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Abstract

In this thesis, we will give a brief introduction to homotopy groups and fibra-
tions and discuss the influence of the Hopf map in the development of higher
homotopy theory. We will also introduce the notion of Hopf invariant to get
a better understanding of the elements of the third homotopy group of the 2-
sphere. A detailed discussion about the geometry of the Hopf fibration is also
presented. In the course of studying Hopf fibration, we will discuss many im-
portant concepts of Algebraic and Differential Topology, namely the Cup prod-
ucts, Orientability, de Rham Cohomology, the degree of smooth maps and so
on. Finally, we will establish the notion of linking number in terms of degree
and illustrate the fact that the fibers of the Hopf fibration are linked once. We
will calculate their linking number rigorously as well as try to give a pictorial

argument in favor our calculated result.

Keywords: Hopf Fibration, Hopf Invariant, Homotopy Groups, Degree of a
Smooth Map, Linking Number.
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Preface

The sole purpose of this thesis is to study the Hopf map and the related notions.
The Hopf map was first introduced by Heinz Hopf in his paper [1]. Historically
the Hopf map is quite remarkable as it was the first example of a map from a
higher dimensional sphere to a lower dimensional sphere, which is not null-
homotopic. At the time of the discovery of Hopf map very little was known
about the higher homotopy groups of the sphere as it was extremely difficult
to calculate them. Even it was not known whether they are trivial or not. The
Hopf map, defined from S* to S?, showed that 73(S?) is non-trivial. This result
really kick-started the development of modern homotopy theory, which revolves
mostly around the calculation of higher homotopy groups.

The Hopf map has a plethora of physical applications, especially in the fields
of rigid body mechanics [9], quantum information theory [11] and magnetic
monopoles [4]. The Hopf map is often called the Hopf fibration. The reason
it is called a fibration will be clear in Chapter-1 when we will show that the
Hopf map is a fiber bundle over S* with fiber S'. There is a much more general
fiber bundle S***! — CP", with fiber S'. The n = 1 case is the one that was
introduced by Heinz Hopf in 1931. In the first chapter, We will mostly discuss
these topics and the importance of Hopf map in homotopy theory.

In the second chapter, we will review some basic materials from singular coho-
mology and use cup products to define Hopf invariant. The Hopf invariant will
give us an one to one correspondence between the elements of 73(S?) and the
integers. Later we will see another interpretation of Hopf invariant using link-
ing numbers in the fourth chapter.

Next, we will uncover the geometric significance of the Hopf fibration. Apart
from its application in homotopy theory, the Hopf fibration also gives us a way
of viewing the 3-sphere as a collection of circles arranged in a special way and

parametrized by points on a 2-sphere. In the last two chapters, we will mostly



try to illustrate this fact. We will try to see the spatial arrangement of the fibers
of the Hopf map inside the 3-sphere, which will be portrayed as R* U {w0} to
make our visualization easier.

The third chapter will be mostly devoted to the development of the theory needed
to study the fibers of the Hopf map. This mostly is related to defining the no-
tion of the degree of a smooth map. In the fourth chapter, we will introduce the
notion of linking number using degree, which will be key in our study of the
geometry of the Hopf fibration.

We will assume that the reader has some exposure to basic Algebraic and Dif-
ferential Topology. An ideal prerequisite for fully understanding the materials
presented in this thesis would be the first two chapters of [2] and chapter 1 and
4 of [16]. We will try to give most of the proofs of the results that we state in
this thesis, but sometimes due to some technical difficulties, we will skip some

proofs and give appropriate reference for the readers.



Chapter 1
Hopf Map in Homotopy Theory

The Hopf map is what showed that the homotopy groups can be interesting
and non-trivial. The fundamentals of homotopy theory lie in the computation
of homotopy groups 7(S™), k = n. Calculating the higher homotopy groups
is not at all easy and there is no universal method for calculating these groups.
In his paper [1], Hopf showed that there is a continuous surjective map, called
the Hopf map S* — S?, which is not null-homotopic. As a consequence, one
has m3(S?) # 0. Later it has been proved using fibrations that 73(S?) is infinite
cyclic, generated by the Hopf map. The existence of this map first showed that
m,(S") can be non-trivial for £ > n, which is completely opposite to the case of
homology groups, where we have Hy(S") = 0 for k£ > n. In this chapter, we
will discuss homotopy theory and the influence of Hopf map in developing this

intriguing theory.

1.1 Higher Homotopy Groups

A basic course in Algebraic Topology typically begins with the definition of Fun-
damental Group. However, after the basic definitions, examples, and theorems
(e.g. Van Kampen and covering space) the focus diverges towards Homology
theory. The natural generalization of the Fundamental Group, obtained by re-
placing S! by S™ in the definition, is rarely discussed despite the fact that it has
motivated a large part of modern Algebraic Topology. The reason behind this

can be the very complex nature of these groups. To make our job a little easy,
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we will mostly structure our development of the theory around the motivating

example of the homotopy groups of the n-spheres.

Definition 1.1. (Definition of 7, (X)) For a space X with basepoint z, € X, the n-
th homotopy group of X based at x(, denoted as 7,,(X), is the set of all homotopy
classes of maps f : (I",0I") — (X, ) such that the homotopies are required to
satisfy f;(01") = x¢ forallt e I.

There is an extension of the definition to the case n = 0, where m(X) is defined
to be the set of all homotopy classes of all maps from I° (which is a single point)
to X, which is just the set of path components of X. Although, we are calling
this a group, we have not yet defined an operation in 7,(X). Let us define the

operation '+’ for maps f,g : (I",0I") — (X, zo) forn > 2.

f(281,52,...,5n) S1 € [O, ]

9(231_17327'--7571) 816[%,1]

N =

(f + g)(sl,SQ, .. .,Sn) =

The reason we are denoting the operation as '+’ will be clear in a while. Note
that it is clear that this sum is well-defined on homotopy classes. Since only
the first coordinate is involved in the sum operation, the same arguments as
for m (X, zy) show that '+’ is an well defined operation on ,(X, z() generaliz-
ing the concatenation in (X, zy). Moreover 7, (X, z() is a group with iden-
tity element the constant map c,,, sending I" to x, and with inverses given by
—f(s1,82,...,8,) = f(1—s51,2,...,5,). This can be proved using the same tech-
niques used in case of 7 (X, zo).

The additive notion for the group operation is used because unlike 7 (X, z),

(X, o) is abelian for n > 2.

Proposition 1.1. The group (X, x,) is abelian for n = 2.

Proof. Let|[f],[g] € m.(X, o). our aim is to show that f+¢ ~ g+ f. One can write
an explicit homotopy between the maps to verify the claim. Instead, we give a
pictorial argument to prove this. First, we restrict ourselves to two dimensions.
The homotopy begins by shrinking the domains of f and g to smaller sub-cubes
of I?, with the boundary of these sub-cubes mapping to the base-point. Now we
have the room to slide the two sub-cubes around as long as they remain disjoint.
So, they can be slid past each other to interchange their positions. Then again f

and g can be enlarged to their original size. So, a homotopy between f + g and
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Ficure 1.1: Homotopy between f + g and g + f
SOURCE: MATHOVERFLOW

g + f can be pictorially represented as in Figure 1.1
|

Recall that, there is an alternative description of 7 (X, x¢) as the set of all homo-
topy classes of maps f : (S',1) — (X, z), where f;(1) = z forall ¢t € I. The

concatenation operation is defined by,
frg:StSstvst LY X

where the first map c is the "pinch" obtained by collapsing two antipodal points
of S! together, and the second map is given by taking f on the first factor and ¢
on the second factor (it is well-defined because the point in common of the two
S* factors is the basepoint where f and g take the same value).

This has a generalization for n > 2, giving us an alternative definition of 7, (X, ().
Let p € S" be the north-pole.

Definition 1.2. 7, (X, zo) is defined to be the set of all homotopy classes of maps
f:(S",p) = (X, z0), where f;(p) = x, for all t € I. The sum operation is defined
by the composition,

frg:stSsrvst Y x

where the first map c is the "pinch" obtained by collapsing the equator(S" ') of
S™ to a point, and the second map is given by taking f on the first factor and g¢

on the second factor.

Note that as I"/dI™ = S", we see that both definitions are equivalent (we choose
base-point p = 01™/0I"™).

In all of the discussions above we have fixed a chosen base-point for X. We have
seen that changing the base-point within same component yields isomorphic
fundamental groups. For higher homotopy groups, the choice of base-point

within a connected component is also irrelevant so that we very well omit the
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base-point. We will not prove this here. Interested readers can find a detailed
discussion about this topic in Chapter-4 of [2]. The proof is a simple generaliza-

tion of the proof for the case of 7 (X, o).

Next we observe the fact that 7, is a functor. Given a map ¢ : (X, zo) — (Y, v0),
there is a well-defined induced map ¢, : 7,(X, zg) — 7, (Y, v0), given by p.[f] =
[¢ o f]. It is immediate that ¢, is a homomorphism for n > 1 and (¢¢), =
0y and id, = id. Also if ¢ : (X,z9) — (Y,y0) is a homotopy equivalence,
then using the homotopy inverse ), we see that ¢, : m,(X, z¢) — m,(Y, o) is an
isomorphism.

The spaces which have a contractible universal covering space have trivial higher

homotopy groups. The next proposition illustrates this fact.

Proposition 1.2. A covering space projection p : (X, %y) — (X, x0) induces an iso-

morphism p, : (X, %o) — ma(X, x0) for n > 2.

Proof. We will show that p, is a bijection when n > 2.

Crav-1: p, is surjective.

proof. (CLam-1) Using the lifting criterion of covering space and the fact that S”
is simply-connected for n > 2, we get a lift f:S"— X for everymap f: S" — X.

So, given [ f] € m,(X, x9) we have p.[f] = [po f] = [f](By definition of lift). This

shows that p, is surjective when n > 2.

X S x {0} —2 X

yd [ 27

P - P

st . x snox 1 22

CLamv-2: p, is injective.

proof. (Cramm-2) Let [f] € ker(ps) < (X, %), ie. [po J?] = [¢z]- SO, po f~ Cao-

By general homotopy lifting property, J =~ ¢z,.(See the figure above). Hence p,

is injective.

Therefore, by CLam-1 and Cramm-2, p, is a bijection and hence an isomorphism.
|

Example 1.1. Let us look at some immediate applications of the above proposition.
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1. m,(X,z9) = 0 for n > 2 whenever X has a universal cover. In covering space
theory, we have seen that exp : R — S* is a universal covering space. Hence by
Proposition 1.2, 7,(S*, 1) = 0 for k > 2.

2. R™is a universal cover of the n-torus T". So, m,(T") = 0 for n > 2.

3. Let S, be the surface of genus g > 1. From The Uniformization theorem of Koebe
and Poincaré of [6] we know that the universal covering space of S, is the upper
half plane H < C. Hence by Proposition 1.2, m,(S,, o) = 0 for n = 2.

Proposition 1.3. 7,(X; x Xo, (21, 22)) = 1, (X1, 21) X 7, (X2, z2) forall n > 1.

Proof. The key fact is to observe that every map ¢ : (S",p) — (X3 x Xo, (21, 22))
is given by ¢ = (1, 2), where ¢; : (S",p) — (X, x;) fori = 1,2. Then [¢]| —
([¢1], [¢2]) is an isomorphism. The map is clearly surjective. Note that if ¢ =
(p1,02) = = (Y1,12) in X xY viaahomotopy H = (Hy, Hy) : S"x1 — X7 x Xy,
then H; is a homotopy between ¢; and v; in X; for i = 1,2. Hence, the map is

well-defined and one-one. [ |

From elementary algebraic topology and Proposition 1.2, we know all homotopy
groups of S'. Although all homotopy groups of higher dimensional spheres are
not known, it is not too difficult to show 7 (S™) = 0 for & < n. The essential idea

is to make use of the CW complex structure of S* (Example A.1(1)).

Definition 1.3. (Cellular Map) Amap f : X — Y between CW complexes is said
to be cellular if f(X*) = Y* forall k > 0.

There is a similarity between cellular maps and linear maps in that they do not
increase the dimension. In case of linear maps, the dimension of the range is
always less than or equal to that of the domain. Similarly, cellular maps always
map the k-skeleton to the k-skeleton. This is a strong form of not increasing
dimension as the image of k-skeleton do not even touch the higher dimensional
cells.

There are plenty of maps which are non-cellular. The cellular approximation

theorem ensures that they are not too far from a cellular map.

Theorem 1.1. (Cellular Approximation Theorem) Every map f : X — Y between
CW complexes is homotopic to a cellular map. If f is already cellular in a subcomplex

A < X, then the homotopy can be taken to be stationary on A.
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The proof is quite technical and we will not present it here. The interested reader
can find the details in Chapter-4 of [2]. Assuming this result, we then immedi-

ately have:

Corollary 1.1. 7, (S™,p) = 0if k < n.

Proof. Let [f] € m(S™,p), i.e. f: SF — S™ By Cellular Approximation Theorem,
f ishomotopic to a cellular map g. As g is cellular, by definition g((S¥)*) < (S")*.
From the CW structure of S" (See Example A.1(1)), k-skeleton of S* is S* and -
skeleton of S" is {p} (Assume that O-cell of S" is {p}). Hence ¢(S*) = {p} and
g = ¢,. This shows that [f] = [¢,] and hence 7 (S", p) is trivial. |

Corollary 1.2. Let X be a CW complex. Then m,(X) = m,(X")

Proof. By Cellular Approximation Theorem, any map f : S* — X is homotopic
to a cellular map. Let f ~ g where ¢g(S") ¢ X™ < X"*!. So, 7,,(X) is the set of
maps S” — X" modulo homotopies through maps S" — X.

Now consider a homotopy H : S* x I — X. This is homotopic, by a second
application of Cellular Approximation, to a map which takes values in X"+
(since S™ x [ is naturally an (n + 1)-dimensional CW complex). Therefore 7,,(X)
is equal to the set of maps S” — X"™! modulo homotopies through maps S™ —
X"+ which is just 7, (X" ). |

1.2 Fibrations and Long Exact Sequence of Homo-

topy Groups

In this section we will introduce two important classes of maps, namely the
Hurewicz fibration and Serre fibration. Moreover, associated to a Serre fibration
we will obtain a long exact sequence of homotopy groups of the fibre, total space

and the base space.

Definition 1.4. (Right Lifting Property) A map p : £ — B of spaces is said to
have the right lifting property (RLP) with respect to amap i : A — X if for any
twomaps f : A - Fand g : X — Bwithpo f = g o, there exists a map
h:X — Ewithpoh=gand hoi = f:
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fh
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(So, h extends f and lifts g at the same time)

Definition 1.5. (Serre & Hurewicz Fibration) A map p : £ — B of spaces is
called a Serre Fibration if it has the RLP with respect to all inclusions of the
formi: I" x {0} < I" x I, n = 0 and a Hurewicz fibration if it has the RLP with
respect to all maps of the form i : A x {0} < A x I, n = 0 for any space A. (So,

every Hurewicz fibration is a Serre fibration)

Definition 1.6. (Fiber)If p : £ — Bisamap of spacesand b € B, thenp~'(b) ¢ F

is called the fiber of p over b.

Thus, Hurewicz fibrations are those maps p : £ — B which has the homotopy
lifting property with respect to all spaces: given a homotopy H : A x [ — B
of maps with target B (Let's say H = {¢;}) and a lift ¢y : A x {0} — E of
@o = H(—,0) : A — B there is a lift H of the entire homotopy H which satisfies
pof[:Handi[oi:@o.

AX{O}&;E

|
b
Ax 1 2=l p

Proposition 1.4. For a Hurewicz fibration p : E — B, the fibers are homotopy equiv-
alent if the base B is path-connected.

Proof. Let v be a path in B. Then define G : F, ) x I — B by G(z,t) = ~(1).
Then the inclusion 7, : F,p — E provides a lift Go, so by homotopy lifting
property we have a lift & : F,©y x I — E of the homotopy G with p o Gd=a.
So, G(x,1) € p~(G(x,1)) = p~*(7(1)) = F,). Let us define L, : F,q) — F,1) by

~

setting L. (z) = G(z, 1).

Ff},(o) X {0} % E

T

FyoyxI —5%— B
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This map has certain properties:

1. If y ~+'reldl,then L, ~ L.

proof. Let H be a homotopy between v and +/. Let us set G(z,s) = 7(s)
and G'(z,s) = ~/(s) to be the defining maps for L., and L., respectively.
Define h : F, x I x I — B by h(z,s,t) := H(s,t). Then h(z,s,0) =
H(z,0) = ~v(s) = G(x,s) and h(z,s,1) = H(z,1) = +'(s) = G'(z,s). We
want to use the lifting property with respect to space suitable for our pur-
pose and which will also be homeomorphic to F,g) x {0} x I. Let us define
J = Fy0) x ({0} x ITUI x 2I). Since ({0} x I U I x dI) is homeomorphic
to {0} x I, the same is true after taking product with F,(g. As, p has the
RLP with respect to i : Fyg) x {0} x I — F, ) x I x I, it also has the RLP
with respect to the homeomorphic space .J. Also let us definej : J — E
by j(z,s,0) = G(z,s); j(x,s,1) = G'(z,s) and j(z,0,t) = e; for e; € F,).

(" = io(homeomorphism between J & F, ) x {0} x [ ))

By RLP, h has a lift h which extends ;. So poh(z,1,t) = h(z,1,t) =
H(1,t) = ~(1) (As H is a homotopy rel dI). So, h(x,1,t) € p~L(v(1)) =
F,q). Define H : Fooy x I — F,q by H(z,t) = h(x,l,t). Note that
H(z,0) = h(z,1,0) = G(z,1) = L. (zx ) (As h extends j). Similarly,f](x, 1) =
h(z,1,1) = G'(x,1) = L. (x). Hence Hisa homotopy between L., and L.,.

2. For a concatenation of paths +y = 7/, L., is homotopic to L./ o L.
proof. This is true since for Lifts G and G’ defining L. and L., we obtain a
lift defining L., by taking G(z,2t) for 0 < :and G'(L 4(x),2t — 1) for
I<t<l
Let by, by € B be arbitrary. Let v be a path joining b, and b;. Let 7 be the inverse
path. Note that v +7% ~ ¢, rel 1. So, by (1) and (2) L, 0 L5 ~ Ls,, ~ L
Similarly, L5 o L, ~ idp, . |

Chy = ZdeO .

From now on we will be concerned with Serre fibrations. By Proposition 1.4, we

can talk about 7, (F, eg) without any ambiguity as long as B is path-connected
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as we know that fibers of different points are homotopy equivalent and hence

same at the level of 7,,. Let us move on to the main theorem of this section.

Theorem 1.2. (The long exact sequence of a Serre fibration) Let p : (E,eq) — (B, by)
be a map of pointed spaces with B path-connected and (F, ey) — (E, eq) being the fiber.

Suppose that p is a Serre fibration. Then there is a long exact sequence of the form:

e 7Tn+1(B7b0) % Wn(F, 60) x Wn(E; 60) L Wn(B, bo) % 7Tn71<F7 60) b,

t i’ WO(F7 60) Z—*) WO(Ea 60) p—*> WO(BabU)‘

Here F', E, B are all pointed sets, hence their 7, is also a pointed set. The definition of
kernel here is the pre-image of the chosen base-point and the definition of exactness is

the same: ker(ps) = im(iy).

Before going to the proof of the theorem, let us define a space J" < I""! by,
J'=I"x{0) U@ xI)col" <"
By flattening the sides of the cube, one can construct a homeomorphism of pairs
(I Jm) S (I T < {0})

Thus, any Serre fibration also has the Right Lifting Property(RLP) with respect
to the inclusion J" < I"*'. We will use this fact quite often in the proof of
Theorem 1.2.

Proof. (Theorem 1.2)

The proof of the theorem will mostly rely on repeated use of the homotopy
lifting property. The essential step in the proof is to construct the map J. Let
a: (I",0I") — (B, by) represent an element of 7, (B, by). Let ¢, : J* ' — E be

the constant map with value ey. Then the square

Ce

gt B

B
li B,/ lp

m_e .B
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commutes. Hence by the definition of Serre fibration thereisa 8 : I" — E such
that po 8 = aand 5(J"') = ¢;. Then define 6[a] to be the element of 7,1 (F, e)
represented by the map

B(—,1): It — F it B(t, 1)

This 0 is often called the connecting homomorphism. Note that 5(—, 1) indeed
represents an element of 7,1 (F, g), because the boundary of I"~! x {1} is con-
tained in J" 1,50 B(A(I" x {1})) = epand B(I"! x {1}) € p~Ha(I" ! x {1})) =
pt(by) = F (As a(0I™) = by). Before we proceed further into the proof, we need
to verify that ¢ is well defined.

Lemma 1.1. ¢ is well defined on homotopy classes.

Proof. Let [ag] = [a1] with h : I" x I — B being a homotopy between o, and
a;. Suppose also that we have chosen lifts 5, and 3; of oy and a4 as above. Let
J" be the union of all faces of I™"! except {t, = 1}, i.e. it is same as J" except
the role of t,, and ¢,,4 is interchanged. Define £ : J— E by setting it 3, and
pron ™ x{0}and I" x {1} respectively. On the other faces set k to be constant e.

ﬁ%E

o
1 /// p

I"x] ", B

Now by homotopy lifting property, there is a diagonal [ : I" x I — E, which lifts

h and extends k. Now consider ' = l|;n-1,1}x7. thenpol'(s,1,t) = pol(s,1,t) =
h(s,1,t) = by, because h is a homotopy relative to 0I". So, image of I’ lies entirely
on p~t(by) = F and I’ gives a homotopy between 5y(—,1) and 3;(—,1). This

proves the lemma. |

Exactness at m,(E,eg). poi : F' — B is constant by. So, p, o i, = 0 and hence
im(i) < ker(ps). Suppose « : I — E represents an element ,,(E, ¢;) such that
psla] = [poa] =0.Leth: I" x I — B be a homotopy relative to /" from p o «
to the constant map ¢;,. Define k : J" — E by k| mxfoy = @ and k is constant e,

on other faces.
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Jgr—* . g

, ;7
1 /// p

I"xI ", pB

By homotopy lifting property, there is a lift I. Set I’ = [|;».1;. Note that p o
U'(s,1) = pol(s,1) = h(s,1) = by, because h is a homotopy between p o a to
Cro- S0, image of I’ lies in p~(by) = F and I'(s,1) = ¢, for s € 0I". We have
[l'] € m,(F,eo) with i,[l'| = [i ol'] = [a] by the homotopy [, which implies
ker(p.) < im(i,) and hence proves the exactness at 7, (£, eo).

Exactness at m,(B,bg). If § : I" — E represents an element of m, (B, by) then
for a = p o B we can take the same ( as the lift in the construction of §[a]. So,
d o ps[B] = [B(—,1)]. Butas I"! x {1} < oI", B(—, 1) is the constant map c,,.
So, 6 o p, = 0 and hence im(p.) < ker(d). For the reverse inclusion, suppose
a : I" — B represent an element of 7, (B, by) with [« = 0. Then for a lift 3 as

in

s B
8 A

[o 2

" —- B

we have that 5(—, 1) is homotopic to the constant map by a homotopy h relative

to 0I"~! which maps into the fiber F. Now define a map v : I" — E by

B(s,2t) te |0, 5]
h(s,2t —1) te[5,1]

N | =

for se I""',t € I. Clearly ~ represents an element of 7, (E, ;). Note thatas poh
is constant, p o 7y is homotopic to p o f = a. So, we have [a] = p,[7] and hence
ker(0) < im(p), which shows the exactness at 7, (B, by).

Exactness at m,_1(F, eq). Let a : I — B represent an element of (B, by). The
map [ in the definition of §[«| = [8(—,1)] shows that ¢, ~ §(—,0) ~ B(—,1)
in E. So, we have i, o 0[] = 0 and hence im(J) < ker(i,). To see the other
inclusion, let v : I"™! — F represent an element of ker(i,) < m,_1(F,eg). So,
we have i,[v] = 0 and suppose i : I"™* x I — E be a homotopy between i o v
and c, relative to d/"~!. Then @ = p o h represents an element of 7, (B, by), and

in the definition of §[a] we can choose the diagonal lift 5 to be h, in which case
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d[a] is represented by [7y]. This shows that ker (i) < im(d), and this completes
the proof of the theorem. |

There are plenty of examples of fibrations. For example any projection X x F' —
X, the evaluation at 1 map ev, : P(X) — X from the path space P(X) to X are
Hurewicz fibrations. It is also easy to see that any covering space is a Hurewicz
fibration with discrete fiber. One of the important classes of fibrations are fiber
bundles and we will be mostly concerned with fiber bundles rather than general
fibrations. Fiber bundles show up in homotopy theory quite often and we will

see later in the chapter that the Hopf map is a fiber bundle.

1.3 Fiber Bundles

A fiber bundle E over a base B with fiber I’ is nothing but a geometric way of
expressing £ in terms of B and F'. In algebra whenever we have a short exact
sequence 0 - A — B — (' — 0 of abelian groups, we can express B in terms
of Aand C, namely B ~ A@ C. Likewise one can expect to have something
similar in topology, namely £ =~ B x F. But unfortunately, that is not always

true. For a fiber bundle, we can only express £ as a product of B and F' locally.

Definition 1.7. (Fiber Bundle)

A map p : I/ — B between topological spaces is a fiber bundle with fiber F
if there is a covering Y = {U, : o € A} of B such that for each « there is a
o : p H(Us) — U, x F which is a homeomorphism and the following diagram

commutes:

p Y (Uy) o s U, x F

p
pri

This property is known as the local trivialization. Before going to the examples

of fiber bundles let us look at the relationship between fiber bundles and Serre

fibrations.

Proposition 1.5. A fiber bundle is a Serre fibration.
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Proof. Letp: E — B be a fiber bundle with fiber /" and we have a diagram

I"x] ——

where h and ¢ is given. Our aim is to construct h such that po h = h and
hlo = @o. Letd = {U, : a € A} bea open covering of B such that each U, has the
local trivialization property. Since I" and I are compact, we can divide I" into
tinitely many cubes Cy, (s, . . ., Cj and [ into finitely many intervals .J;, Js, ..., J
such that each C; x J; < h™'(U,) for some « € A.

We proceed by induction on n. The base case is just path lifting. So, we assume
that h is defined over 0C; x I for each of the subcubes C;. We will extend this
h over C; x I by extending it along I using the sub-intervals .J;. Let us choose
cube that contains origin and the sub-interval that contains 0, let’s call them C
and J. We already know that h is defined to be & on C' x {0}. Also by induction
hypothesis 7 is also defined on dC x J. So, h is define on C x {0} U dC x J. As

1 is a lift of h, we have

poh(C x {0}UIC x J) = h(C x {0} UC x J) = h(C x J) = U,

Hence h(C x {0} UdC x J) < p~1(U,) = U, x F.
Let ¢ = prio g, O?L|CX{O}UQCXJ : C x {0} UdC x J — F. Let us define a map
f:CxJ—>UyxF,B = (B1,0). Setf; = hon C x J. Note that, C' x {0}UIC x J

is a retract of C' x J. Let r be a retraction. Set 3, = ) o r, i.e.
BQ:CXJLCX{O}U(BCxJiF

Finallyweset?z —¢ploBonC x J. hisindeed aliftas poh = poy lof =
pri o 8 = 1 = h. Having defined it on C' x J, we will do the same construction
along I except we will take 7L|Cx{t} (end point of J is t) instead of the map ¢, in
the induction step. Also having defined h for C x J, we will consider this & in

the induction step of adjacent cells so that h is continuous on I" x 1. |

Now let us look at some examples of fiber bundles. We will use the notation

F — E — B for a fiber bundle E over B with fiber F'. Some of the examples
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will be useful later in other contexts. By Proposition 1.5 and Theorem 1.2, there

is a long exact sequence associated to every such fiber bundle.

Example 1.2. 1. A covering space p : E — B, where B is connected, is a fiber
bundle with discrete fiber. This readily follows from the definition as p=*(U) is
a disjoint union of open sets, each homeomorphic to U for evenly covered neigh-
borhoods. The resulting long exact sequence yields p, : m,(FE) — m,(B) is an
isomorphism for n = 2 as 7y (F) = 0 for n > 1. We also have a short exact se-
quence 0 — w1 (E) — m(B) — mo(F) — 0, which implies p, : m(E) — m(B)
is injective. Note that these results are indeed consistent with the results from

covering space theory.

2. One of the simplest non-trivial fiber bundles is the Mobius band, which is a fiber
bundle over S* with fiber an interval. Define the Mdbius band M to be the quotient
of I x [—1, 1] under the identifications (0,t) ~ (1, —t), withp : M — S' induced
by the projection I x [—1,1] — I, so the fiber is [—1, 1]. If we attach two copies of
M along their boundaries via the identity map, then we get Klein bottle, a bundle
over S* with fiber S*.

3. The next example involves projective spaces and is more of our concern. In the real
setting we have the covering space S° — S™ — RP". Over the complex numbers
we have the much more interesting fiber bundle S' — S***! — CP". Here S*"**
is seen as the unit sphere in C"*' and CP" is seen as the quotient space of S*"*!
under the equivalence relation (zg, 21, . . ., 2n) ~ M20, 21, -, 2n) for X € S, the
unit circle in C. We will come back to this example later in more details when we
will talk about the Hopf bundle.

Lets us now introduce the concept of degree in the continuous setting. We will
discuss about degree of a map in the smooth setting in Chapter-3 in detail. We
will also state (without a proof) the Freudenthal Suspension Theorem, which

will be important in the calculation of the groups 7,,(S™).

1.4 Suspension and Degree

We will define degree of a map f : S” — S" using homology. Our definition of
degree will use the fact that H,,(S™) = Z (see [8] for a proof).
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Definition 1.8. (Degree of a map) Let f : S* — S". Then, f, : H,(S") — H,(S")
is a homomorphism. So, f, is multiplication buy some integer d as f is a homo-
morphism Z — Z. This d is called the degree of f and denoted as deg( f).

Once we choose a generator 1 of H,(S"), then f.(1) = deg(f) and if we choose
—1 as our generator, then f.(—1) = —deg(f) by Z-linearity. Thus deg( f) is well
defined and equal to f.(1). There is a nice relationship between homotopic maps

and their degrees.

Proposition 1.6. If f and g are homotopic maps from S™ to S™, then deg(f) = deg(g).

Proof. Let f and g be homotopic maps. Then they induce the same map in ho-
mology, i.e. f. = g« (see Theorem-2.10 of [2]). So, if f,. is multiplication my d,
then so is g.. Hence, deg(f) = deg(g). [ |

The converse of the above proposition is also true, i.e. if two maps have same
degree, then they are homotopic. This result is known as the Hopf degree theo-
rem (see [10] for a detailed discussion). On'S! = C the map f(z) = 2" has degree
k. So, we can construct maps of arbitrary degree on S'. We can also construct
maps of any degree on S" for n > 2. To do that we need to introduce the concept

of suspension.

Definition 1.9. (Cone and Suspension) Let X be a topological space. The cone
of X, denoted as C'X, is defined to be the quotient space of X x I with the
identification (x,1) ~ (2/,1) for all z,2" € X. The suspension of X, denoted as
SX, is defined to be the quotient space of X x [—1, 1] with the identification
(x,1) ~ (2/,1) and (x,—1) ~ (2/,—1) for all z, 2’ € X.

Although, suspension of a space does not look like a nice space due to the quo-
tients involved, sometimes it does produce some nice spaces. As an example,
suspension of a sphere is again a sphere in dimension one more than the previ-

ous one. This will be very useful to us, so let us give a proof of this fact.

Proposition 1.7. SS" ~ S"*!

Proof. SS™ = (S"™ x [—1,1])/ ~, where the relation ‘~’ is defined as (x, 1) ~ (y, 1)
and (z,—1) ~ (y,—1) forall z,y € S".
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Define f : S" x [-1,1] — S"*! by
((zoy .. xn), t) — (xg, ..., 20, 1)

where 2} = /1 — 2 - z;. Note that f is well defined as

a4+t =(1—1) Y af+£2 = 1.

7

f induces a map f:88" — §nHL

S x [~1,1] —L s+

[

SS"

As each 2’; is a continuous map of z; and t, we have f is continuous. By property
of quotient topology, f is also continuous. Let (yo, ..., yns1) € S be given. Set
t = Ypg1, T; = \/ly—iﬁifynﬂ =t+#1,—land z; = 0ify,,; =t = 1 or —1. Then

f((zoy .. yxn),t) = (W1 =12 xg,..., /1 =122, t) = (Yo,...,Yns1). This shows

that f is surjective. As, ¢ is surjective, we have f = f oqis also surjective.

~

Let f[(zo, ..., 2n),t] = fl(a},...,2.),¥']. So,t =t and V1 — £2-2; = /1 — -,
Hence z; = 2, whenevert = t' # 1, —1. All points (z, +1) € S" x {+1} will map to
(0,0,...,0,£1). then by definition of ‘~’, all points (z, +1) are identified. Hence
the map fis injective.

S™ x [—1,1] is compact by Tychonoff theorem and SS" being the image of S" x
[—1,1] under the continuous map g, is also compact. As fis a continuous bi-
jection from a compact space SS" to a hausdorff space S"*?, f is a homeomor-

phism. |

Definition 1.10. A space X is n-connected if 7;(X) = 0 for all i < n.

Note that 0-connected means path-connected and 1-connected means simply

connected. Next, we give equivalent conditions of being n-connected.

Proposition 1.8. The following are equivalent:

(1) Every map S' — X is homotopic to a constant map.
(2) Every map S — X extends to a map D' — X
(3) m(X) = 0.
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Proof. (1) = (2): Suppose first that f : S* — X is homotopic to a constant map,
so there is a homotopy H : S' x [ — X such that H(y,1) = f(y) and H(y,0) = z
where z; is the basepoint of X. Let us take polar coordinates (¢,...,¢;,r) on
D1, Define f : D'*! — X by,

f(¢17"'7¢ivr) :H<<¢17"'7¢i>7r>

where (¢1, ..., ¢;) is the polar coordinate representation of a point in Standr e I.
The map is well-defined as H((¢1,...,¢;),0) = xo for all (¢1,...,¢;) € S' and is
an extension of of f as f(¢1,...,¢;,1) = H(¢1,...,¢i,7) = f(ér,...,¢;) for all
(¢1,...,¢:) €S

(2) = (3): Suppose that there is a map f : D'*! — X extending a given f : §' —
X with f(p) = z¢ (p € S’ be the basepoint). Define H : S* x [ — X by,

H(y,t) = f(ty + (1 —t)p)

This is well-defined because D**! is convex, so that ty + (1 — t)p € D**! for all
y e S! < D', We have H(y,0) = f(p) = o and H(y,1) = f(y) = f(y) since
f extends f. Furthermore H(p,t) = f(p) = f(p) = x for all ¢, so that H is
a basepoint preserving homotopy between f and the constant map c,,. Hence
[f] = 0in m;(X, zo) and m;(X, zo) = 0.

(3) = (1): Follows from the definition. [

As a consequence of the above proposition, we can say that a space X is n-
connected if one of the three conditions in Proposition 1.8 holds for all i < n.
Foramap f : X — Y, thereisamap Sf : SX — SY, called the suspension of
f,given by Sf[(z,t)] = [(f(x),t)]. Itis clear that if f ~ g, then Sf ~ Sg¢. So, for
amap f:S' — S", thereisamap Sf : SS' = S"! — §"*! = SS". So, we get
a well-defined map S : m;(S") — m;11(S"1), given by f — Sf. We call this the
suspension map. Now the map Sf has the property that deg(Sf) = deg(f).
We omit the proof of this fact as it involves some tools from homology (e.g.
Mayer-Vietrois sequence) that we have not properly introduced in this thesis.
The upshot is that we can construct maps of degree £k from S" to S" by taking

suspension repeatedly (n times to be precise) of a degree £ map on S'.

Theorem 1.3. (Freudenthal Suspension Theorem)

The suspension map 7;(S™) — w1 (S™™Y) is an isomorphism for i < 2n — 1 an a
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surjection for i = 2n — 1. More generally, this holds for the suspension m;(X) —

Ti+1(SX) whenever X is an (n — 1)-connected CW complex.

The proof is rather technical and tedious. So, we omit the proof. A detailed proof
can be found in Chapter-4 of [2]. Instead we look at the important consequence

of the theorem.

Corollary 1.3. The group m,(S") is isomorphic to Z, generated by the identity map, for

alln > 1.

Proof. From the Freudenthal Suspension Theorem, we know that in the suspen-
sion sequence
7T1(S1) - FQ(SQ) — 7T3(Sg) — 7T4(S4) - ...

the first map is surjective and the subsequent maps are all isomorphisms. We
know from basic algebraic topology that m(S') is Z generated by the identity
map. If we can prove that m(S?) is Z, then we are done as all consequent maps
are isomorphisms. Applying Theorem 1.2 and Corollary 1.1 on the Hopf bundle

(we will describe later) S' — S* — S? gives us the desired result. u

1.5 The Hopf Bundle

We will introduce the Hopf bundle in this section and see one of its most impor-
tant implications. Recall that in Example 1.2, we said that S! — S***! — CP" is

a fiber bundle. Let us first prove this fact.

Proposition 1.9. S' — S*"*! — CP" is a fiber bundle, where the map p : S*"*1 —

CP" is given by, (20, 21, - - Zn) ¥ [205 215 - - - » Zn)

Proof. Regard S*"*! as the unit sphere in C"™! and CP" as the quotient space of
S*"*1 under the equivalence relation (2o, ..., z,) ~ A(20,...,2,) forany A € S'
C.

Let U; = {[20, ..., 2] : zi # 0}. U; is an open set in CP". Note that

P (U) = {(20,. .., 20 : 2 # 0}.
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Define ¢; : p~1(U;) — U; x S' by
(205 -+ 2n) = ([20,-- -, 2nl], 2i/]2i])

The map ¢ is continuous as z; # 0 on U;.

CLamm-1: g; is surjective.

Proof. Let [zp,...,2,] € U; and £ € S'. We know that z; # 0. Let A = £/2; and
X' = A/|A|. Then

Oo([N(z0, -, 20)]) = ([0, - - za], N2i/IN 2]) = ([205- - -5 20), &)

which shows that ¢; is surjective.
CLam-2: ¢ is injective.

Proof. Let ([20, - - -, 2], 2i/|2]) = (Jwo, - - ., wy], w;/|w;|). Then we have

2 w;
[0, 2n] = [wo,...,w,] and @ = \wi|
Hence (2, . ..,2,) = Muwy, . .., w,) for some X € S! and z; = ||5j_|‘ w;. S0, we must

have \ = |Zii|" i.e. \is real and positive with |A| = 1. The only possible value for
Ais 1. Hence (o, ..., z,) = (wo, ..., w,), which shows that ¢; is injective.

So, ¢; is a continuous bijection. To show that ¢; is a homeomorphism, we need
to show that ¢; is an open map.

CLAM-3: @; is an open map.

Proof. Let V' < S*"*! be open. Note that

©i(V) ={([z0y---»2n],2i/|2]) : (z0,--.,20) €V}

Write ¢; = (¢}, p?), where ¢} (z0,...,2,) = [20,...,22] and ©?(20,...,2,) =

2i/zi|. As o7 is a projection map, it is open. Now ¢! is also open as

{(20,...,20) € S p(20,...,20) € 0i (V)}
={(20,...,2n) € " [20,...,2,] € 0} (V)}
{(20,...,2,) € S i [20,...,2,] € p(V)}

is open. As both ¢} and ¢? are open maps, ¢; is also an open map.
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So, this shows that ; is a homeomorphism. Also priog; = p. Sop : S — CP"
is fiber bundle with fiber S*'. |

The n = 1 case is special in the above fiber bundle. For n = 1, the fiber bundle is
St < §* — CP'. By Proposition A.1, CP' ~ S? and hence the above fiber bundle

becomes S! — S? — S2.

Definition 1.11. (Hopf Bundle and Hopf Map)

The fiber bundle S* — S* — S?is called the Hopf bundle and the map b : S* —
S? is called the Hopf map. The Hopf map § is the map p for the n = 1 case in
Proposition 1.9 along with the identification CP' =~ S? (see Proposition A.1).

We will give more descriptions of the Hopf map as we go along. Now, the next
obvious step is to apply Theorem 1.2 to the Hopf bundle to see what information
we get about the homotopy groups of S, §?, S*. So, the long exact sequence of

homotopy groups for this fiber bundle is,
o T (87) B m(S) 2 mi(S7) 5 mi(87) S mea(ST) > mea (8) 2

For k > 1, m,(S') = 0. So, mx(S?) 25 m4(S?) is an isomorphism for k — 1 > 1 or
k > 2. In particular for k = 3, b, : m3(S®) — 73(S?) is an isomorphism. From
Corollary 1.3, 73(S?) = Z, generated by the identity map 1 : S* — S°. Hence, we
see that 73(S?) = Z, generated by the Hopf map b.

Theorem 1.4. The group m3(S?) is isomorphic to 7 and generated by the Hopf map.
Proof. Follows from the above discussion. |

Note that Theorem 1.4 gives us some description about the first group of the

type m:(S"), k > n. We will investigate more about this group and its elements.

Remark 1.1. Replacing the field C by the field of quaternions H, the same con-
structions yields a fiber bundle S* — S**3 — HP" over the quaternionic pro-
jective spaces HP". Taking n = 1 gives a second Hopf bundle S* — S" — S*.
There is another Hopf bundle S” — S — S®, whose definition uses the non-

associative 8-dimensional algebra O of Cayley octonions.

Next we will study the elements of the group m3(S?). We only know that the

Hopf map b generates this group. Let we have two maps f : S* — S and
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g : S* —> S* Then the maps f o h and h o g represent some elements of m3(S?).
What are those elements and can we identify them using the notions that we
have already established? To answer these we will need some more tools, which

we will now develop in the next chapter.



Chapter 2
The Hopft Invariant

Given a map f : S*"~! — S", one can assign a number to it, which we will call
Hopf Invariant. This "Hopf Invariant" will help us to answer our question that
we asked at the end of the last chapter. The Hopf Invariant is somewhat similar
to that of the notion of degree. A fundamental theorem by Adams states that a
map f : S* ' — S" of Hopf Invariant 1 exist only when n = 2,4,8. A very in-
teresting consequence of this theorem is that R" is a division algebra only when
n = 1,2,4, 8. The Hopf invariant has many definitions. We will, for now, define
it in terms of cohomology. There are other definitions of Hopf invariant using
K-theory and linking number. We will talk about linking number in chapter-
4 and interested readers can find details about the k-theory approach in [23].
So, before defining the Hopf invariant, let us review the notion of cup products

from basic cohomology.

2.1 Cup Products

We want to define a product H*(X; R) x H(X;R) — H*"(X;R). To define
cup product we consider cohomology with coefficients in a ring k. We will first
define the cup product in the cochain level and then we will hopefully be able

to pass it to the quotient and get a well-defined product in cohomology.

Definition 2.1. (Cup Product)
For cochains p € C*(X; R) and ¢ € C'(X; R), the cup product ¢ — ¢ € C*(X; R)

is the cochain whose value on a singular simplex ¢ : A" — X is given by the

24
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formula

0 — (o) = (0o, )V (O | oo vnsi])

where the right hand side is the product in R.

To see that the cup product of cochains induces a cup product of cohomology

classes we need a formula relating it to the coboundary map.

Lemma 2.1. For p € C*(X; R) and ¢ € C'(X; R)
p =) =dp — ¢+ (=1)fp — 9.

Proof. Let o : A+l — X be a singular simplex. Then we have

k+1
(590 ~ w)(O') = Z(—l)zﬁp(U’[UO ,,,,, Diyeery Uk+1])w(0-|[vk+1 77777 'Uk+l+1])
=0
k+1+1
(D (e = 60)(0) = D (=10 n) V(O oo ieni11)
i=k

) of the first expres-
veii1])) Of the
second expression. Hence when we add the above two expressions, these two
terms gets cancelled and the remaining terms are exactly (¢ — )(do) as do =
S (=10l ugrsthvvisisa]- Also by definition (o — )(60) = (¢ — ¥)(0),
which proves the lemma. u

From the formula it is apparent that the cup product of two cocycles is again a
cocycle. Also the cup product of a cocycle and a coboundary , in either order is
a coboundary since ¢ — 61 = +6(¢ — ¢) if 6p = 0and dp — ¥ = §(p — V) if
61 = 0. It follows that there is an induced cup product H*(X; R) x H(X; R) —
H*!(X;R).

Proposition 2.1. For a map f : X — Y, the induced maps f* : H"(Y;R) —
H™(X; R) satisfy [*(oc— ) = [*(a) — f*(B).
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Proof. Regard o and /3 as cochains representing their cohomology class. Then
the formula comes from the cochain formula f#(a — () = f#(a) — f#(p):

= (o — p)(fo)
= (o — B)

We will now define the cross product or external cup product. The maps
H*(X;R) x H(Y;R) 5 H""Y(X x Y R)

given by a x b = pj(a) — p3(b) where p; and p, are the projections of X x Y
onto X and Y. The relative forms of the cup product and the cross product are
similarly defined.

The product in R is associative and distributive and hence so is the cup product.
So, it is natural to ask whether we can make this cup product a multiplication in
a ring structure on the cohomology groups of a space X. The answer is actually
Yes!!

To do this we simply define H* (X ; R) to be the direct sum of the groups H"(X; R).
Elements of H*(X; R) are the finite sums ), a; with o; € H'(X; R), and the prod-
uct of two such terms is defined to be (X, ;) (2 5;) = >, ; i — B;. Itis routine
to check that this makes H*(X; R) into a ring with identity if R has an identity
(because we will set « € H(X; R), which is given by the cocyle that takes every
zero simplex to 1 € R).

This kind of construction of a ring is called a graded ring: a ring A that is decom-
posed as a sum @), ., Ay of additive subgroups A; such that the multiplication
takes Ay, x A; to Ayy;. To dictate that an element a € A lies in Ay, we will |a| = k.
This applies in particular to elements of H*(X; R), and we will call |a| to be the
dimension of the element a.

H*(X; R) often has a more compact description than the sequence of groups
H"(X; R), so it is beneficial for us to work with the single object H*(X; R) rather
than regarding all groups H"(X; R). We will now see some examples of coho-

mology rings that will be helpful to us later.
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Proposition 2.2. The cohomology ring of the n-sphere is given by
H*(8"Z) = Z[a]/(a?),
where o € H™(S™; Z) is a generator.

Proof. From cellular cohomology, we have

. Z k=0n
H*(S",7Z) =

0 otherwise

Let 1 be the generator of H°(S™; Z). Then the only possible cup products are
a—l=a l—wa=a and a—a=0

as H?*"(S";Z) = 0. Hence we have H*(S"; Z) = Z[a]/(a?). .

Proposition 2.3. The cohomology rings of the projective spaces are given as follows:
H*(RP"; Z) = Zo[a]/(a™"),
where o € HY(RP"; Zy) and
H*(CP"; Z) = Z[a]/(a™"),

where o € H*(CP"; Z)

This is quite an important result and has many implications. We will not give a
proof of this here as it will involve lots of concepts from cohomology theory that
we have not mentioned. Interested readers can look at [13] for a short and ele-
gant proof. For a detailed proof using basic cohomology and diagram chasing
see Theorem-3.12 of [2].

2.2 The Hopf Invariant

Let us prove a result first, which will be useful in defining Hopf invariant.
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Proposition 2.4. If (X, A) is a CW pair and we have attaching maps f,q : A — Xy
that are homotopic, then Xoll; X, ~ XL, X; rel X,

Here we define W ~ ZrelY for pairs (W, Y') and (Z, V') by requiring the existence
of maps ¢ : W — Z and ¢ : Z — W such that they restrict to the identity on Y’
and ¢ o ¢ ~ 1 and ¢ o ¢ ~ 1 via homotopies that restrict to the identity on Y all

times.

Proof. Let us take F' : A x I — X, is a homotopy from f to g. Consider the
space Xollp(X; x I). This contains both X,lI;X; and Xoll,X; as subspaces.
XolIp(X; x I) deformation retracts onto both XolI;X; and Xoll,X;. Also both
these deformation retractions restrict to the identity on X,,. Hence we have the

homotopy equivalence X,LI;X; ~ Xl X, rel Xj. |

For amap f : S — S" with m > n, we can form a CW complex C; to be the
quotient space of S"Lle™*! with the identification x ~ f(z), for z € de™*t = S™.
The homotopy type of C'y only depends on the homotopy class of f, by Propo-
sition 2.4. Now, if m = n and f has degree d, then from cellular chain complex
of Cy we see that H,(Cy) = Zjg and Hy(Cy) = 0 for k > 0(# n). Similarly in
cohomology we have H"(C) = Zj4 and H*(Cy) = 0 for k > 0(+# n). So, the ring
structure of H*(C}) in this case is trivial. But cup products may have a chance of
being nontrivial in H*(Cy) when m = 2n— 1. From the cellular cochain complex

of Cy, the cohomology of C} is

. Z k=0,n2n
HY(Cy;Z) =
0 otherwise

From now on we will consider cohomology with integer coefficients unless oth-
erwise stated. Let us take generators « € H"(C) and 8 € H*"(C}). The cup
product of o with itself will land in H*"(C}) and hence will be of the form
a— a = H(f)B, where H(f) is an integer.

Definition 2.2. (Hopf Invariant) The integer H(f) in the above discussion is

called the Hopf invariant.

Note that H( f) depends on the choice of the generator /3, but this can be specified
by requiring 3 to correspond to a fixed generator of H?"(D*", dD*") under the
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map H**(C;) =~ H*"(C4,S") — H**(D?",0D*") induced by the characteristic
map of the cell ¢*”, which is determined by f. We can then change the sign of
H(f) by composing f with a reflection of S**~!, of degree —1. If f ~ g, then
by Proposition 2.4, the homotopy equivalence C; ~ C, gives us that the chosen
generators 3y for H*"(Cy) and j3, for H*"(C,) correspond, so H(f) depends only
on the homotopy class of f. If f is a constant map then C; = S*VvS** and H(f) =
0 since C retracts onto S™.

The unshot is that we have a well-defined map H : m,_1(S") — Z, given by

[f] — H(f). Let us now look at some properties of this Hopf invariant.

Proposition 2.5. The Hopf invariant has the following properties:
1. The Hopf invariant H : 7, _1(S™) — Z is a homomorphism.

2. The Hopf invariant of a composition S*=1 L5 §* 2 S is given by

H(go f) = (deg(9))*H(/)

3. The Hopf invariant of a composition S~ % §2=1 L, s is ¢iven by
H(fog) = (deg(9))H(f)

Proof. (1)
Let f,g: S*"~! — S". We have to show that H(f + g) = H(f) + H(g).

ftg: §2n—1 €, g2n—1,,g2n-1 Vg s

Let C\ 4 be the quotient space obtained from collapsing the equatorial disk of
the 2n-cell of Cy., to a point. Hence Cy\/, is the space obtained from S" by
attaching two 2n-cells via f and ¢. Let ¢ : Cy;, — Cyv 4 be the quotient map.
Let e?& g

of H**(Cyv4) = Z ® Z. The induced cellular map in homology ¢. sends e

be the generator of H**(Cy,,) = Z and 7" and ¢." are the generators

2n
f+g

7" + 2. As the dual of the map 1 — (1,1) is given by (1,0) — 1and (0,1) — 1,
the induced map in cohomology ¢* is given by ¢*(5;) = ¢*(8,) = B+, Where 3,

to

By, Bf+4 are the cohomology classes dual to the 2n-cells. Letting a ., and oy,
be the cohomology classes corresponding to the n-cells, we have ¢*(asv,) =
a44 since g is a homeomorphism on the n-cells. Now consider the inclusion
maps

ifin‘HCf\/g, igZCg‘HCfvg
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Note that apy g — apyvy € H*(Cpyv,y) = Z@Zand [y and (3, generate H**(C'yy/ ).
Hence,

Qpvg = Qpvg =ngBr +ngby (2.1)

As, 7% induces isomorphism on H", we have
f

ijlapvg) = ay, dglapvg) = ag
it(Br) = By, i3(By) =0
i;(ﬁg) = 697 Z;(Bf) =0

Applying, i} on both sides of Eq. 2.1, we get ay — a; = nyf3;. Hence ny = H(f).
Similarly applying i} in Eq. 2.1 we get n, = H(g). Hence,

o2, = ¢*(2y,) = ¢ (H(f)Bs + H(9)B,) = (H(f) + H(9))Bs s

as ¢*(By) = ¢*(By) = Br+g- S0, by definition of Hopf invariant of the map f + g,
we get H(f +g) = H(f) + Hl(g). n

Proof. (2)
We have go f : §"=1 L, §7 %, S, Let us define G : S"Lle>" — S"Ie?" by setting
G =idone? and G = g on S™.

Sr1e2r —C 4 Snle?n

qu l‘JgOf

Cp —E— Cyoy

(£ is such that the diagram commutes)

In cohomology of degree n, the diagram gives

H™(Cyoy) i » H"(Cy)

*
lq;ko f qu

H™(S™) @ H"(e*) —<“ H"(S") @ H"(e*")

As H"(e?™) = 0, all the groups in the above diagram are Z. Note that the map G
is given by g on S”. So, the map G* is multiplication by deg(g) by definition of
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degree. We also have
s < snle 2

where the composition is an isomorphism on H" by the long exact sequence of
cohomology for pairs (as H*(Cy,S") = 0 for k # 2n). Hence ¢ and ¢}, are
isomorphisms. From the diagram we therefore get F™* is also multiplication by
deg(g). Let ay and a4 ¢ be generators of H"(Cy) and H"(C,.s) respectively. As
G is identity on e?", F* takes the generator 3.7 of H*"(C,.;) to a generator /3 of
H?"(CY). Then we have

F*<a90f) = deg(g>af7 F*(ﬁQOf) = 5]” (22)

Hence by Eq. 2.2 and Proposition 2.1,

H(go f)By = F*(H(go f)Bgos) = F*(ages) = (deg(g))*a} = (deg(g))* H (f)5;

which implies H(g o f) = (deg(9))?H(f). |

Proof. (3)
We have fog: S 1 % 21 L, §n et us define G : S"1e?" — S"1le" by
setting G = C'g on 2" and G = id on S". Note that Cg : CS*"~! — CS?*" ! is the

cone of g. As, CS*"~! =~ 2", we can take C'g to be a map on e*".

Srlen —o Sr1Ien

quog le

Cpog ——— Cy

(£ is such that the diagram commutes)

Now let us consider another diagram as follows :

F
Cfog > Cf

[ [

Crog/(Crog\e?™) —s C1/(Cp\e)

where ¢ is the quotient map and F is the induced map such that the diagram

commutes. Note that as in the construction of /' we have taken the map to G to
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be Cg on 2", we have
F = 8g: Crog)(Crag\e®) = S — Cp/(Cf\e*") = S

where Sy is the suspension map. Hence we finally have a diagram as follows:

Crog —— Cy

ool

2n Sg 2n
S ——— S

In cohomology of degree 2n, the diagram gives

H (S 22y Ho(S™)
H 2n<0 ) (OgOf )

All the groups in the above diagram are Z and the map S¢* is multiplication by
deg(Sg) = deg(g). We also have by the long exact sequence of cohomology for
pairs that ¢* is an isomorphism (as H*(C}, C;/(C\e*™)) = 0 for k # 2n). From
the diagram we therefore get F* is also multiplication by deg(g). Let oy and
a .4 be generators of H"(Cy) and H"(CY.,) respectively. As F is identity on S”,
F* takes af to afo4. Also let 3 and Sy, be generators of H**(C;) and H*(C.,)
respectively. Then we have

F*<Bf) = deg(Q)Bfoga F*(af) = Qfog (23)
Hence by Eq. 2.3 and Proposition 2.1,
H(f ©9)Brog = 0fog = F*(af) = F*(H(f)By) = (deg(9) H(f)B}s,

which implies H(f o g) = (deg(g))H(f). |

Now, let us calculate the Hopf invariant of the Hopf map b : S* — S?.

Proposition 2.6. The Hopf invariant of the Hopf map is 1.
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Proof. We have h : S* — S* and C}, is by definition given by the quotient space
of S?Ile* with the identification  ~ h(z) for all x € de* = S®. The cohomology
of Cy is given by
7 k=024
H*(Cy) =
0 otherwise
The CW structure of CP? (see Example A.1(2) ) gives CP? = (CP'lle?)/ ~, with
the identification '~ given by (29, 21) ~ [z0, 21] for all (29, z1) € de* = S*. Note
that the Hopf map b is also defined by (zo, z1) — [20, 21]. Hence using the home-
omorphism CP' =~ S? (see Proposition A.1), we see that Cy and CP* are the
quotient space of the same space S?lle* and the identification in the quotient
are also same. Hence CP? and Cj are homeomorphic and H*(C;) = H*(CP?).
Now from the cohomology ring structure of CP? (see Proposition 2.3), we have
o — a = 3, where a and j are the generators of H?(CP?) and H*(CP?). Hence
we must have of = (3, and H(h) = 1. |

From Proposition 2.5(1), we know that the Hopf invariant H : 73(S?) — Zis a
homomorphism. From Proposition 2.6, H is surjective. It can be also shown that
H : m3(S?) — Z is injective. Hence H gives us an isomorphism from 73(S?) to Z.
From Proposition 2.5, we have a better understanding of the elements of 73(S?)
using Hopf invariant. By Proposition 2.5(1), we have that the element of 73(S?)
that corresponds to the element k € Z is the homotopy class of the map h o g,
where g : S* — S? is a map of degree k. As there are maps of arbitrary degree
on S?, we have an idea of every element of 73(S?). Also from Proposition 2.5(2),
we know that the element &? € Z corresponds to the homotopy class of the map
fob, where f:S* — S* is a map of degree k.

Letg:S* — S® be a map of degree k? and f : S* — S? be a map of degree k. By
Proposition 2.5, both h o g and f o h corresponds to the element of k2 € Z via the
isomorphism H. Hence we must have [h o g] = [f o h]. Using the properties of
Hopf invariant, we concluded that two maps are homotopic with only knowing
their degrees!!!

The existence of Hopf invariant 1 is not at all a common phenomenon, an el-
ement of Hopf invariant 1 in my,_;(S™ exists if and only if n = 2,4 or 8. This
result was proved by J.F. Adams in 1960 (see [21]) using secondary cohomology

operations.



Chapter 3
Degree of a Smooth Map

We will now introduce an important concept in Differential Topology, called the
degree of a map. We have already seen one definition of degree of a continuous
map S" — S" using homology in Chapter-1. Here we will be mostly dealing
with smooth manifolds and develop the notion of degree of a smooth map be-
tween smooth manifolds of same dimension. We will use de Rham cohomology
groups to define degree instead of the homology groups as we have done before.
One of the key concept that will be important in our discussion is the integration
on a manifold. We will briefly introduce orientability and integration and then

go to the theory of degree.

3.1 Orientations on a Manifold

On a vector space an orientation is specified by a choice of an ordered basis.
We say that two different orientations are equivalent if the determinant of the
change of basis matrix is positive. So, it is quite clear that there can only be
two different orientations of a vector space. We will define the orientation of a
manifold in a similar fashion. To give a manifold an orientation, we orient the
tangent spaces at each point of the manifold in a "coherent" way so that it does

not change abruptly anywhere.

Definition 3.1. An n-manifold is said to be orientable if it has an atlas

{(Umgpa = (I(lxv S "'Lﬁ)}

34
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such that

ja PN
det(oq;iB) >0
&xj

on the intersection U,NUs.

Although we have defined what orientation on a manifold is, we would like
to give some motivation behind such a definition. Let us recall the change of

variables formula from calculus:

= fyr, - yn)dyy - - - dy, = fyi(2), ... yn(x))|det(Oy;/0x;)|dzy - - - dy,.

Rn

Now using the change of coordinate formula for an n-form w, we have:

J w=| fly, - yn)dyr - dy,
n Rn

= n f(y1<l’), <o 7yn($))d6t(5yz/(?xj)dx1 < dxy,.

The only difference in the above two expressions is the absolute value. It is quite
clear from Definition 3.1 that for an orientable manifold, the above two expres-
sion agree. So, we have a consistent sign of the above integral over all coordinate
chats. This enables us to assert a coordinate-independent value to the integral
of an n-form over an orientable manifold. Next we give an important character-

ization of orientability in terms of differential forms.

Proposition 3.1. A manifold M of dimension n is orientable if and only if there exists

a nowhere vanishing n-form on M.

Proof. Letw be anowhere vanishing n-form on A, and consider an atlas {(U,, ¢.)}
such that U,’s are connected. Our goal is to construct a new atlas where the
change of coordinate has positive determinant. Let,

wlp, = fadx{ N\ - ANdxl

n?

where the function f # 0 at all points of U,. As U, is connected, f, has a fixed
sign. If f, is positive we keep the corresponding chart. If f, is negative, then we
change the chart to a new one by composing ¢, with the change of coordinate
map (z1,...,%,) — (—1,...,2,). Clearly, in the new coordinate system, f, is

positive. We repeat this process for each coordinate neighbourhoods and obtain
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a new atlas which we also denote as {(U,, ¢.)}, where the coefficient functions

fo are all positive. Moreover whenever U,NUs # &, we have
Wlv.nus = fadx§ A -+ Ndxy,
= fadet(ﬁx?/ﬁxf)dxf/\ - ANda?
= fgdxf/\ o Adab
Since f, > 0 and f3 > 0, we must have det(dz$ /&xf ) > 0.
Conversely, if M is orientable, we have an atlas {(U.,, ¢»)} for which the change

of coordinates have positive determinant. Take a partition of unity {p,} subor-

dinate to this cover and put

W= Zpadxff/\ < ANdy (3.1)

Then on a coordinate neighbourhood {(Us, ¢)} we have

wly, = Zpadet(axf‘/ﬁxf)dxf/\ . /\daz'g.

Since p, = 0, det(dz$/ &xf ) > 0and ps # 0 on U, w|y, is non-vanishing for each

Us. Hence win 3.1 is non—vanishing on M. |

Now this characterization helps us to quickly see some examples of orientable

and non-orientable manifolds.

Example 3.1. 1. The most trivial example to start with is R". Clearly, it has a
nowhere vanishing n-form which is dxy A - - - Adz,,. Hence by Proposition 3.1

it is orientable.

2. The next class of manifolds that comes to our mind is the n-sphere. Consider S™
as a sub-manifold of R"*'. Note that

n+1
w = Z(—l)i_lxidxl A - ANdx /N - ANdTg g
i=1
is a non-vanishing n-form on S". By Proposition 3.1 S™ is orientable. The n-form

w is also a volume form.
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3. Consider the real projective space RP" and the map p : S* — RP" which maps a
unit vector in R"*! to the one dimensional subspace it spans. Note that the map p
is smooth and locally invertible as only the antipodal points map to the same point
in RP". Let —1 : S™ — S™ be the diffeomorphism x — —x, called the antipodal
map. Then

n+1

(—1)*w = Y (=) (=z)d(—z) A - Ad(=z) A - Ad(—Tp41)

i=1

= (=1)""w.

Suppose RP" is orientable. Then by Proposition 3.1 it has a non-vanishing n-form
7. Since the map p is smooth and locally invertible, its derivative is invertable at
all points. So, p*T is a non-vanishing n-form on S™ and so p*t = fw for some

non-vanishing smooth function f. As p o (—1) = p, we have

[
—~
|
=
S~—
*
\
S
Il
—~
~
@)
—~
|
=
N~—
SN~—
[
—~
|
—_
~—
3
+
i
&

fo=p'T=(po(-1))r

Thus if nis even, f o (—1) = —f. So, if f(x) > 0, f(—x) = —f(x) < 0. Hence
f must vanish somewhere, which is a contradiction. So RP" is a non-orientable

manifold when n is even.

3.2 Integration on Manifold

In this section, we give a brief discussion about integration on manifolds. The
contents of this section are mostly taken from [3]. Let M be an orientable man-
ifold of dimension n with an oriented atlas {(U,, ¢»)}. Suppose w is an n-form
with compact support on U, where {(U, ¢)} is a chart in the given oriented atlas.

Note that (¢~!)*w is an n-form with compact support on the open set ¢(U) < R".

We define
f W= f (o) *w (3.2)
U #(U)

If (U, %)) is another chart in the oriented atlas with the same U, then ¢ o ¢! :
Y(U) — ¢(U) is an orientation-preserving diffeomorphism as the chart is ori-

ented, and so

L(U)(¢_1)*w - L(U)(QS o (o7 w = f () w

Y(U)



CHAPTER 3. DEGREE OF A SMOOTH MAP 38

Now let w be an n-form with compact support. Choose a partition of unity {p,}
subordinate to the open cover {U,}. Because w has compact support and a par-
tition of unity has locally finite supports, all except finitely many p,w are identi-
cally zero and w = ), p,w is a finite sum. Since supp(pow) < supp(pa)Nsupp(w),
supp(paw) is a closed subset of the compact set supp(w). Since p,w is a compact

formon U,, SUa paw is well defined. So, we define the integral of w over M to be

wa ) | s (3:3)

In the definition of the integral we have a choice of partition of unity. So, to say
the integral is well defined, we must show that it is independent of the choice of
partition of unity. Let {V}3, 13} be another oriented atlas of M and {x} be a parti-
tion of unity subordinate to {V;}. Then {UaNV3, ¢a|v.nvs } and {UanVs, Yalvanvs |
are two new atlases of )M, specifying the orientation of M/, and

%: JUQ Pats = g JUQ P ; o
-3¥ Lﬂ P
-Z¥ j P

UaﬂVB
where we can interchange the sum and integral as all are finite sums. The last
line follows from the fact that supp(paxs) < supp(pa)Nsupp(xs) < UaNVs. Simi-

larly, the other integral >, SVB xpw is also equal to )| paXsw. Hence,

;Lpaw=;fvﬁxﬂw

a,f SUO,ﬂVg

showing that Eq. 3.3 is well defined.

3.3 The de Rham Cohomology

In this section we will introduce the de Rham cohomology of a manifold and
compute a few examples. One important question to answer when a differential
form is exact. As, d*> = 0, a necessary condition is that the forms is closed. It

was proved by Poincare that every k-form on R is exact if and only if it is exact
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for k = 1,2,3. Later a more general version was proved, called the Poincare
Lemma. For a general manifold, whether every closed form is exact depends
on the topology of the manifold. For example on R" every closed form is exact,
but on S” there are closed forms which are not exact. The de Rham cohomology

measures the extent to which closed forms are not exact.

Definition 3.2. Let Z*(M) be the vector space of all closed k-forms and B*(M)
be the vector space of all exact k-forms. As d* = 0, all exact forms are closed and
BY(M) < Z*(M). We define the k-th de Rham cohomology vector space of M
to be the quotient

Hg (M) = Z*(M)/B*(M)

The equivalence class of a closed form is called the cohomology class and two

closed forms w and w’ are called cohomologous if w = w’ + dr.

Proposition 3.2. Let M be a connected manifold. Then HY(M) = R.

Proof. Note that there is no exact 0-form. So, Hg(M) = Z°(M). Let us take a 0-

form, i.e. a C*-function f such that df = 0. On a coordinate chart (U, z1, ..., z,),
of

ox;

we can write df = )}, Ldx;. As df = 0, we have all partial derivatives of f are
zero. Hence f is locally constant function on U. We see that the closed 0-forms

are identified with the constant value it takes. So, Hp (M) = R. [

Proposition 3.3. Let M be a manifold of dimension n. Then HE(M) = 0 for k > n.

Proof. For p € M, T,M is a vector space of dimension n. For a k-form w on M,
w, € Ag(T,M), the vector space of all k-covectors. But as k > n, A,(7,M) = 0.
So, w is the zero form and HE(M) = 0 for k > n. |

Example 3.2. 1. (de Rham Cohomology of R) Since R is connected, by Proposi-
tion 3.2 HY(R) =~ R. On R there are no non zero 2-forms. So, every form
is closed. Let fdx be a 1-form on R. Define the function g on R by setting
g(z) = § f(t)dt. Then by fundamental theorem of calculus, ¢'(z) = f(x) and
dg = ¢'(x)dx = f(x)dx. This proves every 1-form on R is exact. Using this fact
and Proposition 3.3, we have HE(R) = 0 for k > 0.

2. Let U be a disjoint union of m open intervals in R. Then HJ(U) = R™ and
HEU) =0 for k > n.
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3. In general

R fork=0
HE(R™) =
0  otherwise

This result is known as the Poincaré lemma and will be proved later.

For any smooth map f : M — N, there is a map f* : Q*(N) — Q*(M), called
the pullback of f.

Lemma 3.1. The pullback map sends closed forms to closed forms and exact forms to

exact forms.

Proof. Let w be a closed form, i.e. dw = 0. As the pullback commutes with the
exterior derivative d, we have df*w = f*dw = f*0 = 0. Hence, f*w is closed.

Similarly f*dr = df*r is an exact form. |

It follows that f* induces a map between the quotients f* : HE(N) — HE(M),
also denoted as f*, given by f*|w] = [f*w]. The functorial properties of the
pullback map on differential forms easily yield the same functorial properties

for the induced map in cohomology namely,
1. If 1 : M — M is the identity map, then 1* : HE(M) — HE(M) is also the
identity map.

2.Iff: M — Nandg: N — P are smooth maps, then (go f)* = f* o g*.

In case of singular cohomology, we have the cup product which gives the prod-
uct structure on the singular cohomology ring. Similarly, the wedge product
gives a product structure on the vector space Q*(M). This product induces a
product on de Rham cohomology: if [w] € HE(M) and [7] € HL (M), define

[WIA[7] :==[wAT] € Hﬁ”(M)

To see that the product is well defined we observe the following facts about

wedge product.

1. The wedge product w AT of closed forms is closed.
This follows from the formula: d(wAT) = (dw) AT + (=1)*w A (d7).
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2. The class [wAT] is independent of the choice of representative of [w] or
[T].
If w is replaced by w' = w + da, then we have W' AT = WAT + daAT.
We have to show that da AT is exact. Indeed we have d(aAT) = daAT +

(-1 *andr = danT as dr = 0. Similarly the other one follows.

For an n-manifold we set

Hy (M) = @Hﬂ%(M)

Every element w € H(M) can be written as w = wy + wy + - - + wy, wy, € HE(M).
Elements of Hj; (M) can be added and multiplied, multiplication here being the
wedge product. It can be verified that under this addition and multiplication
H (M) becomes a ring, called the de Rham cohomology ring. The cohomology
ring has a natural grading by degree of closed forms. Also, the cohomology
ring is an anticommutative graded ring, i.e. wAT = (—1)¥7 Aw. Since Hi(M) is
a real vector space, it is a real graded algebra.

Fora C map f : M — N, we have the pull back map f* : HE(N) — HE(M).
Because one has [ = (WAT) = f*wA f*1, f*: HY(N) — HE(N) is well defined
and becomes a ring homomorphism. So, the de Rham cohomology ring gives us
a contravariant functor from the category of smooth manifolds to anticommuta-
tive graded ring. If two manifolds M and N are diffeomorphic, then Hy (M) and
HE(N) are isomorphic anticommutative graded ring. Hence, the de Rham co-
homology ring is an important diffeomorphism invariant of smooth manifolds.
It is also a homotopy invariant as in the case of singular cohomology ring. We
have defined homotopy in the continuous setting. But as our discussion is re-
garding smooth manifolds and smooth maps, we need to extend the notion of

homotopy to the smooth setting.

Definition 3.3. (Smooth Homotopy) Two smooth maps f,g : M — N between
two smooth manifolds M and N are said to be smoothly homotopic if there is a
smooth map F': M x R — N such that F|;—g = f and F|;,-; = g.

The map F' is called a homotopy between f and g. The map F' can be thought
of a smooth family {f; = F'(—,t) : t € R} of maps varying smoothly in ¢ so that
fo = fand fi = g. As an example we can think of the straight-line homotopy
F(z,t) = (1—1t)f(x)+tg(x) formaps f,g : M — R™. F'is smooth on M x R and
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F|t=0 = f and F|t=1 = g

Definition 3.4. (Smooth Homotopy Equivalence) A smooth map f : M — N is
said to be a smooth homotopy equivalence if there is a map g : N — M such

that g o f is smoothly homotopic to 1, and f o g is smoothly homotopic to 1 .

In this case we say that M is smoothly homotopy equivalent to IV, or that A/ and
N have the same smooth homotopy type.

Example 3.3. 1. A diffeomorphism is a smooth homotopy equivalence.

2. Letp e R*and i : {p} — R™ be the inclusion map. Let r : R" — {p} be the
constant map x — p for all x € R". Then r oi = Ly, and the straight-line
homotopy

F(z,t)=(1—t)z+tp

gives a smooth homotopy between Lg» and i o r. Hence R™ and {p} have the same

homotopy type.

3. Let i : S™ — R™\{0} be the inclusion and r : R"*1\{0} — S" be the map
x — . Note that r is a smooth map and r o i = lgn. Let us define the map
F:R"1N {0} x R —» R*"*1\{0} by

Fa,t) = (1 -t +t2r(z) = (1 — )%z + t?ﬁ.
T

Note that F never takes the value 0 as F(z,t) = 0 < (1 —t)*> + ?/|x] — t =
1 = 0, which is a contradiction. Also F is smooth and F gives a smooth homotopy

between Lgn+1\(oy and i o r. Hence S™ and R"*1\{0} are smoothly homotopic.

We will now state the homotopy axiom for de Rham Cohomology without a

proof. A proof can be found in Section 28 of [3].

Theorem 3.1. Smoothly homotopic maps fo, f1 : M — N induce the same map f; =
i HE(N) — Hg(M) in cohomology.
Corollary 3.1. If f : M — N is a smooth homotopy, then the induced map f* :
HE(N) — HE(M) is an isomorphism.

Proof. By Definition 3.4 thereisag: N — M suchthatgof ~ 1);and fog ~ 1y.
By Theorem 3.1 and functoriality we have f*og* = (gof)* = 1}, and g*o f* = (fo

g) = 1%. Hence g* is the inverse of f*, making both f* and ¢* isomorphisms. W
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From Example 3.3 we know that R" has the same homotopy type as a point.
Hence the de Rham Cohomology of R" is same as that of a point. This proves
the Poincaré Lemma that we mentioned in Example 3.2.

Next we prove a result concerning the de Rham cohomology of a compact con-
nected orientable manifold in the top dimension. We will first prove two lemmas

that will be needed for proving the result we are looking for.

Lemma 3.2. Let f be a smooth function on R™ with support in the open cube C™ =
(—1,1)" and
fdxy---dx, =0

]Rn

Then there exist smooth functions fi, ..., f, on R™ with support in C™ such that

nafl

Proof. We will prove the lemma using induction on the dimension n.

For n = 1, we are given {, fdz = 0. Set

Then we have g—g = f. Note that supp(g) = {z| (", f(t)dt # 0}. As, supp(f)
(—1,1), Sl_l fdx = 0. Hence supp(g) < (—1,1).
Let us assume that the statement is true for all values less than n. We are given

a smooth function f on R” and
J fdxy---dx, =0
R
Fix z,, = ¢ and define the function g on R"~! by
g(xla s wrn—l) = f(xb -y Ip—1, t)
Let o be a bump function on C"~! such that
J O'diCl"'diCn,1=1
Ccn—1

Set
h(t) = J f(]fl,...,$n,1,t>dl’1"'d$n,1
Ccn—1
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Now we have
gz, ) = h(t)o(z1, ... xn1) = W (z1,..., 20 1) (3.4)

Using the fact that supp(c) < C"~ ! and supp(f) < C"! and integrating 3.4 over
R"!, we get

J Wdxy---du,_1 = J gdxy - dx,_1 — f h(t)odzy -+ dx,_q
Rn—1 Rn—1 Rn—1

= J f(l'l, vy L1, t)dfﬂl s dl’n,1 — h(t) J O'd[lfl s dl'nfl
Crn—1 Cn—1

— h(t) — h(t) = 0

As I is a function on R""!, we have by induction hypothesis

n—1 A
M:ZOﬁ (3.5)

Set fo(z1,...,z,) = ({7 h(t)dt)o(x1,. .., x5—1). Then,

o

. h(xp)o(xy, ..., xn-1) (3.6)

Using Eq. 3.5 & Eq. 3.6 and putting t = z,, in Eq. 3.4 we get,

flxe, o xp 1, 2) = W (21, . oy q) + h(xy)o (T, ... Ty 1)
S, o
~ 6xn

By hypothesis, fi,... f,—1 has support in C"~!. Also, note that h(¢) has support
n (—1,1). From Eq. 3.4, we see that i is zeroif t > 1 —d ort < —1 + 4. So,
supp(f;) c C" tx (=1,1)=C"forj=1,...,n— 1.
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For f,,ift > 1—,

t t
f h(t)dt = J (J Fl@t, ., O)day - --dxM)dt
~1 -1 MJon—1
1
= J (J flzy, .. g, t)day - --dxn,1>dt (as f=0fort>1-19)
-1 Cnfl

:J f(xy, ..., xy)dey - dxy
Ccn—1

= 0 (by hypothesis)

Thus supp(f,) < C™. |

Lemma 3.3. Let w be an n-form on R"™ with support contained in the open cube C™

such that
J w=0>0

Then there exists an (n — 1)-form n on R™ with support in C™ such that dn = w.
Proof. Write w = fdxy A --- Adx, with supp(f) < C™. As {,, w = 0, we have

fdxy---dzx, =0

R

By Lemma 3.2,

o Ofi
with supp(f;) < C™. Define the (n — 1)-form  on R"! by,

n= Z(_l)i_lfid%/\ /\d/f;i/\ - Ndzy,
i=1

Then we have

dn = <i§fi>dx1/\ - Ndxy, = fdry /N - Ndx, = w

i=1 Li

and supp(n) < C™ as supp(f;) < C* foralli =1,...,n. [ |

These two lemmas will be helpful in proving our next result regarding the co-

homology in top dimension of a compact orientable manifold.

Proposition 3.4. If M is a compact connected orientable smooth manifold of dimension
n, then Hg (M) = R.
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Proof. By compactness, there is a finite cover {U, ..., U,,} by coordinate nbds
diffeomorphic to the open cube C”. Let w; be a bump n-form with support con-
tained in U; and total integral 1. If wy = dn, then §, w = §, dn = §,, n =0, by
Stokes Theorem. So, wy is not exact. It is closed as there is no (n + 1)-form on M.
Hence wy defines a non-zero cohomology class in Hg(M). We shall show that
every n-form on M is cohomologus to a multiple of wy. Let w be a n-form on M.
we have to show

w=cwy+dn;ceR,ne Q"1 (M). (3.7)

Using a partition of unity {p;} subordinate to {U;}, we write w = ), p;w, where
piw is an n-form with support in U;. By linearity of d, it is enough to prove Eq. 3.7
for p;w. So, without loss of any generality, we assume that w has support in Uy,
for some k € {1,...,m}.

Let x € U; and y € U be two disjoint points. As M is connected, there is a
path connecting = and y. Using the compactness of the path we find U;,, ..., U;

such that they cover the path and U;, = Uy, U;, = Uy and U;;nNU;;,, # < for all
j=1,...,r—1
Forall j = 1,...,r — 1, choose n-form w; with support in U;;\U;,,, and total

integral 1. Now wy — w; has support in U;, = U; and total integral zero. By

Lemma 3.3, there exist a (n — 1)-form 7, with support in U; such that
Wop — W1 = dnl

Similarly wy — w, has support in U;, and total integral zero. So, wy — wy = dnp,

where 7, has support in U;,. Continuing for j = 1,...,r — 1 we get,

wo — w1 = dm

w1 — wy = dny

Wr—2 — Wr_1 = dnr—l

Adding both sides we get wy — w,_1 = Z;;} dn;.
Let = >."_1 ;. By linearity of d,

7=1

Wy — Wy—1 = dn. (3.8)
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Now, the support of w and w,_; is contained in U;, = Uj. Let SM w = c¢. Then

SM (w—cw,—1) = 0 and w — cw,_; has support in U,. Again by Lemma 3.3,
w— cwy_1 = d( (3.9)
From Eq. 3.8 and Eq. 3.9,
w—c(wg—dn) =d{ = w = cwy + d({ — cn)

which proves Eq. 3.7. Hence Hy (M) = R, generated by the bump n-formw,. W

3.4 Degree of a Smooth Map between Manifolds

In this section we will define the notion of degree of a smooth map between com-
pact connected orientable manifolds of same dimension and see some properties

and applications of degree.

Definition 3.5. Let f : M — N be a smooth map between compact connected
orientable smooth manifolds of same dimension n. let wy; and wy be the n-form
on M, N respectively, with total integral 1, that generate the cohomology group
HR(M) and HE(N). f* : HE(N) — HE(M) carries [wy]| to a multiple of [wa].
This number is called the degree of f, denoted as deg(f).

The definition is same as our previous definition of degree in Chapter-1. Next

we will prove two propositions, which will be useful for calculation purpose.

Proposition 3.5. Let f : M — N be smooth. Then for all w € Q™ (M),

| - deg(n) | e

Proof. If 7 is an exact n-form on M, say 7 = dn, then §, 7 = §, dnp =, ,n =10
(by Stokes” Theorem).

So, the integral of an exact form is zero. Hence the integral only depends on the
cohomology class. Let [wy] be the cohomology class that generates Hg(V), i.e.

§xwn = 1. So, [w] = c[wy]. Also, we have {, w = ¢, wy =c
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Now, by definition

frw] = f*(c[w])
= cf*[wn]

= ¢~ deg(f)|wn]

Integrating and using the fact that §, wy = 1 & {,, w = ¢ we get,

JMf*w=c-deg(f)JMwM zdeg(f)f w

N

By our previous definition of degree, it was clear that degree of a map is an inte-
ger, but this notion of degree does not immediately ensures that it is an integer.
It is clear that degree of a smooth map is a real number. We will show now it is

indeed an integer.

Proposition 3.6. Let f : M — N be a smooth map. If ¢ € N is a reqular value of f,
then

deg(f) = D, sign(det(df],))

pef~1(q)

Proof. Since qisaregular value, df|, is surjectiveateachp € f~'(q). Asdim(M) =
dim(N), df|, is a bijection. So, by Inverse Function Theorem, f is a local diffeo-
morphism at each p € f~*(¢). As, M is compact and f~'(¢q) being closed, f~(q)
is compact. Also, f being a local diffeomorphism at each pointp € f~(q), f~'(q)
is discrete and hence finite (only discrete compact sets are finite sets).

Write f~'(q) = {p1, . .., pr} and choose disjoint nbds U; of p; and V; of ¢ such that
f : U; — V; is a diffeomorphism. Set V' = n¥_,V; and U, = unft(v).

Then f : U; — Visa diffeomorphism for all i. Moreover f(M\ UL LU is a
compact subset of N. So, by further shrinking 1/, we can assume that f W) =
Uk U,

Let w be an n-form on NNV, with total integral 1 and support contained in V. Then

[*w is an n-form on M with support in Ulelj}.

| 7 = signtaer(arl,)) | w = signtaer(arl)
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Here we are considering the determinant of the jacobian matrix of f at p;, relative
to the orientation preserving local charts around p; and ¢. So, sign(det(df/|,,)) is
+11is df|,, : T,,M — T,N preserves orientation and —1 if it reverses orientation.

Hence,

k k
def(f) = fM Fo=3, fﬁ = X signidet(d,)

Corollary 3.2. deg(f) is an integer.
Proof. Follows from Proposition 3.6 u

Before looking at some examples, we discuss some important properties and
applications of degree. The following proposition lists some of the important

properties of degree.
Proposition 3.7. Let f : M — Nand g : N — S be two smooth maps between
compact connected orientable smooth manifolds of same dimension n. Then

1. Let N = M and f = 1. Then deg(1,) =1

2. If { |t € R} is smooth homotopy, then deg(fy) = deg(f1).

3. If f is not surjective, then deg(f) = 0.

4. deg(g o f) = deg(f)deg(g)-

Proof. 1. Since, 13, = 1p» ), from definition of degree deg(1,,) = 1.

2. Note that by Corollary 3.1 we have f, = f;. By our definition of degree,
we must have deg(f;) = deg(f1).

3. As M is compact, f(M) is also compact and hence a closed subset of N.
Set N\ f(M) =: V. Note that V' is open and we choose a bump n-form w on
N such that supp(w) < V. Then f*w = 0 and by Proposition 3.5, we have

deg(f) = 0.
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4. By Proposition 3.5, we have

deglgof) [ ws= | (g0 pyws
= JM [ (g% ws)
= deg(f)f g ws

N

~ deg()deg(g) | ws.

S

As § ws # 0, we have deg(g o f) = deg(f)deg(g).

Lemma 3.4. The antipodal map —1 : S® — S" has degree (—1)"*!

Proof. Let w be the volume form on S" as in Example 3.1 and we have seen
that (—1)*w = (—)""'w. Hence using Proposition 3.5, we see that deg(—1) =
(_1)n+1. ]

An important application of degree is the following result.

Proposition 3.8. S" has a non-vanishing tangent vector field if and only if n is odd.

Proof. Let S” has a non-vanishing smooth vector field v : S* — T'S™, assigning

to each point z the tangent vector v(z) € 7,.S". Now, as
T,S" = {ue R"™ : (u,2) = 0},

we have z and v(z) are orthogonal in R"*!. Take u(z) = v(x)/|v(z)|. Then u is
a non-vanishing smooth vector field as v(z) # 0. Also |u(x)| = 1 forall x € S".
Now define

fi(x) = (cost)x + (sint)u(x), teR.

Then f;(x) lies in the unit circle of the plane spanned by z and u(z) and thus
gives us a homotopy between 1s. (t = 0) and the antipodal map —1 (¢t = 7). By
Proposition 3.7 and Lemma 3.4, we have 1 = deg(ls.) = deg(—1) = (—1)"*%.
Hence n must be odd.

Conversely, if n = 2k — 1 is odd, we define

U(.Cl:l,yl, RN ,Qlk,yk) = (—yl,l’l, Cey —yk,l’k)
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Then for x = (z1, 41, . .., Tk, yx) we have

(x,v(x)) = (=211 + y121) + -+ + (—2eyp + yrrr) = 0.

Hence z and v(z) is orthogonal and |v(z)| = 1 for all z € S**~!. So, v is a smooth

non-vanishing tangent vector field on S?*~1. |

Example 3.4. Let us now calculate the degree of some smooth maps between some known

smooth manifolds.

1. To start with, let us first consider the example f : S* — S, given by z — z". If we
parametrize S' by ¢ : (0,27) — S, ¢(t) = (cost,sint), the map f locally looks
like (cost,sint) — (cosnt,sinnt). Take the 1-form w = xdy — ydz on S' < R2,
Note that

¢*w = (zo@)d(yod)— (yo@)d(xo¢) = cost(costdt) — sint(—sintdt) = dt

and fod(t) = (cosnt,sinnt). Hence, (f o ¢)*w = ndt. Now by Proposition 3.5,

we have

:
Pw=def ()| w
r2m

2m
= | ¢ ffw=deg(f) | o'w
Jr(\)27r 21 °

= ndt = deg(f)f dt

JO 0

= deg(f)=n

2. Consider f : S' x S! — S! x S}, given by (21, 22) — (21, 25%). S x S' < R*
is the set of all points (x1,y1,T2,ys) € R* such that x? + y? = 23 + y3 = 1.
Consider for j = 1,2 the 1-forms w; = x;dy; — y,;dx; and take the 2-form wy A w,
on S* x St = R*. Take ¢ to be the parametrization of S' x S' given by (t1,t2) —
(costy,sinty, costy, sinty). By similar calculations as in the previous example,
we can show that ¢p*w; = dt; and (f o ¢)*w; = n;dt;. Hence using the formula

in Proposition 3.5 we conclude that deg(f) = nina.

3. Consider f : S* x St — S x S!, given by (21, z2) — (2125, 2125), where

(p q) e GLy(Z).
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Using the notations used in previous examples, we have
foo(ty,ta) = (cos (pty + rta),sin (pty + rita), cos (qt1 + sta),sin (qt; + sta)).

It is easy to verify that (f o ¢)*w; = pdt; + rdty and (f o ¢)*wy = qdt, + sdts.

Hence we have
27 27
f frwi Awy) = f f (pdty + rdty) A\ (qdty + sdty)
S1 xSt 0 0

2r p2m
= f f (ps — qr)dt; N\dty
o Jo

= det b4 J w1 A\ ws.
r S S1xS?t

Using the formula in Proposition 3.5 we conclude that deg(f) = det (p q) .
ros

4. Let C U {} be the extended complex plane and f : CU {} — C U {} be the map
given by
P rap Nt azdag 2 A
o]
2 =
This is smooth at all points z # as it is a polynomial on C. For points near z =,
f(z) is smooth if and only if f(1/z) is smooth near z = 0. Note that on a small

disc around z = 0, f(1/z) is given by

wk

1+ ap_1w+ - + agwk

w

which is smooth as the denominator never vanish on a small disc around zero.
Now let us define for each t € R

fi(2) = 2" + tlap_1 + -+ arz + ap).
This is a smooth map for all t € R. By Proposition 3.7(2),

deg(fo) = deg(f1) = deg(f)

where fo(z) = 2. To calculate the degree of this map, we take a 2-form ¢(x? +
y*)dx N dy with supp(¢) compact. Writing it in polar co-ordinates r and 6, we
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have
o(z? + y*)dx ANdy = ¢(r)rdr Nd6.

Then the degree is given by

deg(fo) JRZ f(r)yrdr ANdf = y o (r)rdr N dO)
= RQf(Tk)(Tk)d(Tk)/\d(/fe)
—kJ f(r)yrdr A\df.

Thus deg(f) = deg(fy) = k.

This example shows the existence of maps of arbitrary degree on S?. Note that
in particular if k > 0, then f is surjective and takes the value 0 at some point.
Therefore every polynomial in C has a root. This is a proof of the fundamental

theorem of algebra using degree theory.

Degree is an important concept in Algebraic and Differential Topology and has
many applications. For further reading one can refer to [14] and [15]. The notion
of degree will be key in our discussion of Linking Number in the next chapter. We
will define the linking number as a degree of some map from the torus to the

sphere.



Chapter 4
Geometry of The Hopf Fibers

In this chapter we will discuss about the geometry of the fibers of the Hopf
map. In Proposition 1.9 we have seen that the fibers of the Hopf fibration are
circles. The first question that arises after this observation is whether the fibers
are linked or not. We will mainly address this question in this chapter and unveil
the geometry of the Hopf fibers. This hopefully will give us more insight on the
spatial arrangement of the Hopf fibers. Before going to the Hopf map, we intro-
duce the concept of linking number. For a pair of disjoint linked closed curves
in R? < S* we can associate an integer to the pair, known as the linking number,
which represents the winding of one curve around the other. In Figure 4.1, we
see three links. In the first one, there is no linking. That is why it is known as
the Un-link. The second one is linked once and the third one is linked twice. So,
we expect that the linking number for the Un-link must be 0, for the Hopf link
must be 1 and for the Solomon link must be 2. We will see that the notion of

linking number that we will define will be consistent with this observation.

D £

Un Link Hopf Link Solomon Link

FIGURE 4.1: Various Links
Source: GOOGLE IMAGE

54
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4.1 Linking Number

Carl Friedrich Gauss introduced the concept of linking number in a brief note on
his diary in 1833. Although he gave no proof or derivation in that note, it was a
cornerstone in the development of the modern theory of linking number, which
became fundamental in the field of knot theory and modern topological field
theory. Here we will define linking number in terms of degree. There are other
interpretations of linking number in terms of signed crossing and intersection
number. Interested readers can find detailed discussion about them in [7].

Let C} and C, be two disjoint, closed, oriented, smooth curves in R* < S®. As
we are identifying R? with S*\{point} via the stereographic projection, we will
regard the infinite curves, such as {(0,0, z) : z € R} as closed curves. So, the
only type of curves that are not allowed are the finite non-closed curves and
the half-infinite curves, such as {(0,0,2) : z > 0}. Let~, : [0,27r] — R3? be
parametrizations for C;. To each pair (p;, p2) € Cy x C; there is a corresponding

point (¢, t,) on the torus T such that ~;(t;) = p; for j = 1, 2.

Definition 4.1. The Gauss map ¢ : T — S? is defined by associating to each

point (1, t2) the unit vector

Y1(t1) — y2(t2)

n(ti ) = 1(t1) — e (t2)|

Definition 4.2. The linking number of C; and C5, denoted as Lk(C}, C») is given

by
Lk:(C’l, 02) = deg(l/))

In the definition of linking number we have a choice of parametrization of the
curves (] and C,. For the definition to be well defined, it should be invariant

under change of parametrizations. The next proposition tells us indeed it is.
Proposition 4.1. Let ¢; : [0,27] — [0, 27| for j = 1,2 be two orientation preserving
diffeomorphisms. Let ¢’ : T — S? be the Gauss map associated to the new parametriza-
tions y; o ¢; for j = 1,2. Then deg(¢y') = deg(v).

Proof. Note that ¢; is homotopic to 1y 2. via the linear homotopy. Let [; be the
corresponding homotopies. Then we can define a homotopy F' between 1) and

Y’ by setting

_ n(Hi(t, ) = 1(Ha(ts, s))
U012 5) = (1 9)) — e (Ha(ta, )]



CHAPTER 3. GEOMETRY OF HOPF FIBERS 56

By Proposition 3.7(2), we have deg(v) = deg(v). |

Lemma 4.1. Lk(Cy,Cs) = Lk(Cs, Ch)

Proof. The Gauss map associated to Lk(Cy, C1) is given by ¢/ (ta, t1) = —1(t1, t2),
where 1) is the Gauss map associated to Lk(C1, Cs). If —1 is the antipodal map
of S? and ( is the map T — T given by (t1,t3) — (ta,t1), then ¢/ = (—=1) o o (.
So,

deg(1) = deg(~1)deg(1)deg(C) = deg(v)

as deg(—1) = deg(¢) = —1. [

From Proposition 3.6, we know that

deg(v) = . sgn(det(dil,)). (4.1)
pep~—1(q)

Let g € S? be a regular value of ¢ and let ' (q) = T = {(t1,,t2,), -, (trys try) }-

By Eq. 4.1 any point of 7 contributes +1 to the value of deg(v)). At any point
; on on

U(tiy, tiy) (0 = 1,2, k) the normal vector v(t;,, t;,) = (5% x 672)(“1%_2

orientation to the surface ¢(T) at ¥(¢;,,t;,). Hence the orientation of v(t;,,t;,)

) gives an

(outwards or inwards) determines whether the point (¢;,,t;,) contributes +1 or

—1 to the value of degree. Note that £ and 2" lives in the tangent space to
1 2

the sphere at n(t;,?;). Hence their cross product must be parallel to to the unit

vector n(t1,t2). So, the sign is given by the sign of n(t;,,t;,) - v(t;,t,). Let us

denote PR
n on
Tl(til,tiZ) . V<ti17ti2) = <n7(9_1f17(9_252)(t. . ), (4:2)
and we see that
on on
deg(v) = Y, son(n. o &_z€2> - 4.3)

(til ,tl‘2 )ET

on on - on  on on o on
Alsonote that (n, 5, 6_1§2)(ti17ti2) = sgn(n, g, atQ)(til,tiQ) ot Ot |t t1y)

and v(t;,,t;,) are parallel. It can be shown that the degree of 1 is given by

as n(t“ s tlz)
1 on ony ,
deg(u) = 1= | (m 5 5 )0 @)

where d?6 is the volume form on the torus. For further details and a proof see

Proposition-5.6 of [7].
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We can also calculate the degree of ¢ by calculating the oriented area of ¢(T).

’I’L

Let us sub-divide T into regions R;, where e

x £ has a constant sign. The

oriented area of ¢(R;) is given by

dtdt
J“mlad 12

where sign depends on the orientation of the surface. The oriented area A is

given by summing up all the positive and negative contributions from the re-

gions ¢(R;). Since (n ,gg,g—g)(til%) =+ % X g—t’; tiprtsy) has the sign of the ori-
ented surface 1)(T), the oriented area is given by
21 271'
on on
A:f J =)t 45
0 0 atl &tQ ! - ( )

Thus from Eq. 4.4 and Eq. 4.5 we have deg(v)) = A/4x. This oriented area in-
terpretation of degree will be useful for our subsequent calculations. In a non-
technical language the degree of ¢ is simply given by the number of times ) (T)
covers S?.

Let us consider the Gauss map associated with the Hopf link. The image (T)
is given by Figure 4.2. The lighter region is covered once and the darker region
is covered twice, by two opposite orientations. The orientated area of (T) in
this case is +47 depending on the surface orientation. Hence linking number is

1 in this case.

Ficure 4.2: ¢(T) resulting from the Gauss map for Hopf link
Source: WORLD ScieNTIFIC [7]
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4.2 The Hopf Fibers

From now on we will use the name Hopf fibers for referring to the fibers of the
Hopf map. In this section we will parametrize the Hopf fibers. In Chapter-1 we
have seen that the Hopf fibers are circles. There are infinitely many circles in
S%. Given any point in S?, we do not know exactly which circle represents the
fiber over that point. We will now try to identify the fiber circles and find an
explicit parametrization of them. Let us recall the definition of the Hopf map

from Chapter-1.
Definition 4.3. (Hopf Map) The Hopf map h : S* — C U {0} = S? is given by

22

5(21,22) = —.

21

Taking the homeomorphism CU {00} = S? to be inverse steriographic projection

and regarding S* < R?, one can write the Hopf map b : S* — S? as

(21,91, 2, y2) = (2(z122 + 1Y), 2(21Y2 — Y122), 5 + Y5 — 27 — Y7) (4.6)

Now let us consider S?  C x R, i.e. $* = {(z,2) : |2|* + 2% = 1}. Then the Hopf
map b is defined as
b(z1,22) = (27122, |22 — [21[*). (4.7)

Now we will try to illustrate the fact that the Hopf fibers are linked with each
other. We can calculate their linking number to conclude that, but we would
like to give a more visual argument in favor of this.

Let us take A € C such that |\| = 1. Then

f)()\Zl,)\ZQ) = (2)\_21)\22, |>\22‘2 — |)\Zl|2) = |>\|2(2Z_122, |ZQ|2 — ‘Zl‘2> = 6(21,22>.

Also if h(z1, z2) = h(wy, wy), then 2 =12 Taking z; = r;e'% and w; = s;ei, we
have 2 = 2 and 0, — 6y = ¢» — ¢ + 2k7. Using the relations r?+ri=st+si=1,
we conclude that r; = s; and 2 = s9. So, we can write

(81€i¢1, 826i¢2) _ ei(¢1—91)(r16i917Tzei(¢2—¢1+91)) _ ei(¢1—91)(7a16i917T26i(92—91—2k7r+91))

— i(¢1—-61) (Tlewl 7 7‘26192 )
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So, we have h(wy, w2) = h(z1, 22) if and only if (wq, we) = A(z1, z2) with [A| = 1.

From this it is clear that the fibers are circles. Now consider the circle
Co = {(21,2) : 20 = 0} = S

Under the Hopf map C, maps to (0,—1) € S* « C x R, hence h~(0, —1) = Cj.
Let us denote the equatorial sphere of S* by 52, which is given by

S3 = {(21, 20) : Im(z2) = 0}.

Lemma 4.2. Any point (21,2) € S® can be connected to only one pair of antipodal

points on SZ by some Hopf fiber.

Proof. We have already seen thatif (21, z) belongs to some Hopf fiber then A(z1, 22)

also belongs to the same fiber for every A such that |[\| = 1. Lets us write
zj = rje' for j = 1,2. Take A = =2, then |\| = 1 and Im(\rqe®?) = 0. Also tak-
ing A = —1, we see that the antipodal point (—r€/®1=%2) —r,) of (rie'®1=%2) r,)

also belongs to the same Hopf fiber as (21, 22). If there is any other point (27, 7) on
S2 which belongs to the same fiber, then it must satisfy (11?1 =%) r,) = A\(z],7),
with |[A| = 1. But as the 2nd coordinate is real, A = +1 and hence the pair of

antipodal point is unique. u

Since every Hopf fiber contains a pair of antipodal points of S7 and the circular
fiber joins the southern hemisphere of S* ("inside" of S3, Im(z2) < 0) with the
northern hemisphere of S* ("outside" of SZ, Im(z;) > 0), every Hopf fiber is
linked with Cj, which is the equatorial circle of S3. To see that any two fiber
circles are linked, we give an intuitive argument. The 2-sphere can be rotated so
that any great circle can be used as an equator or any pair of antipodal points
can be used as the poles. Similarly, the 3-sphere can also be rotated so that any
circle can be moved to where Cj is. Hence any two Hopf fiber circles are linked,
as one can be moved to be at Cj and the other fiber circle will be linked to it by

our previous discussion. So we have proved the following;:
Proposition 4.2. Any two Hopf fiber circles are linked.
Although we now know that the Hopf fibers are linked, we do not know their

linking number. There are several questions we need to address at this point.

The first is whether the linking number of any two fibers are same. If it is, then
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we can take any two Hopf fibers and calculate their linking number, which will

give us an invariant for the Hopf map.

Proposition 4.3. Let p = (¢'?sinf,cos0) € S?, where 0 and ¢ are the polar and

azimuthal angles respectively. Then
b (p) = {(sin (6/2)e'=*/? cos (0/2)e't+9/2)) . t € [0, 2n]}.
Proof. Let (21, 29) € h(p) and z; = r;e’“i for j = 1,2. Then we have
(21, 22) = (2T17‘2€i(§2_§1),T§ —r?)
and the relations

sin 6 cos ¢ = 21179 cos (& — &)
sinfsin ¢ = 2ryrg sin (& — &)

_ 22
cost =r; —r]

From the first two relations we see that tan ¢ = tan ({, — &), which immediately
tells us that ¢ = & — &;. Again from the third relation,

(r3 —r3) + (r5 +7?) = cos + 1

1 6
= 7= % = cos®0/2

= 719 =cos(0/2)
So, 11 = sin (#/2) and we have

21 = sin (0/2)e
2y = cos (0/2)e™

Note that \(t) = ¢/t=©%¢/2) t € [0, 27] is a parametrizarion of S'. Hence
(w1 (2), wa(t)) = (A(t) 21, A(t) 22)
gives the parametrization for the Hopf fiber h~*(p). We have

wy (t) = sin (9/2)e =9/
wy(t) = cos (0/2)e't+9/2)



CHAPTER 3. GEOMETRY OF HOPF FIBERS 61

FIGURE 4.3: Stereographic Projection of The Hopf Fibers

SOURCE: MATHEMATICA

which completes the proof. u

Once we know the parametrization of the Hopf fibers, we can actually plot the
steriographic projections of the fibers in R® and see how they are oriented in
R?. In figure 4.3, one can see that the fibers are linked once. Hence, one should
expect to have the linking number of the Hopf fibers to be +1. In the next section

we will see this is indeed true by using the notion of linking number.

4.3 Linking Number of the Hopf Fibers

Now we have a parametrization of the Hopf fiber of a given point (e sin 6, cos 6)
in S*. We will now show that given any two pair of points in S* the linking
number of the corresponding Hopf fibers are the same. To prove this we will
fix one pair to be ((0, 1), (0, —1)) and choose the other pair (p;, p2) (p; # (0,1) or
(0,-1) for j = 1,2) in S? arbitrarily.

Proposition 4.4. Lk(h=1(0,1),571(0,—1)) = Lk(h~(p1), b (pa)) for any two dis-
tinct points py and py in S?.

Proof. Let oy and «; be two paths disjoint from each other such that

061(0) = (07 1)? al(l) =D1
az(0) = (0,—1), (1) = po

We can find such paths as one can choose «; to be the part of the great circle that

passes through (0, 1) and p; and choose a; to be in S*\«; ([0, 1]). Let us write o4
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and oy as

a1(s) = (€1 sin 6y (s), cos 0y (s))
as(s) = ("2 sin B,(s), cos B(s))

where §; and ¢, are continuous functions of s for j = 1,2. Let us take v; to
be the parametrization of h~!(p;) as in Proposition 4.3 and define for j = 1,2,
H; : [0,27] x [0,1] — S by

H;j(t;,s) = (sin (0;(5)/2)e G791 cos (0;(s)/2)e o)/,
Then Hj is a continuous function of ¢; and s and

Hl(tl,O) ==

|
—
JO
[
&
:
S—
=
—
~
=
—
S—
I
2
=
~
~
=
S—

Let F denote the steriographic projection F' : S*\{(0,i)} — R?. Now define for
each s € [0,1], s : T — S* < R3 by,

F o Hy(t,s) — F o Hy(ts, s)
VYs(ty, ta) =
’FOHl(tl,S) — FOHQ(tQ,S)‘

Then ¢, is a one-parameter family of maps such that 1, is Gauss map for the pair
(h=1(0,1),571(0,—1)) and ¢, is the Gauss map for the pair (h='(p1), h~*(p2)). As
1, gives a homotopy between vy and 1)1, we have deg(vy) = deg(z1). Hence
Lk(h71(0,1),571(0, ~1)) = LE(h " (p1), 5" (p2)- u

Now let us calculate the linking number of the Hopf fiber. By the previous
Proposition we can find it by calculating Lk(h~'(0,—1),571(0,1)). Let 3; and
B> be the stereographic projections of the parametrizations of h=*(0,—1) and

h=1(0, 1) respectively. Then j3; and 3, are given by

p1(t1) = (costy,sinty, 0)
52@2) _ (O 0 cos ty )

’ 71—Sintg
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The normal vector n(t;, t2) in the Gauss map v is given by

Bi(t1) — Balts)

n(ti,ta) =
B t2) = 15 0) = Balta)
(costl,sintl,—l‘”?tz)
_ —Ssin 4.8
. (4.8)
where ¢ = |(costy, sinty, (222} | = 7 ‘Qn —. Hence

n(ty, ty) = <(m) costy (v1—sinty)sint; (V1 —sinty) COSt2>
o V2 ’ V2 " V2(1 —sinty) /-

According to Eq. 4.5,

1 (> on on
deg(¢)=EJO L Sg"(”’aﬁ’%)‘atl atz‘dtldtz

After some tedious but straightforward calculations we find that

on _dn <cost1(1 —sinty) sint;(1 —sinty) cos t2>

ot ot 1 ’ 1 Ty

and comparing it with Eq. 4.8, we see that g—t’i 2 js an outward normal to the

ts
surface 1(T). Hence sgn(n, §*, §*) = 1 and

r2m 2T

(cos t1(1 —sinty) sint;(1 — sinty) _ cos t2)

1
deg(y) = yp 1 ; 1 ;

T™Jo Jo
r2m 2T

’dtldtg

1
yy ] \/1—6(0082 t1(1 —sinty)2 + sin? ¢ (1 — sint5)? + cos? ty)dt, dto
Jo Jo
1 r2T 2T 1
= — —\/ 1 —sinty)? + cos? tydt dty
4m Jo Jo
27 1

= \/ 2 — 2sin thtQ

Hence Lk(h~1(0,—1),571(0,1)) = 1.

Here we have done our calculation with the yellow circle and the blue straight
line in Figure 4.4. There is a slight computational advantage if we take these two
specific points. The advantage in this case is that sgn(n, g—g, 577;) is constant 1 or
—1 on the torus depending on orientation of ¢(T). So, we can integrate on the
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FIGURE 4.4: Some Hopf Fibers

SOURCE: A VISUALIZATION OF THE HOPF FIBRATION [17]

whole torus without any worries. But if we had chosen any other pair of points,

on  On
) Ot Oto

to identify the regions where the sign is positive and where the sign is negative

we would not have sgn (n ) is constant on the torus. Then we would have
and integrate on those regions separately to calculate the oriented area.

The linking number for the Hopf fibers is 1 and it is same for any two fibers. The
linking number thus gives us an invariant for the Hopf map. It actually gives
us an invariant for any map f : S* — S?. To see a formulation of this concept,
one can look at [22]. This notion of Hopf invariant is same as our notion that we
defined in Chapter-2. We will not go into the details of the equivalence of the
two notions. One thing that we would like to mention is to generate maps such
that the linking number of its fibers is k£, we only need to pre-compose Hopf map
with a degree k map from S? to S*. Also, if we have a map f of degree k from
S? to $?, then the fibers of the map f o h have linking number k?. These facts are
immediate from Proposition 2.5 and the equivalence of the two notions of Hopf
invariant.

The Hopf fibration gave us a way of viewing S” in terms of disjoint circles- one
for each point of S?. Using disjoint circles and one straight line, can you fill up
R? in such a way that each pair of circles is linked and the line passes through
the interior of each circle? our discussion says that the answer to this question
is the Hopf fibration and it is the only answer (up to a homotopy)!!!

We can perform a similar study on the other Hopf bundle S* — S” — S*. For
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this we need to extend the notion of linking number to higher dimensions. For
sub-manifolds A* and B' of dimension k and [ of R**'*!, we can define a map
Y AFx B! — S* by i(a,b) = (a—b)/|a—b|. Thisis analogous to our Gauss map.
We define the linking number Lk(A*, B') = deg(1). Using this description, one
can find the linking number for two fibers of the Hopf bundle S* — S7 — S*.



Appendix A
CW Complexes

To start with, we first define what is known as a CW complex or cell complex.

Most of the content in this Appendix is taken from [2].

Definition A.1. (CW complex)

1. Start with a discrete set X°, whose points are regarded as 0-cells.

2. Inductively, form the n-skeleton X" form the (n — 1)-skeleton X"~! by at-
taching n-cells ¢ via maps ¢, : S*"' — X" !. This means that X" is
the quotient space of the disjoint union X" '1,D” under the identifica-
tion x ~ @, (z) for z € dD”. Thus as a set, X" = X" 'I,e" where each

n
e

3. One can either stop this inductive process at a finite stage, setting X = X"
dor some n < %, or continue indefinitely, setting X = U, X". In the later
case X is given the weak topology: A set A < X is open if and only if

A n X" is openin X" for all n.

Example A.1. Let us see couple of examples of CW complex of our interest.

1. CW Complex Structure of S*: The n-sphere S™ has the structure of a cell com-
plex with a 0-cell €° and an n-cell e". The attaching map ¢ : St — € is the
constant map. This is basically the quotient space D" /0D"™. As, D"/oD™ =~ S",
we conclude that the CW topology of S™ is same as the usual euclidean topology
of S™.

66
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2. CW Complex Structure of CP": The complex projective space CP" is defined
as the quotient space of C"\{0} under the equivalence relation z ~ Mz for
A\ € C\{0}. Equivalently, CP" is the quotient of the unit sphere S**** < C"*!
under the equivalence relation z ~ \z for |\| = 1. There is another way of obtain-
ing CIP" as a quotient space of the disc D*" under the identification = ~ Az for
z € dD*" in the following way. The points in S*" 1 < C™**! with last coordinate
real and non-negative are precisely the points of the form (w, /1 — |w|?) € C"xC
with |w| < 1. These points form the graph of the function w — /1 — |w|2. This
is a disc D?" bounded by S**~* < S*"*! consisting of points (w, 0) € C" x C with
\w| = 1. Each vector in S*"*! is equivalent under the identification z ~ Az to a
point in D", and the later point is unique if its last coordinate is non-zero. If the
last coordinate is zero, we have the identification z ~ \z for z € S*"1.

From this description of CP", it follows tha CP" is obtained from CP"~" by at-
taching a 2n-cell e** via the quotient map S**~* — CP"~'. So, by induction on
n we obtain a cell complex structure CP" = e Ue? U - - - U e*™ with cells in even

dimensions only.

Proposition A.1. The space CP' and S? are homeomorphic.

Proof. From Example A.1, the cell complex structure of S* is ¢ U ¢*" with attach-
ing map ¢; : St — ¢ is the constant map. Also the cell complex structure of
CP' is also € U 2" with attaching map ¢, : S' — CP" = € is the constant map.
Hence we see that S? and CP' are homeomorphic as CW complex. As the usual

topology and the CW topology coincide, we have CP' ~ S?. u
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