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1. Introduction

We consider the following nonlinear Schrödinger (NLS) equation:

i∂tu + ∆u = −g(|u|2)u =: −f(u), (1.1)

where u = u(t, x) is a complex-valued function on R × R
d, d � 1.

The aim of this paper is to construct special families of solutions to the energy-
subcritical NLS equation (1.1). We shall look for infinite soliton train, multi-soliton
and multi-kink solutions.
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Recall that it is generally expected that global solutions to nonlinear dispersive
equations such as the NLS equation eventually decompose at large time as a sum of
solitons plus a scattering remainder (the soliton resolution conjecture). Except for
the specific case of integrable equations, such results are usually out of reach (see
nevertheless the recent breakthrough on the energy-critical wave equation in [10]).
In the case of NLS equations, multi-solitons can be constructed via the inverse
scattering transform in the integrable case (d = 1, f(u) = |u|2u). In non-integrable
frameworks, multi-solitons have been known to exist since the pioneering work of
Merle [21] (see § 1.2 for more details on the existing results of multi-solitons). The
multi-solitons constructed up to now were made of a finite number of solitons and
there was little evidence of the possibility of existence of infinite trains of solitons
(note nevertheless the result [13] in the integrable case). The existence of such
infinite soliton trains is, however, important, as they may provide examples or
counter-examples of solutions with borderline behaviours (as is the case for the
Korteweg–de Vries (KdV) equation; see [18]). In this paper, we show the existence
of such infinite soliton trains for power nonlinearities. It turns out that our strategy
is very flexible and allows us to prove many existence and uniqueness results of
multi-soliton and multi-kink solutions for generic nonlinearities. In the remainder
of this introduction, we state our main results on infinite trains (§ 1.1), multi-
solitons (§ 1.2) and multi-kinks (§ 1.3) and give a summary of the strategy of the
proofs (§ 1.4).

1.1. Infinite soliton trains

Our first main result is on the construction of a solution to (1.1) behaving like a
sum of infinitely many solitons at large time. For this purpose we have to use scale
invariance and work with the power nonlinearity f1(u) = |u|αu, 0 < α < αmax,
αmax = +∞ for d = 1, 2 and αmax = 4/(d − 2) for d � 3. Let Φ0 ∈ H1(Rd) be a
fixed bound state that solves the elliptic equation

−∆Φ0 + Φ0 − |Φ0|αΦ0 = 0.

For j � 1, ωj > 0 (frequency), γj ∈ R (phase), vj ∈ R
d (velocity), define a soliton

R̃j by

R̃j(t, x) := exp(i(ωjt − 1
4 |vj |2 + 1

2vj · x + γj))ω
1/α
j Φ0(

√
ωj(x − vjt)). (1.2)

We consider the following soliton train:

R∞ =
∞∑

j=1

R̃j . (1.3)

Since (1.1) is a nonlinear problem, the function R∞ = R∞(t, x) is no longer a
solution in general. Nevertheless, we shall show that in the vicinity of R∞ one can
still find a solution u to (1.1), which we refer to as an infinite soliton train. More
precisely, the solution u to (1.1) is defined on [T0, +∞) for some T0 ∈ R and such
that

lim
t→+∞

‖u − R∞‖X([t,∞)×Rd) = 0. (1.4)
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Here ‖ · ‖X([t,∞)×Rd) is some space-time norm measured on the slab [t, ∞) × R
d. A

simple example is X = L∞
t L2

x, in which case one can replace (1.4) by the equivalent
condition

lim
t→+∞

‖u(t) − R(t)‖L2 = 0.

However, the definition (1.4) is more flexible, as it allows general Strichartz spaces
(see (2.2)).

The main idea is that, in the energy-subcritical setting, all solitons have expo-
nential tails (see (1.13)). When their relative speed is large, these travelling solitons
are well separated and have very small overlaps that decay exponentially in time.
At such high velocity and exponential separation, one does not need fine spectral
details, and the whole argument can be carried out as a perturbation around the
desired profile (e.g. the soliton series R∞) in a well-chosen function space. As our
proof is based on contraction estimates, the uniqueness follows immediately, albeit
in a very restrictive function class.

We require that the parameters (ωj , vj) of the train satisfy the following assump-
tion.

Assumption 1.1.

• Integrability: there exists r1 � 1, 1
2dα < r1 < α + 2, such that

Aω :=
∞∑

j=1

ω
1/α−d/(2r1)
j < ∞. (1.5)

• High relative speeds: the solitons travel sufficiently fast: there exists a constant
v� > 0 such that √

min{ωj , ωk}(|vk − vj |) � v� ∀j �= k. (1.6)

Since R∞ may be badly localized, we seek an infinite soliton train solution to (1.1)
in the form u = R∞ + η, where η satisfies the perturbation equation

i∂tη + ∆η = −f(R∞ + η) +
∞∑

j=1

f(R̃j).

In Duhamel formulation, the perturbation equation for η reads

η(t) = −i
∫ ∞

t

ei(t−τ)∆
(

f(R∞ + η) −
∞∑

j=1

f(R̃j)
)

dτ ∀t � 0. (1.7)

The following theorem gives the existence and uniqueness of the solution η
to (1.7).

Theorem 1.2 (existence of an infinite soliton train solution). Consider (1.1) with
f(u) = |u|αu satisfying 0 < α < αmax. Let R∞ be given as in (1.3), with parameters
ωj > 0, γj ∈ R and vj ∈ R

d for j ∈ N, which satisfy assumption 1.1. There exist
constants C > 0, c1 > 0 and v� � 1 such that (see (1.6)) if v� > v�, then there
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exists a unique solution η ∈ S([0,∞)) (see (2.2) for the definition of Strichartz
space) to (1.7) satisfying

‖η‖S([t,∞)) + ‖η(t)‖Lα+2 � Ce−c1v�t ∀t � 0. (1.8)

Remark 1.3. By using theorem 1.2 and lemma 4.1, one can justify the existence of
a solution u = R∞ + η satisfying (1.1) in the distributional sense. The uniqueness
of such a solution is only proven for the perturbation η satisfying (1.7) and (1.8).
In the mass-subcritical case 0 < α < 4/d, the soliton train R∞ is in the Lebesgue
space C0

t L2
x ∩ L∞

tx , and one can show that the solution u = R∞ +η can be extended
to all R × R

d and satisfies

u ∈ C0
t L2

x(R × R
d) ∩ L

2(d+2)/d
t,loc L2(d+2)/d

x (R × R
d)

(see (2.1)). Hence, it is a localized solution in the usual sense. In the mass-supercrit-
ical case 4/d � α < αmax, the soliton train R∞ =

∑∞
j=1 R̃j is no longer in L2

since each composing piece R̃j has O(1) L2-norm. Nevertheless, we shall still build
a regular solution to (1.7) since R∞ has Lebesgue regularity L∞

t L
(dα/2+)
x ∩ L∞

tx ,
which is enough for the perturbation argument to work. We stress that in this case
the solution η is only defined on [0,∞) × R

d and scatters forwards in time in L2.

Remark 1.4. Typically, the parameters (ωj , vj) are chosen in the following order:
first we take (ωj) satisfying (1.5); then we inductively choose vj such that the
condition (1.6) is satisfied. For example, for j � 1, one can take ωj = 2−j and
vj = 2j v̄ for v̄ ∈ R

d, |v̄| = v�. Note that when 0 < α < 4/d (mass-subcritical case)
we can choose r1 � 2. The soliton train is then in L∞

t L2
x. We require 1

2dα < r1 so
that the exponent in (1.5) is positive. The condition r1 < α + 2 will be needed to
show (4.2) in lemma 4.1.

Remark 1.5. Note that we did not introduce initial positions into the definition
of R̃j , so each soliton starts centred at 0. With some minor modifications, our
construction can also work for the general case with the solitons starting centred at
various xj . For simplicity of presentation we shall not state the general case here.

Remark 1.6. Certainly theorem 1.2 can hold in more general situations. For exam-
ple, instead of taking a fixed profile Φ0 in (1.2), one can draw Φ0 from a finite set
of profiles A = {Φ1

0, . . . , Φ
K
0 }, where each Φj

0 is a bound state.

Remark 1.7. The rate of spatial decay of multi-solitons is still an open question
in the NLS case (for KdV it is partly known: multi-solitons decay exponentially on
the right). In theorem 1.2, the soliton train profile R∞ around which we build our
solution has only a polynomial spatial decay, which is non-uniform in time. Hence,
we expect the solution u = R∞ + η to have the same decay.

1.2. Multi-solitons

From now on, we work with a generic nonlinearity and just assume that f(u) =
g(|u|2)u, where the function g : [0,∞) → R obeys some Hölder conditions mimicking
the usual power-type nonlinearity. Precisely,

g ∈ C0([0,∞), R) ∩ C2((0,∞), R), g(0) = 0
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and

|sg′(s)| + |s2g′′(s)| � C(sα1 + sα2) ∀s > 0, (1.9)

where C > 0, 0 < α1 � α2 < 1
2αmax.

A typical example is g(s) = sα for some 0 < α < 1
2αmax. A useful example to

keep in mind is the combined nonlinearity g(s) = sα1 − sα2 for some 0 < α1 < α2 <
1
2αmax. Other examples can easily be constructed. Henceforth we shall assume that
f(u) = g(|u|2)u satisfies (1.9). In this case the corresponding nonlinearity f(u) is
usually called energy-subcritical, since there are lower bounds of the lifespans of
the H1 local solutions that depend only on the H1-norm (not the profile) of initial
data (cf. [5, 11]). The condition (1.9) is a natural generalization of the pure power
nonlinearities. For much of our analysis it can be replaced by the weaker condition
that g(s) and sg′(s) are Hölder continuous with suitable exponents. However, (1.9)
is fairly easy to check and it suffices for most applications.

We now give a definition of a solitary wave that is slightly more general than
(1.2). Given a set of parameters ω0 > 0 (frequency), γ0 ∈ R (phase), x0, v0 ∈ R

d

(position and velocity), a solitary wave, or a soliton, is a solution to (1.1) of the
form

RΦ0,ω0,γ0,x0,v0 := Φ0(x − v0t − x0) exp(i(1
2v0 · x − 1

4 |v0|2t + ω0t + γ0)), (1.10)

where Φ0 ∈ H1(Rd) solves the elliptic equation

−∆Φ0 + ω0Φ0 − f(Φ0) = 0. (1.11)

A non-trivial H1 solution to (1.11) is usually called a bound state. Compared with
(1.2), the main difference is that we do not use the parameter ωj to rescale the
solitons.

The existence of bound states is guaranteed (see [1]) if we assume, in addition
to (1.1), that there exists s0 > 0, such that

G(s0) :=
∫ s0

0
g(s̃) ds̃ > ω0s0. (1.12)

Note that the condition (1.12) makes the nonlinearity focusing.
All bound states are exponentially decaying (see, for example, [3, § 3.3]), i.e.

e
√

ω|x|(|Φ0| + |∇Φ0|) ∈ L∞(Rd) for all 0 < ω < ω0. (1.13)

A ground state is a bound state that minimizes among all bound states the action

S(Φ0) = 1
2‖∇Φ0‖2

2 + 1
2ω0‖Φ0‖2

2 − 1
2

∫
Rd

G(|Φ0|2) dx.

The ground state is usually unique modulo symmetries of the equation (see, for
example, [17] for precise conditions on the nonlinearity ensuring uniqueness of the
ground state). If d � 2, there exist infinitely many other solutions called excited
states (see [1, 2] for more on ground states and excited states). The corresponding
solitons are usually termed ground-state solitons (respectively, excited-state soli-
tons).
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A multi-soliton is a solution to (1.1) that, roughly speaking, looks like the sum
of N solitons. To fix notation, let (see (1.10))

R(t, x) =
N∑

j=1

RΦj ,ωj ,γj ,xj ,vj (t, x) =:
N∑

j=1

Rj(t, x), (1.14)

where each Rj is a soliton made from some parameters (ωj , γj , xj , vj) and bound
state Φj (we assume that (1.12) holds true for all ωj).

If each Φj in (1.14) is a ground state, then the corresponding multi-soliton is
called a ground-state multi-soliton. If at least one Φj is an excited state, we call it
an excited-state multi-soliton.

We now review in more detail some known results on multi-solitons. Most results
are on the pure power nonlinearity f(u) = |u|αu with 0 < α < αmax and ground
states. If α = 4/d (respectively, α < 4/d, α > 4/d), then (1.1) is called (L2)
mass-critical (respectively, mass-subcritical, mass-supercritical). In the integrable
case d = 1, α = 2, Zakharov and Shabat [25] derived an explicit expression of
multi-solitons by using the inverse scattering transform. For the mass-critical NLS
equation, which is non-integrable in higher dimensions, Merle [21, corollary 3] con-
structed a solution blowing up at exactly N points at the same time, which gives a
multi-soliton after a pseudo-conformal transformation. In the mass-subcritical case,
the ground-state solitary waves are stable. Assuming the composing solitary waves
Rj are ground states and have different velocities (i.e. vj �= vk if j �= k in (1.14)),
Martel and Merle [19] proved the existence of an H1 ground-state multi-soliton
u ∈ C([T0,∞), H1) such that

∥∥∥∥u(t) −
N∑

j=1

Rj(t)
∥∥∥∥

H1

� Ce−β
√

ω�v�t ∀t � T0, (1.15)

for some constant β > 0, where T0 ∈ R is large enough, and the minimal relative
velocity v� and the minimal frequency ω� are defined by

v� := min{|vj − vk| : 1 � j �= k � N}, (1.16)
ω� = min{ωj , 1 � j � N}. (1.17)

Martel and Merle [19] also considered a general energy-subcritical nonlinearity
f(u) = g(|u|2)u with g ∈ C1, g(0) = 0 and satisfying ‖s−αg′(s)‖L∞

s (s�1) < ∞
for some 0 < α < 1

2αmax. Assuming a nonlinear stability condition around the
ground state (see [19, eqn (16)]), they proved the existence of an H1 ground-state
multi-soliton satisfying the same estimate (1.15).

In [9], Côte et al . considered the mass-supercritical NLS equation (f(u) = |u|αu
with 4/d < α < αmax). Assuming the ground-state solitons Rj have different veloc-
ities, Côte et al . constructed an H1 ground-state multi-soliton u satisfying (1.15).
This result was sharpened in dimension 1 by Combet, who showed in [7] the exis-
tence of an N -parameter family of multi-solitons.

In [8], Côte and Le Coz considered the general energy-subcritical NLS equation
with f(u) = g(|u|2)u satisfying assumptions similar to (1.9) and (1.12). Assum-
ing the solitary waves Rj are excited states and have large relative velocities,
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i.e. assuming
v� � v� > 0

for v� large enough, Côte and Le Coz constructed an excited-state multi-soliton
u ∈ C([T0,∞), H1) for T0 ∈ R large enough, which also satisfies (1.15).

The main strategy in [8,9,19,21] is the following: one takes a sequence of approx-
imate solutions un solving (1.1) with final data un(Tn) = R(Tn), Tn → ∞; by
using local conservation laws and coercivity of the Hessian (this has to be suitably
modified in certain cases; see [8]), one derives uniform H1 decay estimates of un

on the time interval [T0, Tn], where T0 is independent of n; the multi-soliton is
then obtained after a compactness argument. We should point out that the unique-
ness of multi-solitons is still left open by the above analysis (nevertheless, see [7,8]
for the existence of one-parameter and N -parameter families of multi-solitons).
Under restrictive assumptions on the nonlinearity (e.g. high regularity or a flat-
ness assumption at the origin) and a high-relative-speed hypothesis, the stability of
multi-solitons was obtained in [20,22–24], and instability in [8]. See also remark 1.12.

In this section we give new constructions of multi-solitons. We work in the context
of the energy-subcritical problem (1.1) with f(u) satisfying (1.9) and (1.12) We shall
focus on fast-moving solitons, i.e. the minimum relative velocity v� defined in (1.16)
is sufficiently large. The composing solitons are in general bound states, which can
be either ground states or excited states. In our next two results, we recover and
improve the result from [8, theorem 1] in various settings. The improvements here
are the lifespan and uniqueness. As for the infinite train, our new proof relies on
a contraction argument around the desired profile. We begin with the pure power
nonlinearity case.

Theorem 1.8 (existence, uniqueness of multi-solitons; power nonlinearity case).
Consider (1.1) with f(u) = |u|αu satisfying 0 < α < αmax. Let R be the same
as in (1.14) and define v� as in (1.16). There exist constants C > 0, c1 > 0 and
v� � 1 such that if v� > v�, then there exists a unique solution u ∈ C([0,∞), H1)
to (1.1) satisfying

ec1v�t‖u − R‖S([t,∞)) + ec2v�t‖∇(u − R)‖S([t,∞)) � C ∀t � 0.

Here c2 = c1 min(1, α) � c1. In particular ‖u(t) − R(t)‖H1 � Ce−c2v�t.

Remark 1.9. As already mentioned, theorem 1.8 is a slight improvement of [8,
theorem 1]. Here the multi-soliton is constructed on the time interval [0,∞), whereas
in [8] this was done on [T0,∞) for some T0 > 0 large. In particular, we do not have
to wait for the interactions between the solitons to be small to have the existence of
our multi-soliton. However, we have no control over the constant C, so at small times
our multi-soliton may be very far away from the sum of solitons. The uniqueness
of solutions is a subtle issue; see remark 1.12.

The next result concerns the existence and uniqueness of multi-solitons in the
general nonlinearity case, f(u).

Theorem 1.10. Consider (1.1) with f(u) = g(|u|2)u satisfying (1.9) and (1.12).
Let R be the same as in (1.14) and define v� as in (1.16). There exist constants
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C > 0, c1 > 0, c2 > 0, T0 � 1 and v� � 1 such that if v� > v�, then there is a
unique solution u ∈ C([T0,∞), H1) to (1.1) satisfying

ec1v�t‖u − R‖S([t,∞)) + ec2v�t‖∇(u − R)‖S([t,∞)) � C ∀t � T0.

Remark 1.11. Unlike theorem 1.8, the solution in theorem 1.10 exists only for t �
T0 with T0 sufficiently large. To take T0 = 0, our method requires extra conditions.
For such results see § 6. We can extend theorem 1.17 similarly.

Remark 1.12. In theorems 1.8 and 1.10, the uniqueness of the multi-soliton solu-
tion holds in a very restrictive function class whose Strichartz-norm decays as
e−c1v�t. A natural question is whether uniqueness holds in a wider setting. In gen-
eral, this is a very subtle issue and in some cases one cannot get away with the
exponential decay condition. Côte and Le Coz [8] considered the case when one of
the composing solitons, say R1, is unstable. Assuming g ∈ C∞ (see (1.1)) and the
operator L = −i∆ + iω1 − idf(Φ1) has an eigenvalue λ1 ∈ C with ρ := Re(λ1) > 0,
they constructed a one-parameter family of multi-solitons ua(t) such that, for some
T0 = T0(a) > 0,∥∥∥∥ua(t) −

N∑
j=1

Rj(t) − aY (t)
∥∥∥∥

H1(Rd)
� Ce−2ρt ∀t � T0.

Here Y (t) is a non-trivial solution of the linearized flow around R1, and eρt‖Y (t)‖H1

is periodic in t. This instability result shows that the exponential decay condition
in the uniqueness statement cannot be removed in general for NLS equations with
unstable solitary waves.

1.3. Multi-kinks

In this subsection, we push our approach further and attack the problem of the
existence of multi-kinks, i.e. solutions built upon solitons and their non-localized
counterparts, the kinks. Before stating our result, let us first mention some related
works. When its solutions are considered with a non-zero background (i.e. |u| → ν �=
0 at ±∞), the NLS equation (1.1) is often referred to as the Gross–Pitaevskii equa-
tion. For general nonlinearities, Chiron [6] investigated the existence of travelling-
wave solutions with a non-zero background and showed that various types of non-
linearities can lead to a full zoology of profiles for the travelling waves. In the
case of the ‘classical’ Gross–Pitaevskii equation, i.e. when f(u) = (1 − |u|2)u and
solutions verify |u| → 1 at infinity, the profiles of the travelling kink solutions
K(t, x) = φc(x − ct) are explicitly known and given for |c| <

√
2 by the formula

φc(x) =

√
2 − c2

2
tanh

(
x
√

2 − c2

2

)
+ i

c√
2

with ω = 0. (in particular, one can see that the limits at −∞ and +∞ are different,
thus justifying the name ‘kink’). In [4], Béthuel et al . proved the forward-in-time
stability of a profile composed of several kinks travelling at different speeds. Note
that, due to the non-zero background of the kinks, the profile cannot be simply
taken as a sum of the kinks and one has to rely on another formulation of the
Gross–Pitaevskii equation to define a multi-kink properly.
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The main differences between our analysis and the works mentioned above are,
first, that our kinks have a zero background on one side and a non-zero one on the
other side, and second, that, due to the Galilean transform used to give a speed
to the kink, our kinks have infinite energy (due to the non-zero background, the
rotation in phase generated by the Galilean transform is no longer killed by the
decay in the modulus). In particular, this prevents us from using energy methods,
as was the case for multi-solitons in [8, 9, 19] or multi-kinks in [4].

We place ourselves in dimension d = 1. In such a context and under suitable
assumptions on the nonlinearity f , (1.1) admits kink solutions. More precisely,
given γ, ω, v, x0 ∈ R, what we call a kink solution of (1.1) (or half-kink) is a function
K = K(t, x) defined similarly as a soliton by

K(t, x) := exp(i(1
2vx − 1

4 |v|2t + ωt + γ))φ(x − vt − x0),

but where φ satisfies the profile equation on R with a non-zero boundary condition
at one side of the real line, denoted by ±∞ and zero boundary condition on the
other side (denoted by ∓∞):

−φ′′ + ωφ − f(φ) = 0,

lim
x→∓∞

φ(x) = 0, lim
x→±∞

φ(x) �= 0.

}
(1.18)

The existence of half-kinks is granted by the following proposition.

Proposition 1.13. Let f : R → R be a C1 function with f(0) = 0 and define
F (s) :=

∫ s

0 f(t) dt. For ω ∈ R, let

ζ(ω) := inf{ζ > 0, F (ζ) − 1
2ωζ2 = 0}

and assume that there exists ω1 ∈ R such that

ζ(ω1) > 0, f ′(0) − ω1 < 0, f(ζ(ω1)) − ω1ζ(ω1) = 0. (1.19)

Then, for ω = ω1, there exists a kink profile solution φ ∈ C2(R) of (1.18), i.e. φ
is unique (up to translation), positive and satisfies φ > 0, φ′ > 0 on R and the
boundary conditions

lim
x→−∞

φ(x) = 0, lim
x→+∞

φ(x) = ζ(ω1) > 0. (1.20)

If, in addition,
f ′(ζ(ω1)) − ω1 < 0,

then for any 0 < δ < ω1 − max{f ′(0), f ′(ζ(ω1))} there exists C > 0 such that

|φ′(x)| + |φ(x)1{x<0}| + |(ζ1(ω1) − φ(x))1{x>0}| � Ce−δ|x|. (1.21)

Remark 1.14. By uniqueness we mean that when ω = ω1 the only solutions con-
necting 0 to ζ(ω1) (i.e. satisfying (1.20)) are of the form φ(· + c) for some c ∈ R.

Remark 1.15. Using the symmetry x → −x it is easy to see that proposition 1.13
also implies the existence and uniqueness of a kink solution φ satisfying

lim
x→−∞

φ(x) = ζ(ω1) > 0, lim
x→+∞

φ(x) = 0.
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K0

R1

R2

R3
K4

v4v3

v2

v1

v0

x0 + v0t x1 + v1t x2 + v2t x3 + v3t x4 + v4t

Figure 1. Schematic of the multi-kink profile KR in (1.22).

By replacing < by > in the assumptions of proposition 1.13 we immediately obtain
the existence of a kink profile connecting 0 to ζ(ω1) < 0.

Remark 1.16. It is well known (see [1]) that if instead of (1.19) we assume that
there exists ω0 ∈ R such that

ζ(ω0) > 0, f(ζ(ω0)) − ωζ(ω0) > 0,

then for ω = ω0 there exists a soliton profile, i.e. a unique positive even solution
φ ∈ C2(R) to (1.18) with boundary conditions

lim
x→±∞

φ(x) = 0.

The profile on which we want to build a solution to (1.1) is the following. Take
N ∈ N, (vj , xj , ωj , γj)j=0,...,N+1 ⊂ R

4 such that v0 < · · · < vN+1. Assume that
for ω0 and ωN+1 there exist two kink profiles, φ0 and φN+1 (solutions of (1.18)),
satisfying the boundary conditions

lim
x→−∞

φ0(x) �= 0, lim
x→+∞

φ0(x) = 0,

lim
x→−∞

φN+1(x) = 0, lim
x→+∞

φN+1(x) �= 0.

Denote by K0 and KN+1 the corresponding kinks. For j = 1, . . . , N , assume as
before that we are given localized soliton profiles (φj)j=1,...,N and let Rj be the
corresponding solitons. Consider the following approximate solution, composed of
a kink on the left and on the right and solitons in the middle (see figure 1):

KR(t, x) := K0(t, x) +
N∑

j=1

Rj(t, x) + KN+1(t, x). (1.22)

Our last result concerns solutions of that are composed of solitons and half-kinks.

Theorem 1.17. Consider (1.1) with d = 1 and f(u) = g(|u|2)u satisfying (1.9),
and let KR be the profile defined in (1.22). Define v� by

v� := inf{|vj − vk|; j, k = 0, . . . , N + 1, j �= k}.

Then there exist v� > 0 (independent of (vj)) large enough, T0 � 1 and constants
C, c1, c2 > 0 such that if v� > v�, then there exists a (unique) multi-kink solution
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u ∈ C([T0, +∞), H1
loc(R)) to (1.1) satisfying

ec1v�t‖u − KR‖S([t,+∞)) + ec2v�t‖∇(u − KR)‖S([t,+∞)) � C ∀t � T0.

It will be clear from the proof that the theorem remains valid if we remove K0
or KN+1 from the profile KR. It is also fine if v0 > 0 or vN+1 < 0.

1.4. Strategy of the proofs

To simplify the presentation, we shall give a streamlined proof of theorems 1.2,
1.8, 1.10 and 1.17. The key tools are propositions 2.3 and 2.4, which reduce matters
to the checking of a few conditions on the solitons. This is done in § 2. We stress that
the situation here is a bit different from the usual stability theory in critical NLS
problems (cf. [15,16]). There the approximate solutions often have finite space-time
norms and the perturbation errors only need to be small in some dual Strichartz
space. In our case the solitary waves carry infinite space-time norms on any non-
compact time interval (unless one considers L∞

t ). For this we have to rework the
stability theory a little around a solitary-wave-type solution. The price to pay is
that the perturbation errors and source terms need to be exponentially small in
time. This is the main place where the large relative velocity assumption is used.
We give the proofs of theorems 1.8 and 1.10 in § 3, of theorem 1.2 in § 4 and, finally,
of theorem 1.17 in § 5. In § 6, we conclude the paper by giving three results similar
to theorem 1.10 with additional assumptions that allow us to take T0 = 0.

2. The perturbation argument

We start this section by giving some preliminaries and notation.

2.1. Preliminaries and notation

For any two quantities A and B, we use A � B (respectively, A � B) to denote
the inequality A � CB (respectively, A � CB) for a generic positive constant
C. The dependence of C on other parameters or constants is usually clear from
the context and we will often suppress this dependence. Sometimes we will write
A �k B if the implied constant C depends on the parameter k. We shall use the
notation C = C(X) if the constant C depends explicitly on some quantity X.

For any function f : R
d → C, we use ‖f‖Lp or ‖f‖p to denote the Lebesgue

Lp-norm of f for 1 � p � ∞. We use Lq
tL

r
x to define the space-time norm as

‖u‖Lq
t Lr

x(R×Rd) :=
( ∫

R

( ∫
Rd

|u(t, x)|r dx

)q/r

dt

)1/q

,

with the usual modifications when q, r = ∞, or when the domain R×R
d is replaced

by a smaller region of space-time such as I × R
d. When q = r we abbreviate Lq

tL
q
x

as Lq
t,x or Lq

tx. We shall write u ∈ Lq
t,locL

r
x(R × R

d) if

‖u‖Lq
t Lr

x(K×Rd) < ∞ for any compact K ⊂ R. (2.1)

We shall need the standard dispersive inequality: for any 2 � p � ∞,

‖eit∆f‖p � |t|−d(1/2−1/p)‖f‖p/(p−1) ∀t �= 0.



1262 S. Le Coz, D. Li and T.-P. Tsai

The dispersive inequality can be used to deduce certain space-time estimates
known as Strichartz inequalities. Recall that for dimension d � 1 we say a pair of
exponents (q, r) is (Schrödinger) admissible if

2
q

+
d

r
=

d

2
, 2 � q, r � ∞ and (d, q, r) �= (2, 2,∞).

For any fixed space-time slab I × R
d, we define the Strichartz norm

‖u‖S(I) := sup
(q,r) admissible

‖u‖Lq
t Lr

x(I×Rd). (2.2)

For d = 2, we need to further impose q > q1 in the above norm for some q1 slightly
larger than 2, so as to stay away from the forbidden endpoint. The choice of q1 is
usually simple. We use S(I) to denote the closure of all test functions in R × R

d

under this norm. We denote by N(I) the dual space of S(I).
We now state the standard Strichartz estimates. For the non-endpoint case, one

can see, for example, [12]. For the end-point case, see [14].

Lemma 2.1. If u : I × R
d → C solves

i∂tu + ∆u = F, u(t0) = u0,

for some t0 ∈ I, u0 ∈ L2
x(Rd), then

‖u‖S(I) �d ‖u0‖2 + ‖F‖N(I).

We need a few simple estimates on the nonlinearity. For any complex-valued
function F = F (z), recall the notation

Fz :=
1
2

(
∂F

∂x
− i

∂F

∂y

)
, Fz̄ :=

1
2

(
∂F

∂x
+ i

∂F

∂y

)
.

If we write F (z) = F ∗(z, z̄) with z and z̄ treated as independent variables in F ∗,
then

Fz =
∂F ∗

∂z
and Fz̄ =

∂F ∗

∂z̄
.

By the chain rule and fundamental theorem of calculus, it is easy to check that

∇(F (u(x))) = Fz(u(x))∇u(x) + Fz̄(u(x))∇u(x),

F (z1) − F (z2) = (z1 − z2)
∫ 1

0
Fz(z2 + θ(z1 − z2)) dθ

+ (z1 − z2)
∫ 1

0
Fz̄(z2 + θ(z1 − z2)) dθ. (2.3)

These two identities will be used later.

Lemma 2.2 (Hölder continuity of f ′ and g). Let f(z) = g(|z|2)z for z ∈ C and
suppose g satisfies (1.9) and (1.12). Then for all s1, s2 > 0 we have

|g(s2
1) − g(s2

2)| + |s2
1g

′(s2
1) − s2

2g
′(s2

2)|
� |s1 − s2|min{2α1,1}(s1 + s2)max{2α1−1,0}

+ |s1 − s2|min{2α2,1}(s1 + s2)max{2α2−1,0}; (2.4)
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and, for any z1, z2 ∈ C,

|fz(z1) − fz(z2)| + |fz̄(z1) − fz̄(z2)| + |g(|z1|2) − g(|z2|2)|
� |z1 − z2|min{2α1,1}(|z1| + |z2|)max{2α1−1,0}

+ |z1 − z2|min{2α2,1}(|z1| + |z2|)max{2α2−1,0}; (2.5)

|f(z1) − f(z2)| � |z1 − z2| · ((|z1| + |z2|)2α1 + (|z1| + |z2|)2α2). (2.6)

Proof of lemma 2.2. By (1.9), we get, for any s > 0,

|(s2g′(s2))′| � |sg′(s2)| + |s3g′′(s2)| � s2α1−1 + s2α2−1.

Clearly, for any s1, s2 > 0, using the above estimate we have

|s2
1g

′(s2
1) − s2

2g
′(s2

2)| � |s2α1
1 − s2α1

2 | + |s2α2
1 − s2α2

2 |

�
2∑

k=1

|s1 − s2|min{2αk,1}(s1 + s2)max{2αk−1,0}.

The estimate for g(s2) is similar. Therefore, (2.4) follows. Observe that

fz(z) = g′(|z|2)|z|2 + g(|z|2), fz̄(z) = g′(|z|2)z2.

Obviously, (2.5) holds for g(|z|2) and fz(z) using (2.4). For fz̄(z), the estimate is
similar: let z1 = ρ1eiθ1 , z2 = ρ2eiθ2 with |θ1 − θ2| � π. We just need to note that

|fz̄(z1) − fz̄(z2)| = |g′(ρ2
1)ρ

2
1e

i(θ1−θ2) − g′(ρ2
2)ρ

2
2e

i(θ2−θ1)|

and

|z1 − z2| ∼ |ρ1 − ρ2|
∣∣∣∣cos

(
θ1 − θ2

2

)∣∣∣∣ + (ρ1 + ρ2)
∣∣∣∣sin

(
θ1 − θ2

2

)∣∣∣∣.
Estimating the real and imaginary parts separately gives the result. Finally, (2.6)
follows from (2.3) and (2.5).

With the preliminaries and notation out of the way, we now turn to the main
matter of this section.

To prove our results, we shall state and prove a general proposition on the solv-
ability of NLS equations around an approximate solution profile with exponentially
decaying source terms. This proposition is very useful in that it reduces the con-
struction of multi-soliton solutions to the verification of only a few conditions (see
(2.7) and (2.11)). To simplify numeric notation we shall first deal with the pure
power nonlinearity case.

Proposition 2.3. Let 0 < α < αmax. Let H = H(t, x) : [0,∞) × R
d → C, W =

W (t, x) : [0,∞) × R
d → C be given functions that, for some C1 > 0, λ > 0, satisfy

‖W (t)‖α+2 + eλt‖H(t)‖(α+2)/(α+1) � C1 ∀t � 0. (2.7)

Let f1(z) = |z|αz and consider the equation

η(t) = i
∫ ∞

t

ei(t−τ)∆(f1(W + η) − f1(W ) + H)(τ) dτ. (2.8)
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There exists a constant λ∗ = λ∗(α, d, C1) > 0 sufficiently large such that if λ �
λ∗, then the following hold:

• there exists a unique solution η to (2.8) satisfying

‖η(t)‖α+2 � C1e−λt ∀t � 0; (2.9)

• all (L2 level) Strichartz norms of η are finite and decay exponentially, i.e.

‖η‖S([t,∞)) � e−λt ∀t � 0; (2.10)

• if, in addition to (2.7), for some C2 > 0, (H, W ) also satisfies

‖∇W (t)‖α+2 + eλt‖∇H(t)‖(α+2)/(α+1) � C2 ∀t � 0, (2.11)

then η ∈ L∞
t H1

x, and for some C3 = C3(d, α, C1) > 0,

‖∇η(t)‖α+2 + ‖∇η‖S([t,∞)) � C3C2e− min{α,1}λt ∀t � 0, (2.12)

where both C3 and λ∗ are independent of C2.

Proof of proposition 2.3. We write (2.8) as η = V η. We shall show that, for λ
sufficiently large, V is a contraction in the ball

B = {η : ‖η‖X̃ := ‖eλt‖η(t)‖α+2‖L∞
t ([0,∞)) � C1}.

We first check that V maps B into B. Define

θ := d

(
1
2

− 1
α + 2

)
.

It is easy to check that 0 < θ < 1, since by assumption 0 < α < αmax. By the
simple inequality

|f1(z1) − f1(z2)| � |z1 − z2| · (|z1|α + |z2|α) ∀z1, z2 ∈ C, (2.13)

we have

|f1(W + η) − f1(W )| � |η| · (|W |α + |η|α). (2.14)

By using the dispersive estimate, the assumptions on (W , H) and (2.14), we have

‖η(t)‖α+2 � C

∫ ∞

t

|t − τ |−θ(‖|W (τ)|α|η(τ)|‖(α+2)/(α+1)

+ ‖|η(τ)|α+1‖(α+2)/(α+1) + ‖H(τ)‖(α+2)/(α+1)) dτ

� C

∫ ∞

t

|t − τ |−θ(‖W (τ)‖α
α+2‖η(τ)‖α+2 + ‖η(τ)‖α+1

α+2

+ ‖H(τ)‖(α+2)/(α+1)) dτ

� C

∫ ∞

t

|t − τ |−θ(Cα
1 C1e−λτ + Cα+1

1 e−λ(α+1)τ + C1e−λτ ) dτ

� CC1e−λtI1, (2.15)



Fast-moving finite and infinite trains of solitons for NLS equations 1265

where C = C(d, α) and, for τ̃ = τ − t,

I1 = Cα
1

∫ ∞

0
(τ̃)−θe−λτ̃ dτ̃ + Cα

1

∫ ∞

0
(τ̃)−θe−λ(α+1)τ̃ dτ̃ +

∫ ∞

0
(τ̃)−θe−λτ̃ dτ̃ .

It is not difficult to check that, for λ sufficiently large,

CI1 � C(C1, d, α)
λ1−θ

� 1.

Hence, ‖η(t)‖α+2 � C1e−λt, and V maps B to B. By using (2.13) and a similar
estimate as in (2.15), we can also show that, for any η1 ∈ B, η2 ∈ B,

‖(V η1)(t) − (V η2)(t)‖X̃ � 1
2‖η1 − η2‖X̃ .

This completes the proof that V is a contraction on B.

Next (2.10) is a simple consequence of the Strichartz estimate. Denote by a the
number such that

2
a

+
d

α + 2
=

d

2
.

It is easy to check that 2 < a < ∞ since 0 < α < αmax. By (2.13) and the Strichartz
estimate, we have

‖η‖S([t,∞)) � ‖f1(W + η) − f1(W )‖
L

a/(a−1)
τ L

(α+2)/(α+1)
x ([t,∞))

+ ‖H‖
L

a/(a−1)
τ L

(α+2)/(α+1)
x ([t,∞))

� ‖|η| · (|W |α + |η|α)‖
L

a/(a−1)
τ L

(α+2)/(α+1)
x ([t,∞))

+ ‖H‖
L

a/(a−1)
τ L

(α+2)/(α+1)
x ([t,∞))

� ‖W‖α
L∞

τ Lα+2
x ([0,∞)) · ‖η‖

L
a/(a−1)
τ Lα+2

x ([t,∞))

+ ‖η‖α+1
L

(α+1)a/(a−1)
τ Lα+2

x ([t,∞))
+ ‖H‖

L
a/(a−1)
τ L

(α+2)/(α+1)
x ([t,∞))

� e−λt ∀t � 0. (2.16)

Finally, to show (2.12), we first prove that V maps B1 into B1, where

B1 = B ∩
{

η : sup
t�0

(emin{α,1}λt‖∇η(t)‖α+2) � C2

}
.

We start with the identity

∇(f1(W + η) − f1(W ))
= ((∂zf1)(W + η) − (∂zf1)(W ))∇(W + η) + (∂zf1)(W )∇η

+ ((∂z̄f1)(W + η) − (∂z̄f1)(W ))∇(W + η) + (∂z̄f1)(W )∇η. (2.17)

Note that, for 0 < α � 1,

|(∂zf1)(z1) − (∂zf1)(z2)| � |z1 − z2|α ∀z1, z2 ∈ C,

and for α > 1,

|(∂zf1)(z1) − (∂zf1)(z2)| � (|z1|α−1 + |z2|α−1)|z1 − z2| ∀z1, z2 ∈ C.
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Therefore,

|∇(f1(W + η) − f1(W ))|

�
{

|η|α|∇(W + η)| + |W |α|∇η| if 0 < α � 1,

(|η|α−1 + |W |α−1)|η||∇(W + η)| + |W |α|∇η| if α > 1.
(2.18)

For simplicity we shall only discuss the case 0 < α � 1. The argument for α > 1
is similar (even simpler) and will be omitted. By using (2.18), (2.9), (2.11) and the
dispersive inequality, we have, for t � 0,

‖∇η(t)‖α+2

�d,α

∫ ∞

t

|t − τ |−θ(‖|η|α|∇(W + η)|‖(α+2)/(α+1)

+ ‖|W |α∇η‖(α+2)/(α+1) + ‖∇H‖(α+2)/(α+1)) dτ

�d,α

∫ ∞

t

|t − τ |−θ(‖η‖α
α+2(‖∇W‖α+2 + ‖∇η‖α+2)

+ ‖W‖α
α+2‖∇η‖α+2 + ‖∇H‖(α+2)/(α+1)) dτ

�d,α,C1 C2

∫ ∞

t

|t − τ |−θe−λατ dτ + C2

∫ ∞

t

|t − τ |−θe−λτ dτ

�d,α,C1 C2

∫ ∞

t

|t − τ |−θe−λατ dτ

� C2e−λαt · C(d, α, C1)
∫ ∞

0
|τ̃ |−θe−λατ̃ dτ̃

= C2e−λαt · C(d, α, C1) · (λα)−(1−θ)
∫ ∞

0
|τ̃ |−θe−τ̃ dτ̃ .

Now, if we take λ � λ∗, and λ∗ = λ∗(d, α, C1) is independent of C2 and sufficiently
large such that

C(d, α, C1) · (λ∗α)−(1−θ)
∫ ∞

0
|τ̃ |−θe−τ̃ dτ̃ � 1

2 , (2.19)

then clearly

‖∇η(t)‖α+2 � C2e−λαt ∀t � 0.

By a similar argument, for the case α > 1 we also obtain

‖∇η(t)‖α+2 � C2e−λt ∀t � 0.

Hence, we have proved that V maps B1 to B1. Since V is a contraction on B and
maps B1 into B1, it is obvious that we have constructed the solution satisfying

‖∇η(t)‖α+2 � C2e−λ min{α,1}t ∀t � 0. (2.20)

It remains for us to bound the Strichartz norm ‖∇η(t)‖S([t,∞)). The argument is
similar to that in (2.16). Let a be the same number such that

2
a

+
d

α + 2
=

d

2
.
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By (2.18) and Strichartz, we have

‖∇η‖S([t,∞)) �d ‖|η|α|∇(W + η)|‖N([t,∞)) + ‖|W |α|∇η|‖N([t,∞)) + ‖∇H‖N([t,∞))

�d ‖|η|α|∇W |‖
L

a/(a−1)
τ L

(α+2)/(α+1)
x ([t,∞))

+ ‖|η|α|∇η|‖
L

a/(a−1)
τ L

(α+2)/(α+1)
x ([t,∞))

+ ‖|W |α|∇η|‖
L

a/(a−1)
τ L

(α+2)/(α+1)
x ([t,∞))

+ ‖∇H‖
L

a/(a−1)
τ L

(α+2)/(α+1)
x ([t,∞))

�d ‖|η|α‖
L

a/(a−1)
τ L

(α+2)/α
x ([t,∞))‖|∇W | + |∇η|‖L∞

τ Lα+2
x ([t,∞))

+ ‖|W |α‖
L∞

τ L
(α+2)/α
x ([t,∞))‖∇η‖

L
a/(a−1)
τ Lα+2

x ([t,∞))

+ ‖∇H‖
L

a/(a−1)
τ L

(α+2)/(α+1)
x ([t,∞)). (2.21)

By (2.9), we have

‖|η|α‖
L

a/(a−1)
τ L

(α+2)/α
x ([t,∞)) � ‖‖η‖α

α+2‖L
a/(a−1)
τ ([t,∞))

� Cα
1

( ∫ ∞

t

e−λαaτ/(a−1) dτ

)(a−1)/a

� Cα
1 ·

(
λα

a

a − 1

)−(a−1)/a

· e−λαt.

Plugging the above estimates into (2.21) and using (2.11), (2.20), we obtain

‖∇η‖S([t,∞)) �d,α,C1 C2e−λαt.

This settles the estimate for 0 < α � 1.
By a similar estimate, we also have, for α > 1,

‖∇η‖S([t,∞)) �d,α,C1 C2e−λt.

This completes the proof of (2.12).

The next proposition, unlike proposition 2.3, is based solely on Strichartz esti-
mates. It will be used in the proof of theorems 1.10 and 1.17. Several assumptions
and conditions have to be modified to take care of the general nonlinearity, f(u).

Proposition 2.4. Let f be the same as in (1.1), satisfying condition (1.9). Let
H = H(t, x) : [0,∞) × R

d → C, W = W (t, x) : [0,∞) × R
d → C be given functions

that, for some C1 > 0, C2 > 0, λ > 0, T0 � 0, satisfy

‖W (t)‖∞ + eλt‖H(t)‖2 � C1 ∀t � T0,

‖∇W (t)‖2 + ‖∇W (t)‖∞ + eλt‖∇H(t)‖2 � C2 ∀t � T0.

}
(2.22)

Consider the equation

η(t) = −i
∫ ∞

t

ei(t−τ)∆(f(W + η) − f(W ) + H)(τ) dτ, t � T0. (2.23)
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There exist a constant λ∗ = λ∗(d, α1, α2, C1) > 0 (independent of C2) and a time
T∗ = T∗(d, α1, α2, C1, C2) > 0 sufficiently large such that if λ � λ∗ and T0 � T ∗,
then there exists a unique solution η to (2.23) on [T0, +∞) × R

d satisfying

eλt‖η‖S([t,∞)) + eλc1t‖∇η‖S([t,∞)) � 1 ∀t � T0. (2.24)

Here c1 > 0 is a constant depending only on (α1, d).

Remark 2.5. It is important to note that λ∗ does not depend on C2. This will be
essential for the proof of theorems 1.10 and 1.17.

Proof of proposition 2.4. To simplify numeric notation we shall suppress all explicit
dependence of constants on all parameters except the constant C2.

We now sketch the main computations. Take 0 < β1 � 2α1 such that β1 <
1/100d. Define

β2 :=

⎧⎨
⎩

4
d − 2

if d � 3,

m − 1 if d = 1, 2,

c1 := 1
2β1.

Here, for d = 1, 2, m is an integer such that m > 2α2 + 2.
We shall omit the standard contraction argument, since it will be essentially a

repetition and we check only the following property: if on [T0, +∞) we have

eλt‖η‖S([t,∞)) + ec1λt‖∇η‖S([t,∞)) � C,

then the following a priori estimate holds, provided λ and T0 are chosen large
enough:

eλt‖η‖S([t,∞)) + ec1λt‖∇η‖S([t,∞)) � 1. (2.25)

We start with ‖η‖S([t,∞)). By lemma 2.2 and Strichartz, we have

‖η‖S([t,∞)) � ‖f(W + η) − f(W )‖N([t,∞)) + ‖H‖N([t,∞))

� ‖η(|W |β1 + |W |β2 + |η|β1 + |η|β2)‖N([t,∞)) (2.26 a)
+ ‖H‖L1

τ L2
x([t,∞)). (2.26 b)

For the term (2.26 b), by using (2.22), we have

‖H‖L1
τ L2

x([t,∞)) �
∫ ∞

t

e−λτ dτ � 1
100e−λt,

where the constant 1
100 is obtained by taking λ large enough.

For (2.26 a), consider two cases. If d � 3, then by the boundedness of W , we have

|η(|W |β1 + |W |β2 + |η|β1 + |η|β2)| � |η| + |η|1+4/(d−2). (2.27)

Hence, for d � 3, using the fact that both ((2d + 4)/d, (2d + 4)/d) and (q∗, q) are
admissible with

1
q∗ =

1
q

− 1
d

=
d − 2
2d + 4
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yields

(2.26 a) � ‖η‖L1
τ L2

x([t,∞)) + ‖η|η|4/(d−2)‖
L

2(d+2)/(d+4)
τ,x ([t,∞))

�
∫ ∞

t

e−λτ dτ + ‖η‖
L

2(d+2)/d
τ,x ([t,∞)) · ‖η‖4/(d−2)

L
2(d+2)/(d−2)
τ,x ([t,∞))

� 1
λ

e−λt + ‖η‖S([t,∞)) · ‖∇η‖4/(d−2)
S([t,∞))

� 1
λ

e−λt + e−λt · exp
(

− 4
d − 2

c1λt

)
� 1

100e−λt,

where we have used the fact that λ and t � T0 are sufficiently large.
For d = 1, 2, we replace (2.27) by

|η(|W |β1 + |W |β2 + |η|β1 + |η|β2)| � |η| + |η|m.

Then

‖|η|m‖N([t,∞)) � ‖|η|m‖L1
τ L2

x([t,∞)) �
∫ ∞

t

‖η(τ)‖m
2m dτ.

By (2.24) and interpolation (i.e. the Gagliardo–Nirenberg inequality), we have, for
θ = d(1/2 − 1/2m),

‖η(τ)‖2m � ‖η(τ)‖1−θ
2 ‖∇η(τ)‖θ

2 � e−((1−θ)λ+c1λθ)τ .

It is easy to check that m(1 − θ) � 1. Therefore,

‖|η|m‖N([t,∞)) �
∫ ∞

t

e−λτ dτ � 1
100e−λt.

Hence, the estimate also holds for d = 1, 2. Consequently, for all d � 1, and t � T0,

‖η‖S([t,∞)) � 1
10e−λt.

Now we estimate ‖∇η‖S([t,∞)). By the Strichartz estimate and (2.17),

‖∇η‖S([t,∞)) � ‖∇(f(W + η) − f(W ))‖N([t,∞)) + ‖∇H‖N([t,∞))

� ‖|fz(W + η) − fz(W )| · ∇(W + η)‖N([t,∞))

+ ‖|fz̄(W + η) − fz̄(W )| · ∇(W + η)‖N([t,∞))

+ ‖|fz(W )|∇η‖N([t,∞)) + ‖|fz̄(W )|∇η‖N([t,∞)) + ‖∇H‖N([t,∞)).

By lemma 2.2, we get

‖∇η‖S([t,∞))

� ‖|η|β1 |∇η|‖N([t,∞)) + ‖|η|β1 |∇W |‖N([t,∞)) (2.28 a)

+ ‖|η|min{β2,1}(|W | + |η|)max{β2−1,0} · (|∇W | + |∇η|)‖N([t,∞)) (2.28 b)
+ ‖(|fz(W )| + |fz̄(W )|)∇η‖L1

τ L2
x([t,∞)) + ‖∇H‖L1

τ L2
x([t,∞)). (2.28 c)
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Consider (2.28 a). Let a be the number such that

2
a

+
d

β1 + 2
=

d

2

and let a′ = a/(a − 1). Then

‖|η|β1 |∇η|‖N([t,∞)) � ‖|η|β1∇η‖
La′

τ L
(β1+2)/(β1+1)
x ([t,∞))

� ‖|η|β1‖
L

(1/a′−1/a)−1
τ L

(β1+2)/β1
x ([t,∞))

‖∇η‖
La

τ L
β1+2
x ([t,∞))

�
( ∫ ∞

t

‖η(τ)‖β1·a/(a−2)
β1+2 dτ

)(a−2)/a

· ‖∇η‖S([t,∞)). (2.29)

It is not difficult to check that β1 · a/(a − 2) < a (since β1 < 4/d). By using the
fact that ‖η‖

La
τ L

β1+2
x ([t,∞)) � e−λt and the Hölder inequality, for t � T0 we have∫ ∞

t

‖η(τ)‖β1·a/(a−2)
β1+2 dτ �

∑
k�t−1

∫ k+1

k

‖η(τ)‖β1·a/(a−2)
β1+2 dτ

�
∑

k�t−1

( ∫ k+1

k

‖η(τ)‖a
β1+2dτ

)1/a·aβ1/(a−2)

�
∑

k�t−1

exp
(

−λk · aβ1

a − 2

)

� 1
λ

exp
(

−λ(t − 1) · aβ1

a − 2

)
.

Plugging the above estimate into (2.29), we obtain

‖|η|β1 |∇η|‖N([t,∞)) �
(

1
λ

)(a−2)/a

e−λβ1(t−1) · e−c1λt � 1
100e−c1λt, t � T0,

for λ sufficiently large and T0 � 1.
Similarly, for t � T0, using β1a

′ = β1a/(a − 1) < a, we have

‖|η|β1 |∇W |‖N([t,∞)) � ‖|η|β1‖
La′

τ L
(β1+2)/β1
x ([t,∞))‖∇W‖

L∞
τ L

β1+2
x ([t,∞))

� e−λβ1(t−1)C2

� e−c1λte−λc1(t−2)C2 � 1
100e−c1λt.

Hence,

(2.28 a) � 1
50e−c1λt.

Next we deal with (2.28 b). Consider first the case d � 6. In this case β2 � 1.
Therefore,

(2.28 b) � ‖|η|4/(d−2)(|∇W | + |∇η|)‖N([t,∞))

� ‖|η|4/(d−2)∇η‖
L

2(d+2)/(d+4)
τ,x ([t,∞)) + ‖|η|4/(d−2)|∇W |‖

L2
τ L

2d/(d+2)
x ([t,∞))

� ‖∇η‖1+4/(d−2)
S([t,∞)) + ‖‖η(τ)‖4/(d−2)

L2
x

· ‖∇W‖
L

((d+2)/2d−2/(d−2))−1
x

‖L2
τ ([t,∞))
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� exp
(

−c1λ

(
1 +

4
d − 2

)
t

)
+ C2 ·

( ∫ ∞

t

‖η(τ)‖4/(d−2)·2
2 dτ

)1/2

� exp
(

−c1λ

(
1 +

4
d − 2

)t
)

+ C2 ·
( ∫ ∞

t

exp
(

− 8
d − 2

λτ

)
dτ

)1/2

� 1
200e−c1λt + C2 · e−c1λT0 · e−c1λt

� 1
100e−c1λt, (2.30)

for λ and T0 sufficiently large.
Consider next the case 3 � d � 5. In this case β2 = 4/(d − 2) > 1. Therefore,

using the boundedness of W , we have

(2.28 b) � ‖|η| · (|W | + η)4/(d−2)−1(|∇W | + |∇η|)‖N([t,∞))

� ‖|η|β1(|∇W | + |∇η|)‖N([t,∞)) + ‖|η|4/(d−2)(|∇W | + |∇η|)‖N([t,∞))

� |(2.28 a)| + ‖|η|4/(d−2)∇η‖
L

2(d+2)/(d+4)
τ,x ([t,∞)) + ‖|η|4/(d−2)|∇W |‖N([t,∞))

� 1
30e−c1λt + ‖|η|4/(d−2)|∇W |‖N([t,∞)).

For d = 5, we can bound the term ‖|η|4/(d−2)|∇W |‖N([t,∞)) in the same way as
in (2.30) (it is easy to check that 2d/(d + 2) < (d − 2)/2 for d � 5). For d = 3, 4,
we have

‖|η|4/(d−2)|∇W |‖N([t,∞)) � ‖|η|4/(d−2)|∇W |‖
L2

τ L
2d/(d+2)
x ([t,∞))

� C2

( ∫ ∞

t

‖η(τ)‖8/(d−2)
8d/(d2−4) dτ

)1/2

. (2.31)

Since d = 3, 4, it is easy to check that 2 < 8d/(d2−4) < 2d/(d−2). By interpolation,
for θ = 1

8 (d − 2)2 we have

‖η(τ)‖
L

8d/(d2−4)
x

� ‖η(τ)‖θ
2‖∇η(τ)‖1−θ

2

� e−θλτe−(1−θ)c1λτ

� e−θλτ .

Plugging this estimate into (2.31), for d = 3, 4 we obtain

‖|η|4/(d−2)|∇W |‖N([t,∞)) � C2

( ∫ ∞

t

e−λ(d−2)τ dτ

)1/2

� C2 · λ−(d−2)/2e−(d−2)λt/2

� 1
100e−c1λt,

which is clearly enough for us.
It remains to bound (2.28 b) for d = 1, 2. Since in this case β2 = m − 1 > 1, we

have

(2.28 b) � ‖|η|(|W | + |η|)m−2(|∇W | + |∇η|)‖N([t,∞))

� ‖|η|β1(|∇W | + |∇η|)‖N([t,∞))

+ ‖|η|m|∇η|‖N([t,∞)) + ‖|η|m|∇W |‖N([t,∞))
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� |(2.28 a)| + ‖|η|m|∇W |‖L1
τ L2

x([t,∞)) + ‖|η|m|∇η|‖
L

2(d+2)/(d+4)
τ,x ([t,∞))

� |(2.28 a)| + C2‖η‖m
Lm

τ L2m
x ([t,∞)) + ‖∇η‖S([t,∞)) · ‖η‖m

L
m·(d+2)/2
τ,x ([t,∞))

.

(2.32)

Now, by the Gagliardo–Nirenberg inequality,

‖η(τ)‖m
2m � (‖η(τ)‖1−d(1/2−1/2m)

2 ‖∇η(τ)‖d(1/2−1/2m)
2 )m

� ‖η(τ)‖d/2
2

� e−λτ/2.

Similarly,

‖η(τ)‖m
m(d+2)/2 � ‖η(τ)‖2d/(d+2)

2 � e−λτ/2.

Plugging the above estimates into (2.32) and integrating in time, for d = 1, 2 we
obtain

(2.28 b) � 1
100e−c1λt,

which is acceptable for us. We have completed the estimate of (2.28 b) for all d � 1.
Finally, consider (2.28 c). Note ‖|fz(W )| + |fz̄(W )|‖L∞

t,x
� C by (2.5) and (2.22).

Thus,

(2.28 c) � C

∫ ∞

t

(‖∇η‖L∞
t L2

x([τ,∞)) + ‖∇H(τ)‖L2
x
) dτ

� C

∫ ∞

t

(e−c1λτ + C2e−λτ ) dτ

�
(

C

c1λ
+ C2e−c1λt

)
e−c1λt � 1

100e−c1λt

if we take λ and t � T0 large enough.
We have finished the proof of the a priori estimate (2.25). Thus, the proposition

is proved.

Remark 2.6. Our proof does not work for the energy-critical case because the
overlap of multi-solitons no longer decays exponentially, but is just power-like; our
proof relies heavily on the exponential decay property.

3. The N-soliton case

In this section we give the proofs of theorems 1.8 and 1.10.
We first recall (1.14), the multi-soliton profile, and observe that the difference

η = u − R satisfies the equation

i∂tη + ∆η = −f(R + η) +
N∑

j=1

f(Rj)

= −(f(R + η) − f(R)) −
(

f(R) −
N∑

j=1

f(Rj)
)

. (3.1)
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The following lemma gives the estimates on R and the source term

f(R) −
N∑

j=1

f(Rj).

Lemma 3.1. There exist constants C̃1 > 0 depending on

(N, α1, α2, d, (ωj)N
j=1, (xj)N

j=1),

c̃1 > 0 depending only on α1, C̃2 > 0 depending on

(N, α1, α2, d, (ωj)N
j=1, (vj)N

j=1, (xj)N
j=1),

such that the following hold: for every 1 � r � ∞ and t � 0,

‖R(t)‖r +
N∑

j=1

‖Rj(t)‖r � C̃1, (3.2)

∥∥∥∥f(R(t)) −
N∑

j=1

f(Rj(t))
∥∥∥∥

r

� C̃1e−c̃1
√

ω�v�t, (3.3)

‖∇R(t)‖r � C̃2, (3.4)∥∥∥∥∇
(

f(R(t)) −
N∑

j=1

f(Rj(t))
)∥∥∥∥

r

� C̃2 exp(−c̃1
√

ω�v�t). (3.5)

Here recall ω� = min{ωj , 1 � j � N} and v� = min{|vk − vj | : 1 � k �= j � N}.

Proof of lemma 3.1. The estimates (3.2) and (3.4) follow directly from (1.10) and
(1.13).

To simplify the notation, define

Ω := (N, α1, α2, d, (ωj)N
j=1, (xj)N

j=1).

To prove (3.3), we start with the pointwise estimate. By (3.2) and lemma 2.2,

∣∣∣∣f(R(t, x)) −
N∑

j=1

f(Rj(t, x))
∣∣∣∣

=
∣∣∣∣

N∑
j=1

g(|R(t, x)|2)Rj(t, x) −
N∑

j=1

g(|Rj(t, x)|2)Rj(t, x)
∣∣∣∣

�
N∑

j=1

|g(|R(t, x)|2) − g(|Rj(t, x)|2)| · |Rj(t, x)|

�Ω

N∑
j=1

(|R(t, x) − Rj(t, x)| + |R(t, x) − Rj(t, x)|2α1) · |Rj(t, x)|

�Ω sup
k �=j

(|Rk(t, x)| · |Rj(t, x)| + (|Rk(t, x)| · |Rj(t, x)|)2α1). (3.6)
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It suffices to treat the first term in the bracket of (3.6). The second term is
estimated similarly.

By (1.13), for any δ < 1,

|Rk(t, x)| �d,δ exp(−δ
√

ωk|x − vkt − xk|) ∀k = 1, . . . , N.

Now fix some δ < 1 for the rest of the proof.
Clearly, for any k �= j,

|Rk(t, x)| · |Rj(t, x)| �d,δ exp(−δ(
√

ωk|x − vkt − xk| +
√

ωj |x − vjt − xj |)). (3.7)

By the triangle inequality, it is clear that, for all j �= k, x ∈ R
d, t � 0,

√
ωk|x − vkt − xk| +

√
ωj |x − vjt − xj |

� min{√
ωj ,

√
ωk}(|vj − vk|t − |xk − xj |)

� √
ω�(v�t − |xk − xj |). (3.8)

Plugging (3.8) into (3.7), for any k �= j, we obtain

|Rk(t, x)| · |Rj(t, x)|
�Ω exp(− 1

2δ
√

ω�v�t)

× exp(− 1
2δ(

√
ωk|x − vkt − xk| +

√
ωj |x − vjt − xj |)). (3.9)

Now (3.3) follows easily from (3.9) and (3.6).
Finally, to show (3.5) we only need to recall (2.3) and write

∇(f(R)) −
N∑

j=1

∇(f(Rj)) =
N∑

j=1

(fz(R) − fz(Rj))∇Rj +
N∑

j=1

(fz̄(R) − fz̄(Rj))∇Rj .

Thanks to the above decomposition, the rest of the proof is essentially a repetition of
that of (3.3). The only difference is that the constants will depend on the velocities
vj due to the terms ∇Rj . We omit further details.

Now we are ready to complete the proof of theorem 1.8.

Proof of theorem 1.8. By (3.1), we need to solve the integral equation (2.8) for
η on [0,∞) × R

d, with W = R and H = f1(R) −
∑N

j=1 f1(Rj). By lemma 3.1,
conditions (2.7) and (2.11) are satisfied. Thus, by proposition 2.3, there exists η ∈
C([0,∞), H1) with ‖〈∇〉η‖S([t,∞)) decaying exponentially in t. Since the soliton
piece R ∈ C([0,∞), H1), so is u(t).

Proof of theorem 1.10. This is similar to the proof of theorem 1.8. We need to
apply proposition 2.4 with W = R and H = f(R) −

∑N
j=1 f(Rj). By lemma 3.1,

the condition (2.22) is satisfied. By proposition 2.4, there exists η ∈ C([T0,∞), H1)
with ‖〈∇〉η‖S([t,∞)) (in particular ‖η(t)‖H1) decaying exponentially in t.

4. An infinite soliton train

In this section we construct an infinite soliton train solution to (1.1).
Thanks to proposition 2.3, the proof of theorem 1.2 is reduced to checking the

regularity of the infinite soliton R∞ and the tail estimates.
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Lemma 4.1 (regularity of R∞). Let R∞ be given as in (1.3) and recall f1(z) =
|z|αz. Then

(1) there is a constant Ã1 > 0 depending only on (Aω, d, α), such that

‖R∞(t)‖∞ + ‖R∞(t)‖r1 +
∞∑

j=1

(‖R̃j(t)‖∞ + ‖R̃j(t)‖r1) � Ã1 ∀t � 0,

(4.1)

‖f1(R∞(t))‖(α+2−ε1)/(α+1) +
∞∑

j=1

‖f1(R̃j(t))‖(α+2−ε1)/(α+1) � Ã1 ∀t � 0,

(4.2)

where 0 < ε1 < 1 is a small constant depending on (r1, α);

(2) there are constants c̃1 > 0, c̃2 > 0 depending only on (α, d), C1 > 0, C2 > 0
depending on (Ã1, d, α), such that∥∥∥∥f1(R∞(t)) −

∞∑
j=1

f1(R̃j(t))
∥∥∥∥

∞
� C1e−c̃1v�t ∀t � 0, (4.3)

∥∥∥∥f1(R∞(t)) −
∞∑

j=1

f1(R̃j(t))
∥∥∥∥

(α+2)/(α+1)
� C2e−c̃2v�t ∀t � 0. (4.4)

Proof of lemma 4.1. The inequalities (4.1), (4.2) are simple consequences of (1.5).
The proof of the inequality (4.3) is similar to the proof of (3.3) and we sketch the
modifications. By using (4.1) and (1.13) (fix η < 1), we have∣∣∣∣f1(R∞(t, x)) −

∞∑
j=1

f1(R̃j(t, x))
∣∣∣∣

�
∞∑

j=1

||R∞(t, x)|α − |R̃j(t, x)|α| · |R̃j(t, x)|

�
∞∑

j=1

|R∞(t, x) − R̃j(t, x)|min{α,1}|R̃j(t, x)|

�
∞∑

j=1

∣∣∣∣ ∑
k �=j

ω
1/α
k exp(−η

√
ωk|x − vkt|)

∣∣∣∣
min{1,α}

ω
1/α
j exp(−η

√
ωj |x − vjt|)

�
∞∑

j=1

ω
1/α
j

∣∣∣∣ ∑
k �=j

ω
1/α
k exp(−η(

√
ωk|x − vkt| +

√
ωj |x − vjt|))

∣∣∣∣
min{1,α}

.

By (1.6), we have
√

ωk|x − vkt| +
√

ωj |x − vjt| � v�t ∀t � 0.

Hence, (4.3) follows from the above estimate and (1.5). Finally, (4.4) follows from
interpolating the estimates (4.2), (4.3).

We now complete the proof of theorem 1.2.
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Proof of theorem 1.2. We first rewrite (1.7) as

η(t) = i
∫ ∞

t

ei(t−τ)∆
(

f1(R∞ + η) − f1(R∞) + f1(R∞) −
∞∑

j=1

f1(R̃j)
)

dτ.

We then apply proposition 2.3 with W = R∞ and H = f1(R∞) −
∑∞

j=1 f1(R̃j).
By lemma 4.1, it is easy to check that the condition (2.7) is satisfied. The theorem
follows easily.

5. Half-kinks

We conclude this paper by giving the proofs of theorem 1.17 and proposition 1.13.

Proof of theorem 1.17. The proof is similar to that of theorem 1.10. The only dif-
ference is that, due to the non-zero background, the profile KR is no longer in
C(R, H1) but only in C(R, H1

loc).

Proof of proposition 1.13. Assume ω = ω1 and define ζ1 := ζ(ω1). Take any φ0 ∈
(0, ζ1) and let φ be the solution to (1.18) on the maximal interval of existence I
and with initial data

φ(0) = φ0, φ′(0) =
√

ω1φ2
0 − 2F (φ0).

We first prove that φ(x) ∈ (0, ζ1) for any x ∈ I. Indeed, assume on the contrary
that there exists x0 such that φ(x0) = 0 or φ(x0) = ζ1. From our choice of initial
data for φ, it follows that, for any x ∈ I, φ satisfies the first integral identity

− 1
2 |φ′(x)|2 = F (φ(x)) − 1

2ω1|φ(x)|2. (5.1)

In particular, (5.1) at x = x0 implies

φ′(x0) = 0.

However, by the Cauchy–Lipschitz theorem it follows that φ ≡ 0 or φ ≡ ζ1 on I,
which contradicts φ0 ∈ (0, ζ1). Hence, for all x ∈ I we have φ(x) ∈ (0, ζ1), which
implies, in particular, that I = R.

Since φ0 ∈ (0, ζ1), we have φ′(0) > 0 and, by continuity, φ′(x) > 0 for x close
to 0. We claim that in fact φ′(x) > 0 on R. Indeed, assume by contradiction that
there exists x0 such that φ′(x0) = 0. From the first integral (5.1), this implies that

F (φ(x0)) − 1
2ω1|φ(x0)|2 = 0.

Therefore, φ(x0) = 0 or φ(x0) = ζ1, but we have proved that to be impossible.
Hence, φ′ > 0 on R.

We consider now the limits of φ at ±∞. Define

l := lim
x→−∞

φ(x), L := lim
x→+∞

φ(x).

Let us show that l = 0 and L = ζ1. Indeed, by (5.1), we have F (l) − 1
2ω1l

2 = 0
(indeed otherwise it would imply |φ′| > δ > 0 for x large: a contradiction with the
boundedness of φ). Since φ ∈ (0, ζ1) and φ is increasing, this implies l = 0 and
L = ζ1.
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Let us now show that φ is unique up to translations. Assume by contradiction that
there exists a solution φ̃ ∈ C2(R) to (1.18) satisfying the connection property (1.20).
Since we claim uniqueness only up to translation, we can assume that φ(0) ∈ (0, ζ1).
In addition, since we have shown that φ varies continuously from 0 to ζ1, we can
also assume without loss of generality that φ(0) = φ0 = φ̃(0). The first integral
identity for φ̃ is, for any x ∈ R,

1
2 |φ̃′(x)|2 − 1

2ω1|φ̃(x)|2 + F (φ̃(x)) = 1
2 |φ̃′(0)|2 − 1

2ω1|φ̃(0)|2 + F (φ̃(0)).

In particular, since limx→±∞ φ̃′(x) = 0, and 0 and ζ1 are zeros of ζ → F (ζ)− 1
2ωζ2,

we have
1
2 |φ̃′(0)|2 = 1

2ω1|φ̃(0)|2 − F (φ̃(0)).

As previously, it is not hard to see that φ′ has a constant sign, which must be
positive due to the limits of φ at ±∞. Therefore, φ̃′(0) = φ′(0) and the uniqueness
follows from the Cauchy–Lipschitz theorem. Differentiating the equation, we see
that φ′ verifies

−(φ′)′′ + (ω1 − f ′(φ))φ′ = 0.

Since

lim
x→−∞

(ω1 − f ′(φ)) = ω1 − f ′(0) > 0

and

lim
x→+∞

(ω1 − f ′(φ)) = ω1 − f ′(ζ(ω1)) > 0,

(1.21) follows from classical ordinary differential equation arguments.

6. Multi-soliton up to time zero

In this section we add extra conditions to theorem 1.10 so that the solution exists
in [0,∞).

Theorem 6.1. Consider (1.1) with f(u) = g(|u|2)u satisfying (1.9) and (1.12). Let
R be the same as in (1.14) and define v� as in (1.16). Suppose

v̄ := max
k=1,...,N

|vk| � MvM
� for some M � 1. (6.1)

There exist constants C > 0, c1 > 0, c2 > 0 and v� = v�(M) � 1 such that if
v� > v�, then there is a unique solution u ∈ C([0,∞), H1) to (1.1) satisfying

ec1v�t‖u − R‖S([t,∞)) + ec2v�t‖∇(u − R)‖S([t,∞)) � C ∀t � 0.

Remark 6.2. The extra condition (6.1) is satisfied, for example, if vj = µṽj for
some fixed ṽj and µ is an increasing parameter.

Sketch of the proof. Following the proof of lemma 3.1, the assumption (2.22) of
proposition 2.4 is satisfied with

T0 = 1, λ = cv�, C1 = C0, C2 = C0v̄,
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where c = C(α1)
√

minj=1,...,N{ωj} and C0 = C0(d, N, α1, α2, (ωj)N
j=1, (xj)N

j=1) are
independent of (vj)N

j=1. The smallness condition used in the proof of proposition 2.4
is of the form

e−cλ∗t(1 + C2) � ε (6.2)

for some small ε > 0 independent of C2. It can be satisfied either by fixing λ∗ � 1
independent of C2 and then requiring t � T0 with T0 = T0(C2) large (as in the proof
of proposition 2.3), or by fixing T0 = 1, using the assumption C2 = C0v̄ � C0MvM

� ,
and requiring v� to be sufficiently large. In the latter case we get a solution η(t)
for 1 � t < ∞. Since the soliton piece R ∈ C([0,∞), H1) and ‖η(t = 1)‖H1 can be
chosen sufficiently small by enlarging λ∗, we can extend η(t) up to time t = 0 with
O(1) estimates by local existence theory in H1.

The following result is L2-theory for L2-subcritical and critical nonlinearities.

Theorem 6.3. Consider (1.1) with f(u) = g(|u|2)u satisfying (1.9) and (1.12).
Furthermore, assume α2 � 2/d. Let R be the same as in (1.14) and define v� as
in (1.16). There exist constants C > 0, c1 > 0 and v� � 1, such that if v� > v�,
then there is a unique solution u ∈ C([0,∞), L2) to (1.1) satisfying

ec1v�t‖u − R‖S([t,∞)) � C ∀t � 0.

Sketch of the proof. We shall modify the first part of the proof of proposition 2.4,
which bounds η = u − R in S([t, ∞)). In that part, estimates for ∇η are only used
to bound the global nonlinear terms

∑
j=1,2 |η|2αj+1 in the dual Strichartz space

N([t, ∞)). Suppose α2 � 2/d and

‖η‖S([t,∞)) � e−λt ∀t > 0.

For m = 2αj + 1, r = m + 1 and a such that 2/a + d/r = d/2, we have

‖|η|m‖N([t,∞)) � ‖|η|m‖La′ Lr′ (t,∞) � ‖η‖m
La′mLr′m(t,∞),

where r′ = r/(r − 1) and a′ = a/(a − 1). Let q and b be such that

q = r′m,
2
b

+
d

q
=

d

2
.

We claim that αj � 2/d is equivalent to

a′m � b. (6.3)

Indeed, (6.3) amounts to

2
a′ � 2m

b
= m

(
d

2
− d

q

)
= m

d

2
− d

r′ ,

i.e.

m
d

2
� d

r′ +
2
a′ = d + 2 −

(
d

r
+

2
a

)
=

d

2
+ 2,
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which is exactly αj � 2/d. Thus,

‖|η|m‖N([t,∞)) �
( ∫ ∞

t

‖η(s)‖a′m
Lq ds

)1/a′

=
( ∞∑

k=0

∫ t+k+1

t+k

‖η(s)‖a′m
Lq ds

)1/a′

�
( ∞∑

k=0

( ∫ t+k+1

t+k

‖η(s)‖b
Lq ds

)a′m/b)1/a′

�
( ∞∑

k=0

(e−bλ(t+k))a′m/b

)1/a′

= Ce−mλt.

We have used (6.3) in the second inequality. The rest of the proof is the same as
the first part of the proof of proposition 2.4.

The following result is valid for both L2-subcritical and L2-supercritical nonlin-
earities. Its proof extends that of proposition 2.3.

Theorem 6.4. Consider (1.1) with f(u) = g(|u|2)u satisfying (1.9) and (1.12). Let
βj = 2αj, j = 1, 2, with 0 < β1 � β2 < αmax. Assume for d � 3 that

β2

1 + β2
� β1 � β2 if 0 < β2 < 1

2αmax, (6.4)

β2

αmax + 1 − β2
< β1 � β2 if 1

2αmax � β2 < αmax, (6.5)

and for d = 1, 2 we assume (6.4) only. Then we can choose r1 and r2 such that

0 � r1 − 2 � β1 � β2 � r2 − 2 < αmax, (6.6)
r1β2 � r1r2 − r1 − r2 � r2β1. (6.7)

Let R be the same as in (1.14) and define v� as in (1.16). For any choice of r1, r2
satisfying (6.6), (6.7), there exist constants C > 0, c1 > 0 and v� � 1 such that if
v� > v�, then there is a unique solution u = R + η to (1.1) on [0, +∞) satisfying

‖η(t)‖Lr1∩Lr2 � Ce−c1v�t ∀t � 0. (6.8)

Moreover,

‖η‖S([t,∞)) � Ce−c1v�t ∀t � 0.

Note the first strict inequality in (6.5) compared with (6.4). See figure 2 for the
β1–β2 region when d = 3. Note also that (6.4) and (6.5) are equivalent (when d � 3)
to

β1 � β2 � β1

1 − β1
if 0 < β1 <

αmax

αmax + 2
, (6.9)

β1 � β2 <
(αmax + 1)β1

1 + β1
if

αmax

αmax + 2
� β1 < αmax. (6.10)
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Figure 2. Region of admissible β1, β2 in theorem 6.4 for d = 3.

Sketch of the proof of theorem 6.4. For j = 1, 2 and θj = d(1/2 − 1/rj) ∈ (0, 1), we
have

‖η(t)‖Lrj �
∫ ∞

t

|t − τ |−θj

∑
k=1,2

‖|η(τ)|1+βk‖r′
j
dτ + (nice terms),

where r′
j = rj/(rj − 1). The nice terms can be estimated as in the proof of propo-

sition 2.3. Note that
‖|η|1+βk‖r′

j
= ‖η‖1+βk

(r′
j)(1+βk)

can be estimated by using the Hölder inequality and (6.8) if

r1 � rj

rj − 1
(1 + βk) � r2 ∀j, k. (6.11)

For j = 1, the left inequality of (6.11) is always true. The right inequality is equiv-
alent to r1(1 + β2) � r2(r1 − 1), or

r2 � r1(r2 − 1 − β2). (6.12)

For j = 2, the right inequality of (6.11) is always true. The left inequality is equiv-
alent to r1(r2 − 1) � r2(1 + β1), or

r2(r1 − 1 − β1) � r1. (6.13)

Equations (6.12) and (6.13) are equivalent to (6.7). Furthermore, (6.6) and (6.7)
can be combined into the following equivalent condition:

0 � r1 − 2 � b1(r1, r2) � β1 � β2 � b2(r1, r2) � r2 − 2 < αmax, (6.14)

where
b1(r1, r2) = r1 − 1 − r1

r2
, b2(r1, r2) = r2 − 1 − r2

r1
.
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It turns out that when 2 � r1 � r2 < αmax + 2 we always have

0 � r1 − 2 � b1(r1, r2) � b2(r1, r2) � r2 − 2 < αmax.

Thus, for any (β1, β2) in the right triangle with a vertex (b1(r1, r2), b2(r1, r2)) and
hypotenuse on the line β1 = β2, the pair (r1, r2) satisfies (6.6) and (6.7).

Denote the curve Γ (r1) for fixed 2 � r1 < 2 + αmax by

Γ (r1) = {(b1(r1, r2), b2(r1, r2)) : r1 � r2 � 2 + αmax},

which satisfies

b2 =
b1

r1 − 1 − b1
, b1 =

(r1 − 1)b2

1 + b2
,

and starts at (r1 − 2, r1 − 2). It goes to infinity with asymptote b1 = r1 − 1 for
d = 1, 2, and ends at Σ(2 + αmax) as defined below for d � 3. It moves to the right
as r1 increases.

Denote the curve Σ(r2) for fixed 2 < r2 � 2 + αmax by

Σ(r2) = {(b1(r1, r2), b2(r1, r2)) : 2 � r1 � r2},

which satisfies

b2 = (r2 − 1)
b1

1 + b1
.

It starts at Γ (2) and ends at (r2 − 2, r2 − 2). It moves upwards as r2 increases.
For given 0 < β1 < β2 < αmax, conditions (6.4), (6.5) imply that (β1, β2) is on the

right of Γ (2), and if d � 3, is below Σ(αmax). Thus, we can find R1 = R1(β1, β2) and
R2 = R2(β1, β2) such that (β1, β2) is the intersection point of Γ (R1) and Σ(R2),
and R1 � R2. To satisfy (6.14), we can choose either (r1, r2) = (R1, R2) or any
2 � r1 < R1 � R2 < r2 < 2 + αmax as long as the intersection point Γ (r1) ∩ Σ(r2)
is in an upper-left direction to (β1, β2).

The above shows we can estimate |η|1+βk in Lr′
j for j, k = 1, 2.

For the Strichartz estimate, since (2/θ1, r1) is admissible, with a = (2/θ1)′ we
have

‖η‖S([t,∞)) � ‖f(W + η) − f(W ) + H‖
La(t,∞;Lr′

1 )

� ‖e−c1v∗τ‖La(t,∞)

� v
−1/a
∗ e−c1v∗t.
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