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Résumé

Soit G un arbre binaire ayant pour noeuds l’ensemble V et soit H un opérateur de Schrödinger

agissant sur `2(V ). Une décomposition de l’espace `2(V ) en sous-espaces invariants est

présentée de sorte à fournir une opérateur conjugué A utilisable dans une estimation de

Mourre. Nous montrons qu’une estimation de Mourre vaut pour des potentials q dont les

différences de premier ordre satisfaisont à une condition de décroissance.

Abstract

Let G be a binary tree with vertices V and let H be a Schrödinger operator acting on `2(V ). A

decomposition of the space `2(V ) into invariant subspaces is exhibited yielding a conjugate

operator A for use in the Mourre estimate. We show that for potentials q satisfying a first

order difference decay condition, a Mourre estimate for H holds.

Introduction

Let G = (V, E) be a graph with vertices V and edges E. The Laplace operator acts on functions

defined on V . If φ : V → C is such a function, then ∆φ is the function defined by

(∆φ)(v) =
∑
w:w–v

(
φ(w) − φ(v)

)
,

where w–v means that v and w are connected by an edge. We are interested in the spectral theory of

−∆ and perturbations −∆ + q, acting in the Hilbert space `2(V ) of square summable functions on V .
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This is the space of functions φ satisfying

∑
v∈V
|φ(v)|2 <∞,

with inner product given by

〈φ, ψ〉 =
∑
v∈V

φ̄(v)ψ(v).

Let L denote the off-diagonal part of ∆. Thus

(Lφ)(v) =
∑
w:w–v

φ(w).

If d(v) denotes the number of edges joined to the vertex v then

∆ = L− d,

where d is the operator of multiplication by d(v). The degree term d can be included in the potential

as a perturbation, hence −∆ + q = −L + d + q can be considered as a perturbation of L. Both ∆ and

L are symmetric on `2(V ). When d(v) is bounded, then both operators are also bounded operators,

hence self-adjoint.

The goal of this paper is to prove a Mourre estimate and related bounds for the Schrödinger

operator −∆ + q when the underlying graph is a binary tree. Here q denotes multiplication by a

potential function that tends to zero at infinity. For a binary tree, d = 3− d0, where d0 is the potential

with d0(v) = 1 at the root of the tree and 0 otherwise. Hence −∆ + q = −L + 3 − d0 + q and the

spectrum of −∆ + q is the same as that of L − q + d0 up to a shift and a reflection about zero. In

considering the Mourre estimate, the d0 term can be absorbed in q and the sign of the potential changed,

since −q + d0 satisfies our decay assumptions whenever q does. Hence we aim at obtaining a Mourre

estimate for L + q.

The operator L can be diagonalized explicitly. Its spectrum is absolutely continuous and equal to

σ(L) = σac(L) = [−2
√

2, 2
√

2]. This is also the essential spectrum of L. Since q is a compact operator,

perturbation by q does not change the essential spectrum, and so σess(L + q) = [−2
√

2, 2
√

2].

We will define a self-adjoint conjugate operator A such that, under appropriate conditions on q

(i) [L + q, iA] is bounded

(ii) [[L + q, iA], iA] is bounded

(iii) L + q and A satisfy a Mourre estimate at every point in (−2
√

2, 2
√

2)

By definition, (iii) means that for every λ ∈ (−2
√

2, 2
√

2), there exists an interval I containing λ

such that

EI [L + q, iA]EI ≥ αE2
I + K
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Here EI = EI(L+q) denotes the (possibly smoothed) spectral projection corresponding to the interval

I , α is a positive number, and K is a compact operator. Precise statements can be found in Lemma 5,

Lemma 6, Lemma 7 and Theorem 9 below.

The estimates (i) (ii) and (iii) together with the abstract Mourre theory (see, for example [1]), have

the following consequences.

(1) Eigenvalues of L + q not equal to ±2
√

2 have finite multiplicity and can only accumulate at

±2
√

2.

(2) The operator L + q has no singular continuous spectrum.

(3) Scattering for the pair L and L + q is asymptotically complete (see [2]).

Recently, it was noticed that the proof in [1] of the virial theorem–an essential step in the abstract

Mourre theory–contains an error [3]. However, if H is bounded then eisA trivially preserves the domain

of H . This condition together with (i) ensure the validity of the virial theorem (see [3]).

Although we only treat the binary tree, the same method can be applied to related graphs, for

example the Bethe Lattice, or trees with k-fold branching. Graph Laplacians and Schrödinger operators

on the Bethe Lattice are of interest in solid state physics, where they serve as a model for tightly bound

electrons. Much effort has gone into studying operators with random potentials, and it is interesting

to note that although the existence of dense point spectrum near band edges has been proven in many

situations, the Bethe Lattice is the only model where it has been proved that for weak disorder, some

absolutely continuous spectrum remains in the middle of the band [4]. From the purely mathematical

point of view, the Bethe Lattice is the Cayley graph of a free group. It would be interesting to be able

to say something about the continuous spectrum of the Laplace operator on the Cayley graph for a

finitely generated group that is not free, and to relate properties of the spectrum to properties of the

group.

The subspace decomposition and conjugate operator used in this paper bear some similarity to the

ones used in [5] in the case of exponentially large manifolds. However, the details are quite different.

In particular, the calculation of the matrix elements of A and the method of estimating [q, iA] have no

analogue. These results first appeared in [2]. Independent work on the commutator method for the

graph Zn has appeared in [6] and [7].

The operators Π and R

In this section we will let (V, E) be an arbitrary graph and introduce polar co-ordinates and some

associated operators. Choose some 0 ∈ V to be the origin. Define |v| to be the distance in the graph

from 0 to v. In other words, |v| is the length of the shortest path in the graph joining 0 to v. Define Sr,
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the sphere of radius r, to be the set of all vertices with |v| = r. Then V is a disjoint union

V =
∞⋃
r=0

Sr

and

`2(V ) =
∞⊕
r=0

`2(Sr)

In the case of a binary tree, see the figure below.

S1 S2 S30S ...

Spheres in a binary tree

We will write v→w if v and w are connected by an edge and |w| = |v|+ 1.

Define

(Πφ)(v) =
∑

w:w→v
φ(w)

The adjoint of Π can be computed by calculating

〈ψ, Πφ〉 =
∑
v

∑
w:w→v

ψ̄(v)φ(w)

This can be interpreted as a sum over all edges joining neighbouring spheres, where ψ̄ and φ are

evaluated at the right and left endpoint of the edge respectively. We have chosen to label the edges by

their right endpoint v, and the sum over w : w→v accounts for the possibility of several arrows having

the same right endpoint. If we choose to label the edges by their left endpoints instead we find that the

same sum can be written

〈ψ, Πφ〉 =
∑
v

∑
w:v→w

ψ̄(w)φ(v).

This shows that

(Π∗φ)(v) =
∑

w:v→w
φ(w)
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Notice that Π∗Π and ΠΠ∗ leave each `2(Sr) invariant. The action of Π∗Π is given by

(Π∗Πφ)(v) =
∑
w

φ(w) (1)

where the sum is extended over w ∈ S|v| that are joined to v by a path in the graph of length two, going

from v to some element in S|v|+1 and then back to S|v|. The formula for ΠΠ∗ is analogous, except that

the path goes in the other direction to S|v|−1 and back.

We will denote by R the operator of multiplication by |v|. When restricted to `2(Sr), the operator

R is multiplication by r. An easy calculation shows that

[R, Π] = Π (2)

We may write L in terms of Π and Π∗ by breaking the sum in the definition of L into three pieces.

We obtain

L = Π + Π∗ + LS,

where the spherical Laplacian LS is defined by

(LSφ)(v) =
∑

w: w–v
|w|=|v|

φ(w).

Diagonalization L and definition of A for a Binary Tree

In this section we will exhibit a diagonalization of the off-diagonal Laplacian L on a binary tree.

Choose the origin to be the base of the tree and introduce polar co-ordinates. Since there are no

edges that connect vertices within each sphere, LS = 0, and

L = Π + Π∗.

We now construct invariant subspaces Mn for Π. Let Q0,0 = `2(S0) and define Q0,r = ΠrQ0,0.

Let

M0 =
∞⊕
r=0

Q0,r.

To define Qn,r and Mn for n > 0 we proceed recursively. Suppose that Qm,s have been defined

whenever m < n and s ≥ m. Let Qn,n be the orthogonal complement in `2(Sn) of all previously

defined subspaces,

Qn,n = `2(Sn)	 (Q0,n ⊕ · · · ⊕Qn−1,n) .

For r = n + j, j ≥ 1, define Qn,r = ΠjQn,n, and

Mn =
∞⊕
r=n

Qn,r =
∞⊕
j=0

Qn,n+j .
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Schematically, this gives

`2(S0) `2(S1) `2(S2) `2(S3)

M0 Q0,0 Q0,1 Q0,2 Q0,3 · · ·

M1 Q1,1 Q1,2 Q1,3 · · ·

M2 Q2,2 Q2,3 · · ·

...
...

Orthogonal subspace decomposition

Lemma 1 The Hilbert space `2(V ) can be written as an orthogonal direct sum

`2(V ) =
∞⊕
n=0

Mn =
∞⊕
n=0

∞⊕
r=n

Qn,r.

The subspaces Mn are invariant for L.

Proof: Since Π maps `2(Sr) into `2(Sr+1) if follows that each Qn,r is contained in `2(Sr). Thus, if

r 6= s, then Qn,r and Qm,s are orthogonal, for all n and m.

For a binary tree, it follows from (1) that

Π∗Π = 2I (3)

This implies that if φ and ψ are orthogonal, then Πφ and Πψ are orthogonal too. Since Qn,n is

orthogonal to Qm,n for m < n by construction, it follows that Qn,r and Qm,r, for r ≥ n are orthogonal

too.

By construction
⊕r

l=0 Ql,r = `2(Sr), so it is clear that the subspaces add up to `2(V ).

By construction, each Mn is invariant for Π. That they are invariant for Π∗ follows from (3) as

follows. It suffices to show that each Qn,r is mapped to Mn under Π∗. Suppose that φ ∈ Qn,r for

r = n + j with j ≥ 1. Then φ = Πjχ for χ ∈ Qn,n. Hence Π∗φ = 2Πj−1χ ∈ Qn,r−1. On the other

hand, if φ ∈ Qn,n, then Π∗φ ∈ `2(Sn−1). Suppose that ψ ∈ Ql,n−1 for some l ≤ n−1. Since Πψ ∈ Ql,n

for some l ≤ n− 1 and φ ∈ Qn,n, we have 〈ψ, Π∗φ〉 = 〈Πψ, φ〉 = 0. Hence Π∗φ is orthogonal to each

Ql,n−1, which implies that Π∗φ = 0. Thus each Mn is invariant for Π and Π∗, and hence for L.

Since each Mn is an invariant subspace for L we can decompose L = ⊕∞n=0Ln, where Ln is the

restriction of L to Mn. We now diagonalize Ln.
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We begin by writing a vector φ in Mn as

φ = ⊕∞j=0φn+j

where φn+j ∈ Qn,n+j . We want to obtain an isomorphism between Mn and `2(Z+, Qn,n), the space

of Qn,n valued sequences.

We first note that ( 1√
2
Π)j (not Πj) defines an isometry between Qn,n and Qn,n+j for all j and that

any φ ∈Mn can be written as

φ = ⊕∞j=0

(
1√
2

Π
)j

χn+j (4)

for a sequence of vectors χn, χn+1, . . . ∈ Qn,n.

Under this representation, Mn and `2(Z+, Qn,n) are isomorphic, since

〈φ, φ〉 =
∞∑
j=0

〈φn+j , φn+j〉 =
∞∑
j=0

〈χn+j , χn+j〉 = 〈Wφ, Wφ〉

by the above isometry, where W denotes the isomorphism.

In this representation, the operator 1√
2
Π acts as a shift to the right, while 1√

2
Π∗ is a shift to the left

with kernel Qn,n.

Let

U : Mn
∼= `2(Z+, Qn,n)→ L2

odd([−π, π], dθ)

denote the unitary map defined by

U
(
(αn, αn+1, . . .)

)
=

1√
π

∞∑
j=0

αn+j sin((j + 1)θ)

Lemma 2

ULnU
∗ = 2

√
2 cos(θ).

Proof: The proof is a straightforward computation.

This lemma shows that the spectrum of Ln is [−2
√

2, 2
√

2], and is absolutely continuous. Thus

the spectrum of L is also [−2
√

2, 2
√

2], with infinite multiplicity.

This representation motivates our choice of conjugate operator. For a general multiplication

operator ω(θ), and natural conjugate operator is Aω = i
2 (ω′ ddθ + d

dθω
′), since

[ω, iAω] = ω′2

which is positive away from the critical points of ω. In the present case the natural conjugate operator

is therefore

UAnU
∗ = −i

√
2
(

sin(θ)
d

dθ
+

d

dθ
sin(θ)

)
7



and a calculation now shows that on Mn

iAn = U∗
√

2
(

sin(θ)
d

dθ
+

d

dθ
sin(θ)

)
U = (R − n +

1
2

)Π−Π∗(R− n +
1
2

)

Therefore a natural conjugate operator for L is ⊕∞n=0An. If we let Pn denote the projection onto Mn,

and define

N =
∞∑
n=1

nPn

the conjugate operator can be written as

iA = (R−N +
1
2

)Π−Π∗(R −N +
1
2

).

Matrix elements of A

We will need estimates on the matrix elements of A. Let δw denote the standard basis element in

`2(V ) defined by δw(v) = δw,v. We wish to estimate the matrix elements 〈δv, iAδw〉. Using the formula

Πδw =
∑
w→z

δz

we find that

〈δv, iAδw〉

= 〈δv, (R−N +
1
2

)Π−Π∗(R−N +
1
2

)δw〉

=


(
|v|+ 1

2

)
δ(w → v)−

∑
z:w→z

〈δv, Nδz〉 if |w| = |v| − 1

−
(
|w|+ 1

2

)
δ(v → w) +

∑
z:v→z

〈δz, Nδw〉 if |w| = |v|+ 1

0 otherwise

(5)

Here δ(w → v) is equal to 1 if w → v and 0 otherwise.

To calculate the matrix elements of N appearing in this formula, we introduce, at this point, an

explicit basis for each Qn,r. When n = 0, we have that Q0,r = Πr`2(S0) is one dimensional and

consists of all vectors φ(v) in `2(Sr) such that φ(v) has the same value for all v. An orthonormal basis

for Q0,r is therefore the single vector

ρ0,r,0 = 2−r/2[1, 1, . . . , 1]

The space Q1,1 is the orthogonal complement in `2(S1) of Q0,1. Thus Q1,1 is also one dimensional and

has orthonormal basis

ρ1,1,0 = 2−1/2[1,−1]
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Pushing the vector forward along the tree using Π and normalizing gives

ρ1,r,0 = 2−r/2[1, 1, . . . , 1,−1,−1, . . . ,−1]

as a basis for Q1,r, where half the entries are 1 and the other half −1.

The space Q2,2 is the orthogonal complement in `2(S2) of Q0,1 ⊕ Q1,1. Since dim(`2(S2)) = 4,

the space Q2,2 is two dimensional. It has orthonormal basis

ρ2,2,0 = 2−1/2[1,−1, 0, 0]

ρ2,2,1 = 2−1/2[0, 0, 1,−1]
Pushing these vectors forward along the tree using Π and normalizing yields ρ2,r,0 and ρ2,r,1.

Continuing in this fashion we define the orthonormal basis ρn,r,k with k = 0, . . . , 2max{n−1,0}−1.

When we fix the second index r, the vectors ρn,r,k are the Haar basis for `2(Sr). Upon defining a partial

order on the Haar basis elements for `2(Sr) using inclusion of supports, the Haar basis functions, as

illustrated below for r = 4, naturally form a binary tree with r levels, extended by an extra vertex at

its base.
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ρ

ρ

ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ ρ ρ

ρ

ρ
0,4,0

1,4,0

2,4,0 2,4,1

3,4,0 3,4,1 3,4,2 3,4,3

4,4,0 4,4,1 4,4,2 4,4,3 4,4,4 4,4,5 4,4,6 4,4,7

The Haar basis

Lemma 3 Let z, w ∈ Sr. If z 6= w, let N(z, w) denote the largest value of n for which both z and

w lie in the support of a single basis function. Then

〈δz, Nδw〉 =
{

r − 1 + 2−r if z = w
−2N(z,w)−r + 2−r if z 6= w
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Proof: Fix r and label the elements of the Haar basis by the vertices α in the associated (extended)

binary tree. Then

Nδw =
∑
α

n(α)ρα(w)ρα

where n(α) denotes the level of α in the tree and the sum is taken over the one α at each level for which

ρα(w) 6= 0.

Suppose that z = w. Then, for the one α at level n(α) = n for which ρα(w) 6= 0 we have

ρα(w)2 = 2−r+n−1 Thus

〈δw, Nδw〉 =
r∑

n=1

n2−r+n−1 = r − 1 + 2−r

Now suppose that z 6= w. Then for the one α at level n for which ρα(w) 6= 0 we have

ρα(z) =

 ρα(w) if n < N(z, w)
−ρα(w) if n = N(z, w)
0 if n > N(z, w)

Thus

〈δz, Nδw〉 =
N(z,w)−1∑
n=1

n2−r+n−1 −N(z, w)2−r+N(z,w)−1

= −2−r+N(z,w) + 2−r

Lemma 4 ∑
w

|〈δv, iAδw〉| = O(|v|).

Proof: Using (5) we find

∑
w

|〈δv, iAδw〉| ≤
∑

w:|w|=|v|−1

(
|v|+ 1

2

)
δ(w → v) +

∑
w:|w|=|v|−1

∑
z:w→z

|〈δv, Nδz〉|

+
∑

w:|w|=|v|+1

(
|w|+ 1

2

)
δ(v → w) +

∑
w:|w|=|v|+1

∑
z:v→z

|〈δz, Nδw〉|

(6)

Since there is only one w with w → v we have

∑
|w|=|v|−1

(
|v|+ 1

2

)
δ(w → v) = |v|+ 1

2
.

Since there exactly two w with v → w,

∑
|w|=|v|+1

(
|w|+ 1

2

)
δ(v → w) = 2(|v|+ 1) + 1.
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To estimate the remaining two terms in (6), we begin with∑
z:|z|=|v|

|〈δv, Nδz〉| = |〈δv, Nδv〉|+
∑

z: |z|=|v|
z 6=v

|〈δv, Nδz〉|

= |v| − 1 + 2−|v| +
∑

z: |z|=|v|
z 6=v

2N(v,z)−|v| − 2−|v|

≤ |v|+
∑

z: |z|=|v|
z 6=v

2N(v,z)−|v|

Since there are 2|v|−N(v,z) z’s associated with each value of N(v, z) = n,

∑
z:|z|=|v|

|〈δv, Nδz〉| ≤ |v|+
|v|∑
n=1

2n−|v|
∑

z:z 6=v,|z|=|v|,N(v,z)=n

1

= |v|+
|v|∑
n=1

2n−|v|2|v|−n

= 2|v|.
Therefore ∑

w:|w|=|v|−1

∑
z:w→z

|〈δv, Nδz〉| =
∑

z:|z|=|v|
|〈δv, Nδz〉| ≤ 2|v|

and ∑
w:|w|=|v|+1

∑
z:v→z

|〈δz, Nδw〉| =
∑
z:v→z

∑
w:|w|=|z|

|〈δz, Nδw〉| ≤
∑
z:v→z

2|v| = 4|v|.

Thus each term in (6) is O(|v|) and the proof is complete.

The Mourre estimate

We begin with the commutator formula for L. This is just a disguised form of the formula

[2
√

2 cos(θ),
√

2(sin(θ)
d

dθ
+

d

dθ
sin(θ))] = 8 sin2(θ).

Lemma 5

[L, iA] = 8− L2

Proof: Since Π and Π∗ commute with N , we have

[L, iA] = [Π + Π∗, (R−N +
1
2

)Π] + adjoint

= [Π, (R −N +
1
2

)]Π + [Π∗, (R −N +
1
2

)]Π + (R −N +
1
2

)[Π∗, Π] + adjoint

= [Π, R]Π + [Π∗, R]Π + (R−N +
1
2

)[Π∗, Π] + adjoint

= −Π2 + Π∗Π + (R −N +
1
2

)[Π∗, Π] + adjoint,
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where adjoint refers to all previous terms. Here we used (2). Now notice that [Π∗, Π] is a projection

onto the sum of the initial subspaces Qn,n, and that this is precisely the kernel of the operator R−N ,

since on this sum R = N . Thus (R−N)[Π∗, Π] = 0, and

[L, iA] = −Π2 + Π∗Π +
1
2

[Π∗, Π] + adjoint

= −Π2 − (Π∗)2 + 3Π∗Π−ΠΠ∗

= 4Π∗Π− (Π + Π∗)2

= 8− L2

Lemma 6 Suppose that

sup
w:|w|=|v|±1

|q(v)− q(w)| = o(|v|−1),

as |v| → ∞. Then [q, iA] is compact.

Proof: Let Λn denote the projection onto ⊕nr=0`
2(Sr). We will show that ‖[q, iA] − [q, iA]Λn‖ =

‖[q, iA](1 − Λn)‖ → 0 as n → ∞. This shows that [q, iA] is approximated in norm by the finite rank

operators [q, iA]Λn, and hence compact.

The matrix elements of [q, iA](1− Λn) are given by

〈δv, [q, iA](1− Λn)δw〉 = (q(v) − q(w))〈δv , iAδw〉

provided |w| > n, and 0 if |w| ≤ n. Using Schur’s lemma (the `1–`∞ bound), the fact that the matrix

elements of 〈δv, iAδw〉 are non-zero only for |w| = |v|± 1, the decay hypothesis on q, and Lemma 4 we

find that
‖[q, iA](1− Λn)‖ ≤ sup

v

∑
w:|w|>n

|q(v)− q(w)||〈δv , iAδw〉|

≤ sup
v:|v|>n−1

o(|v|−1)
∑
w

|〈δv, iAδw〉|

≤ sup
v:|v|>n−1

o(|v|−1)O(|v|).

This tends to zero for large n.

Lemma 7 Suppose that

sup
z,w:|w|=|v|±1,|z|=|w|±1

|q(v) + q(z)− 2q(w)| = O(|v|−2),

as |v| → ∞. Then [[q, iA], iA] is bounded.

Proof: The matrix elements of [[q, iA], iA] are given by

〈δv, [[q, iA], iA]δz〉 = 〈δv, [q, iA]iA− iA[q, iA]δz〉

=
∑
w

〈δv, [q, iA]δw〉〈δw, iAδz〉 − 〈δv, iAδw〉〈δw , [q, iA]δz〉

= (q(v) + q(z)− 2q(w))〈δv , iAδw〉〈δw, iAδz〉
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Thus, as in Lemma 6,

‖[[q, iA], iA]‖ ≤ sup
v

∑
z

∑
w

|q(v) + q(z)− 2q(w)||〈δv , iAδw〉||〈δw, iAδz〉|

≤ sup
v

O(|v|−2)
∑
w

|〈δv, iAδw〉|
∑
z

|〈δw, iAδz〉|

= sup
v

O(|v|−2)O(|v|)O(|v|) ≤ C

Lemma 8 Suppose that q(v) → 0 as |v| → ∞. Let E denote a smoothed out spectral projection.

Then E(L)− E(L + q) is compact.

Proof: This follows from the compactness of (L − z)−1 − (L + q − z)−1 = (L − z)−1q(L + q − z)−1

and a Stone–Weierstraß approximation argument (see [1]).

Now we can prove the Mourre estimate for L + q and A.

Theorem 9 Suppose that q(v)→ 0 as |v| → ∞. Assume that

sup
w:|w|=|v|±1

|q(v)− q(w)| = o(|v|−1),

as |v| → ∞. Let E denote a smoothed out spectral projection whose support is properly contained

in the interval (−2
√

2, 2
√

2). Then there exists a compact operator K and a positive number α

such that

E(L + q)[L + q, iA]E(L + q) ≥ αE2(L + q) + K.

Proof: By the compactness of [q, iA] and E(L + q)− E(L) we have

E(L + q)[L + q, iA]E(L + q) = E(L)[L, iA]E(L) + K

= E(L)(8 − L2)E(L) + K

On the support of E(L), 8− L2 ≥ α for some positive α, which gives

E(L + q)[L + q, iA]E(L + q) ≥ αE2(L + q) + K,

where the compact term α(E2(L)− E2(L + q)) has been added into K . This completes the proof.
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