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Abstract
In this thesis, we will give a brief introduction to homotopy groups and fibra-
tions and discuss the influence of the Hopf map in the development of higher
homotopy theory. We will also introduce the notion of Hopf invariant to get
a better understanding of the elements of the third homotopy group of the 2-
sphere. A detailed discussion about the geometry of the Hopf fibration is also
presented. In the course of studying Hopf fibration, we will discuss many im-
portant concepts of Algebraic and Differential Topology, namely the Cup prod-
ucts, Orientability, de Rham Cohomology, the degree of smooth maps and so
on. Finally, we will establish the notion of linking number in terms of degree
and illustrate the fact that the fibers of the Hopf fibration are linked once. We
will calculate their linking number rigorously as well as try to give a pictorial
argument in favor our calculated result.

Keywords: Hopf Fibration, Hopf Invariant, Homotopy Groups, Degree of a
Smooth Map, Linking Number.
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Preface

The sole purpose of this thesis is to study the Hopf map and the related notions.
The Hopf map was first introduced by Heinz Hopf in his paper [1]. Historically
the Hopf map is quite remarkable as it was the first example of a map from a
higher dimensional sphere to a lower dimensional sphere, which is not null-
homotopic. At the time of the discovery of Hopf map very little was known
about the higher homotopy groups of the sphere as it was extremely difficult
to calculate them. Even it was not known whether they are trivial or not. The
Hopf map, defined from S3 to S2, showed that π3pS2q is non-trivial. This result
really kick-started the development ofmodern homotopy theory, which revolves
mostly around the calculation of higher homotopy groups.
The Hopf map has a plethora of physical applications, especially in the fields
of rigid body mechanics [9], quantum information theory [11] and magnetic
monopoles [4]. The Hopf map is often called the Hopf fibration. The reason
it is called a fibration will be clear in Chapter-1 when we will show that the
Hopf map is a fiber bundle over S2 with fiber S1. There is a much more general
fiber bundle S2n`1 Ñ CPn, with fiber S1. The n “ 1 case is the one that was
introduced by Heinz Hopf in 1931. In the first chapter, We will mostly discuss
these topics and the importance of Hopf map in homotopy theory.
In the second chapter, we will review some basic materials from singular coho-
mology and use cup products to define Hopf invariant. The Hopf invariant will
give us an one to one correspondence between the elements of π3pS2q and the
integers. Later we will see another interpretation of Hopf invariant using link-
ing numbers in the fourth chapter.
Next, we will uncover the geometric significance of the Hopf fibration. Apart
from its application in homotopy theory, the Hopf fibration also gives us a way
of viewing the 3-sphere as a collection of circles arranged in a special way and
parametrized by points on a 2-sphere. In the last two chapters, we will mostly
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try to illustrate this fact. We will try to see the spatial arrangement of the fibers
of the Hopf map inside the 3-sphere, which will be portrayed as R3 ∪ t8u to
make our visualization easier.
The third chapterwill bemostly devoted to the development of the theory needed
to study the fibers of the Hopf map. This mostly is related to defining the no-
tion of the degree of a smooth map. In the fourth chapter, we will introduce the
notion of linking number using degree, which will be key in our study of the
geometry of the Hopf fibration.
We will assume that the reader has some exposure to basic Algebraic and Dif-
ferential Topology. An ideal prerequisite for fully understanding the materials
presented in this thesis would be the first two chapters of [2] and chapter 1 and
4 of [16]. We will try to give most of the proofs of the results that we state in
this thesis, but sometimes due to some technical difficulties, we will skip some
proofs and give appropriate reference for the readers.



Chapter 1

Hopf Map in Homotopy Theory

The Hopf map is what showed that the homotopy groups can be interesting
and non-trivial. The fundamentals of homotopy theory lie in the computation
of homotopy groups πkpSnq, k ě n. Calculating the higher homotopy groups
is not at all easy and there is no universal method for calculating these groups.
In his paper [1], Hopf showed that there is a continuous surjective map, called
the Hopf map S3 Ñ S2, which is not null-homotopic. As a consequence, one
has π3pS2q ‰ 0. Later it has been proved using fibrations that π3pS2q is infinite
cyclic, generated by the Hopf map. The existence of this map first showed that
πkpSnq can be non-trivial for k ą n, which is completely opposite to the case of
homology groups, where we have HkpSnq “ 0 for k ą n. In this chapter, we
will discuss homotopy theory and the influence of Hopf map in developing this
intriguing theory.

1.1 Higher Homotopy Groups

Abasic course inAlgebraic Topology typically beginswith the definition of Fun-
damental Group. However, after the basic definitions, examples, and theorems
(e.g. Van Kampen and covering space) the focus diverges towards Homology
theory. The natural generalization of the Fundamental Group, obtained by re-
placing S1 by Sn in the definition, is rarely discussed despite the fact that it has
motivated a large part of modern Algebraic Topology. The reason behind this
can be the very complex nature of these groups. To make our job a little easy,
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Chapter 1. Hopf Map in Homotopy Theory 4

we will mostly structure our development of the theory around the motivating
example of the homotopy groups of the n-spheres.

Definition 1.1. (Definition of πnpXq) For a spaceX with basepoint x0 P X , the n-
th homotopy group ofX based at x0, denoted as πnpXq, is the set of all homotopy
classes of maps f : pIn, BInq Ñ pX, x0q such that the homotopies are required to
satisfy ftpBInq “ x0 for all t P I .

There is an extension of the definition to the case n “ 0, where π0pXq is defined
to be the set of all homotopy classes of all maps from I0 (which is a single point)
to X , which is just the set of path components of X . Although, we are calling
this a group, we have not yet defined an operation in πnpXq. Let us define the
operation 1`1 for maps f, g : pIn, BInq Ñ pX, x0q for n ě 2.

pf ` gqps1, s2, . . . , snq “

$

&

%

fp2s1, s2, . . . , snq s1 P r0,
1
2
s

gp2s1 ´ 1, s2, . . . , snq s1 P r
1
2
, 1s

The reason we are denoting the operation as 1`1 will be clear in a while. Note
that it is clear that this sum is well-defined on homotopy classes. Since only
the first coordinate is involved in the sum operation, the same arguments as
for π1pX, x0q show that 1`1 is an well defined operation on πnpX, x0q generaliz-
ing the concatenation in π1pX, x0q. Moreover πnpX, x0q is a group with iden-
tity element the constant map cx0 sending In to x0 and with inverses given by
´fps1, s2, . . . , snq “ fp1´s1, s2, . . . , snq. This can be proved using the same tech-
niques used in case of π1pX, x0q.
The additive notion for the group operation is used because unlike π1pX, x0q,
πnpX, x0q is abelian for n ě 2.

Proposition 1.1. The group πnpX, x0q is abelian for n ě 2.

Proof. Let rf s, rgs P πnpX, x0q. our aim is to show that f`g » g`f . One canwrite
an explicit homotopy between the maps to verify the claim. Instead, we give a
pictorial argument to prove this. First, we restrict ourselves to two dimensions.
The homotopy begins by shrinking the domains of f and g to smaller sub-cubes
of I2, with the boundary of these sub-cubesmapping to the base-point. Nowwe
have the room to slide the two sub-cubes around as long as they remain disjoint.
So, they can be slid past each other to interchange their positions. Then again f
and g can be enlarged to their original size. So, a homotopy between f ` g and
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Figure 1.1: Homotopy between f ` g and g ` f
Source: mathoverflow

g ` f can be pictorially represented as in Figure 1.1
�

Recall that, there is an alternative description of π1pX, x0q as the set of all homo-
topy classes of maps f : pS1, 1q Ñ pX, x0q, where ftp1q “ x0 for all t P I . The
concatenation operation is defined by,

f ˚ g : S1 c
ÝÑ S1_S1 f_g

ÝÝÝÑ X

where the first map c is the "pinch" obtained by collapsing two antipodal points
of S1 together, and the second map is given by taking f on the first factor and g
on the second factor (it is well-defined because the point in common of the two
S1 factors is the basepoint where f and g take the same value).
This has a generalization forn ě 2, givingus an alternative definition ofπnpX, x0q.
Let p P Sn be the north-pole.

Definition 1.2. πnpX, x0q is defined to be the set of all homotopy classes of maps
f : pSn, pq Ñ pX, x0q, where ftppq “ x0 for all t P I . The sum operation is defined
by the composition,

f ` g : Sn c
ÝÑ Sn_Sn f_g

ÝÝÝÑ X

where the first map c is the "pinch" obtained by collapsing the equator(Sn´1) of
Sn to a point, and the second map is given by taking f on the first factor and g
on the second factor.

Note that as In{BIn – Sn, we see that both definitions are equivalent (we choose
base-point p “ BIn{BIn).
In all of the discussions above we have fixed a chosen base-point forX . We have
seen that changing the base-point within same component yields isomorphic
fundamental groups. For higher homotopy groups, the choice of base-point
within a connected component is also irrelevant so that we very well omit the
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base-point. We will not prove this here. Interested readers can find a detailed
discussion about this topic in Chapter-4 of [2]. The proof is a simple generaliza-
tion of the proof for the case of π1pX, x0q.

Next we observe the fact that πn is a functor. Given a map ϕ : pX, x0q Ñ pY, y0q,
there is a well-defined inducedmap ϕ˚ : πnpX, x0q Ñ πnpY, y0q, given by ϕ˚rf s “
rϕ ˝ f s. It is immediate that ϕ˚ is a homomorphism for n ě 1 and pϕψq˚ “
ϕ˚ψ˚ and id˚ “ id. Also if ϕ : pX, x0q Ñ pY, y0q is a homotopy equivalence,
then using the homotopy inverse ψ, we see that ϕ˚ : πnpX, x0q Ñ πnpY, y0q is an
isomorphism.
The spaceswhich have a contractible universal covering space have trivial higher
homotopy groups. The next proposition illustrates this fact.

Proposition 1.2. A covering space projection p : p rX, rx0q Ñ pX, x0q induces an iso-
morphism p˚ : πnp rX, rx0q Ñ πnpX, x0q for n ě 2.

Proof. We will show that p˚ is a bijection when n ě 2.
Claim-1: p˚ is surjective.
proof. (Claim-1) Using the lifting criterion of covering space and the fact that Sn

is simply-connected for n ě 2, we get a lift rf : Sn Ñ rX for everymap f : Sn Ñ X .
So, given rf s P πnpX, x0qwe have p˚r rf s “ rp ˝ rf s “ rf s(By definition of lift). This
shows that p˚ is surjective when n ě 2.

rX Sn ˆ t0u rX

Sn X Sn ˆ I X

p

rφ0

p

f

rf

H“tφtu

rH

Claim-2: p˚ is injective.
proof. (Claim-2) Let rf s P kerpp˚q Ă πnp rX, rx0q, i.e. rp ˝ rf s “ rcx0s. So, p ˝ rf » cx0 .
By general homotopy lifting property, rf » c

rx0 .(See the figure above). Hence p˚
is injective.
Therefore, by Claim-1 and Claim-2, p˚ is a bijection and hence an isomorphism.

�

Example 1.1. Let us look at some immediate applications of the above proposition.
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1. πnpX, x0q “ 0 for n ě 2 whenever X has a universal cover. In covering space
theory, we have seen that exp : R Ñ S1 is a universal covering space. Hence by
Proposition 1.2, πnpS1, 1q “ 0 for k ě 2.

2. Rn is a universal cover of the n-torus Tn. So, πkpTnq “ 0 for n ě 2.

3. Let Sg be the surface of genus g ą 1. From The Uniformization theorem of Koebe
and Poincaré of [6] we know that the universal covering space of Sg is the upper
half plane H Ă C. Hence by Proposition 1.2, πnpSg, x0q “ 0 for n ě 2.

Proposition 1.3. πnpX1 ˆX2, px1, x2qq – πnpX1, x1q ˆ πnpX2, x2q for all n ě 1.

Proof. The key fact is to observe that every map ϕ : pSn, pq Ñ pX1 ˆX2, px1, x2qq

is given by ϕ “ pϕ1, ϕ2q, where ϕi : pSn, pq Ñ pXi, xiq for i “ 1, 2. Then rϕs ÞÑ
prϕ1s, rϕ2sq is an isomorphism. The map is clearly surjective. Note that if ϕ “
pϕ1, ϕ2q » ψ “ pψ1, ψ2q inXˆY via a homotopyH “ pH1, H2q : SnˆI Ñ X1ˆX2,
then Hi is a homotopy between ϕi and ψi in Xi for i “ 1, 2. Hence, the map is
well-defined and one-one. �

From elementary algebraic topology and Proposition 1.2, we knowall homotopy
groups of S1. Although all homotopy groups of higher dimensional spheres are
not known, it is not too difficult to show πkpSnq “ 0 for k ă n. The essential idea
is to make use of the CW complex structure of Sn (Example A.1(1)).

Definition 1.3. (CellularMap) Amap f : X Ñ Y between CW complexes is said
to be cellular if fpXkq Ă Y k for all k ě 0.

There is a similarity between cellular maps and linear maps in that they do not
increase the dimension. In case of linear maps, the dimension of the range is
always less than or equal to that of the domain. Similarly, cellular maps always
map the k-skeleton to the k-skeleton. This is a strong form of not increasing
dimension as the image of k-skeleton do not even touch the higher dimensional
cells.
There are plenty of maps which are non-cellular. The cellular approximation
theorem ensures that they are not too far from a cellular map.

Theorem 1.1. (Cellular Approximation Theorem) Every map f : X Ñ Y between
CW complexes is homotopic to a cellular map. If f is already cellular in a subcomplex
A Ă X , then the homotopy can be taken to be stationary on A.
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The proof is quite technical andwewill not present it here. The interested reader
can find the details in Chapter-4 of [2]. Assuming this result, we then immedi-
ately have:

Corollary 1.1. πkpSn, pq “ 0 if k ă n.

Proof. Let rf s P πkpSn, pq, i.e. f : Sk Ñ Sn. By Cellular Approximation Theorem,
f is homotopic to a cellularmap g. As g is cellular, by definition gppSkqkq Ă pSnqk.
From the CW structure of Sn (See Example A.1(1)), k-skeleton of Sk is Sk and k-
skeleton of Sn is tpu (Assume that 0-cell of Sn is tpu). Hence gpSkq “ tpu and
g “ cp. This shows that rf s “ rcps and hence πkpSn, pq is trivial. �

Corollary 1.2. Let X be a CW complex. Then πnpXq “ πnpX
n`1q

Proof. By Cellular Approximation Theorem, any map f : Sn Ñ X is homotopic
to a cellular map. Let f » g where gpSnq Ă Xn Ă Xn`1. So, πnpXq is the set of
maps Sn Ñ Xn`1 modulo homotopies through maps Sn Ñ X .
Now consider a homotopy H : Sn ˆ I Ñ X . This is homotopic, by a second
application of Cellular Approximation, to a map which takes values in Xn`1

(since Snˆ I is naturally an pn` 1q-dimensional CW complex). Therefore πnpXq
is equal to the set of maps Sn Ñ Xn`1 modulo homotopies through maps Sn Ñ
Xn`1, which is just πnpXn`1q. �

1.2 Fibrations and Long Exact Sequence of Homo-
topy Groups

In this section we will introduce two important classes of maps, namely the
Hurewicz fibration and Serre fibration. Moreover, associated to a Serre fibration
wewill obtain a long exact sequence of homotopy groups of the fibre, total space
and the base space.

Definition 1.4. (Right Lifting Property) A map p : E Ñ B of spaces is said to
have the right lifting property (RLP) with respect to a map i : A Ñ X if for any
two maps f : A Ñ E and g : X Ñ B with p ˝ f “ g ˝ i, there exists a map
h : X Ñ E with p ˝ h “ g and h ˝ i “ f :



Chapter 1. Hopf Map in Homotopy Theory 9

A E

X B

f

i p

g

h

(So, h extends f and lifts g at the same time)

Definition 1.5. (Serre & Hurewicz Fibration) A map p : E Ñ B of spaces is
called a Serre Fibration if it has the RLP with respect to all inclusions of the
form i : Inˆt0u ãÑ Inˆ I , n ě 0 and a Hurewicz fibration if it has the RLP with
respect to all maps of the form i : A ˆ t0u ãÑ A ˆ I , n ě 0 for any space A. (So,
every Hurewicz fibration is a Serre fibration)

Definition 1.6. (Fiber) If p : E Ñ B is amap of spaces and b P B, then p´1pbq Ă E

is called the fiber of p over b.

Thus, Hurewicz fibrations are those maps p : E Ñ B which has the homotopy
lifting property with respect to all spaces: given a homotopy H : A ˆ I Ñ B

of maps with target B (Let’s say H “ tϕtu) and a lift rϕ0 : A ˆ t0u Ñ E of
ϕ0 “ Hp´, 0q : AÑ B there is a lift rH of the entire homotopy H which satisfies
p ˝ rH “ H and rH ˝ i “ rϕ0.

Aˆ t0u E

Aˆ I B

rϕ0

i p

H“tϕtu

rH

Proposition 1.4. For a Hurewicz fibration p : E Ñ B, the fibers are homotopy equiv-
alent if the base B is path-connected.

Proof. Let γ be a path in B. Then define G : Fγp0q ˆ I Ñ B by Gpx, tq “ γptq.
Then the inclusion i1 : Fγp0q ãÑ E provides a lift rG0, so by homotopy lifting
property we have a lift rG : Fγp0q ˆ I Ñ E of the homotopy G with p ˝ rG “ G.
So, rGpx, 1q P p´1pGpx, 1qq “ p´1pγp1qq “ Fγp1q. Let us define Lγ : Fγp0q Ñ Fγp1q by
setting Lγpxq “ rGpx, 1q.

Fγp0q ˆ t0u E

Fγp0q ˆ I B

i1

i p

G

rG
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This map has certain properties:

1. If γ » γ1 rel BI , then Lγ » Lγ1 .
proof. Let H be a homotopy between γ and γ1. Let us set Gpx, sq “ γpsq

and G1px, sq “ γ1psq to be the defining maps for Lγ and Lγ1 respectively.
Define h : Fγp0q ˆ I ˆ I Ñ B by hpx, s, tq :“ Hps, tq. Then hpx, s, 0q “

Hpx, 0q “ γpsq “ Gpx, sq and hpx, s, 1q “ Hpx, 1q “ γ1psq “ G1px, sq. We
want to use the lifting property with respect to space suitable for our pur-
pose andwhich will also be homeomorphic to Fγp0qˆt0uˆI . Let us define
J “ Fγp0q ˆ pt0u ˆ I ∪ I ˆ BIq. Since pt0u ˆ I ∪ I ˆ BIq is homeomorphic
to t0u ˆ I , the same is true after taking product with Fγp0q. As, p has the
RLP with respect to i : Fγp0q ˆ t0u ˆ I Ñ Fγp0q ˆ I ˆ I , it also has the RLP
with respect to the homeomorphic space J . Also let us define j : J Ñ E

by jpx, s, 0q “ Gpx, sq; jpx, s, 1q “ G1px, sq and jpx, 0, tq “ e1 for e1 P Fγp1q.

J E

Fγp0q ˆ I ˆ I B

j

i1 p

h

rh

(i1 “ i˝(homeomorphism between J & Fγp0q ˆ t0u ˆ I))
By RLP, h has a lift rh which extends j. So, p ˝ rhpx, 1, tq “ hpx, 1, tq “

Hp1, tq “ γp1q (As H is a homotopy rel BI). So, rhpx, 1, tq P p´1pγp1qq “

Fγp1q. Define rH : Fγp0q ˆ I Ñ Fγp1q by rHpx, tq “ rhpx, 1, tq. Note that
rHpx, 0q “ rhpx, 1, 0q “ rGpx, 1q “ Lγpxq (Asrh extends j). Similarly, rHpx, 1q “
rhpx, 1, 1q “ rG1px, 1q “ Lγ1pxq. Hence rH is a homotopy between Lγ and Lγ1 .

2. For a concatenation of paths γ ˚ γ1, Lγ˚γ1 is homotopic to Lγ1 ˝ Lγ .
proof. This is true since for Lifts rG and rG1 defining Lγ and Lγ1 we obtain a
lift defining Lγ˚γ1 by taking rGpx, 2tq for 0 ď t ď 1

2
and rG1pLγpxq, 2t´ 1q for

1
2
ď t ď 1.

Let b0, b1 P B be arbitrary. Let γ be a path joining b0 and b1. Let γ be the inverse
path. Note that γ ˚γ » cb0 rel BI . So, by (1) and (2) Lγ ˝Lγ » Lγ˚γ » Lcb0 “ idFb0 .
Similarly, Lγ ˝ Lγ » idFb1 . �

From now onwewill be concerned with Serre fibrations. By Proposition 1.4, we
can talk about πnpF, e0q without any ambiguity as long as B is path-connected



Chapter 1. Hopf Map in Homotopy Theory 11

as we know that fibers of different points are homotopy equivalent and hence
same at the level of πn. Let us move on to the main theorem of this section.

Theorem 1.2. (The long exact sequence of a Serre fibration) Let p : pE, e0q Ñ pB, b0q

be a map of pointed spaces withB path-connected and pF, e0q ãÑ pE, e0q being the fiber.
Suppose that p is a Serre fibration. Then there is a long exact sequence of the form:

¨ ¨ ¨ Ñ πn`1pB, b0q
δ
ÝÑ πnpF, e0q

i˚
ÝÑ πnpE, e0q

p˚
ÝÑ πnpB, b0q

δ
ÝÑ πn´1pF, e0q

i˚
ÝÑ

¨ ¨ ¨
δ
ÝÑ π0pF, e0q

i˚
ÝÑ π0pE, e0q

p˚
ÝÑ π0pB, b0q.

Here F,E,B are all pointed sets, hence their π0 is also a pointed set. The definition of
kernel here is the pre-image of the chosen base-point and the definition of exactness is
the same: kerpp˚q “ impi˚q.

Before going to the proof of the theorem, let us define a space Jn Ă In`1 by,

Jn “ pIn ˆ t0uq ∪ pBI ˆ Iq Ă BIn`1 Ă In

By flattening the sides of the cube, one can construct a homeomorphism of pairs

pIn`1, Jnq
–
ÝÑ pIn`1, In ˆ t0uq

Thus, any Serre fibration also has the Right Lifting Property(RLP) with respect
to the inclusion Jn Ă In`1. We will use this fact quite often in the proof of
Theorem 1.2.

Proof. (Theorem 1.2)
The proof of the theorem will mostly rely on repeated use of the homotopy
lifting property. The essential step in the proof is to construct the map δ. Let
α : pIn, BInq Ñ pB, b0q represent an element of πnpB, b0q. Let ce0 : Jn´1 Ñ E be
the constant map with value e0. Then the square

Jn´1 E

In B

ce0

i p

α

β



Chapter 1. Hopf Map in Homotopy Theory 12

commutes. Hence by the definition of Serre fibration there is a β : In Ñ E such
that p˝β “ α and βpJn´1q “ e0. Then define δrαs to be the element of πn´1pF, e0q
represented by the map

βp´, 1q : In´1 Ñ F, t ÞÑ βpt, 1q

This δ is often called the connecting homomorphism. Note that βp´, 1q indeed
represents an element of πn´1pF, e0q, because the boundary of In´1 ˆ t1u is con-
tained in Jn´1, so βpBpIn´1ˆt1uqq “ e0 and βpIn´1ˆt1uq P p´1pαpIn´1ˆt1uqq “
p´1pb0q “ F (As αpBInq “ b0). Before we proceed further into the proof, we need
to verify that δ is well defined.

Lemma 1.1. δ is well defined on homotopy classes.

Proof. Let rα0s “ rα1s with h : In ˆ I Ñ B being a homotopy between α0 and
α1. Suppose also that we have chosen lifts β0 and β1 of α0 and α1 as above. Let
ĂJn be the union of all faces of In`1 except ttn “ 1u, i.e. it is same as Jn except
the role of tn and tn`1 is interchanged. Define k : ĂJn Ñ E by setting it β0 and
β1 on Inˆt0u and Inˆt1u respectively. On the other faces set k to be constant e0.

ĂJn E

In ˆ I B

k

i p

h

l

Now by homotopy lifting property, there is a diagonal l : InˆI Ñ E, which lifts
h and extends k. Now consider l1 “ l|In´1ˆt1uˆI . then p ˝ l1ps, 1, tq “ p ˝ lps, 1, tq “

hps, 1, tq “ b0, because h is a homotopy relative to BIn. So, image of l1 lies entirely
on p´1pb0q “ F and l1 gives a homotopy between β0p´, 1q and β1p´, 1q. This
proves the lemma. �

Exactness at πnpE, e0q. p ˝ i : F Ñ B is constant b0. So, p˚ ˝ i˚ “ 0 and hence
impi˚q Ă kerpp˚q. Suppose α : In Ñ E represents an element πnpE, e0q such that
p˚rαs “ rp ˝ αs “ 0. Let h : In ˆ I Ñ B be a homotopy relative to BIn from p ˝ α

to the constant map cb0 . Define k : Jn Ñ E by k|Inˆt0u “ α and k is constant e0
on other faces.
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Jn E

In ˆ I B

k

i p

h

l

By homotopy lifting property, there is a lift l. Set l1 “ l|Inˆt1u. Note that p ˝
l1ps, 1q “ p ˝ lps, 1q “ hps, 1q “ b0, because h is a homotopy between p ˝ α to
cb0 . So, image of l1 lies in p´1pb0q “ F and l1ps, 1q “ e0 for s P BIn. We have
rl1s P πnpF, e0q with i˚rl

1s “ ri ˝ l1s “ rαs by the homotopy l, which implies
kerpp˚q Ă impi˚q and hence proves the exactness at πnpE, e0q.
Exactness at πnpB,b0q. If β : In Ñ E represents an element of πnpB, b0q then
for α “ p ˝ β we can take the same β as the lift in the construction of δrαs. So,
δ ˝ p˚rβs “ rβp´, 1qs. But as In´1 ˆ t1u Ă BIn, βp´, 1q is the constant map ce0 .
So, δ ˝ p˚ “ 0 and hence impp˚q Ă kerpδq. For the reverse inclusion, suppose
α : In Ñ B represent an element of πnpB, b0q with δrαs “ 0. Then for a lift β as
in

Jn´1 E

In B

ce0

i p

α

β

we have that βp´, 1q is homotopic to the constant map by a homotopy h relative
to BIn´1 which maps into the fiber F . Now define a map γ : In Ñ E by

γps, tq “

$

&

%

βps, 2tq t P r0, 1
2
s

hps, 2t´ 1q t P r1
2
, 1s

for s P In´1, t P I . Clearly γ represents an element of πnpE, e0q. Note that as p ˝h
is constant, p ˝ γ is homotopic to p ˝ β “ α. So, we have rαs “ p˚rγs and hence
kerpδq Ă impp˚q, which shows the exactness at πnpB, b0q.
Exactness at πn´1pF, e0q. Let α : In Ñ B represent an element of πnpB, b0q. The
map β in the definition of δrαs “ rβp´, 1qs shows that ce0 » βp´, 0q » βp´, 1q

in E. So, we have i˚ ˝ δrαs “ 0 and hence impδq Ă kerpi˚q. To see the other
inclusion, let γ : In´1 Ñ F represent an element of kerpi˚q Ă πn´1pF, e0q. So,
we have i˚rγs “ 0 and suppose h : In´1 ˆ I Ñ E be a homotopy between i ˝ γ
and ce0 relative to BIn´1. Then α “ p ˝ h represents an element of πnpB, b0q, and
in the definition of δrαs we can choose the diagonal lift β to be h, in which case



Chapter 1. Hopf Map in Homotopy Theory 14

δrαs is represented by rγs. This shows that kerpi˚q Ă impδq, and this completes
the proof of the theorem. �

There are plenty of examples of fibrations. For example any projectionXˆF Ñ
X , the evaluation at 1 map ev1 : P pXq Ñ X from the path space PpXq to X are
Hurewicz fibrations. It is also easy to see that any covering space is a Hurewicz
fibration with discrete fiber. One of the important classes of fibrations are fiber
bundles andwewill be mostly concernedwith fiber bundles rather than general
fibrations. Fiber bundles show up in homotopy theory quite often and we will
see later in the chapter that the Hopf map is a fiber bundle.

1.3 Fiber Bundles

A fiber bundle E over a base B with fiber F is nothing but a geometric way of
expressing E in terms of B and F . In algebra whenever we have a short exact
sequence 0 Ñ A Ñ B Ñ C Ñ 0 of abelian groups, we can express B in terms
of A and C, namely B – A

À

C. Likewise one can expect to have something
similar in topology, namely E – B ˆ F . But unfortunately, that is not always
true. For a fiber bundle, we can only express E as a product of B and F locally.

Definition 1.7. (Fiber Bundle)
A map p : E Ñ B between topological spaces is a fiber bundle with fiber F
if there is a covering U “ tUα : α P Λu of B such that for each α there is a
ϕα : p´1pUαq Ñ Uα ˆ F which is a homeomorphism and the following diagram
commutes:

p´1pUαq Uα ˆ F

Uα

ϕα

p

pr1

This property is known as the local trivialization. Before going to the examples
of fiber bundles let us look at the relationship between fiber bundles and Serre
fibrations.

Proposition 1.5. A fiber bundle is a Serre fibration.
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Proof. Let p : E Ñ B be a fiber bundle with fiber F and we have a diagram

In ˆ t0u E

In ˆ I B

rϕ0

i p

h“tϕtu

rh

where h and rϕ0 is given. Our aim is to construct rh such that p ˝ rh “ h and
rh|0 “ rϕ0. Let U “ tUα : α P Λu be a open covering ofB such that each Uα has the
local trivialization property. Since In and I are compact, we can divide In into
finitely many cubesC1, C2, . . . , Ck and I into finitely many intervals J1, J2, . . . , Jl
such that each Ci ˆ Jj Ă h´1pUαq for some α P Λ.
We proceed by induction on n. The base case is just path lifting. So, we assume
that rh is defined over BCi ˆ I for each of the subcubes Ci. We will extend this
rh over Ci ˆ I by extending it along I using the sub-intervals Jj . Let us choose
cube that contains origin and the sub-interval that contains 0, let’s call them C

and J . We already know that rh is defined to be rϕ0 on Cˆt0u. Also by induction
hypothesis rh is also defined on BC ˆ J . So, rh is define on C ˆ t0u ∪ BC ˆ J . As
rh is a lift of h, we have

p ˝ rhpC ˆ t0u ∪ BC ˆ Jq “ hpC ˆ t0u ∪ BC ˆ Jq Ă hpC ˆ Jq Ă Uα

Hence rhpC ˆ t0u ∪ BC ˆ Jq Ă p´1pUαq – Uα ˆ F .
Let ψ “ pr1 ˝ ϕα ˝ rh|Cˆt0u∪BCˆJ : C ˆ t0u ∪ BC ˆ J Ñ F . Let us define a map
β : CˆJ Ñ UαˆF , β “ pβ1, β2q. Set β1 “ h on CˆJ . Note that, Cˆt0u∪BCˆJ
is a retract of C ˆ J . Let r be a retraction. Set β2 “ ψ ˝ r, i.e.

β2 : C ˆ J
r
ÝÑ C ˆ t0u ∪ BC ˆ J ψ

ÝÑ F

Finally we set rh “ ϕ´1α ˝ β on C ˆ J . rh is indeed a lift as p ˝ rh “ p ˝ ϕ´1α ˝ β “

pr1 ˝ β “ β1 “ h. Having defined it on C ˆ J , we will do the same construction
along I except we will take rh|Cˆttu (end point of J is t) instead of the map rϕ0 in
the induction step. Also having defined rh for C ˆ J , we will consider this rh in
the induction step of adjacent cells so that rh is continuous on In ˆ I . �

Now let us look at some examples of fiber bundles. We will use the notation
F ãÑ E Ñ B for a fiber bundle E over B with fiber F . Some of the examples
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will be useful later in other contexts. By Proposition 1.5 and Theorem 1.2, there
is a long exact sequence associated to every such fiber bundle.

Example 1.2. 1. A covering space p : E Ñ B, where B is connected, is a fiber
bundle with discrete fiber. This readily follows from the definition as p´1pUq is
a disjoint union of open sets, each homeomorphic to U for evenly covered neigh-
borhoods. The resulting long exact sequence yields p˚ : πnpEq Ñ πnpBq is an
isomorphism for n ě 2 as πkpF q “ 0 for n ě 1. We also have a short exact se-
quence 0 Ñ π1pEq Ñ π1pBq Ñ π0pF q Ñ 0, which implies p˚ : π1pEq Ñ π1pBq

is injective. Note that these results are indeed consistent with the results from
covering space theory.

2. One of the simplest non-trivial fiber bundles is the Möbius band, which is a fiber
bundle over S1 with fiber an interval. Define theMöbius bandM to be the quotient
of Iˆr´1, 1s under the identifications p0, tq „ p1,´tq, with p : MÑ S1 induced
by the projection Iˆr´1, 1s Ñ I , so the fiber is r´1, 1s. If we attach two copies of
M along their boundaries via the identity map, then we get Klein bottle, a bundle
over S1 with fiber S1.

3. The next example involves projective spaces and is more of our concern. In the real
setting we have the covering space S0 ãÑ Sn Ñ RPn. Over the complex numbers
we have the much more interesting fiber bundle S1 ãÑ S2n`1 Ñ CPn. Here S2n`1

is seen as the unit sphere in Cn`1 and CPn is seen as the quotient space of S2n`1

under the equivalence relation pz0, z1, . . . , znq „ λpz0, z1, . . . , znq for λ P S1, the
unit circle in C. We will come back to this example later in more details when we
will talk about the Hopf bundle.

Lets us now introduce the concept of degree in the continuous setting. We will
discuss about degree of a map in the smooth setting in Chapter-3 in detail. We
will also state (without a proof) the Freudenthal Suspension Theorem, which
will be important in the calculation of the groups πnpSnq.

1.4 Suspension and Degree

We will define degree of a map f : Sn Ñ Sn using homology. Our definition of
degree will use the fact that HnpSnq – Z (see [8] for a proof).
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Definition 1.8. (Degree of a map) Let f : Sn Ñ Sn. Then, f˚ : HnpSnq Ñ HnpSnq
is a homomorphism. So, f˚ is multiplication buy some integer d as f is a homo-
morphism ZÑ Z. This d is called the degree of f and denoted as degpfq.

Once we choose a generator 1 of HnpSnq, then f˚p1q “ degpfq and if we choose
´1 as our generator, then f˚p´1q “ ´degpfq by Z-linearity. Thus degpfq is well
defined and equal to f˚p1q. There is a nice relationship between homotopicmaps
and their degrees.

Proposition 1.6. If f and g are homotopic maps from Sn to Sn, then degpfq “ degpgq.

Proof. Let f and g be homotopic maps. Then they induce the same map in ho-
mology, i.e. f˚ “ g˚ (see Theorem-2.10 of [2]). So, if f˚ is multiplication my d,
then so is g˚. Hence, degpfq “ degpgq. �

The converse of the above proposition is also true, i.e. if two maps have same
degree, then they are homotopic. This result is known as the Hopf degree theo-
rem (see [10] for a detailed discussion). On S1 Ă C themap fpzq “ zk has degree
k. So, we can construct maps of arbitrary degree on S1. We can also construct
maps of any degree on Sn for n ě 2. To do that we need to introduce the concept
of suspension.

Definition 1.9. (Cone and Suspension) Let X be a topological space. The cone
of X , denoted as CX , is defined to be the quotient space of X ˆ I with the
identification px, 1q „ px1, 1q for all x, x1 P X . The suspension of X , denoted as
SX , is defined to be the quotient space of X ˆ r´1, 1s with the identification
px, 1q „ px1, 1q and px,´1q „ px1,´1q for all x, x1 P X .

Although, suspension of a space does not look like a nice space due to the quo-
tients involved, sometimes it does produce some nice spaces. As an example,
suspension of a sphere is again a sphere in dimension one more than the previ-
ous one. This will be very useful to us, so let us give a proof of this fact.

Proposition 1.7. SSn – Sn`1

Proof. SSn “ pSnˆr´1, 1sq{ „, where the relation ‘„’ is defined as px, 1q „ py, 1q
and px,´1q „ py,´1q for all x, y P Sn.
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Define f : Sn ˆ r´1, 1s Ñ Sn`1 by

ppx0, . . . , xnq, tq ÞÑ px10, . . . , x
1
n, tq

where x1i “
?

1´ t2 ¨ xi. Note that f is well defined as

ÿ

i

x1
2
i ` t

2
“ p1´ t2q

ÿ

i

x2i ` t
2
“ 1.

f induces a map rf : SSn Ñ Sn`1.

Sn ˆ r´1, 1s Sn`1

SSn

f

q
rf

As each x1i is a continuousmap of xi and t, we have f is continuous. By property
of quotient topology, rf is also continuous. Let py0, . . . , yn`1q P Sn`1 be given. Set
t “ yn`1, xi “ yi?

1´t2
if yn`1 “ t ‰ 1,´1 and xi “ 0 if yn`1 “ t “ 1 or ´1. Then

fppx0, . . . , xnq, tq “ p
?

1´ t2 ¨ x0, . . . ,
?

1´ t2 ¨ xn, tq “ py0, . . . , yn`1q. This shows
that f is surjective. As, q is surjective, we have rf “ f ˝ q is also surjective.
Let rf rpx0, . . . , xnq, ts “ rf rpx10, . . . , x

1
nq, t

1s. So, t “ t1 and
?

1´ t2 ¨xi “
?

1´ t12 ¨ yi.
Hence xi “ x1iwhenever t “ t1 ‰ 1,´1. All points px,˘1q P Snˆt˘1uwill map to
p0, 0, . . . , 0,˘1q. then by definition of ‘„’, all points px,˘1q are identified. Hence
the map rf is injective.
Sn ˆ r´1, 1s is compact by Tychonoff theorem and SSn being the image of Sn ˆ
r´1, 1s under the continuous map q, is also compact. As rf is a continuous bi-
jection from a compact space SSn to a hausdorff space Sn`1, rf is a homeomor-
phism. �

Definition 1.10. A space X is n-connected if πipXq “ 0 for all i ď n.

Note that 0-connected means path-connected and 1-connected means simply
connected. Next, we give equivalent conditions of being n-connected.

Proposition 1.8. The following are equivalent:
(1) Every map Si Ñ X is homotopic to a constant map.
(2) Every map Si Ñ X extends to a map Di`1 Ñ X

(3) πipXq “ 0.



Chapter 1. Hopf Map in Homotopy Theory 19

Proof. p1q ñ p2q: Suppose first that f : Si Ñ X is homotopic to a constant map,
so there is a homotopyH : Siˆ I Ñ X such thatHpy, 1q “ fpyq andHpy, 0q “ x0

where x0 is the basepoint of X. Let us take polar coordinates pφ1, . . . , φi, rq on
Di`1. Define f : Di`1 Ñ X by,

fpφ1, . . . , φi, rq “ Hppφ1, . . . , φiq, rq

where pφ1, . . . , φiq is the polar coordinate representation of a point in Si and r P I .
The map is well-defined as Hppφ1, . . . , φiq, 0q “ x0 for all pφ1, . . . , φiq P Si and is
an extension of of f as fpφ1, . . . , φi, 1q “ Hpφ1, . . . , φi, rq “ fpφ1, . . . , φiq for all
pφ1, . . . , φiq P Si.
p2q ñ p3q: Suppose that there is a map f : Di`1 Ñ X extending a given f : Si Ñ
X with fppq “ x0 (p P Si be the basepoint). Define H : Si ˆ I Ñ X by,

Hpy, tq “ fpty ` p1´ tqpq

This is well-defined because Di`1 is convex, so that ty ` p1 ´ tqp P Di`1 for all
y P SI Ă Di`1. We have Hpy, 0q “ fppq “ x0 and Hpy, 1q “ fpyq “ fpyq since
f extends f . Furthermore Hpp, tq “ fppq “ fppq “ x0 for all t, so that H is
a basepoint preserving homotopy between f and the constant map cx0 . Hence
rf s “ 0 in πipX, x0q and πipX, x0q “ 0.
p3q ñ p1q: Follows from the definition. �

As a consequence of the above proposition, we can say that a space X is n-
connected if one of the three conditions in Proposition 1.8 holds for all i ď n.
For a map f : X Ñ Y , there is a map Sf : SX Ñ SY , called the suspension of
f , given by Sf rpx, tqs “ rpfpxq, tqs. It is clear that if f » g, then Sf » Sg. So, for
a map f : Si Ñ Sn, there is a map Sf : SSi “ Si`1 Ñ Sn`1 “ SSn. So, we get
a well-defined map S : πipSnq Ñ πi`1pSn`1q, given by f ÞÑ Sf . We call this the
suspension map. Now the map Sf has the property that degpSfq “ degpfq.
We omit the proof of this fact as it involves some tools from homology (e.g.
Mayer-Vietrois sequence) that we have not properly introduced in this thesis.
The upshot is that we can construct maps of degree k from Sn to Sn by taking
suspension repeatedly (n times to be precise) of a degree k map on S1.

Theorem 1.3. (Freudenthal Suspension Theorem)
The suspension map πipSnq Ñ πi`1pSn`1q is an isomorphism for i ă 2n ´ 1 an a
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surjection for i “ 2n ´ 1. More generally, this holds for the suspension πipXq Ñ
πi`1pSXq whenever X is an pn´ 1q-connected CW complex.

Theproof is rather technical and tedious. So, we omit the proof. Adetailed proof
can be found in Chapter-4 of [2]. Instead we look at the important consequence
of the theorem.

Corollary 1.3. The group πnpSnq is isomorphic to Z, generated by the identity map, for
all n ě 1.

Proof. From the Freudenthal Suspension Theorem, we know that in the suspen-
sion sequence

π1pS1
q Ñ π2pS2

q Ñ π3pS3
q Ñ π4pS4

q Ñ . . .

the first map is surjective and the subsequent maps are all isomorphisms. We
know from basic algebraic topology that π1pS1q is Z generated by the identity
map. If we can prove that π2pS2q is Z, then we are done as all consequent maps
are isomorphisms. Applying Theorem 1.2 and Corollary 1.1 on theHopf bundle
(we will describe later) S1 ãÑ S3 Ñ S2 gives us the desired result. �

1.5 The Hopf Bundle

Wewill introduce the Hopf bundle in this section and see one of its most impor-
tant implications. Recall that in Example 1.2, we said that S1 ãÑ S2n`1 Ñ CPn is
a fiber bundle. Let us first prove this fact.

Proposition 1.9. S1 ãÑ S2n`1 Ñ CPn is a fiber bundle, where the map p : S2n`1 Ñ

CPn is given by, pz0, z1, . . . , znq ÞÑ rz0, z1, . . . , zns

Proof. Regard S2n`1 as the unit sphere in Cn`1 and CPn as the quotient space of
S2n`1 under the equivalence relation pz0, . . . , znq „ λpz0, . . . , znq for any λ P S1 Ă

C.
Let Ui “ trz0, . . . , zns : zi ‰ 0u. Ui is an open set in CPn. Note that

p´1pUiq “ tpz0, . . . , zn : zi ‰ 0u.
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Define ϕi : p´1pUiq Ñ Ui ˆ S1 by

pz0, . . . , znq ÞÑ prz0, . . . , zns, zi{|zi|q

The map ϕ is continuous as zi ‰ 0 on Ui.
Claim-1: ϕi is surjective.
Proof. Let rz0, . . . , zns P Ui and ξ P S1. We know that zi ‰ 0. Let λ “ ξ{zi and
λ1 “ λ{|λ|. Then

ϕprλ1pz0, . . . , znqsq “ prz0, . . . , zns, λ
1zi{|λ

1zi|q “ prz0, . . . , zns, ξq.

which shows that ϕi is surjective.
Claim-2: ϕ is injective.
Proof. Let prz0, . . . , zns, zi{|zi|q “ prw0, . . . , wns, wi{|wi|q. Then we have

rz0, . . . , zns “ rw0, . . . , wns and zi
|zi|

“
wi
|wi|

.

Hence pz0, . . . , znq “ λpw0, . . . , wnq for some λ P S1 and zi “ |zi|
|wi|
wi. So, we must

have λ “ |zi|
|wi|

, i.e. λ is real and positive with |λ| “ 1. The only possible value for
λ is 1. Hence pz0, . . . , znq “ pw0, . . . , wnq, which shows that ϕi is injective.
So, ϕi is a continuous bijection. To show that ϕi is a homeomorphism, we need
to show that ϕi is an open map.
Claim-3: ϕi is an open map.
Proof. Let V Ď S2n`1 be open. Note that

ϕipV q “ tprz0, . . . , zns, zi{|zi|q : pz0, . . . , znq P V u.

Write ϕi “ pϕ1
i , ϕ

2
i q, where ϕ1

i pz0, . . . , znq “ rz0, . . . , zns and ϕ2
i pz0, . . . , znq “

zi{|zi|. As ϕ2
i is a projection map, it is open. Now ϕ1

i is also open as

p´1pϕ1
i pV q “ tpz0, . . . , znq P S2n`1 : ppz0, . . . , znq P ϕ

1
i pV qu

“ tpz0, . . . , znq P S2n`1 : rz0, . . . , zns P ϕ
1
i pV qu

“ tpz0, . . . , znq P S2n`1 : rz0, . . . , zns P ppV qu

“ ∪ξPS1ξV

is open. As both ϕ1
i and ϕ2

i are open maps, ϕi is also an open map.
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So, this shows thatϕi is a homeomorphism. Also pr1˝ϕi “ p. So p : S2n`1 Ñ CPn

is fiber bundle with fiber S1. �

The n “ 1 case is special in the above fiber bundle. For n “ 1, the fiber bundle is
S1 ãÑ S3 Ñ CP1. By Proposition A.1, CP1

– S2 and hence the above fiber bundle
becomes S1 ãÑ S3 Ñ S2.

Definition 1.11. (Hopf Bundle and Hopf Map)
The fiber bundle S1 ãÑ S3 Ñ S2 is called the Hopf bundle and the map h : S3 Ñ

S2 is called the Hopf map. The Hopf map h is the map p for the n “ 1 case in
Proposition 1.9 along with the identification CP1

– S2 (see Proposition A.1).

We will give more descriptions of the Hopf map as we go along. Now, the next
obvious step is to apply Theorem 1.2 to theHopf bundle to seewhat information
we get about the homotopy groups of S1, S2, S3. So, the long exact sequence of
homotopy groups for this fiber bundle is,

¨ ¨ ¨ Ñ πk`1pS2
q
δ
ÝÑ πkpS1

q
i˚
ÝÑ πkpS3

q
p˚
ÝÑ πkpS2

q
δ
ÝÑ πk´1pS1

q
i˚
ÝÑ πk´1pS3

q
p˚
ÝÑ ¨ ¨ ¨

For k ą 1, πkpS1q “ 0. So, πkpS3q
p˚
ÝÑ πkpS2q is an isomorphism for k ´ 1 ą 1 or

k ą 2. In particular for k “ 3, h˚ : π3pS3q Ñ π3pS2q is an isomorphism. From
Corollary 1.3, π3pS3q – Z, generated by the identity map 1 : S3 Ñ S3. Hence, we
see that π3pS2q – Z, generated by the Hopf map h.

Theorem 1.4. The group π3pS2q is isomorphic to Z and generated by the Hopf map.

Proof. Follows from the above discussion. �

Note that Theorem 1.4 gives us some description about the first group of the
type πkpSnq, k ą n. We will investigate more about this group and its elements.

Remark 1.1. Replacing the field C by the field of quaternions H, the same con-
structions yields a fiber bundle S3 ãÑ S4n`3 Ñ HPn over the quaternionic pro-
jective spaces HPn. Taking n “ 1 gives a second Hopf bundle S3 ãÑ S7 Ñ S4.
There is another Hopf bundle S7 ãÑ S15 Ñ S8, whose definition uses the non-
associative 8-dimensional algebra O of Cayley octonions.

Next we will study the elements of the group π3pS2q. We only know that the
Hopf map h generates this group. Let we have two maps f : S3 Ñ S3 and
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g : S2 Ñ S2. Then the maps f ˝ h and h ˝ g represent some elements of π3pS2q.
What are those elements and can we identify them using the notions that we
have already established? To answer these wewill need somemore tools, which
we will now develop in the next chapter.



Chapter 2

The Hopf Invariant

Given a map f : S2n´1 Ñ Sn, one can assign a number to it, which we will call
Hopf Invariant. This "Hopf Invariant" will help us to answer our question that
we asked at the end of the last chapter. The Hopf Invariant is somewhat similar
to that of the notion of degree. A fundamental theorem by Adams states that a
map f : S2n´1 Ñ Sn of Hopf Invariant 1 exist only when n “ 2, 4, 8. A very in-
teresting consequence of this theorem is that Rn is a division algebra only when
n “ 1, 2, 4, 8. The Hopf invariant has many definitions. We will, for now, define
it in terms of cohomology. There are other definitions of Hopf invariant using
K-theory and linking number. We will talk about linking number in chapter-
4 and interested readers can find details about the k-theory approach in [23].
So, before defining the Hopf invariant, let us review the notion of cup products
from basic cohomology.

2.1 Cup Products

We want to define a product HkpX;Rq ˆ H lpX;Rq Ñ Hk`lpX;Rq. To define
cup product we consider cohomology with coefficients in a ring R. We will first
define the cup product in the cochain level and then we will hopefully be able
to pass it to the quotient and get a well-defined product in cohomology.

Definition 2.1. (Cup Product)
For cochainsϕ P CkpX;Rq andψ P C lpX;Rq, the cupproductϕ ! ψ P Ck`lpX;Rq

is the cochain whose value on a singular simplex σ : ∆k`l Ñ X is given by the

24
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formula
ϕ ! ψpσq “ ϕpσ|rv0,...,vksqψpσ|rvk,...,vk`lsq

where the right hand side is the product in R.

To see that the cup product of cochains induces a cup product of cohomology
classes we need a formula relating it to the coboundary map.

Lemma 2.1. For ϕ P CkpX;Rq and ψ P C lpX;Rq

δpϕ ! ψq “ δϕ ! ψ ` p´1qkϕ ! δψ.

Proof. Let σ : ∆k`l`l Ñ X be a singular simplex. Then we have

pδϕ ! ψqpσq “
k`1
ÿ

i“0

p´1qiϕpσ|rv0,..., pvi,...,vk`1sqψpσ|rvk`1,...,vk`l`1sq

p´1qkpϕ ! δψqpσq “
k`l`1
ÿ

i“k

p´1qiϕpσ|rv0,...,vksqψpσ|rvk,..., pvi,...,vk`l`1sq

Note that the last term (p´1qk`1ϕpσ|rv0,...,vksqψpσ|rvk`1,...,vk`l`1sq) of the first expres-
sion is the negative of the first term (p´1qkϕpσ|rv0,...,vksqψpσ|rvk`1,...,vk`l`1sq) of the
second expression. Hence when we add the above two expressions, these two
terms gets cancelled and the remaining terms are exactly pϕ ! ψqpδσq as δσ “
řk`l`1
i“0 p´1qiσ|rv0,..., pvi,...,vk`l`1s. Also by definition pϕ ! ψqpδσq “ δpϕ ! ψqpσq,

which proves the lemma. �

From the formula it is apparent that the cup product of two cocycles is again a
cocycle. Also the cup product of a cocycle and a coboundary , in either order is
a coboundary since ϕ ! δψ “ ˘δpϕ ! ψq if δϕ “ 0 and δϕ ! ψ “ δpϕ ! ψq if
δψ “ 0. It follows that there is an induced cup productHkpX;RqˆH lpX;Rq

!
ÝÑ

Hk`lpX;Rq.

Proposition 2.1. For a map f : X Ñ Y , the induced maps f˚ : HnpY ;Rq Ñ

HnpX;Rq satisfy f˚pα ! βq “ f˚pαq ! f˚pβq.
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Proof. Regard α and β as cochains representing their cohomology class. Then
the formula comes from the cochain formula f#pα ! βq “ f#pαq ! f#pβq:

f#
pαq ! f#

pβq “ f#
pαqpσ|rv0,...,vksqf

#
pβqpσ|rvk,...,vk`lsq

“ pαqpfσ|rv0,...,vksqpβqpfσ|rvk,...,vk`lsq

“ pα ! βqpfσq

“ f#
pα ! βq

�

We will now define the cross product or external cup product. The maps

Hk
pX;Rq ˆH l

pY ;Rq
ˆ
ÝÑ Hk`l

pX ˆ Y ;Rq

given by a ˆ b “ p˚1paq ! p˚2pbq where p1 and p2 are the projections of X ˆ Y

onto X and Y . The relative forms of the cup product and the cross product are
similarly defined.
The product inR is associative and distributive and hence so is the cup product.
So, it is natural to ask whether we can make this cup product a multiplication in
a ring structure on the cohomology groups of a spaceX . The answer is actually
Yes!!
Todo thiswe simplydefineH˚pX;Rq to be the direct sumof the groupsHnpX;Rq.
Elements ofH˚pX;Rq are the finite sums

ř

i αiwithαi P H ipX;Rq, and the prod-
uct of two such terms is defined to be p

ř

i αiqp
ř

j βjq “
ř

i,j αi ! βj . It is routine
to check that this makes H˚pX;Rq into a ring with identity if R has an identity
(because we will set ı P H0pX;Rq, which is given by the cocyle that takes every
zero simplex to 1 P R).
This kind of construction of a ring is called a graded ring: a ringA that is decom-
posed as a sum

À

kě0Ak of additive subgroups Ak such that the multiplication
takes Ak ˆAl to Ak`l. To dictate that an element a P A lies in Ak, we will |a| “ k.
This applies in particular to elements of HkpX;Rq, and we will call |a| to be the
dimension of the element a.
H˚pX;Rq often has a more compact description than the sequence of groups
HnpX;Rq, so it is beneficial for us to work with the single objectH˚pX;Rq rather
than regarding all groups HnpX;Rq. We will now see some examples of coho-
mology rings that will be helpful to us later.
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Proposition 2.2. The cohomology ring of the n-sphere is given by

H˚
pSn;Zq “ Zrαs{pα2

q,

where α P HnpSn;Zq is a generator.

Proof. From cellular cohomology, we have

Hk
pSn;Zq “

$

&

%

Z k “ 0, n

0 otherwise

Let 1 be the generator of H0pSn;Zq. Then the only possible cup products are

α ! 1 “ α, 1 ! α “ α and α ! α “ 0

as H2npSn;Zq “ 0. Hence we have H˚pSn;Zq “ Zrαs{pα2q. �

Proposition 2.3. The cohomology rings of the projective spaces are given as follows:

H˚
pRPn;Z2q “ Z2rαs{pα

n`1
q,

where α P H1pRPn;Z2q and

H˚
pCPn;Zq “ Zrαs{pαn`1q,

where α P H2pCPn;Zq

This is quite an important result and has many implications. We will not give a
proof of this here as it will involve lots of concepts from cohomology theory that
we have not mentioned. Interested readers can look at [13] for a short and ele-
gant proof. For a detailed proof using basic cohomology and diagram chasing
see Theorem-3.12 of [2].

2.2 The Hopf Invariant

Let us prove a result first, which will be useful in defining Hopf invariant.
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Proposition 2.4. If pX1, Aq is a CW pair and we have attaching maps f, g : A Ñ X0

that are homotopic, then X0>fX1 » X0>gX1 rel X0

Herewe defineW » ZrelY for pairs pW,Y q and pZ, Y q by requiring the existence
of maps ϕ : W Ñ Z and ψ : Z Ñ W such that they restrict to the identity on Y
and ψ ˝ ϕ » 1 and ϕ ˝ ψ » 1 via homotopies that restrict to the identity on Y all
times.

Proof. Let us take F : A ˆ I Ñ X0 is a homotopy from f to g. Consider the
space X0>F pX1 ˆ Iq. This contains both X0>fX1 and X0>gX1 as subspaces.
X0>F pX1 ˆ Iq deformation retracts onto both X0>fX1 and X0>gX1. Also both
these deformation retractions restrict to the identity on X0. Hence we have the
homotopy equivalence X0>fX1 » X0>gX1 rel X0. �

For a map f : Sm Ñ Sn with m ě n, we can form a CW complex Cf to be the
quotient space of Sn>em`1 with the identification x „ fpxq, for x P Bem`1 “ Sm.
The homotopy type of Cf only depends on the homotopy class of f , by Propo-
sition 2.4. Now, if m “ n and f has degree d, then from cellular chain complex
of Cf we see that HnpCf q “ Z|d| and HkpCf q “ 0 for k ą 0p‰ nq. Similarly in
cohomology we haveHnpCf q “ Z|d| andHkpCf q “ 0 for k ą 0p‰ nq. So, the ring
structure ofH˚pCf q in this case is trivial. But cup products may have a chance of
being nontrivial inH˚pCf qwhenm “ 2n´1. From the cellular cochain complex
of Cf , the cohomology of Cf is

Hk
pCf ;Zq “

$

&

%

Z k “ 0, n, 2n

0 otherwise

From now on we will consider cohomology with integer coefficients unless oth-
erwise stated. Let us take generators α P HnpCf q and β P H2npCf q. The cup
product of α with itself will land in H2npCf q and hence will be of the form
α ! α “ Hpfqβ, where Hpfq is an integer.

Definition 2.2. (Hopf Invariant) The integer Hpfq in the above discussion is
called the Hopf invariant.

Note thatHpfqdepends on the choice of the generator β, but this can be specified
by requiring β to correspond to a fixed generator of H2npD2n, BD2nq under the
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map H2npCf q – H2npCf , Snq Ñ H2npD2n, BD2nq induced by the characteristic
map of the cell e2n, which is determined by f . We can then change the sign of
Hpfq by composing f with a reflection of S2n´1, of degree ´1. If f » g, then
by Proposition 2.4, the homotopy equivalence Cf » Cg gives us that the chosen
generators βf forH2npCf q and βg forH2npCgq correspond, soHpfq depends only
on the homotopy class of f . If f is a constantmap thenCf “ Sn_S2n andHpfq “
0 since Cf retracts onto Sn.
The unshot is that we have a well-defined map H : π2n´1pSnq Ñ Z, given by
rf s ÞÑ Hpfq. Let us now look at some properties of this Hopf invariant.

Proposition 2.5. The Hopf invariant has the following properties:
1. The Hopf invariant H : π2n´1pSnq Ñ Z is a homomorphism.
2. The Hopf invariant of a composition S2n´1 f

ÝÑ Sn g
ÝÑ Sn is given by

Hpg ˝ fq “ pdegpgqq2Hpfq

3. The Hopf invariant of a composition S2n´1 g
ÝÑ S2n´1 f

ÝÑ Sn is given by

Hpf ˝ gq “ pdegpgqqHpfq

Proof. (1)
Let f, g : S2n´1 Ñ Sn. We have to show that Hpf ` gq “ Hpfq `Hpgq.

f ` g : S2n´1 c
ÝÑ S2n´1_S2n´1 f_g

ÝÝÝÑ Sn

Let Cf_g be the quotient space obtained from collapsing the equatorial disk of
the 2n-cell of Cf`g to a point. Hence Cf_g is the space obtained from Sn by
attaching two 2n-cells via f and g. Let q : Cf`g Ñ Cf_g be the quotient map.
Let e2nf`g be the generator of H2npCf`gq “ Z and e2nf and e2ng are the generators
of H2npCf_gq “ Z ‘ Z. The induced cellular map in homology q˚ sends e2nf`g to
e2nf ` e

2n
g . As the dual of the map 1 ÞÑ p1, 1q is given by p1, 0q ÞÑ 1 and p0, 1q ÞÑ 1,

the induced map in cohomology q˚ is given by q˚pβf q “ q˚pβgq “ βf`g where βf ,
βg, βf`g are the cohomology classes dual to the 2n-cells. Letting αf`g and αf_g
be the cohomology classes corresponding to the n-cells, we have q˚pαf_gq “
αf`g since q is a homeomorphism on the n-cells. Now consider the inclusion
maps

if : Cf ãÑ Cf_g, ig : Cg ãÑ Cf_g



Chapter 2. The Hopf Invariant 30

Note thatαf_g ! αf_g P H
2npCf_gq – Z‘Z and βf and βg generateH2npCf_gq.

Hence,
αf_g ! αf_g “ nfβf ` ngβg (2.1)

As, i˚f induces isomorphism on Hn, we have

i˚f pαf_gq “ αf , i˚gpαf_gq “ αg

i˚f pβf q “ βf , i˚f pβgq “ 0

i˚gpβgq “ βg, i˚gpβf q “ 0

Applying, i˚f on both sides of Eq. 2.1, we get αf ! αf “ nfβf . Hence nf “ Hpfq.
Similarly applying i˚g in Eq. 2.1 we get ng “ Hpgq. Hence,

α2
f`g “ q˚pα2

f_gq “ q˚pHpfqβf `Hpgqβgq “ pHpfq `Hpgqqβf`g

as q˚pβf q “ q˚pβgq “ βf`g. So, by definition of Hopf invariant of the map f ` g,
we get Hpf ` gq “ Hpfq `Hpgq. �

Proof. (2)
We have g ˝ f : S2n´1 f

ÝÑ Sn g
ÝÑ Sn. Let us define G : Sn>e2n Ñ Sn>e2n by setting

G “ id on e2n and G “ g on Sn.

Sn>e2n Sn>e2n

Cf Cg˝f

G

qf qg˝f

F

(F is such that the diagram commutes)
In cohomology of degree n, the diagram gives

HnpCg˝f q HnpCf q

HnpSnq ‘Hnpe2nq HnpSnq ‘Hnpe2nq

F˚

q˚g˝f q˚f

G˚

AsHnpe2nq “ 0, all the groups in the above diagram are Z. Note that the map G
is given by g on Sn. So, the map G˚ is multiplication by degpgq by definition of
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degree. We also have
Sn i

ãÝÑ Sn>e2n qf
ÝÑ Cf

where the composition is an isomorphism on Hn by the long exact sequence of
cohomology for pairs (as HkpCf , Snq “ 0 for k ‰ 2n). Hence q˚f and q˚g˝f are
isomorphisms. From the diagram we therefore get F ˚ is also multiplication by
degpgq. Let αf and αg˝f be generators of HnpCf q and HnpCg˝f q respectively. As
G is identity on e2n, F ˚ takes the generator βg˝f ofH2npCg˝f q to a generator βf of
H2npCf q. Then we have

F ˚pαg˝f q “ degpgqαf , F ˚pβg˝f q “ βf (2.2)

Hence by Eq. 2.2 and Proposition 2.1,

Hpg ˝ fqβf “ F ˚pHpg ˝ fqβg˝f q “ F ˚pα2
g˝f q “ pdegpgqq2α2

f “ pdegpgqq2Hpfqβf

which implies Hpg ˝ fq “ pdegpgqq2Hpfq. �

Proof. (3)
We have f ˝ g : S2n´1 g

ÝÑ S2n´1 f
ÝÑ Sn. Let us define G : Sn>e2n Ñ Sn>e2n by

setting G “ Cg on e2n and G “ id on Sn. Note that Cg : CS2n´1 Ñ CS2n´1 is the
cone of g. As, CS2n´1 – e2n, we can take Cg to be a map on e2n.

Sn>e2n Sn>e2n

Cf˝g Cf

G

qf˝g qf

F

(F is such that the diagram commutes)
Now let us consider another diagram as follows :

Cf˝g Cf

Cf˝g{pCf˝gze
2nq Cf{pCfze

2nq

F

q q

rF

where q is the quotient map and rF is the induced map such that the diagram
commutes. Note that as in the construction of F we have taken the map to G to
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be Cg on e2n, we have

rF “ Sg : Cf˝g{pCf˝gze
2n
q – S2n

Ñ Cf{pCfze
2n
q – S2n

where Sg is the suspension map. Hence we finally have a diagram as follows:

Cf˝g Cf

S2n S2n

F

q q

Sg

In cohomology of degree 2n, the diagram gives

H2npS2nq H2npS2nq

H2npCf q H2npCg˝f q

q˚

Sg˚

q˚

F˚

All the groups in the above diagram are Z and the map Sg˚ is multiplication by
degpSgq “ degpgq. We also have by the long exact sequence of cohomology for
pairs that q˚ is an isomorphism (as HkpCf , Cf{pCfze

2nqq “ 0 for k ‰ 2n). From
the diagram we therefore get F ˚ is also multiplication by degpgq. Let αf and
αf˝g be generators of HnpCf q and HnpCf˝gq respectively. As F is identity on Sn,
F ˚ takes αf to αf˝g. Also let βf and βf˝g be generators ofH2npCf q andH2npCf˝gq

respectively. Then we have

F ˚pβf q “ degpgqβf˝g, F ˚pαf q “ αf˝g (2.3)

Hence by Eq. 2.3 and Proposition 2.1,

Hpf ˝ gqβf˝g “ α2
f˝g “ F ˚pα2

f q “ F ˚pHpfqβf q “ pdegpgqqHpfqβ2
f˝g

which implies Hpf ˝ gq “ pdegpgqqHpfq. �

Now, let us calculate the Hopf invariant of the Hopf map h : S3 Ñ S2.

Proposition 2.6. The Hopf invariant of the Hopf map is 1.



Chapter 2. The Hopf Invariant 33

Proof. We have h : S3 Ñ S2 and Ch is by definition given by the quotient space
of S2>e4 with the identification x „ hpxq for all x P Be4 “ S3. The cohomology
of Ch is given by

Hk
pChq “

$

&

%

Z k “ 0, 2, 4

0 otherwise

The CW structure of CP2 (see Example A.1(2) ) gives CP2
“ pCP1>e4q{ „, with

the identification ’„’ given by pz0, z1q „ rz0, z1s for all pz0, z1q P Be4 “ S3. Note
that the Hopf map h is also defined by pz0, z1q ÞÑ rz0, z1s. Hence using the home-
omorphism CP1

– S2 (see Proposition A.1), we see that Ch and CP2 are the
quotient space of the same space S2>e4 and the identification in the quotient
are also same. Hence CP2 and Ch are homeomorphic and H˚pChq “ H˚pCP2

q.
Now from the cohomology ring structure of CP2 (see Proposition 2.3), we have
α ! α “ β, where α and β are the generators of H2pCP2

q and H4pCP2
q. Hence

we must have α2
h “ βh and Hphq “ 1. �

From Proposition 2.5(1), we know that the Hopf invariant H : π3pS2q Ñ Z is a
homomorphism. From Proposition 2.6,H is surjective. It can be also shown that
H : π3pS2q Ñ Z is injective. Hence H gives us an isomorphism from π3pS2q to Z.
From Proposition 2.5, we have a better understanding of the elements of π3pS2q

using Hopf invariant. By Proposition 2.5(1), we have that the element of π3pS2q

that corresponds to the element k P Z is the homotopy class of the map h ˝ g,
where g : S3 Ñ S3 is a map of degree k. As there are maps of arbitrary degree
on S3, we have an idea of every element of π3pS2q. Also from Proposition 2.5(2),
we know that the element k2 P Z corresponds to the homotopy class of the map
f ˝ h, where f : S2 Ñ S2 is a map of degree k.
Let g : S3 Ñ S3 be a map of degree k2 and f : S2 Ñ S2 be a map of degree k. By
Proposition 2.5, both h ˝ g and f ˝ h corresponds to the element of k2 P Z via the
isomorphism H . Hence we must have rh ˝ gs “ rf ˝ hs. Using the properties of
Hopf invariant, we concluded that two maps are homotopic with only knowing
their degrees!!!
The existence of Hopf invariant 1 is not at all a common phenomenon, an el-
ement of Hopf invariant 1 in π2n´1pSn exists if and only if n “ 2, 4 or 8. This
result was proved by J.F. Adams in 1960 (see [21]) using secondary cohomology
operations.
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Degree of a Smooth Map

Wewill now introduce an important concept in Differential Topology, called the
degree of a map. We have already seen one definition of degree of a continuous
map Sn Ñ Sn using homology in Chapter-1. Here we will be mostly dealing
with smooth manifolds and develop the notion of degree of a smooth map be-
tween smoothmanifolds of same dimension. Wewill use de Rham cohomology
groups to define degree instead of the homology groups aswe have done before.
One of the key concept that will be important in our discussion is the integration
on a manifold. We will briefly introduce orientability and integration and then
go to the theory of degree.

3.1 Orientations on a Manifold

On a vector space an orientation is specified by a choice of an ordered basis.
We say that two different orientations are equivalent if the determinant of the
change of basis matrix is positive. So, it is quite clear that there can only be
two different orientations of a vector space. We will define the orientation of a
manifold in a similar fashion. To give a manifold an orientation, we orient the
tangent spaces at each point of the manifold in a "coherent" way so that it does
not change abruptly anywhere.

Definition 3.1. An n-manifold is said to be orientable if it has an atlas

tpUα, ϕα “ px
α
1 , . . . , x

α
nqu

34
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such that
det

´

Bxαi

Bxβj

¯

ą 0

on the intersection UαŞUβ .

Although we have defined what orientation on a manifold is, we would like
to give some motivation behind such a definition. Let us recall the change of
variables formula from calculus:
ż

Rn
fpy1, . . . , ynqdy1 ¨ ¨ ¨ dyn “

ż

Rn
fpy1pxq, . . . , ynpxqq|detpByi{Bxjq|dx1 ¨ ¨ ¨ dxn.

Now using the change of coordinate formula for an n-form ω, we have:
ż

Rn
ω “

ż

Rn
fpy1, . . . , ynqdy1 ¨ ¨ ¨ dyn

“

ż

Rn
fpy1pxq, . . . , ynpxqqdetpByi{Bxjqdx1 ¨ ¨ ¨ dxn.

The only difference in the above two expressions is the absolute value. It is quite
clear from Definition 3.1 that for an orientable manifold, the above two expres-
sion agree. So, we have a consistent sign of the above integral over all coordinate
chats. This enables us to assert a coordinate-independent value to the integral
of an n-form over an orientable manifold. Next we give an important character-
ization of orientability in terms of differential forms.

Proposition 3.1. A manifoldM of dimension n is orientable if and only if there exists
a nowhere vanishing n-form onM .

Proof. Letω be a nowhere vanishingn-formonM , and consider an atlas tpUα, ϕαqu
such that Uα’s are connected. Our goal is to construct a new atlas where the
change of coordinate has positive determinant. Let,

ω|Uα “ fαdx
α
1^ ¨ ¨ ¨^dxαn,

where the function f ‰ 0 at all points of Uα. As Uα is connected, fα has a fixed
sign. If fα is positive we keep the corresponding chart. If fα is negative, then we
change the chart to a new one by composing ϕα with the change of coordinate
map px1, . . . , xnq ÞÑ p´x1, . . . , xnq. Clearly, in the new coordinate system, fα is
positive. We repeat this process for each coordinate neighbourhoods and obtain
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a new atlas which we also denote as tpUα, ϕαqu, where the coefficient functions
fα are all positive. Moreover whenever UαŞUβ ‰ H, we have

ω|UαŞ

Uβ “ fαdx
α
1^ ¨ ¨ ¨^dxαn

“ fαdetpBx
α
i {Bx

β
j qdx

β
1^ ¨ ¨ ¨^dxβn

“ fβdx
β
1^ ¨ ¨ ¨^dxβn

Since fα ą 0 and fβ ą 0, we must have detpBxαi {Bx
β
j q ą 0.

Conversely, ifM is orientable, we have an atlas tpUα, ϕαqu for which the change
of coordinates have positive determinant. Take a partition of unity tραu subor-
dinate to this cover and put

ω “
ÿ

α

ραdx
α
1^ ¨ ¨ ¨^dxαn. (3.1)

Then on a coordinate neighbourhood tpUβ, ϕβquwe have

ω|Uβ “
ÿ

α

ραdetpBx
α
i {Bx

β
j qdx

β
1^ ¨ ¨ ¨^dxβn.

Since ρα ě 0, detpBxαi {Bx
β
j q ą 0 and ρβ ‰ 0 on Uβ , ω|Uβ is non-vanishing for each

Uβ . Hence ω in 3.1 is non-vanishing onM . �

Now this characterization helps us to quickly see some examples of orientable
and non-orientable manifolds.

Example 3.1. 1. The most trivial example to start with is Rn. Clearly, it has a
nowhere vanishing n-form which is dx1^ ¨ ¨ ¨^dxn. Hence by Proposition 3.1
it is orientable.

2. The next class of manifolds that comes to our mind is the n-sphere. Consider Sn

as a sub-manifold of Rn`1. Note that

ω “
n`1
ÿ

i“1

p´1qi´1xidx1^ ¨ ¨ ¨^xdxi^ ¨ ¨ ¨^dxn`1

is a non-vanishing n-form on Sn. By Proposition 3.1 Sn is orientable. The n-form
ω is also a volume form.
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3. Consider the real projective space RPn and the map p : Sn Ñ RPn which maps a
unit vector in Rn`1 to the one dimensional subspace it spans. Note that the map p
is smooth and locally invertible as only the antipodal points map to the same point
in RPn. Let ´1 : Sn Ñ Sn be the diffeomorphism x ÞÑ ´x, called the antipodal
map. Then

p´1q
˚ω “

n`1
ÿ

i“1

p´1qi´1p´xiqdp´x1q^ ¨ ¨ ¨^{dp´xiq^ ¨ ¨ ¨^dp´xn`1q

“ p´1qn`1ω.

SupposeRPn is orientable. Then by Proposition 3.1 it has a non-vanishing n-form
τ . Since the map p is smooth and locally invertible, its derivative is invertable at
all points. So, p˚τ is a non-vanishing n-form on Sn and so p˚τ “ fω for some
non-vanishing smooth function f . As p ˝ p´1q “ p, we have

fω “ p˚τ “ pp ˝ p´1qq˚τ “ p´1q˚fω “ pf ˝ p´1qq “ p´1qn`1ω.

Thus if n is even, f ˝ p´1q “ ´f . So, if fpxq ą 0, fp´xq “ ´fpxq ă 0. Hence
f must vanish somewhere, which is a contradiction. So RPn is a non-orientable
manifold when n is even.

3.2 Integration on Manifold

In this section, we give a brief discussion about integration on manifolds. The
contents of this section are mostly taken from [3]. LetM be an orientable man-
ifold of dimension n with an oriented atlas tpUα, φαqu. Suppose ω is an n-form
with compact support on U , where tpU, φqu is a chart in the given oriented atlas.
Note that pφ´1q˚ω is an n-formwith compact support on the open set φpUq Ă Rn.
We define

ż

U

ω :“

ż

φpUq

pφ´1q˚ω (3.2)

If pU, ψq is another chart in the oriented atlas with the same U , then φ ˝ ψ´1 :

ψpUq Ñ φpUq is an orientation-preserving diffeomorphism as the chart is ori-
ented, and so

ż

φpUq

pφ´1q˚ω “

ż

ψpUq

pφ ˝ ψ´1q˚pφ´1q˚ω “

ż

ψpUq

pψ´1q˚ω
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Now let ω be an n-form with compact support. Choose a partition of unity tραu
subordinate to the open cover tUαu. Because ω has compact support and a par-
tition of unity has locally finite supports, all except finitely many ραω are identi-
cally zero and ω “

ř

α ραω is a finite sum. Since supppραωq Ă supppραq
Ş

supppωq,
supppραωq is a closed subset of the compact set supppωq. Since ραω is a compact
form on Uα,

ş

Uα
ραω is well defined. So, we define the integral of ω overM to be

ż

M

ω :“
ÿ

α

ż

Uα

ραω (3.3)

In the definition of the integral we have a choice of partition of unity. So, to say
the integral is well defined, we must show that it is independent of the choice of
partition of unity. Let tVβ, ψβu be another oriented atlas ofM and tχβu be a parti-
tion of unity subordinate to tVβu. Then tUαŞVβ, φα|UαŞ

Vβu and tUα
Ş

Vβ, ψα|UαŞ

Vβu

are two new atlases ofM , specifying the orientation ofM , and

ÿ

α

ż

Uα

ραω “
ÿ

α

ż

Uα

ρα
ÿ

β

χβω

“
ÿ

α

ÿ

β

ż

Uα

ραχβω

“
ÿ

α

ÿ

β

ż

Uα
Ş

Vβ

ραχβω

where we can interchange the sum and integral as all are finite sums. The last
line follows from the fact that supppραχβq Ă supppραq

Şsupppχβq Ă Uα
ŞVβ . Simi-

larly, the other integral
ř

β

ş

Vβ
χβω is also equal to

ř

α,β

ş

Uα
Ş

Vβ
ραχβω. Hence,

ÿ

α

ż

Uα

ραω “
ÿ

β

ż

Vβ

χβω

showing that Eq. 3.3 is well defined.

3.3 The de Rham Cohomology

In this section we will introduce the de Rham cohomology of a manifold and
compute a few examples. One important question to answer when a differential
form is exact. As, d2 “ 0, a necessary condition is that the forms is closed. It
was proved by Poincare that every k-form on Rn is exact if and only if it is exact
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for k “ 1, 2, 3. Later a more general version was proved, called the Poincare
Lemma. For a general manifold, whether every closed form is exact depends
on the topology of the manifold. For example on Rn every closed form is exact,
but on Sn there are closed forms which are not exact. The de Rham cohomology
measures the extent to which closed forms are not exact.

Definition 3.2. Let ZkpMq be the vector space of all closed k-forms and BkpMq

be the vector space of all exact k-forms. As d2 “ 0, all exact forms are closed and
BkpMq Ă ZkpMq. We define the k-th de Rham cohomology vector space of M
to be the quotient

Hk
RpMq “ Zk

pMq{Bk
pMq

The equivalence class of a closed form is called the cohomology class and two
closed forms ω and ω1 are called cohomologous if ω “ ω1 ` dτ .

Proposition 3.2. LetM be a connected manifold. Then H0
RpMq “ R.

Proof. Note that there is no exact 0-form. So, H0
RpMq “ Z0pMq. Let us take a 0-

form, i.e. aC8-function f such that df “ 0. On a coordinate chart pU, x1, . . . , xnq,
we can write df “

ř

i
Bf
Bxi
dxi. As df “ 0, we have all partial derivatives of f are

zero. Hence f is locally constant function on U . We see that the closed 0-forms
are identified with the constant value it takes. So, H0

RpMq “ R. �

Proposition 3.3. LetM be a manifold of dimension n. Then Hk
RpMq “ 0 for k ą n.

Proof. For p P M , TpM is a vector space of dimension n. For a k-form ω on M ,
ωp P AkpTpMq, the vector space of all k-covectors. But as k ą n, AkpTpMq “ 0.
So, ω is the zero form and Hk

RpMq “ 0 for k ą n. �

Example 3.2. 1. (de Rham Cohomology of R) Since R is connected, by Proposi-
tion 3.2 H0

RpRq – R. On R there are no non zero 2-forms. So, every form
is closed. Let fdx be a 1-form on R. Define the function g on R by setting
gpxq :“

şx

0
fptqdt. Then by fundamental theorem of calculus, g1pxq “ fpxq and

dg “ g1pxqdx “ fpxqdx. This proves every 1-form on R is exact. Using this fact
and Proposition 3.3, we have Hk

RpRq “ 0 for k ą 0.

2. Let U be a disjoint union of m open intervals in R. Then H0
RpUq “ Rm and

Hk
RpUq “ 0 for k ą n.
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3. In general

Hk
RpRn

q “

$

&

%

R for k “ 0

0 otherwise

This result is known as the Poincaré lemma and will be proved later.

For any smooth map f : M Ñ N , there is a map f˚ : Ω˚pNq Ñ Ω˚pMq, called
the pullback of f .

Lemma 3.1. The pullback map sends closed forms to closed forms and exact forms to
exact forms.

Proof. Let ω be a closed form, i.e. dω “ 0. As the pullback commutes with the
exterior derivative d, we have df˚ω “ f˚dω “ f˚0 “ 0. Hence, f˚ω is closed.
Similarly f˚dτ “ df˚τ is an exact form. �

It follows that f˚ induces a map between the quotients f˚ : Hk
RpNq Ñ Hk

RpMq,
also denoted as f˚, given by f˚rωs “ rf˚ωs. The functorial properties of the
pullback map on differential forms easily yield the same functorial properties
for the induced map in cohomology namely,

1. If 1 : M Ñ M is the identity map, then 1˚ : Hk
RpMq Ñ Hk

RpMq is also the
identity map.

2. If f : M Ñ N and g : N Ñ P are smooth maps, then pg ˝ fq˚ “ f˚ ˝ g˚.

In case of singular cohomology, we have the cup product which gives the prod-
uct structure on the singular cohomology ring. Similarly, the wedge product
gives a product structure on the vector space Ω˚pMq. This product induces a
product on de Rham cohomology: if rωs P Hk

RpMq and rτ s P H l
RpMq, define

rωs^rτ s :“ rω^τ s P Hk`l
R pMq

To see that the product is well defined we observe the following facts about
wedge product.

1. The wedge product ω^τ of closed forms is closed.
This follows from the formula: dpω^τq “ pdωq^τ ` p´1qkω^pdτq.
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2. The class rω^τ s is independent of the choice of representative of rωs or
rτ s.
If ω is replaced by ω1 “ ω ` dα, then we have ω1^τ “ ω^τ ` dα^τ .
We have to show that dα^τ is exact. Indeed we have dpα^τq “ dα^τ `

p´1qk´1α^dτ “ dα^τ as dτ “ 0. Similarly the other one follows.

For an n-manifold we set

H˚
RpMq :“

n
à

k“1

Hk
RpMq

Every element ω P H˚
RpMq can be written as ω “ ω0`ω1` ¨ ¨ ¨ `ωn, ωk P Hk

RpMq.
Elements ofH˚

RpMq can be added and multiplied, multiplication here being the
wedge product. It can be verified that under this addition and multiplication
H˚

RpMq becomes a ring, called the de Rham cohomology ring. The cohomology
ring has a natural grading by degree of closed forms. Also, the cohomology
ring is an anticommutative graded ring, i.e. ω^τ “ p´1qklτ^ω. SinceH˚

RpMq is
a real vector space, it is a real graded algebra.
For a C map f : M Ñ N , we have the pull back map f˚ : Hk

RpNq Ñ Hk
RpMq.

Because one has f ˚ pω^τq “ f˚ω^f˚τ , f˚ : H˚
RpNq Ñ H˚

RpNq is well defined
and becomes a ring homomorphism. So, the de Rham cohomology ring gives us
a contravariant functor from the category of smooth manifolds to anticommuta-
tive graded ring. If twomanifoldsM andN are diffeomorphic, thenH˚

RpMq and
H˚

RpNq are isomorphic anticommutative graded ring. Hence, the de Rham co-
homology ring is an important diffeomorphism invariant of smooth manifolds.
It is also a homotopy invariant as in the case of singular cohomology ring. We
have defined homotopy in the continuous setting. But as our discussion is re-
garding smooth manifolds and smooth maps, we need to extend the notion of
homotopy to the smooth setting.

Definition 3.3. (Smooth Homotopy) Two smooth maps f, g : M Ñ N between
two smooth manifoldsM and N are said to be smoothly homotopic if there is a
smooth map F : M ˆ RÑ N such that F |t“0 “ f and F |t“1 “ g.

The map F is called a homotopy between f and g. The map F can be thought
of a smooth family tft “ F p´, tq : t P Ru of maps varying smoothly in t so that
f0 “ f and f1 “ g. As an example we can think of the straight-line homotopy
F px, tq “ p1´ tqfpxq ` tgpxq for maps f, g : M Ñ Rn. F is smooth onM ˆR and
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F |t“0 “ f and F |t“1 “ g.

Definition 3.4. (Smooth Homotopy Equivalence) A smooth map f : M Ñ N is
said to be a smooth homotopy equivalence if there is a map g : N Ñ M such
that g ˝ f is smoothly homotopic to 1M and f ˝ g is smoothly homotopic to 1N .

In this case we say thatM is smoothly homotopy equivalent toN , or thatM and
N have the same smooth homotopy type.

Example 3.3. 1. A diffeomorphism is a smooth homotopy equivalence.

2. Let p P Rn and i : tpu ãÑ Rn be the inclusion map. Let r : Rn Ñ tpu be the
constant map x ÞÑ p for all x P Rn. Then r ˝ i “ 1tpu and the straight-line
homotopy

F px, tq “ p1´ tqx` tp

gives a smooth homotopy between 1Rn and i ˝ r. Hence Rn and tpu have the same
homotopy type.

3. Let i : Sn ãÑ Rn`1zt0u be the inclusion and r : Rn`1zt0u Ñ Sn be the map
x ÞÑ x

|x|
. Note that r is a smooth map and r ˝ i “ 1Sn . Let us define the map

F : Rn`1zt0u ˆ RÑ Rn`1zt0u by

F px, tq :“ p1´ tq2x` t2rpxq “ p1´ tq2x` t2
x

|x|
.

Note that F never takes the value 0 as F px, tq “ 0 Ø p1 ´ tq2 ` t2{|x| Ø t “

1 “ 0, which is a contradiction. Also F is smooth and F gives a smooth homotopy
between 1Rn`1zt0u and i ˝ r. Hence Sn and Rn`1zt0u are smoothly homotopic.

We will now state the homotopy axiom for de Rham Cohomology without a
proof. A proof can be found in Section 28 of [3].

Theorem 3.1. Smoothly homotopic maps f0, f1 : M Ñ N induce the same map f˚0 “
f˚1 : H˚

RpNq Ñ H˚
RpMq in cohomology.

Corollary 3.1. If f : M Ñ N is a smooth homotopy, then the induced map f˚ :

H˚
RpNq Ñ H˚

RpMq is an isomorphism.

Proof. ByDefinition 3.4 there is a g : N ÑM such that g˝f „ 1M and f ˝g „ 1N .
By Theorem3.1 and functorialitywe have f˚˝g˚ “ pg˝fq˚ “ 1

˚
M and g˚˝f˚ “ pf˝

gq “ 1
˚
N . Hence g˚ is the inverse of f˚, making both f˚ and g˚ isomorphisms. �
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From Example 3.3 we know that Rn has the same homotopy type as a point.
Hence the de Rham Cohomology of Rn is same as that of a point. This proves
the Poincaré Lemma that we mentioned in Example 3.2.
Next we prove a result concerning the de Rham cohomology of a compact con-
nected orientablemanifold in the top dimension. Wewill first prove two lemmas
that will be needed for proving the result we are looking for.

Lemma 3.2. Let f be a smooth function on Rn with support in the open cube Cn “

p´1, 1qn and
ż

Rn
fdx1 ¨ ¨ ¨ dxn “ 0

Then there exist smooth functions f1, . . . , fn on Rn with support in Cn such that

f “
n
ÿ

i“1

Bfi
Bxi

Proof. We will prove the lemma using induction on the dimension n.
For n “ 1, we are given

ş

R fdx “ 0. Set

gpxq :“

ż x

´1

fptqdt

Then we have Bg
Bx
“ f . Note that supppgq “ tx|

şx

´1
fptqdt ‰ 0u. As, supppfq Ă

p´1, 1q,
ş1

´1
fdx “ 0. Hence supppgq Ă p´1, 1q.

Let us assume that the statement is true for all values less than n. We are given
a smooth function f on Rn and

ż

R
fdx1 ¨ ¨ ¨ dxn “ 0

Fix xn “ t and define the function g on Rn´1 by

gpx1, . . . , xn´1q :“ fpx1, . . . , xn´1, tq

Let σ be a bump function on Cn´1 such that
ż

Cn´1

σdx1 ¨ ¨ ¨ dxn´1 “ 1

Set
hptq :“

ż

Cn´1

fpx1, . . . , xn´1, tqdx1 ¨ ¨ ¨ dxn´1
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Now we have

gpx1, . . . , xn´1q ´ hptqσpx1, . . . , xn´1q “: h1px1, . . . , xn´1q (3.4)

Using the fact that supppσq Ă Cn´1 and supppfq Ă Cn´1 and integrating 3.4 over
Rn´1, we get
ż

Rn´1

h1dx1 ¨ ¨ ¨ dxn´1 “

ż

Rn´1

gdx1 ¨ ¨ ¨ dxn´1 ´

ż

Rn´1

hptqσdx1 ¨ ¨ ¨ dxn´1

“

ż

Cn´1

fpx1, . . . , xn´1, tqdx1 ¨ ¨ ¨ dxn´1 ´ hptq

ż

Cn´1

σdx1 ¨ ¨ ¨ dxn´1

“ hptq ´ hptq “ 0

As h1 is a function on Rn´1, we have by induction hypothesis

h1 “
n´1
ÿ

i“1

Bfi
Bxi

(3.5)

Set fnpx1, . . . , xnq :“ p
şxn
´1
hptqdtqσpx1, . . . , xn´1q. Then,

Bfn
Bxn

“ hpxnqσpx1, . . . , xn´1q (3.6)

Using Eq. 3.5 & Eq. 3.6 and putting t “ xn in Eq. 3.4 we get,

fpx1, . . . , xn´1, xnq “ h1px1, . . . , xn´1q ` hpxnqσpx1, . . . , xn´1q

“

n´1
ÿ

i“1

Bfi
Bxi

`
Bfn
Bxn

“

n
ÿ

i“1

Bfi
Bxi

By hypothesis, f1, . . . fn´1 has support in Cn´1. Also, note that hptq has support
in p´1, 1q. From Eq. 3.4, we see that h1 is zero if t ą 1 ´ δ or t ă ´1 ` δ. So,
supppfjq Ă Cn´1 ˆ p´1, 1q “ Cn for j “ 1, . . . , n´ 1.
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For fn, if t ą 1´ δ,
ż t

´1

hptqdt “

ż t

´1

´

ż

Cn´1

fpx1, . . . , xn´1, tqdx1 ¨ ¨ ¨ dxn´1

¯

dt

“

ż 1

´1

´

ż

Cn´1

fpx1, . . . , xn´1, tqdx1 ¨ ¨ ¨ dxn´1

¯

dt pas f “ 0 for t ą 1´ δq

“

ż

Cn´1

fpx1, . . . , xnqdx1 ¨ ¨ ¨ dxn´1

“ 0 (by hypothesis)

Thus supppfnq Ă Cn. �

Lemma 3.3. Let ω be an n-form on Rn with support contained in the open cube Cn

such that
ż

Rn
ω “ 0

Then there exists an pn´ 1q-form η on Rn with support in Cn such that dη “ ω.

Proof. Write ω “ fdx1^ ¨ ¨ ¨^dxn with supppfq Ă Cn. As
ş

Rn ω “ 0, we have

ż

Rn
fdx1 ¨ ¨ ¨ dxn “ 0

By Lemma 3.2,

f “
n
ÿ

i“1

Bfi
Bxi

with supppfiq Ă Cn. Define the pn´ 1q-form η on Rn´1 by,

η “
n
ÿ

i“1

p´1qi´1fidx1^ ¨ ¨ ¨^xdxi^ ¨ ¨ ¨^dxn

Then we have

dη “
´

n
ÿ

i“1

Bfi
Bxi

¯

dx1^ ¨ ¨ ¨^dxn “ fdx1^ ¨ ¨ ¨^dxn “ ω

and supppηq Ă Cn as supppfiq Ă Cn for all i “ 1, . . . , n. �

These two lemmas will be helpful in proving our next result regarding the co-
homology in top dimension of a compact orientable manifold.

Proposition 3.4. IfM is a compact connected orientable smooth manifold of dimension
n, then Hn

RpMq – R.
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Proof. By compactness, there is a finite cover tU1, . . . , Umu by coordinate nbds
diffeomorphic to the open cube Cn. Let ω0 be a bump n-form with support con-
tained in U1 and total integral 1. If ω0 “ dη, then

ş

M
ω “

ş

M
dη “

ş

BM
η “ 0, by

Stokes Theorem. So, ω0 is not exact. It is closed as there is no pn`1q-form onM .
Hence ω0 defines a non-zero cohomology class in Hn

RpMq. We shall show that
every n-form onM is cohomologus to a multiple of ω0. Let ω be a n-form onM .
we have to show

ω “ cω0 ` dη ; c P R, η P Ωn´1
pMq. (3.7)

Using a partition of unity tρiu subordinate to tUiu, we write ω “
ř

i ρiω, where
ρiω is an n-formwith support inUi. By linearity of d, it is enough to prove Eq. 3.7
for ρiω. So, without loss of any generality, we assume that ω has support in Uk
for some k P t1, . . . ,mu.
Let x P U1 and y P Uk be two disjoint points. As M is connected, there is a
path connecting x and y. Using the compactness of the path we find Ui1 , . . . , Uir
such that they cover the path and Ui1 “ U1, Uir “ Uk and Uij

Ş

Uij`1
‰ H for all

j “ 1, . . . , r ´ 1.
For all j “ 1, . . . , r ´ 1, choose n-form ωj with support in Uij

Ş

Uij`1
and total

integral 1. Now ω0 ´ ω1 has support in Ui1 “ U1 and total integral zero. By
Lemma 3.3, there exist a pn´ 1q-form η1 with support in U1 such that

ω0 ´ ω1 “ dη1.

Similarly ω1 ´ ω2 has support in Ui2 and total integral zero. So, ω1 ´ ω2 “ dη2,
where η2 has support in Ui2 . Continuing for j “ 1, . . . , r ´ 1 we get,

ω0 ´ ω1 “ dη1

ω1 ´ ω2 “ dη2

...

ωr´2 ´ ωr´1 “ dηr´1

Adding both sides we get ω0 ´ ωr´1 “
řr´1
j“1 dηj .

Let η “
řr´1
j“1 ηj . By linearity of d,

ω0 ´ ωr´1 “ dη. (3.8)
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Now, the support of ω and ωr´1 is contained in Uir “ Uk. Let
ş

M
ω “ c. Then

ş

M
pω ´ cωr´1q “ 0 and ω ´ cωr´1 has support in Uk. Again by Lemma 3.3,

ω ´ cωr´1 “ dζ (3.9)

From Eq. 3.8 and Eq. 3.9,

ω ´ cpω0 ´ dηq “ dζ ñ ω “ cω0 ` dpζ ´ cηq

which proves Eq. 3.7. HenceHn
RpMq – R, generated by the bump n-form ω0. �

3.4 Degree of a Smooth Map between Manifolds

In this sectionwewill define the notion of degree of a smoothmap between com-
pact connected orientablemanifolds of samedimension and see someproperties
and applications of degree.

Definition 3.5. Let f : M Ñ N be a smooth map between compact connected
orientable smooth manifolds of same dimension n. let ωM and ωN be the n-form
onM,N respectively, with total integral 1, that generate the cohomology group
Hn

RpMq and Hn
RpNq. f˚ : Hn

RpNq Ñ Hn
RpMq carries rωN s to a multiple of rωM s.

This number is called the degree of f , denoted as degpfq.

The definition is same as our previous definition of degree in Chapter-1. Next
we will prove two propositions, which will be useful for calculation purpose.

Proposition 3.5. Let f : M Ñ N be smooth. Then for all ω P ΩnpMq,
ż

M

f˚ω “ degpfq
ż

N

ω.

Proof. If τ is an exact n-form onM , say τ “ dη, then
ş

M
τ “

ş

M
dη “

ş

BM
η “ 0

(by Stokes’ Theorem).
So, the integral of an exact form is zero. Hence the integral only depends on the
cohomology class. Let rωN s be the cohomology class that generates Hn

RpNq, i.e.
ş

N
ωN “ 1. So, rωs “ crωN s. Also, we have

ş

N
ω “ c

ş

N
ωN “ c.
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Now, by definition

f˚rωs “ f˚pcrωsq

“ cf˚rωN s

“ c ¨ degpfqrωN s

Integrating and using the fact that
ş

M
ωM “ 1 &

ş

N
ω “ cwe get,

ż

M

f˚ω “ c ¨ degpfq
ż

M

ωM “ degpfq
ż

N

ω

�

By our previous definition of degree, it was clear that degree of a map is an inte-
ger, but this notion of degree does not immediately ensures that it is an integer.
It is clear that degree of a smooth map is a real number. We will show now it is
indeed an integer.

Proposition 3.6. Let f : M Ñ N be a smooth map. If q P N is a regular value of f ,
then

degpfq “
ÿ

pPf´1pqq

signpdetpdf |pqq

Proof. Since q is a regular value, df |p is surjective at each p P f´1pqq. As dimpMq “
dimpNq, df |p is a bijection. So, by Inverse Function Theorem, f is a local diffeo-
morphism at each p P f´1pqq. As,M is compact and f´1pqq being closed, f´1pqq
is compact. Also, f being a local diffeomorphism at each point p P f´1pqq, f´1pqq
is discrete and hence finite (only discrete compact sets are finite sets).
Write f´1pqq “ tp1, . . . , pku and choose disjoint nbds Ui of pi and Vi of q such that
f : Ui Ñ Vi is a diffeomorphism. Set V “ Şk

i“1Vi and rUi “ Ui
Şf´1pV q.

Then f : rUi Ñ V is a diffeomorphism for all i. Moreover fpMz ∪ki“1 rUiq is a
compact subset of N . So, by further shrinking V , we can assume that f´1pV q “
∪ki“1 rUi.
Let ω be an n-form onN , with total integral 1 and support contained in V . Then
f˚ω is an n-form onM with support in ∪ki“1 rUi.

ż

ĂUi

f˚ω “ signpdetpdf |pqq
ż

V

ω “ signpdetpdf |pqq
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Herewe are considering the determinant of the jacobianmatrix of f at pi, relative
to the orientation preserving local charts around pi and q. So, signpdetpdf |piqq is
`1 is df |pi : TpiM Ñ TqN preserves orientation and ´1 if it reverses orientation.
Hence,

defpfq “

ż

M

f˚ω “
k
ÿ

i“1

ż

ĂUi

f˚ω “
k
ÿ

i“1

signpdetpdf |piqq.

�

Corollary 3.2. degpfq is an integer.

Proof. Follows from Proposition 3.6 �

Before looking at some examples, we discuss some important properties and
applications of degree. The following proposition lists some of the important
properties of degree.

Proposition 3.7. Let f : M Ñ N and g : N Ñ S be two smooth maps between
compact connected orientable smooth manifolds of same dimension n. Then

1. Let N “M and f “ 1M . Then degp1Mq “ 1

2. If tft|t P Ru is smooth homotopy, then degpf0q “ degpf1q.

3. If f is not surjective, then degpfq “ 0.

4. degpg ˝ fq “ degpfqdegpgq.

Proof. 1. Since, 1˚M “ 1Hn
R pMq

, from definition of degree degp1Mq “ 1.

2. Note that by Corollary 3.1 we have f0 “ f1. By our definition of degree,
we must have degpf0q “ degpf1q.

3. As M is compact, fpMq is also compact and hence a closed subset of N .
SetNzfpMq “: V . Note that V is open and we choose a bump n-form ω on
N such that supppωq Ď V . Then f˚ω “ 0 and by Proposition 3.5, we have
degpfq “ 0.
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4. By Proposition 3.5, we have

degpg ˝ fq
ż

S

ωS “

ż

M

pg ˝ fq˚ωS

“

ż

M

f˚pg˚ωSq

“ degpfq
ż

N

g˚ωS

“ degpfqdegpgq
ż

S

ωS.

As
ş

S
ωS ‰ 0, we have degpg ˝ fq “ degpfqdegpgq.

�

Lemma 3.4. The antipodal map ´1 : Sn Ñ Sn has degree p´1qn`1

Proof. Let ω be the volume form on Sn as in Example 3.1 and we have seen
that p´1q˚ω “ p´qn`1ω. Hence using Proposition 3.5, we see that degp´1q “
p´1qn`1. �

An important application of degree is the following result.

Proposition 3.8. Sn has a non-vanishing tangent vector field if and only if n is odd.

Proof. Let Sn has a non-vanishing smooth vector field v : Sn Ñ TSn, assigning
to each point x the tangent vector vpxq P TxSn. Now, as

TxSn “ tu P Rn`1 : xu, xy “ 0u,

we have x and vpxq are orthogonal in Rn`1. Take upxq “ vpxq{|vpxq|. Then u is
a non-vanishing smooth vector field as vpxq ‰ 0. Also |upxq| “ 1 for all x P Sn.
Now define

ftpxq “ pcos tqx` psin tqupxq, t P R.

Then ftpxq lies in the unit circle of the plane spanned by x and upxq and thus
gives us a homotopy between 1Sn (t “ 0) and the antipodal map ´1 (t “ π). By
Proposition 3.7 and Lemma 3.4, we have 1 “ degp1Snq “ degp´1q “ p´1qn`1.
Hence nmust be odd.
Conversely, if n “ 2k ´ 1 is odd, we define

vpx1, y1, . . . , xk, ykq “ p´y1, x1, . . . ,´yk, xkq.
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Then for x “ px1, y1, . . . , xk, ykqwe have

xx, vpxqy “ p´x1y1 ` y1x1q ` ¨ ¨ ¨ ` p´xkyk ` ykxkq “ 0.

Hence x and vpxq is orthogonal and |vpxq| “ 1 for all x P S2k´1. So, v is a smooth
non-vanishing tangent vector field on S2k´1. �

Example 3.4. Let us now calculate the degree of some smoothmaps between some known
smooth manifolds.

1. To start with, let us first consider the example f : S1 Ñ S1, given by z ÞÑ zn. If we
parametrize S1 by φ : p0, 2πq Ñ S1, φptq “ pcos t, sin tq, the map f locally looks
like pcos t, sin tq ÞÑ pcosnt, sinntq. Take the 1-form ω “ xdy ´ ydx on S1 Ă R2.
Note that

φ˚ω “ px ˝ φqdpy ˝ φq ´ py ˝ φqdpx ˝ φq “ cos tpcos tdtq ´ sin tp´ sin tdtq “ dt

and f ˝φptq “ pcosnt, sinntq. Hence, pf ˝φq˚ω “ ndt. Now by Proposition 3.5,
we have

ż

S1
f˚ω “ defpfq

ż

S1
ω

ñ

ż 2π

0

φ˚f˚ω “ degpfq
ż 2π

0

φ˚ω

ñ

ż 2π

0

ndt “ degpfq
ż 2π

0

dt

ñ degpfq “ n

2. Consider f : S1 ˆ S1 Ñ S1 ˆ S1, given by pz1, z2q ÞÑ pzn1
1 , z

n2
2 q. S1 ˆ S1 Ă R4

is the set of all points px1, y1, x2, y2q P R4 such that x21 ` y21 “ x22 ` y22 “ 1.
Consider for j “ 1, 2 the 1-forms ωj “ xjdyj ´ yjdxj and take the 2-form ω1^ω2

on S1ˆ S1 Ă R4. Take φ to be the parametrization of S1ˆ S1 given by pt1, t2q ÞÑ
pcos t1, sin t1, cos t2, sin t2q. By similar calculations as in the previous example,
we can show that φ˚ωj “ dtj and pf ˝ φq˚ωj “ njdtj . Hence using the formula
in Proposition 3.5 we conclude that degpfq “ n1n2.

3. Consider f : S1 ˆ S1 Ñ S1 ˆ S1, given by pz1, z2q ÞÑ pzp1z
r
2, z

q
1z
s
2q, where

˜

p q

r s

¸

P GL2pZq.
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Using the notations used in previous examples, we have

f ˝ φpt1, t2q “ pcos ppt1 ` rt2q, sin ppt1 ` rt2q, cos pqt1 ` st2q, sin pqt1 ` st2qq.

It is easy to verify that pf ˝ φq˚ω1 “ pdt1 ` rdt2 and pf ˝ φq˚ω2 “ qdt1 ` sdt2.
Hence we have

ż

S1ˆS1
f˚pω1^ω2q “

ż 2π

0

ż 2π

0

ppdt1 ` rdt2q^pqdt1 ` sdt2q

“

ż 2π

0

ż 2π

0

pps´ qrqdt1^dt2

“ det

˜

p q

r s

¸

ż

S1ˆS1
ω1^ω2.

Using the formula in Proposition 3.5 we conclude that degpfq “ det

˜

p q

r s

¸

.

4. Let C ∪ tu be the extended complex plane and f : C ∪ tu Ñ C ∪ tu be the map
given by

fpzq “

$

&

%

zk ` ak´1z
k´1 ` ¨ ¨ ¨ ` a1z ` a0 z ‰

z “

This is smooth at all points z ‰ as it is a polynomial on C. For points near z “,
fpzq is smooth if and only if fp1{zq is smooth near z “ 0. Note that on a small
disc around z “ 0, fp1{zq is given by

w ÞÑ
wk

1` ak´1w ` ¨ ¨ ¨ ` a0wk

which is smooth as the denominator never vanish on a small disc around zero.
Now let us define for each t P R

ftpzq “ zk ` tpak´1 ` ¨ ¨ ¨ ` a1z ` a0q.

This is a smooth map for all t P R. By Proposition 3.7(2),

degpf0q “ degpf1q “ degpfq

where f0pzq “ zk. To calculate the degree of this map, we take a 2-form φpx2 `

y2qdx^dy with supppφq compact. Writing it in polar co-ordinates r and θ, we
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have
φpx2 ` y2qdx^dy “ φprqrdr^dθ.

Then the degree is given by

degpf0q
ż

R2

fprqrdr^dθ “

ż

R2

f˚0 pfprqrdr^dθq

“

ż

R2

fprkqprkqdprkq^dpkθq

“ k

ż

R2

fprqrdr^dθ.

Thus degpfq “ degpf0q “ k.
This example shows the existence of maps of arbitrary degree on S2. Note that
in particular if k ą 0, then f is surjective and takes the value 0 at some point.
Therefore every polynomial in C has a root. This is a proof of the fundamental
theorem of algebra using degree theory.

Degree is an important concept in Algebraic and Differential Topology and has
many applications. For further reading one can refer to [14] and [15]. The notion
of degreewill be key in our discussion of Linking Number in the next chapter. We
will define the linking number as a degree of some map from the torus to the
sphere.



Chapter 4

Geometry of The Hopf Fibers

In this chapter we will discuss about the geometry of the fibers of the Hopf
map. In Proposition 1.9 we have seen that the fibers of the Hopf fibration are
circles. The first question that arises after this observation is whether the fibers
are linked or not. Wewillmainly address this question in this chapter and unveil
the geometry of the Hopf fibers. This hopefully will give us more insight on the
spatial arrangement of the Hopf fibers. Before going to the Hopf map, we intro-
duce the concept of linking number. For a pair of disjoint linked closed curves
in R3 Ă S3 we can associate an integer to the pair, known as the linking number,
which represents the winding of one curve around the other. In Figure 4.1, we
see three links. In the first one, there is no linking. That is why it is known as
the Un-link. The second one is linked once and the third one is linked twice. So,
we expect that the linking number for the Un-link must be 0, for the Hopf link
must be 1 and for the Solomon link must be 2. We will see that the notion of
linking number that we will define will be consistent with this observation.

Figure 4.1: Various Links
Source: Google Image

54
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4.1 Linking Number

Carl Friedrich Gauss introduced the concept of linking number in a brief note on
his diary in 1833. Although he gave no proof or derivation in that note, it was a
cornerstone in the development of the modern theory of linking number, which
became fundamental in the field of knot theory and modern topological field
theory. Here we will define linking number in terms of degree. There are other
interpretations of linking number in terms of signed crossing and intersection
number. Interested readers can find detailed discussion about them in [7].
Let C1 and C2 be two disjoint, closed, oriented, smooth curves in R3 Ă S3. As
we are identifying R3 with S3ztpointu via the stereographic projection, we will
regard the infinite curves, such as tp0, 0, zq : z P Ru as closed curves. So, the
only type of curves that are not allowed are the finite non-closed curves and
the half-infinite curves, such as tp0, 0, zq : z ě 0u. Let γj : r0, 2πs Ñ R3 be
parametrizations for Cj . To each pair pp1, p2q P C1 ˆC2 there is a corresponding
point pt1, t2q on the torus T such that γjptjq “ pj for j “ 1, 2.

Definition 4.1. The Gauss map ψ : T Ñ S2 is defined by associating to each
point pt1, t2q the unit vector

npt1, t2q “
γ1pt1q ´ γ2pt2q

|γ1pt1q ´ γ2pt2q|
.

Definition 4.2. The linking number of C1 and C2, denoted as LkpC1, C2q is given
by

LkpC1, C2q :“ degpψq.

In the definition of linking number we have a choice of parametrization of the
curves C1 and C2. For the definition to be well defined, it should be invariant
under change of parametrizations. The next proposition tells us indeed it is.

Proposition 4.1. Let φj : r0, 2πs Ñ r0, 2πs for j “ 1, 2 be two orientation preserving
diffeomorphisms. Let ψ1 : TÑ S2 be the Gauss map associated to the new parametriza-
tions γj ˝ φj for j “ 1, 2. Then degpψ1q “ degpψq.

Proof. Note that φj is homotopic to 1r0,2πs via the linear homotopy. LetHj be the
corresponding homotopies. Then we can define a homotopy F between ψ and
ψ1 by setting

F ppt1, t2q, sq :“
γ1pH1pt1, sqq ´ γ2pH2pt2, sqq

|γ1pH1pt1, sqq ´ γ2pH2pt2, sqq|
.
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By Proposition 3.7(2), we have degpψq “ degpψ1q. �

Lemma 4.1. LkpC1, C2q “ LkpC2, C1q

Proof. The Gauss map associated to LkpC2, C1q is given by ψ1pt2, t1q “ ´ψpt1, t2q,
where ψ is the Gauss map associated to LkpC1, C2q. If ´1 is the antipodal map
of S2 and ζ is the map T Ñ T given by pt1, t2q ÞÑ pt2, t1q, then ψ1 “ p´1q ˝ ψ ˝ ζ .
So,

degpψ1q “ degp´1qdegpψqdegpζq “ degpψq

as degp´1q “ degpζq “ ´1. �

From Proposition 3.6, we know that

degpψq “
ÿ

pPψ´1pqq

sgnpdetpdψ|pqq. (4.1)

Let q P S2 be a regular value of ψ and let ψ´1pqq “ T “ tpt11 , t22q, . . . , ptk1 , tk2qu.
By Eq. 4.1 any point of T contributes ˘1 to the value of degpψq. At any point
ψpti1 , ti2q (i “ 1, 2, . . . , k) the normal vector νpti1 , ti2q “

`

Bn
Bt1
ˆ Bn
Bt2

˘

pti1 ,ti2 q
gives an

orientation to the surface ψpTq at ψpti1 , ti2q. Hence the orientation of νpti1 , ti2q
(outwards or inwards) determines whether the point pti1 , ti2q contributes `1 or
´1 to the value of degree. Note that Bn

Bt1
and Bn

Bt2
lives in the tangent space to

the sphere at npt1, t2q. Hence their cross product must be parallel to to the unit
vector npt1, t2q. So, the sign is given by the sign of npti1 , ti2q ¨ νpti1 , ti2q. Let us
denote

npti1 , ti2q ¨ νpti1 , ti2q “:
´

n,
Bn

Bt1
,
Bn

Bt2

¯

pti1 ,ti2 q
; (4.2)

and we see that

degpψq “
ÿ

pti1 ,ti2 qPT

sgn
´

n,
Bn

Bt1
,
Bn

Bt2

¯

pti1 ,ti2 q
. (4.3)

Also note that
`

n, Bn
Bt1
, Bn
Bt2

˘

pti1 ,ti2 q
“ sgn

`

n, Bn
Bt1
, Bn
Bt2

˘

pti1 ,ti2 q

ˇ

ˇ

Bn
Bt1
ˆ Bn
Bt2

ˇ

ˇ

pti1 ,ti2 q
asnpti1 , ti2q

and νpti1 , ti2q are parallel. It can be shown that the degree of ψ is given by

degpψq “ 1

4π

ż

T

´

n,
Bn

Bt1
,
Bn

Bt2

¯

d2θ, (4.4)

where d2θ is the volume form on the torus. For further details and a proof see
Proposition-5.6 of [7].
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We can also calculate the degree of ψ by calculating the oriented area of ψpTq.
Let us sub-divide T into regions Ri, where Bn

Bt1
ˆ Bn

Bt2
has a constant sign. The

oriented area of ψpRiq is given by

˘

ż ż

ˇ

ˇ

ˇ

Bn

Bt1
ˆ
Bn

Bt2

ˇ

ˇ

ˇ
dt1dt2,

where sign depends on the orientation of the surface. The oriented area A is
given by summing up all the positive and negative contributions from the re-
gions ψpRjq. Since

`

n, Bn
Bt1
, Bn
Bt2

˘

pti1 ,ti2 q
“ ˘

ˇ

ˇ

Bn
Bt1
ˆ Bn
Bt2

ˇ

ˇ

pti1 ,ti2 q
has the sign of the ori-

ented surface ψpTq, the oriented area is given by

A “
ż 2π

0

ż 2π

0

´

n,
Bn

Bt1
,
Bn

Bt2

¯

dt1dt2. (4.5)

Thus from Eq. 4.4 and Eq. 4.5 we have degpψq “ A{4π. This oriented area in-
terpretation of degree will be useful for our subsequent calculations. In a non-
technical language the degree of ψ is simply given by the number of times ψpTq
covers S2.
Let us consider the Gauss map associated with the Hopf link. The image ψpTq
is given by Figure 4.2. The lighter region is covered once and the darker region
is covered twice, by two opposite orientations. The orientated area of ψpTq in
this case is ˘4π depending on the surface orientation. Hence linking number is
1 in this case.

Figure 4.2: ψpTq resulting from the Gauss map for Hopf link
Source: World Scientific [7]
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4.2 The Hopf Fibers

From now on we will use the name Hopf fibers for referring to the fibers of the
Hopf map. In this section we will parametrize the Hopf fibers. In Chapter-1 we
have seen that the Hopf fibers are circles. There are infinitely many circles in
S3. Given any point in S2, we do not know exactly which circle represents the
fiber over that point. We will now try to identify the fiber circles and find an
explicit parametrization of them. Let us recall the definition of the Hopf map
from Chapter-1.

Definition 4.3. (Hopf Map) The Hopf map h : S3 Ñ C ∪ t8u – S2 is given by

hpz1, z2q “
z2
z1
.

Taking the homeomorphism C∪ t8u – S2 to be inverse steriographic projection
and regarding S3 Ă R4, one can write the Hopf map h : S3 Ñ S2 as

hpx1, y1, x2, y2q “ p2px1x2 ` y1y2q, 2px1y2 ´ y1x2q, x
2
2 ` y

2
2 ´ x

2
1 ´ y

2
1q (4.6)

Now let us consider S2 Ă Cˆ R, i.e. S2 “ tpz, xq : |z|2 ` x2 “ 1u. Then the Hopf
map h is defined as

hpz1, z2q “ p2z1z2, |z2|
2
´ |z1|

2
q. (4.7)

Now we will try to illustrate the fact that the Hopf fibers are linked with each
other. We can calculate their linking number to conclude that, but we would
like to give a more visual argument in favor of this.
Let us take λ P C such that |λ| “ 1. Then

hpλz1, λz2q “ p2λz1λz2, |λz2|
2
´ |λz1|

2
q “ |λ|2p2z1z2, |z2|

2
´ |z1|

2
q “ hpz1, z2q.

Also if hpz1, z2q “ hpw1, w2q, then z2
z1
“ w2

w1
. Taking zj “ rje

iθj and wj “ sje
iφj , we

have r2
r1
“ s2

s1
and θ2´θ1 “ φ2´φ1`2kπ. Using the relations r21`r22 “ s21`s

2
2 “ 1,

we conclude that r1 “ s1 and r2 “ s2. So, we can write

ps1e
iφ1 , s2e

iφ2q “ eipφ1´θ1qpr1e
iθ1 , r2e

ipφ2´φ1`θ1qq “ eipφ1´θ1qpr1e
iθ1 , r2e

ipθ2´θ1´2kπ`θ1qq

“ eipφ1´θ1qpr1e
iθ1 , r2e

iθ2q.
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So, we have hpw1, w2q “ hpz1, z2q if and only if pw1, w2q “ λpz1, z2q with |λ| “ 1.
From this it is clear that the fibers are circles. Now consider the circle

C0 “ tpz1, z2q : z2 “ 0u Ă S3.

Under the Hopf map C0 maps to p0,´1q P S2 Ă Cˆ R, hence h´1p0,´1q “ C0.
Let us denote the equatorial sphere of S3 by S2

0 , which is given by

S2
0 “ tpz1, z2q : Impz2q “ 0u.

Lemma 4.2. Any point pz1, z2q P S3 can be connected to only one pair of antipodal
points on S2

0 by some Hopf fiber.

Proof. Wehave already seen that if pz1, z2q belongs to someHopf fiber thenλpz1, z2q
also belongs to the same fiber for every λ such that |λ| “ 1. Lets us write
zj “ rje

iθj for j “ 1, 2. Take λ “ e´iθ2 , then |λ| “ 1 and Impλr2eiθ2q “ 0. Also tak-
ing λ “ ´1, we see that the antipodal point p´r1eipθ1´θ2q,´r2q of pr1eipθ1´θ2q, r2q
also belongs to the sameHopf fiber as pz1, z2q. If there is any other point pz11, rq on
S2
0 which belongs to the same fiber, then it must satisfy pr1eipθ1´θ2q, r2q “ λpz11, rq,

with |λ| “ 1. But as the 2nd coordinate is real, λ “ ˘1 and hence the pair of
antipodal point is unique. �

Since every Hopf fiber contains a pair of antipodal points of S2
0 and the circular

fiber joins the southern hemisphere of S3 ("inside" of S2
0 , Impz2q ă 0) with the

northern hemisphere of S3 ("outside" of S2
0 , Impz2q ą 0), every Hopf fiber is

linked with C0, which is the equatorial circle of S2
0 . To see that any two fiber

circles are linked, we give an intuitive argument. The 2-sphere can be rotated so
that any great circle can be used as an equator or any pair of antipodal points
can be used as the poles. Similarly, the 3-sphere can also be rotated so that any
circle can be moved to where C0 is. Hence any two Hopf fiber circles are linked,
as one can be moved to be at C0 and the other fiber circle will be linked to it by
our previous discussion. So we have proved the following:

Proposition 4.2. Any two Hopf fiber circles are linked.

Although we now know that the Hopf fibers are linked, we do not know their
linking number. There are several questions we need to address at this point.
The first is whether the linking number of any two fibers are same. If it is, then
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we can take any two Hopf fibers and calculate their linking number, which will
give us an invariant for the Hopf map.

Proposition 4.3. Let p “ peiφ sin θ, cos θq P S2, where θ and φ are the polar and
azimuthal angles respectively. Then

h´1ppq “ tpsin pθ{2qeipt´φ{2q, cos pθ{2qeipt`φ{2qq : t P r0, 2πsu.

Proof. Let pz1, z2q P h´1ppq and zj “ rje
iξj for j “ 1, 2. Then we have

hpz1, z2q “ p2r1r2e
ipξ2´ξ1q, r22 ´ r

2
1q

and the relations

sin θ cosφ “ 2r1r2 cos pξ2 ´ ξ1q

sin θ sinφ “ 2r1r2 sin pξ2 ´ ξ1q

cos θ “ r22 ´ r
2
1

From the first two relations we see that tanφ “ tan pξ2 ´ ξ1q, which immediately
tells us that φ “ ξ2 ´ ξ1. Again from the third relation,

pr22 ´ r
2
1q ` pr

2
2 ` r

2
1q “ cos θ ` 1

ñ r22 “
1` cos θ

2
“ cos2 θ{2

ñ r2 “ cos pθ{2q

So, r1 “ sin pθ{2q and we have

z1 “ sin pθ{2qeiξ1

z2 “ cos pθ{2qeiξ2

Note that λptq “ eipt´ξ2`φ{2q, t P r0, 2πs is a parametrizarion of S1. Hence

pw1ptq, w2ptqq “ pλptqz1, λptqz2q

gives the parametrization for the Hopf fiber h´1ppq. We have

w1ptq “ sin pθ{2qeipt´φ{2q

w2ptq “ cos pθ{2qeipt`φ{2q
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Figure 4.3: Stereographic Projection of The Hopf Fibers
Source: Mathematica

which completes the proof. �

Once we know the parametrization of the Hopf fibers, we can actually plot the
steriographic projections of the fibers in R3 and see how they are oriented in
R3. In figure 4.3, one can see that the fibers are linked once. Hence, one should
expect to have the linking number of theHopf fibers to be˘1. In the next section
we will see this is indeed true by using the notion of linking number.

4.3 Linking Number of the Hopf Fibers

Nowwe have a parametrization of the Hopf fiber of a given point peiφ sin θ, cos θq

in S2. We will now show that given any two pair of points in S2 the linking
number of the corresponding Hopf fibers are the same. To prove this we will
fix one pair to be pp0, 1q, p0,´1qq and choose the other pair pp1, p2q (pj ‰ p0, 1q or
p0,´1q for j “ 1, 2) in S2 arbitrarily.

Proposition 4.4. Lkph´1p0, 1q, h´1p0,´1qq “ Lkph´1pp1q, h
´1pp2qq for any two dis-

tinct points p1 and p2 in S2.

Proof. Let α1 and α2 be two paths disjoint from each other such that

α1p0q “ p0, 1q, α1p1q “ p1

α2p0q “ p0,´1q, α2p1q “ p2

We can find such paths as one can choose α1 to be the part of the great circle that
passes through p0, 1q and p1 and choose α2 to be in S2zα1pr0, 1sq. Let us write α1
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and α2 as

α1psq “ pe
iφ1psq sin θ1psq, cos θ1psqq

α2psq “ pe
iφ2psq sin θ2psq, cos θ2psqq

where θj and φj are continuous functions of s for j “ 1, 2. Let us take γj to
be the parametrization of h´1ppjq as in Proposition 4.3 and define for j “ 1, 2,
Hj : r0, 2πs ˆ r0, 1s Ñ S3 by

Hjptj, sq “ psin pθjpsq{2qe
iptj´φjpsq{2q, cos pθjpsq{2qe

iptj`φjpsq{2qq.

Then Hj is a continuous function of tj and s and

H1pt1, 0q “ p0, e
it1q, H1pt1, 1q “ γ1pt1q

H2pt2, 0q “ pe
it2 , 0q, H1pt2, 1q “ γ2pt2q

Let F denote the steriographic projection F : S3ztp0, iqu Ñ R3. Now define for
each s P r0, 1s, ψs : TÑ S2 Ă R3 by,

ψspt1, t2q “
F ˝H1pt1, sq ´ F ˝H2pt2, sq

|F ˝H1pt1, sq ´ F ˝H2pt2, sq|

Thenψs is a one-parameter family ofmaps such thatψ0 is Gaussmap for the pair
ph´1p0, 1q, h´1p0,´1qq and ψ1 is the Gauss map for the pair ph´1pp1q, h´1pp2qq. As
ψs gives a homotopy between ψ0 and ψ1, we have degpψ0q “ degpψ1q. Hence
Lkph´1p0, 1q, h´1p0,´1qq “ Lkph´1pp1q, h

´1pp2qq. �

Now let us calculate the linking number of the Hopf fiber. By the previous
Proposition we can find it by calculating Lkph´1p0,´1q, h´1p0, 1qq. Let β1 and
β2 be the stereographic projections of the parametrizations of h´1p0,´1q and
h´1p0, 1q respectively. Then β1 and β2 are given by

β1pt1q “ pcos t1, sin t1, 0q

β2pt2q “
´

0, 0,
cos t2

1´ sin t2

¯
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The normal vector npt1, t2q in the Gauss map ψ is given by

npt1, t2q “
β1pt1q ´ β2pt2q

|β1pt1q ´ β2pt2q|

“

`

cos t1, sin t1,´
cos t2

1´sin t2

˘

c
(4.8)

where c “
ˇ

ˇ

`

cos t1, sin t1,
cos t2

1´sin t2

˘ˇ

ˇ “
?
2?

1´sin t2
. Hence

npt1, t2q “
´

p
?

1´ sin t2q cos t1
?

2
,
p
?

1´ sin t2q sin t1
?

2
,´
p
?

1´ sin t2q cos t2
?

2p1´ sin t2q

¯

.

According to Eq. 4.5,

degpψq “ 1

4π

ż 2π

0

ż 2π

0

sgn
´

n,
Bn

Bt1
,
Bn

Bt2

¯ˇ

ˇ

ˇ

Bn

Bt1
ˆ
Bn

Bt2

ˇ

ˇ

ˇ
dt1dt2.

After some tedious but straightforward calculations we find that

Bn

Bt1
ˆ
Bn

Bt2
“

´cos t1p1´ sin t2q

4
,
sin t1p1´ sin t2q

4
,´

cos t2
4

¯

and comparing it with Eq. 4.8, we see that Bn
Bt1
ˆ Bn
Bt2

is an outward normal to the
surface ψpTq. Hence sgn

`

n, Bn
Bt1
, Bn
Bt2

˘

“ 1 and

degpψq “ 1

4π

ż 2π

0

ż 2π

0

ˇ

ˇ

ˇ

´cos t1p1´ sin t2q

4
,
sin t1p1´ sin t2q

4
,´

cos t2
4

¯
ˇ

ˇ

ˇ
dt1dt2

“
1

4π

ż 2π

0

ż 2π

0

c

1

16
pcos2 t1p1´ sin t2q2 ` sin2 t1p1´ sin t2q2 ` cos2 t2qdt1dt2

“
1

4π

ż 2π

0

ż 2π

0

1

4

a

p1´ sin t2q2 ` cos2 t2dt1dt2

“
1

2

ż 2π

0

1

4

a

2´ 2 sin t2dt2

“ 1.

Hence Lkph´1p0,´1q, h´1p0, 1qq “ 1.
Here we have done our calculation with the yellow circle and the blue straight
line in Figure 4.4. There is a slight computational advantage if we take these two
specific points. The advantage in this case is that sgn

`

n, Bn
Bt1
, Bn
Bt2

˘

is constant 1 or
´1 on the torus depending on orientation of ψpTq. So, we can integrate on the
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Figure 4.4: Some Hopf Fibers
Source: A visualization of the Hopf fibration [17]

whole torus without any worries. But if we had chosen any other pair of points,
we would not have sgn

`

n, Bn
Bt1
, Bn
Bt2

˘

is constant on the torus. Then we would have
to identify the regions where the sign is positive and where the sign is negative
and integrate on those regions separately to calculate the oriented area.
The linking number for the Hopf fibers is 1 and it is same for any two fibers. The
linking number thus gives us an invariant for the Hopf map. It actually gives
us an invariant for any map f : S3 Ñ S2. To see a formulation of this concept,
one can look at [22]. This notion of Hopf invariant is same as our notion that we
defined in Chapter-2. We will not go into the details of the equivalence of the
two notions. One thing that we would like to mention is to generate maps such
that the linking number of its fibers is k, we only need to pre-composeHopfmap
with a degree k map from S3 to S3. Also, if we have a map f of degree k from
S2 to S2, then the fibers of the map f ˝ h have linking number k2. These facts are
immediate from Proposition 2.5 and the equivalence of the two notions of Hopf
invariant.
The Hopf fibration gave us a way of viewing S3 in terms of disjoint circles- one
for each point of S2. Using disjoint circles and one straight line, can you fill up
R3 in such a way that each pair of circles is linked and the line passes through
the interior of each circle? our discussion says that the answer to this question
is the Hopf fibration and it is the only answer (up to a homotopy)!!!
We can perform a similar study on the other Hopf bundle S3 ãÑ S7 Ñ S4. For
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this we need to extend the notion of linking number to higher dimensions. For
sub-manifolds Ak and Bl of dimension k and l of Rk`l`1, we can define a map
ψ : AkˆBl Ñ Sk`l byψpa, bq “ pa´bq{|a´b|. This is analogous to ourGaussmap.
We define the linking number LkpAk, Blq “ degpψq. Using this description, one
can find the linking number for two fibers of the Hopf bundle S3 ãÑ S7 Ñ S4.



Appendix A

CW Complexes

To start with, we first define what is known as a CW complex or cell complex.
Most of the content in this Appendix is taken from [2].

Definition A.1. (CW complex)

1. Start with a discrete set X0, whose points are regarded as 0-cells.

2. Inductively, form the n-skeleton Xn form the pn´ 1q-skeleton Xn´1 by at-
taching n-cells enα via maps ϕα : Sn´1 Ñ Xn´1. This means that Xn is
the quotient space of the disjoint union Xn´1>αDn

α under the identifica-
tion x „ ϕαpxq for x P BDn

α. Thus as a set, Xn “ Xn´1>αe
n
α where each

enα.

3. One can either stop this inductive process at a finite stage, settingX “ Xn

dor some n ă 8, or continue indefinitely, setting X “ ∪nXn. In the later
case X is given the weak topology: A set A Ď X is open if and only if
AXXn is open in Xn for all n.

Example A.1. Let us see couple of examples of CW complex of our interest.

1. CW Complex Structure of Sn: The n-sphere Sn has the structure of a cell com-
plex with a 0-cell e0 and an n-cell en. The attaching map ϕ : Sn´1 Ñ e0 is the
constant map. This is basically the quotient space Dn{BDn. As, Dn{BDn – Sn,
we conclude that the CW topology of Sn is same as the usual euclidean topology
of Sn.

66
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2. CW Complex Structure of CPn: The complex projective space CPn is defined
as the quotient space of Cn`1zt0u under the equivalence relation z „ λz for
λ P Czt0u. Equivalently, CPn is the quotient of the unit sphere S2n`1 Ă Cn`1

under the equivalence relation z „ λz for |λ| “ 1. There is another way of obtain-
ing CPn as a quotient space of the disc D2n under the identification z „ λz for
z P BD2n in the following way. The points in S2n`1 Ă Cn`1 with last coordinate
real and non-negative are precisely the points of the form pw,

a

1´ |w|2q P CnˆC
with |w| ď 1. These points form the graph of the function w ÞÑ

a

1´ |w|2. This
is a discD2n

` bounded by S2n´1 Ă S2n`1 consisting of points pw, 0q P CnˆCwith
|w| “ 1. Each vector in S2n`1 is equivalent under the identification z „ λz to a
point in D2n

` , and the later point is unique if its last coordinate is non-zero. If the
last coordinate is zero, we have the identification z „ λz for z P S2n´1.
From this description of CPn, it follows tha CPn is obtained from CPn´1 by at-
taching a 2n-cell e2n via the quotient map S2n´1 Ñ CPn´1. So, by induction on
n we obtain a cell complex structure CPn “ e0 ∪ e2 ∪ ¨ ¨ ¨ ∪ e2n with cells in even
dimensions only.

Proposition A.1. The space CP1 and S2 are homeomorphic.

Proof. From Example A.1, the cell complex structure of S2 is e0∪e2n with attach-
ing map ϕ1 : S1 Ñ e0 is the constant map. Also the cell complex structure of
CP1 is also e0 ∪ e2n with attaching map ϕ2 : S1 Ñ CP0

“ e0 is the constant map.
Hence we see that S2 and CP1 are homeomorphic as CW complex. As the usual
topology and the CW topology coincide, we have CP1

– S2. �
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