R� Z� satisfies vM
� �0� Z� = 0 = �Zv

M
� �0� Z� for all Z. By mean value

theorem and (A.1), �vM
� �R� Z�� ≤ CR and ��Zv

M
� �R� Z�� ≤ CR for R ≤ 1. Together

with (A.1) for R ≥ 1, we get

�vM
� � ≤ Cmin�R�R−1�� ��Zv

M
� � ≤ Cmin�R� 1�� for R > 0�

By [3, Theorem 3.1], under the assumption �v�x� t�� ≤ C∗r−1, � = rv� satisfies
���r� z� t�� ≤ Cr� when r is small, uniformly in r and t, for some C and small � > 0
depending on C∗. Thus, �vM

� �R� Z�� ≤ CR−1+�M−� for R > 0. From these estimates
we have

��Z�v
M
� �2�R��
R2

≤ Cmin�R�R−1+�M−�� ·min�R� 1�
R2

≤ C

R3−�M� + 1
� (A.2)

Consider now the angular component of the rescaled vorticity. Recall � = ��/r.
Let

f = �M�X� T� = ��X/M� T/M2�M−3 = �M
� �X� T�/R�

Since �M
� and ��M

� are bounded by (A.1) and �M
� �R=0 = 0, we have �f � ≤ C�1+ R�−1.

From the equation of �� (see (2.7)), we have

��T − L�f = g� L = �+ 2
R
�R − bM · �X�

where g = R−2�Z�v
M
� �2 and bM = vM

r eR + vM
z eZ. Let P�T�X$ S� Y� be the evolution

kernel for �T − L. By Duhamel’s formula

f�X� T� =
∫

P�T�X$ S� Y�f�Y� S�dY +
∫ T

S

∫
P�T�X$ �� Y�g�Y� ��dY d� =	 I+ II�
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By Carlen and Loss [4], in particular its equation (2.5), the kernel P satisfies P ≥ 0,∫
P�T�X$ S� Y�dY = 1 and, using �bM�� < 1,

P�T�X$ S� Y� ≤ C�T − S�−3/2e−h��X−Y ��T−S�� h�a� T� = C
a2

T

(
1− T

a

)2

+
�

Using e−h�a�T� ≤ Ce−Ca/T we get for X = �X1� X2� X3� and Y = �Y1� Y2� Y3�

P�T�X$ S� Y� ≤ C�T − S�−3/2e−C�X3−Y3�/�T−S�� (A.3)

Here we only assert the spatial decay in the X3 direction so that the proof of [4],
where the term R−1�R in L is not present, needs no revision. With these bounds and
Hölder inequality we get

�I� ≤
[∫

P�T�X$ S� Y��f�Y� S��3dY
] 1

3

≤
[
C�T − S�−

3
2

∫
e−C

�X3−Y3 �
T−S

RdR

�1+ R�3
dZ

] 1
3

≤ C�T − S�−1/6� (A.4)

and

�II� ≤
∫ T

S

∫
�T − ��−3/2e−C

�X3−Y3 �
T−�

R dR

R3−�M� + 1
dZ d� ≤ C�T − S�1/2M−2�/3� (A.5)

Combining these two estimates and choosing S = T −M� > −T0M
2 (hence f is

defined), we have �f�X� T�� ≤ CM−�/6. Thus

����x� t�� ≤ ��M
� �rM� zM� tM2��M2 ≤ ��M�rM� zM� tM2��M2rM ≤ CM3−�/6r�

Therefore, we have

����x� t�� ≤ CM2−�/12� for r ≤ M−1+�/12� (A.6)

Let b = vrer + vzez and B!�x0� = �x 	 �x − x0� < ! . By (2.20) and (2.9), b
satisfies −�b = curl���e��, and hence the following estimate with p > 1 (see e.g., [7],
Theorem 8.17)

sup
B!�x0�

�b� ≤ C
(
!− 3

p ��b��Lp�B2!�x0��
+ ! sup

B2!�x0�

����
)
� (A.7)

Let ! = M−1+�/24, x0 ∈ ��r� �� z� 	 r < ! and 1 < p < 2. By the assumption �v� ≤ C/r,

!− 3
p ��b��Lp�B2!�x0��

≤ C!− 3
p ��1/r��Lp�B2!�x0��

≤ C

2− p
!−1 ≤ C�p�M1−�/24�

This together with (A.6), (A.7) and the fact �v�� = M�vM
� � ≤ MCmin�R�R−1+�M−��

imply

�v�x� t�� ≤ CM1−�/24� for r ≤ M−1+�/24� (A.8)
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On the other hand, the assumption �v� ≤ C/r implies �v� ≤ CM1−�/24 for
r ≥ M−1+�/24. Since M is the maximum of v, this gives an upper bound for M . �
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