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Abstract. We design alternative dual frames for linearly reconstructing sig-
nals from Sigma-Delta (Σ∆) quantized finite frame coefficients. In the setting
of sampling expansions for bandlimited functions, it is known that a stable
rth order Sigma-Delta quantizer produces approximations where the approx-
imation error is at most of order 1/λr , and λ > 1 is the oversampling ratio.
We show that the counterpart of this result is not true for several families of
redundant finite frames for R

d when the canonical dual frame is used in linear
reconstruction. As a remedy, we construct alternative dual frame sequences
which enable an rth order Sigma-Delta quantizer to achieve approximation
error of order 1/Nr for certain sequences of frames where N is the frame size.
We also present several numerical examples regarding the constructions.

1. Introduction

Finite frames constitute a natural tool for providing stable signal decompositions
in Rd. A frame {en}Nn=1 ⊂ Rd for Rd gives the signal expansions

(1.1) ∀x ∈ Rd, x =

N∑

n=1

〈x, en〉fn,

where {fn}Nn=1 ⊂ Rd is a generally non-unique dual frame. An important practical
feature of frames is that they can be chosen to be redundant, i.e., one can have
N > d, which in turn leads to favorable robustness properties in many settings,
e.g., [13, 15].

Quantization is the intrinsically lossy process of encoding the “analog” coeffi-
cients 〈x, en〉 in (1.1), by a set of “digital” coefficients. This is achieved by replacing
each frame coefficient 〈x, en〉 ∈ R by some qn = qn(x) ∈ A where A ⊂ R is a finite
set, called the quantization alphabet. This process of encoding is also referred to as
analog-to-digital (A/D) conversion. The process of decoding, i.e., reconstructing a
signal x̃ ∈ Rd from the quantized coefficients qn, is called digital-to-analog (D/A)
conversion.
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For the A/D and D/A steps to be meaningful and practical the quantization
error ||x − x̃|| should be small, and the process of reconstructing x̃ should be of
reasonable complexity. This makes the following linear reconstruction a natural
choice:

(1.2) x̃ =

N∑

n=1

qnfn.

In this paper, we shall restrict our attention to linear reconstruction methods. It
is important to note that linear reconstruction does not provide the most accurate
estimate x̃ that can be obtained from the quantized coefficients. There are alter-
native methods to linear reconstruction, e.g., consistent reconstruction [16, 29, 13],
which give smaller reconstruction error at the cost of greater complexity.

The main goal of this paper is to address the following problem. Suppose one
is given a finite frame {en}Nn=1 for Rd and that for each input signal x the frame
coefficients in the associated frame expansion are quantized using a particular quan-
tization scheme. We wish to construct a dual frame {fn}Nn=1 that is tailored to the
given quantization scheme and improves the approximation when used in place of
the canonical dual frame for linearly reconstructing x̃. Our emphasis will be on the
class of higher order Sigma-Delta (Σ∆) quantization schemes.

Overview. The paper is organized as follows. In Section 2 we give necessary
definitions and background on finite frames. In Section 3, we define the quantization
problem. In Section 4 we discuss background on PCM quantization for finite frames,
including basic deterministic estimates, the role of the white noise assumption, and
the issue of optimal dual frames. Section 5 contains background on Sigma-Delta
quantization in the setting of finite frames, including basic error estimates. In
Section 6, we prove a lower bound on the approximation error associated with
Σ∆ schemes of order r. This shows that for certain natural choices of unit-norm
frames for Rd, if r ≥ 3 then the approximation error cannot robustly be of order
1/N r, where N is the frame size. Section 7 provides a remedy to the obstruction
of Section 6, and for a large class of frames establishes sufficient conditions for
obtaining an approximation rate of order 1/N r when an rth order Σ∆ scheme is
used to quantize finite frame expansions in Rd. Section 8 concludes with specific
constructions of alternative dual frames for higher order Σ∆ quantization of the
roots-of-unity frames and the harmonic frames.

2. Finite Frames for Rd

A collection {en}Nn=1 ⊂ Rd of vectors is a finite frame for Rd with frame bounds
0 < A ≤ B <∞ if

∀x ∈ Rd, A||x||2 ≤
N∑

n=1

|〈x, en〉|2 ≤ B||x||2.

Here and throughout the paper, || · || denotes the Euclidean norm. If A = B then
the frame is tight. If ||en|| = 1 holds for each n = 1, · · · , N , then the frame is said
to be unit-norm. We shall fix the convention that all vectors in Rd, in particular
the frame vectors, are column vectors.

Given a frame {en}Nn=1 for Rd the associated frame operator, S : Rd −→ Rd, is

defined by S(x) =
∑N
n=1〈x, en〉en. If {en}Nn=1 is a frame then its frame operator is
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positive and invertible, e.g., see [1, 2, 11], and one has following canonical frame
decompositions

(2.1) ∀x ∈ Rd, x =

N∑

n=1

〈x, ẽn〉en =

N∑

n=1

〈x, en〉ẽn,

where ẽn = S−1en. In this paper we shall primarily work with the latter of the two
decompositions in (2.1). The collection {ẽn}Nn=1 is a frame for Rd and is referred
to as the canonical dual frame to {en}Nn=1. For example, if {en}Nn=1 is a unit-norm
tight frame for Rd then ẽn = d

N en, e.g., [15, 2]. There are generally, but not always,

other frames besides {ẽn}Nn=1 which lead to decompositions as in (2.1). Any frame
{fn}Nn=1 for Rd satisfying

(2.2) ∀x ∈ Rd, x =

N∑

n=1

〈x, en〉fn,

is called a dual frame to {en}Nn=1. If {fn}Nn=1 is not the canonical dual frame then
we refer to it as an alternative dual frame.

There are many examples of unit-norm tight frames for Rd.

Example 2.1 (Roots-of-unity frames). If N ≥ 3 then the collection of vectors
{eNn }Nn=1 ⊂ R2 given by

(2.3) eNn = [cos(2πn/N), sin(2πn/N)]T , n = 1, · · · , N,
is a unit-norm tight frame for R2 with frame bound A = N/2 and ẽNn = (2/N)en.
This family of frames is often referred to as the roots-of-unity frames.

Example 2.2 (Harmonic frames). The harmonic frames are another important
family of frames for Rd. These frames are constructed using columns of the Fourier
matrix, e.g., see [15, 32, 16]. The definition of the harmonic frame Hd

N = {hNn }Nn=1,
N ≥ d, depends on whether the dimension d is even or odd.

If d is even let

hNn =

√
2

d

[
cos

2πn

N
, sin

2πn

N
, cos

4πn

N
, sin

4πn

N
, cos

6πn

N
,(2.4)

sin
6πn

N
, · · · , cos

2π d2n

N
, sin

2π d2n

N

]T

for n = 1, 2, · · · , N . If d is odd let

hNn =

√
2

d

[
1√
2
, cos

2πn

N
, sin

2πn

N
, cos

4πn

N
, sin

4πn

N
,(2.5)

cos
6πn

N
, sin

6πn

N
, · · · , cos

2π d−1
2 n

N
, sin

2π d−1
2 n

N

]T
(2.6)

for n = 1, 2, · · · , N . It is shown in [32] that Hd
N , as defined above, is a unit-norm

tight frame for Rd with frame bound A = N/d and ẽNn = (d/N)eNn .

Given a finite frame {en}Nn=1 for Rd, it is often convenient to work with the
associated d×N matrix E = [e1, e2, · · · , eN ], that has the vectors en as its columns.
The collection {en}Nn=1 is a frame if and only if the associated matrix E has rank
d, and in this case we refer to E as the frame matrix associated to {en}Nn=1. If
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E is a frame matrix then the associated canonical dual frame has frame matrix
Ẽ = (EE∗)−1E. In particular, ẼE∗ = Id, where Id is the d × d identity matrix.
Moreover, an alternative dual frame to {en}Nn=1 is simply a set of frame vectors
{fn}Nn=1 whose associated frame matrix F satisfies FE∗ = Id. See [23], and also
[12, 24], for background material on dual frames. The following result, whose proof
we include for the sake of completeness, shows that the canonical dual frame has
minimal Frobenius norm among all dual frames.

Lemma 2.3. Let {en}Nn=1 be a frame for Rd with frame matrix E. The canonical

dual frame {ẽn}Nn=1 is the dual frame to {en}Nn=1 whose frame matrix Ẽ uniquely

has minimal Frobenius norm. That is, F = Ẽ is the matrix satisfying FE∗ = Id
for which ||F ||Frob =

√
trace(F ∗F ) =

√
trace(FF ∗) is minimal.

Proof. Let F be a dual frame. By Theorem 3.6 of [23], F has the form F = Ẽ+Z,

where Ẽ is the canonical dual frame, and where ZE∗ = 0. It follows that

ZẼ∗ = 0 and ẼZ∗ = 0.

Thus,

||F ||2Frob = ||Ẽ + Z||2Frob = trace(ẼẼ∗ + ZẼ∗ + ẼZ∗ + ZZ∗)

= trace(ẼẼ∗ + ZZ∗) = ||Ẽ||2Frob + ||Z||2Frob.

Thus, ||F ||2Frob is minimal when Z = 0 and F = Ẽ is the canonical dual frame. �

3. The quantization problem

Let E = {en}Nn=1 ⊂ Rd be a finite frame for Rd and fix a finite set A ⊂ R called
a quantization alphabet.

Definition 3.1. We shall call a map Q an A-quantizer associated to the frame
E = {en}Nn=1 ⊂ Rd, if for each x ∈ Rd, Q maps {〈x, en〉}Nn=1 to an element in AN .

To assess the performance of an A-quantizer, one must compute an approxima-
tion to x ∈ Rd from the quantized coefficients {qn}Nn=1 = Q({〈x, en〉}Nn=1), and
check if the approximation error is small. To this end, one must consider a recon-
struction map R : AN → Rd that maps each set of quantized coefficients {qn}Nn=1

to a signal xQ,R ∈ Rd. For a fixed reconstruction map R, the performance of Q on
a bounded set B ⊂ Rd is determined by the associated distortion or approximation
error defined by

(3.1) d∞(Q,R) = sup
x∈B

‖x−R(Q({〈x, en〉}Nn=1))‖.

One can also consider the mean-square distortion on B defined by

(3.2) dMSE(Q,R) = E‖x−R(Q({〈x, en〉}Nn=1))‖2,

where E denotes the expectation with respect to a Borel probability measure sup-
ported on B.

An important class of reconstruction maps consists of all maps RF that are
defined by linear reconstruction with a fixed dual frame F = {fn}Nn=1 of E =
{en}Nn=1. In particular, given {an}Nn=1 ⊂ RN , one has

(3.3) RF : {an}Nn=1 7−→
N∑

n=1

anfn.
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Note that for each x ∈ Rd, one has the perfect reconstruction x = RF ({〈x, en〉}Nn=1).
If E = {en}Nn=1 is an orthonormal basis for Rd, then N = d, the associated

Bessel map L : Rd → Rd, given by L(x) = {〈x, en〉}dn=1, is a bijection, and there is
a unique perfect reconstruction map for E given by RE . If, on the other hand, E is
redundant, i.e., N > d, then the associated Bessel map is an injection from Rd into
RN , and there are infinitely many linear perfect reconstruction maps. In this case, a
typical choice is the canonical reconstruction map R eE , i.e., the linear reconstruction

map (3.3) obtained by using the canonical dual frame Ẽ of E. The performance of a
quantizer is often assessed according to the distortion associated with the canonical
reconstruction map, e.g., dMSE(Q,R eE) in the case of PCM quantizers, see [16, 15],
and d∞(Q,R eE) in the case of Σ∆ quantizers, see [4, 5, 8].

In Section 4 we show that among all linear reconstruction maps, R eE minimizes
the MSE approximation error for PCM schemes under Bennett’s white noise as-
sumption on the distribution of the quantization error. On the other hand, in
Section 7 we show that in the case of Σ∆ schemes there are alternative dual frames
G for which d∞(Q, G) ≤ d∞(Q, Ẽ), at least for certain classes of frames with suf-
ficiently high redundancy. In Section 8, we construct such alternative dual frames
for the roots-of-unity frames (2.3) and for the harmonic frames (2.4) and (2.5). In
these constructions and the associated approximation error estimates, we do not
make any assumptions on the distribution of the quantization error. See [7] for fur-
ther analysis of the ramifications of Bennett’s white noise assumption in the case
of Σ∆ schemes, and in particular a construction of optimal alternative dual frames
that minimize dMSE(Q,RG) for Σ∆ quantizers.

4. PCM Quantization

4.1. PCM basics. Let {en}Nn=1 ⊂ Rd be a unit-norm frame for Rd, and let
{fn}Nn=1 ⊂ Rd be any dual frame. Fix δ > 0 and K ∈ N. Given the 2K-level
midrise quantization alphabet with stepsize δ,

Aδ
K = {(−K + 1/2)δ, (−K + 3/2)δ, · · · , (−1/2)δ, (1/2)δ, · · · , (K − 1/2)δ},

define the associated scalar quantizer

(4.1) Q(u) = arg minq∈Aδ
K
|u− q|.

For a given x ∈ Rd with frame coefficients 〈x, en〉, PCM quantization replaces
each 〈x, en〉 by qn = Q(〈x, en〉). One can reconstruct a signal x̃ ∈ Rd using the
linear reconstruction

(4.2) x̃ =
N∑

n=1

qnfn.

If ||x|| ≤ (K − 1/2)δ then |〈x, en〉 − qn| ≤ δ/2, and one has the basic PCM error
estimate

(4.3) ||x− x̃|| ≤ δ

2

N∑

n=1

||fn||.
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4.2. Bennett’s white noise assumption for PCM. Longstanding analysis dat-
ing back to Bennett [6] addresses the average error when a large collection of vectors
is quantized with PCM. The fundamental hypothesis, known as Bennett’s white
noise assumption, is that, on average, the error sequence {〈x, en〉 − qn}Nn=1 is well
approximated by a sequence of independent, identically distributed uniform ran-
dom variables with mean 0 and variance δ2/12. In particular, each 〈x, en〉 − qn is
assumed to be a uniform random variable on [−δ/2, δ/2]. It is well known that
Bennett’s white noise assumption is not accurate in general, however it has been
shown to be accurate in many circumstances, [6, 28, 30, 21]. For example, the white
noise assumption is asymptotically correct as the step size δ approaches 0.

A simple consequence of Bennett’s noise assumption, e.g., [16, 15], is that the
expected norm squared of the quantization error, i.e., mean squared error (MSE),
for PCM quantization is given by

(4.4) MSEPCM = E(||x− x̃||2) =
δ2

12

N∑

n=1

||fn||2,

where E(·) denotes the expected value.
To compare (4.3) and (4.4) suppose that {en}Nn=1 is a unit-norm tight frame for

Rd and that {fn}Nn=1 is chosen to be the canonical dual frame fn = ẽn = d
N en.

Then the error estimates (4.3) and (4.4) respectively yield

||x− x̃||2 ≤ d2δ2

4
and E||x− x̃||2 =

d2δ2

12N
.

In particular, Bennett’s noise assumption implies that one should expect better
average performance than predicted by the deterministic estimate (4.3). This im-
proved average performance has been experimentally validated, e.g., [21].

Tight frames were shown to play an important role in PCM quantization under
noise models such as Bennett’s, see [15]. For example, it was shown in [15] that
tight frames minimize MSE under certain assumptions.

4.3. Optimal dual frames for PCM. Under Bennett’s noise assumption, one
can show that the canonical dual frame is optimal for linear reconstruction, cf.,
[10, 15].

Theorem 4.1. Let {en}Nn=1 be a frame for Rd. The canonical dual frame {ẽn}Nn=1

is the dual frame that minimizes MSEPCM in (4.4), the mean squared error for
PCM quantization under Bennett’s white noise assumption.

Proof. Let {fn}Nn=1 be a dual frame to {en}Nn=1, and let F = [f1, · · · , fN ] be its
frame matrix. Thus if {fn}Nn=1 is used to linearly reconstruct PCM quantized frame
coefficients as in (4.2), then

MSEPCM = E||x− x̃||2 =
δ2

12

N∑

n=1

||fn||2 =
δ2

12
||F ||2Frob.

Here, the second equality follows from Bennett’s white noise assumption. The proof
now follows, since by Lemma 2.3 the canonical dual frame is the dual frame whose
frame matrix has minimal Frobenius norm. �
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It is important to view Theorem 4.1 in the correct perspective. The theorem says
that under Bennett’s white noise assumption the canonical dual frame is optimal
for linearly reconstructing PCM quantized frame coefficients. In particular, the
theorem is only meaningful when the white noise assumption is reasonably accurate,
e.g., when the stepsize δ > 0 is small.

5. Sigma-Delta (Σ∆) quantization

5.1. First order Σ∆ quantization. Let Aδ
K be the 2K-level midrise quantization

alphabet with stepsize δ, and letQ be the associated scalar quantizer from (4.1). Let
{en}Nn=1 ⊂ Rd be a unit-norm frame for Rd with frame operator S. Let {fn}Nn=1 ⊂
Rd be any, not necessarily unit-norm, dual frame, and let p be a fixed permutation
of the index set {1, 2, · · · , N}.

Given x ∈ Rd satisfying ||x|| ≤ (K − 1/2)δ, and having frame coefficients xn =
〈x, en〉, the first order Σ∆ quantizer produces quantized frame coefficients qn by
running the iteration

qn = Q(un−1 + xp(n)),

un = un−1 + xp(n) − qn,(5.1)

for n = 1, · · · , N , and with u0 = 0. The un are internal state variables of the
Σ∆ scheme, and the qn are the quantized frame coefficients from which we linearly
reconstruct

(5.2) x̃ =

N∑

n=1

qnfp(n).

The Σ∆ scheme is stable, [14, 4]. In particular,

(5.3) ∀ 1 ≤ n ≤ N, |xn| ≤ (K − 1/2)δ =⇒ ∀ 1 ≤ n ≤ N, |un| ≤ δ/2.

For unit-norm frames, the condition ||x|| ≤ (K − 1/2)δ implies |xn| = |〈x, en〉| ≤
(K − 1/2)δ, so that |un| ≤ δ/2 will always hold in our setting.

Error estimates for Σ∆ quantization in the setting of finite frames are given in
[3, 4, 5], see also [8, 9]. For example, if the canonical dual frame is used in the
reconstruction (5.2), then

(5.4) ||x − x̃|| ≤ δ

2
||S−1||op

(
σ({en}Nn=1, p) + 1

)
,

where the frame variation of {en}Nn=1 with respect to p is defined by σ({en}Nn=1, p) =∑N−1
n=1 ||ep(n) − ep(n+1)||. Unlike PCM, the order in which frame coefficients are

quantized is quite important in Σ∆ quantization, and this is reflected in the role of
the permutation p in the above Σ∆ error estimates. Some examples of frames and
good choices of p are given in [4]. For example, for the frame (2.3) in its natural
ordering, the frame variation is bounded by 2π and the error estimate (5.4) yields

(5.5) ||x− x̃|| ≤ δ

N
(2π + 1),

which decreases as the frame size N , i.e., redundancy, increases. For the remainder
of the paper, we shall work with the given order of a frame, and ignore the role of
the permutation p by implicitly assuming that p is the identity.
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5.2. Higher order Σ∆ quantization. The first order Σ∆ scheme works by con-
trolling a first order difference operator. Higher order Σ∆ schemes work analogously
by controlling higher order difference operators. A general rth order Σ∆ scheme
runs the following iteration

qn = Q(F (u1
n−1, u

2
n−1, · · · , urn−1, xn)),

u1
n = u1

n−1 + xn − qn,

u2
n = u2

n−1 + u1
n,(5.6)

...

urn = urn−1 + ur−1
n ,

where u1
0 = u2

0 = · · · , ur0 = 0 and where the iteration runs for n = 1, · · · , N . Here
F : Rr+1 → R is a fixed function, which we refer to as the quantization rule. The
ujn are simply internal state variables in the algorithm and the qn ∈ Aδ

K are the
desired output coefficients.

As with first order schemes, it is important for higher order Σ∆ schemes to be
stable. The scheme (5.6) is stable if there exist constants C1, C2 > 0, such that for
any N > 0 and any {xn}Nn=1 ⊂ RN ,

(5.7) ∀ 1 ≤ n ≤ N, |xn| < C1 =⇒ ∀ 1 ≤ n ≤ N, ∀j = 1, · · · , r, |ujn| < C2.

In other words, appropriately bounded input sequences lead to uniformly bounded
state variable sequences. As in (5.3), the stability constants C1 = C1(δ,K) and
C2 = C2(δ,K) depend on the quantization alphabet Aδ

K .
The construction of higher order 1-bit Σ∆ schemes, i.e., when Aδ

K has K = 1,
can be a difficult problem. In fact, the existence of arbitrary order stable 1-bit Σ∆
schemes was only recently proven by Daubechies and DeVore in [14]. An alternative
family of stable 1-bit Σ∆ schemes of arbitrary order is constructed by Güntürk in
[18]. For examples of stable second order Σ∆ schemes see [27, 31, 5].

Example 5.1. The following 1-bit second order Σ∆ scheme is stable, [27, 31, 5].

qn = sign(u1
n−1 +

1

2
u2
n−1),

u1
n = u1

n−1 + xn − qn,(5.8)

u2
n = u2

n−1 + u1
n,

where u1
0 = u2

0 = 0 and n = 1, 2, · · · , N . Here, sign(x) = 1, if x ≥ 0, and
sign(x) = −1, if 0 > x.

In contrast to the 1-bit case, it is elementary to construct stable higher order
multi-bit Σ∆ schemes, i.e., where the alphabet Aδ

K is sufficiently large, e.g., [20, 8].

Example 5.2. Consider the rth order scheme as in (5.6) with

qn = Q(urn−1 + ur−1
n−1 + ...+ u1

n−1 + xn)

where Q, as in (4.1), is the midrise quantizer with step size 2δ and the number

of levels are chosen so that |u − Qδ(u)| < δ for all u ∈ [−1, 1]. If ujn−1 < 2r−jδ,

and |xn| < 1 − (2r − 1)δ, then one can easily check that |ujn| < 2r−jδ, so that
the rth order scheme is stable. However, note that for this argument to work, it
essential that the quantizer is non-overloading, i.e., δ is sufficiently small so that
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1 − (2r − 1)δ > 0. Moreover, the scheme is only stable if |xn| < 1 − (2r − 1)δ, that
is, if x is in a proper subset of the unit ball in Rd that shrinks in volume as the
order r increases.

Lemma 5.3. Consider an rth order Σ∆ scheme (5.6) with stability constants
0 < C1, C2 as in (5.7), and suppose that ||x|| < C1 has the frame expansion

x =
∑N
n=1〈x, en〉fn. If the frame coefficients xn = 〈x, en〉 are the input to the

Σ∆ scheme then the linear reconstruction x̃ =
∑N

n=1 qnfn satisfies

(5.9) x− x̃ =
N−r∑

n=1

urn∆
rfn +

r∑

j=1

ujN−j+1∆
j−1fN−j+1,

where ∆0en = en, ∆en = en− en+1, and ∆jen = ∆ ·∆j−1en. It follows from (5.9)
that for stable schemes

||x− x̃|| ≤ C2

N−r∑

n=1

||∆rfn|| + C2

r∑

j=1

||∆j−1fN−j+1||.(5.10)

Proof. The proof follows by using that ujn − ujn−1 = uj−1
n , uj0 = 0, |ujn| ≤ C2, and

applying summation by parts several times to

x− x̃ =

N∑

n=1

(xn − qn)fn =

N∑

n=1

(u1
n − u1

n−1)fn =

N−1∑

n=1

u1
n∆fn + u1

NfN .

�

We shall refer to the first sum in (5.9) as the main error term, and refer to the
second sum as boundary terms. An analogous computation in the setting of ban-
dlimited signals, see [14], gives a similar main error term. However, the boundary
terms are a special consequence of the finite setting here, and are not present in
the bandlimited setting.

Existing estimates focus on the case where the dual frame {fn}Nn=1 is chosen to
be the canonical dual frame {ẽn}Nn=1, cf., [3, 4, 5, 8, 9]. For example, let {en}Nn=1

be one of the unit-norm tight frames from (2.3), (2.4), or (2.5), and take {fn}Nn=1 =
{ẽn}Nn=1 to be the canonical dual frame given by ẽn = d

N en. For these examples

it straightforward to show that ||∆lfj|| . 1/N l+1. This gives the following error
estimate

(5.11) ||x− x̃|| .

N−r∑

n=1

1/N r+1 +
r∑

j=1

1/N j . 1/N r + 1/N r−1 + · · · 1/N . 1/N.

We use the notation A . B to mean that there is an absolute constant C such that
A ≤ CB. For higher order schemes, the upper bound (5.11) is clearly unsatisfactory
since one would like error estimates of order 1/N r, analogous to the setting of
bandlimited Σ∆ quantization, [14].

Precise knowledge of the state variables in (5.9) can, of course, give better es-
timates than this, but there are unfortunately situations where the 1/N estimate
cannot be improved. For example for the second order scheme (5.8) the following
error estimate was proven in [5].

(5.12) N even =⇒ ||x− x̃|| ≤ 4πC2(2π + 1)

N2
.

1

N2
,
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and

(5.13) N odd =⇒ 1

N
.

2

N
− 4πC2(2π + 1)

N2
≤ ||x− x̃||.

Note that (5.5) provides error estimates of order 1/N for finite frames for the
first order Σ∆ scheme, analogous to the error estimates for the first-order scheme
in the bandlimited setting. On the other hand, the estimates (5.12) and (5.13)
show that a similar analogy for second order schemes is at best partially true.
Still, the dichotomy between (5.12) and (5.13) does allow one to robustly obtain
approximation of order 1/N2 by simply restricting to the case where the frame size
N is even. In Section 6 we show that the situation for higher order Σ∆ schemes
can be substantially worse if one reconstructs with canonical dual frames.

6. Canonical dual frames and error estimates for
higher order Σ∆ schemes

In this section we prove that there are fundamental limitations on the perfor-
mance of higher order Σ∆ schemes when the canonical dual frame is used for linear
reconstruction. We will focus on the frames in Examples 2.1 and 2.2. The following
lemma contains some useful lower bounds for approximation error in higher order
Σ∆ quantization.

Lemma 6.1. Suppose we are given a stable rth order Σ∆ scheme (5.6) with 3 ≤
r and quantization alphabet Aδ

K , and let 0 < C1, C2 be the associated stability
constants as in (5.7). Let {en}Nn=1 ⊂ Rd be a unit-norm tight frame for Rd that
satisfies the zero-sum condition

(6.1)

N∑

n=1

en = 0,

and also satisfies

(6.2) ∀ 1 ≤ j ≤ r, 1 ≤ n ≤ N − j, A/N j ≤ ||∆jen|| ≤ B/N j.

Given x ∈ Rd, ||x|| ≤ C1, suppose that the frame coefficients {〈x, en〉}Nn=1 are
quantized using the Σ∆ scheme to obtain quantized coefficients {qn}Nn=1. If one

uses the canonical dual frame to linearly reconstruct x̃ = d
N

∑N
n=1 qnen then

(6.3) N odd =⇒ dδ

2N
− 3dC2B

N2
≤ ||x− x̃||,

and

(6.4) N even =⇒ dA|u2
N−1|

N2
− 2dC2B

N3
≤ ||x− x̃||,

where u2
N−1 is the state variable as in (5.6).

Proof. Applying Lemma 5.3 with the canonical dual frame elements d
N en gives

(6.5) x− x̃ =
d

N

N−r∑

n=1

urn∆
ren +

d

N

r∑

j=1

ujN−j+1∆
j−1eN−j+1.

Next, note that

(6.6) S1 = ||
N−r∑

n=1

urn∆
ren|| ≤

C2B

N r−1
and S2 = ||u2

N−1∆
1eN−1|| ≤

C2B

N
,
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(6.7) S3 = ||
r∑

j=3

ujN−j+1∆
j−1eN−j+1|| ≤

C2B

N2
.

A calculation as in [4] shows that for zero-sum frames

(6.8) |u1
N | ∈

{
δZ, if N even;

δZ + δ/2, if N odd.

Case 1. If |u1
N | 6= 0 then by (6.8) one has δ/2 ≤ |u1

N |. By (6.5), (6.6), (6.7) one has

dδ

2N
≤ d

N
|u1
N | · ||eN || ≤ ||x− x̃|| + d

N
(S1 + S2 + S3) ≤ ||x− x̃|| + 3dC2B

N2
.

Case 2. If |u1
N | = 0 then by (6.2), (6.5), (6.6), and (6.7) one has

dA|u2
N−1|

N2
≤ d

N
|u2
N−1| · ||∆1eN−1|| ≤ ||x− x̃|| + d

N
(S1 + S3) ≤ ||x− x̃|| + 2dC2B

N3
.

�

For the remainder of the section, we will emphasize 1-bit Σ∆ schemes and the
roots-of-unity frames (2.3) for R2. The following theorem shows that there is no
robust way for a stable rth order Σ∆ algorithm to achieve anything better than ||x−
x̃|| . 1/N2 when x̃ is obtained by linearly reconstructing with the canonical dual.
Let us clarify what we mean by robust here. Although (6.10) does not eliminate
the possibility of estimates of order better than 1/N2, any such estimate would at
best only be possible for a subsequence of integers {Nn}∞n=1 ⊂ N which depends
very sensitively on each different input x. The uniform distribution properties of
BN introduced in (6.11) in the following theorem make it clear that, in practice,
one can not reliably obtain approximations of order better than 1/N2.

Theorem 6.2. Suppose we are given a stable 1-bit rth order Σ∆ scheme (5.6)
with 3 ≤ r and quantization alphabet A2

1 = {−1, 1}, and let 0 < C1, C2 be the
associated stability constants as in (5.7). Let EN = {eNn }Nn=1 ⊂ R2 be the roots-
of-unity frame from (2.3). Suppose x = (a, b) ∈ R2 satisfies ||x|| < C1, and that
the frame coefficients 〈x, eNn 〉 = a cos(2πn/N)+b sin(2πn/N) are quantized with the
Σ∆ scheme to obtain quantized coefficients {qn}Nn=1. If one uses the canonical dual

frame to linearly reconstruct x̃ = 2
N

∑N
n=1 qne

N
n , then for r < N one has

(6.9) N odd =⇒ 1

N
.

4

N
− 6(2π)rC2

N2
≤ ||x− x̃||,

and

(6.10) N even =⇒ 2πr|BN |
N2

− 4(2π)rC2

N3
≤ ||x− x̃||,

where BN ∈ [−1/2, 1/2) is defined by

(6.11) BN ≡ −aN
2

+
bN

2 tan(π/N)
modulo 1.

In particular, for almost every x = (a, b) ∈ R2 satisfying ||x|| < C1, one has

2πr

8
≤ lim

M→∞

1

M

M∑

N=3

N2||x− x̃N ||.
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Proof. For 2 ≤ N , one can show that EN satisfies the requirements of Lemma 6.1
with A = πr and B = (2π)r. This follows by noting that since EN is given by (2.3)
one has

∀ 1 ≤ n ≤ N − j, ||∆jen|| = |e2πi/N − 1|j .
By Lemma 6.1, it suffices to compute the boundary term |u2

N−1|. The definition
(5.6) shows that

(6.12) u2
n =

n∑

j=1

u1
j and u1

n =

n∑

j=1

xj −
n∑

j=1

qj .

Since x = (a, b) one has xn = 〈x, eNn 〉 = a cos(2πn/N)+b sin(2πn/N). This together
with (6.12) and a direct calculation shows that

u2
N−1 =

−aN
2

+
bN

2 tan(π/N)
−
N−1∑

j=1

j∑

n=1

qn.

Since qn ∈ {−1, 1} it follows that |u2
N−1| ≥ |BN |, where BN ∈ [−1/2, 1/2) is defined

by

BN ≡ −aN
2

+
bN

2 tan(π/N)
modulo 1.

Finally, note that Lemma 9.4 shows that for almost every (a, b) ∈ R2, the se-
quence {BN}∞N=1 is uniformly distributed modulo 1. See the Appendix for the
definition and background results on uniform distribution. By Theorem 9.1 it fol-
lows that

lim
M→∞

1

M

M∑

N=3

N2||x− x̃N || & lim
M→∞

1

M

M∑

N=3

(
2πr|BN | − 6(2π)2C2

N

)

= 2πr
∫ 1/2

−1/2

|x| dx =
2πr

8
.

�

One can extend the above results to multibit Σ∆ schemes with alphabet Aδ
K

and also to more general frames. For example, in even dimensions d the harmonic
frames (2.4) satisfy the hypotheses of Lemma 6.1. If x ∈ Rd is of the form x =
(a, b, 0, 0, · · · , 0) one then has an almost identical conclusion as in Theorem 6.2.
However, it is perhaps most instructive to simply view Theorem 6.2 as an instance
of the general moral that the boundary terms in Σ∆ quantization of unit-norm finite
frame expansions can have a serious adverse effect on performance, and require
special attention in the setting of finite frames.

7. Alternative dual frames for Σ∆ quantization

Theorem 6.2 shows that canonical dual frames are often not well suited for
reconstructing Σ∆ quantized frame coefficients. In this section, we show that one
can overcome the difficulties associated with canonical dual frames by instead using
alternative dual frames for reconstruction. The main idea is to choose an alternative
dual frame for which the associated boundary terms in (5.10) are sufficiently small.
We show that this can improve the asymptotic order of the approximation for
higher order Σ∆ schemes. In particular, we will specify sufficient conditions for an
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rth order Σ∆ scheme to yield approximation error of order 1/N r in the setting of
unit-norm finite frames.

We shall focus on the class of frames for which there exist dual frames that can
be obtained by sampling a smooth function, or a frame path, see [8, 9] for more on
frame paths. More precisely, we consider frames with the following property.

Property 7.1. Fix r > 0. Let E = {EN}∞N=d be a collection of unit-norm frames
for Rd, where EN = {eNn }Nn=1 ⊂ Rd has N elements. Suppose that there exists a
family of frames F = {FN}∞N=d with FN = {fNn }Nn=1 ⊂ Rd such that FN is a dual
frame for EN and satisfies

fNn =
1

N
[ψ1(n/N), . . . , ψd(n/N)]T ,

for some real-valued functions ψi ∈ Cr[0, 1], i = 1, · · · , d. Moreover, suppose that
there exists Cψ(r) > 0, independent of N , such that the derivatives of ψi satisfy

(7.1) ∀ 1 ≤ i ≤ d, ∀ 1 ≤ j ≤ r − 1, ||ψ(j)
i ||L∞[ N−j

N
,1] ≤

Cψ(r)

N r−j−1
,

and

(7.2) ∀ 1 ≤ i ≤ d, ψi(1) = 0.

One can more generally let the ψi depend on N in Property 7.1 and replace (7.2)
with the condition

|ψi,N (1)| ≤ Cψ(r)

N r−1
.

The subsequent theorems remain true with this more general condition, but for
the sake of simplicity we restrict our discussion to Property 7.1 as originally stated
above.

Theorem 7.2. Fix r > 0, and let EN and FN be frames for Rd that satisfy the
requirements of Property 7.1. Suppose we are given a stable rth order Σ∆ scheme
(5.6) with the associated stability constants 0 < C1, C2 as in (5.7). For x ∈ Rd,

‖x‖ < C1, let x̃ =
∑N−1

n=0 qn(x)fn where qn(x) is produced from the rth order Σ∆
scheme by quantizing 〈x, en〉. Then

‖x− x̃‖ ≤ CΣ∆(r)

N r
,

where CΣ∆(r) = C2 [CF (r) + r(r + 1)dCψ(r)/2] and CF (r) =
∑d

i=1 ||ψ
(r)
i ||L1[0,1].

Proof. It suffices to use Lemma 5.3 and estimate the two sums in (5.10).

I. To estimate the sum
∑N−r
n=1 ‖∆rfn‖, we use the technique employed in the

proof of Proposition 3.1 in [14] and obtain

N−r∑

n=1

‖∆rfn‖ ≤ 1

N

d∑

i=1

N−r∑

n=1

|∆rψi(n/N)|(7.3)

≤ 1

N

d∑

i=1

(
1

N r−1
||ψ(r)

i ||L1[0,1]

)
=
CF (r)

N r
.
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II. To estimate the sum
∑r

j=1 ||∆j−1fN−j+1||, we again use techniques from the

proof of Proposition 3.1 in [14] to obtain that if m+ j ≤ N then

∆jψi(
N −m

N
) = (−1)j

1

N j−1

∫ j/N

0

ψ
(j)
i (1 −m/N + s)φj(Ns)ds,

where the difference operator is with respect to m, and φj is the jth order B-spline.
Since ‖φj‖L∞ ≤ 1, it follows that

|∆j−1ψi(
N − j + 1

N
)| ≤ 1

N j−2

j

N

Cψ(r)

N r−(j−1)−1
≤ j

Cψ(r)

N r−1
.

Thus,

(7.4)
r∑

j=1

‖∆j−1fN−j+1‖ ≤ 1

N

d∑

i=1

r∑

j=1

|∆j−1ψi(
N − j + 1

N
)| ≤ d

r(r + 1)

2

Cψ(r)

N r
.

Combining the estimates (7.3) and (7.4) completes the proof. �

The constants in Theorem 7.2 can be refined, but such improvements do not
affect the asymptotic approximation order and will be omitted in this paper. How-
ever, having small constants can be important in practice; see [4, 5] and especially
[8, 9] for bounds on constants in error expressions for Sigma-Delta quantization of
finite frame expansions.

The results of Section 6 show that higher order Σ∆ reconstruction with the
canonical dual frame can lead to poor performance, whereas the results of this sec-
tion, e.g., Theorem 7.2, show that such difficulties can be avoided by reconstructing
with alternative dual frames. A main point of using alternative duals is that dif-
ficulties in higher order Σ∆ reconstruction are often solely a consequence of the
reconstruction frame (e.g., see the proof of Theorem 6.2) and can have very little to
do with the “encoding” frame used to compute frame coefficients. Alternative dual
frames decouple the encoding and decoding/reconstruction and thereby provide
extra flexibility to achieve accurate signal reconstruction.

For comparison, we also wish to point out the relevant work in [9] that is based
on tight frames instead of alternative duals. That work has the benefit of essen-
tially using the same frames for encoding and reconstruction, but thereby forces
the encoding frame to have special properties that may only be desirable in the
reconstruction frame. Consequently, the work in [9] only applies to very particular
frames. For example, it does not apply to families of frames such as (2.3), (2.4)
and (2.5), whose elements are unit-norm or uniformly bounded away from zero in
norm.

8. Examples

8.1. Roots-of-unity frames for R2. It was shown in Section 6 that if one consid-
ers higher order Σ∆ quantization of frame expansions given by the roots-of-unity
frames (2.3), then the canonical dual frame can perform poorly for linear recon-
struction. In this section, we construct explicit alternative dual frames for the
roots-of-unity frames EN that are tailored to the order r of the Σ∆ quantization.
We use the results from Section 7 to show that these alternative dual frames vastly
improve the approximation order compared to the canonical reconstruction.
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Let EN = {eNn }Nn=1 ⊂ R2 be the unit-norm tight frame for R2 defined by (2.3),
with canonical dual frame { 2

N e
N
n }Nn=1. Given r ≥ 1, set

(8.1) FN = FN (r) = {fNn }Nn=1, fNn =
1

N
(2eNn + gNn ),

where

(8.2) gNn =

[
a0 +

k∑

ℓ=1

aℓ cos (2π(ℓ+ 1)n/N) ,
k∑

ℓ=1

bℓ sin (2π(ℓ+ 1)2πn/N)

]T
,

and k = kr > 0, {al}kl=0 and {bl}kl=1 are constants to be defined later. Next, we set

ψ1(t) = 2 cos(2πt) + a0 +

k∑

ℓ=1

aℓ cos((ℓ + 1)2πt),(8.3)

ψ2(t) = 2 sin(2πt) +

k∑

ℓ=1

bℓ sin((ℓ + 1)2πt).(8.4)

With this notation, we have fNn = 1
N [ψ1(n/N), ψ2(n/N)]

T
.

Lemma 8.1. If 1 ≤ k < N − 1 is a positive integer then FN , defined by (8.1) and
(8.2), is a dual frame to EN for every choice of {aℓ}kℓ=0, {bℓ}kℓ=1 ⊂ R.

Proof. Let x = (α, β) be arbitrary. Since 〈x, eNn 〉 = α cos(2πn/N) + β sin(2πn/N),
a computation using discrete orthogonality relations for cosine and sine shows that∑N
n=1〈x, eNn 〉gNn = 0. It follows that the dual frame relation (2.2) holds. �

Given r > 0, our goal is to choose {aℓ}kℓ=0 and {bℓ}kℓ=1 so that ψ1 and ψ2 satisfy
the requirements of Property 7.1. Theorem 7.2 will then ensure that if rth order
Σ∆ quantized frame coefficients from the frame (2.3) are linearly reconstructed
with the dual frame FN then the approximation error will be of order 1/N r.

We begin by computing values of {aℓ}kℓ=0, {bℓ}kℓ=1 for which the first 2k + 1
terms in the power series expansions about t = 0 of ψ1 and ψ2 vanish. Note that
ψ1 is an even function, ψ2 is an odd function, and both are 1-periodic.

The power series expansions about t = 0 for ψ1 and ψ2 are given by

ψ1(t) =

∞∑

n=0

β2nt
2n and ψ2(t) =

∞∑

n=0

β2n+1t
2n+1,

where

β0 = 2 +

k∑

ℓ=0

aℓ and ∀n ≥ 1, β2n =
(−1)n(2π)2n

(2n)!

(
2 +

k∑

ℓ=1

aℓ(ℓ + 1)2n

)
,

∀n ≥ 0, β2n+1 =
(−1)n(2π)2n+1

(2n+ 1)!

(
2 +

k∑

ℓ=1

bℓ(ℓ+ 1)2n+1

)
.

Let Vk be the following k × k Vandermonde matrix

(8.5) Vk =




1 1 · · · 1
22 32 · · · (k + 1)2

24 34 · · · (k + 1)4

...
...

...
...

22k−2 32k−2 · · · (k + 1)2k−2



,
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and let Mk be the k × k diagonal matrix with [2, 3, 4, · · · , (k + 1)] as its main
diagonal. Note that since Vk is Vandermonde it is invertible with

det(Vk) =
∏

1≤i<j≤k

(j + 1)2 − (i+ 1)2 > 0.

The following lemma is a consequence of the above definitions.

Lemma 8.2. Fix k > 0 and define {aℓ}kℓ=0 and {bℓ}kℓ=1 as follows. Let

a = [a1, · · · , ak]T and b = [b1, b2, · · · , bk]T

be chosen as the unique solutions to

VkM
2
ka = −[2, 2, · · · , 2]T , and VkMkb = −[2, 2, · · · , 2]T ,

and also let a0 = −2 − (a1 + · · · + ak). Then bℓ = (ℓ+ 1)aℓ holds for ℓ = 1, · · · , k,
and the functions ψ1 and ψ2 defined by (8.3) and (8.4) satisfy

∀ 0 ≤ j ≤ 2k, ψ
(j)
1 (0) = 0 and ψ

(j)
2 (0) = 0.

Equivalently, βn = 0 for all 0 ≤ n ≤ 2k.

In terms of Property 7.1, Lemma 8.2 says the following.

Lemma 8.3. Given k > 0, let {aℓ}kℓ=0 and {bℓ}kℓ=1 be defined as in Lemma 8.2.
Then ψ1, ψ2 ∈ C∞(R) defined by (8.3) and (8.4) satisfy ψ1(1) = ψ2(1) = 0. More-
over, there exist positive constants Cψ1

= Cψ1
(k) and Cψ2

= Cψ2
(k) such that for

all 1 ≤ j ≤ 2k and for all N > 2k there holds

(8.6) ‖ψ(j)
1 ‖L∞[ N−j

N
,1] ≤

Cψ1

N2k+2−j
and ‖ψ(j)

2 ‖L∞[ N−j
N

,1] ≤
Cψ2

N2k+1−j
.

Proof. Since ψ1, ψ2 are entire functions whose restrictions to R are 1-periodic, this
follows from the power series properties provided by Lemma 8.2. �

Theorem 8.4. Let r ≥ 3 be a positive integer and let EN = {eNn }Nn=1 ⊂ R2

be the roots-of-unity frame (2.3). Take k = ⌈r/2⌉ − 1 and define the dual frame
FN (r) = {fNn }Nn=1 by (8.1) and (8.2), where {aℓ}kℓ=0, {bℓ}kℓ=1 are as defined in
Lemma 8.2.

Suppose we are given a stable rth order Σ∆ scheme (5.6), and let C1, C2 > 0
be the associated stability constants as in (5.7). For x ∈ R2, ‖x‖ < C1, let x̃ =∑N
n=1 qn(x)fNn where qn(x) is produced via the rth order Σ∆ scheme by quantizing

〈x, eNn 〉. Then

‖x− x̃‖ ≤ CRU

Σ∆(r)

N r
,

where the constant CRU

Σ∆(r) is defined by CRU

Σ∆(r) = C2

(
CRU

F (r) + r(r + 1)CΨ(r)
)
,

with CΨ(r) = max{Cψ1
, Cψ2

} and CRU

F (r) = ||ψ(r)
1 ||L1[0,1] + ||ψ(r)

2 ||L1[0,1].

Proof. Since k = ⌈r/2⌉ − 1, this follows from Lemma 8.3 and Theorem 7.2. �

Theorem 8.4 shows that if r ≥ 3, then rth order Σ∆ quantization of the roots-of-
unity frames has approximation error of the desired order 1/N r if the alternative
dual frames FN (r) are used for reconstruction. For second order schemes, one
can easily modify the above construction, or simply use FN (r), r ≥ 3, to achieve
approximation error of order 1/N2.
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Numerical experiments. Figure 1 shows the canonical dual frame for E41 and
two alternative dual frames F41(3) and F41(7) that are constructed for Theorem
8.4 for Σ∆ schemes of order r = 3 and r = 7, respectively.

−0.15 −0.1 −0.05 0 0.05 0.1

−0.1

−0.05

0

0.05

0.1

x
1

x 2

Canonical
Alternative (r=3)
Alternative (r=7)

Figure 1. The canonical dual frame of E41 and two alternative
dual frames F41(3) and F41(7).

As seen in Section 7, an advantage of using alternative dual frames in Σ∆ quan-
tization is that they can be chosen so that the boundary terms in (6.5) are of small
order. For example, Figure 2 shows that the boundary terms for the alternative
dual frames FN (4) and FN (11) are of order 1/N4 and 1/N11, respectively.
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Figure 2. Parts (a) and (b) show log-log plots of the norm of
the boundary terms in (6.5) for the frames FN (3) and FN (11),
respectively. For comparison, boundary terms for the canonical
dual frame of EN are also plotted.

To illustrate Theorem 8.4, let x = (1/π,
√

3/17) and suppose that the frame
coefficients of x with respect to the frame EN are quantized with an rth order Σ∆
scheme. We compare the approximation error when the canonical dual frame and
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the alternative dual frames FN (r) from Theorem 8.4 are used to linearly reconstruct
x̃. Figure 3(a) is a log-log plot of the approximation error ||x − x̃|| as a function
of N , if one uses the stable 3rd order Σ∆ scheme of [14] and reconstructs with the
alternative dual frame FN (3). As predicted, the alternative reconstruction yields
error of order 1/N3. Figure 3(b) is a log-log plot of the approximation error ||x− x̃||
as a function of N , of one uses the stable 7th order Σ∆ scheme from Example 5.2
with δ = 0.0039, and reconstructs with the alternative dual frame FN (7). As
predicted, the alternative reconstruction yields error of order 1/N7.
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Figure 3. The frame expansions of x = (1/π,
√

3/17) with re-
spect to EN are quantized using: (a) the 3rd order scheme of [14],
(b) the 7th order Σ∆ scheme from Example 5.2 with δ = 0.0039.
Parts (a) and (b) show log-log plots of the approximation error
‖x − x̃‖ as a function of N , when x̃ is reconstructed using the
canonical dual frame (‘err can’) and the alternative dual frames
FN (3) and FN (7), respectively (‘err alt’).

8.2. Harmonic frames for Rd. In this section, we generalize the alternative dual
construction of the previous section to harmonic frames for Rd. LetHd

N = {hNn }Nn=1,
be the harmonic frame for Rd defined in Example 2.2 by (2.4) and (2.5). For each
r ≥ 3, we construct an alternative dual frame to Hd

N which satisfies Property 7.1.
The alternative dual frame F dN will be of the form

(8.7) F dN = F dN (r) = {fNn }Nn=1, fNn =
1

N
(dhNn + gNn ),

where the definition of {gNn }Nn=1 ⊂ Rd depends on whether d is even or odd.

Harmonic frames in even dimension d. Suppose that the dimension d = 2d0

is even. Let u[j] denote the jth component of the vector u and define F dN by (8.7)
where

(8.8) gNn [2s− 1] = as,0 +

k∑

ℓ=1

as,ℓ cos (2π(d0 + ℓ)n/N) , s = 1, 2. . . . , d0,
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(8.9) gNn [2s] =

k∑

ℓ=1

bs,ℓ sin (2π(d0 + ℓ)n/N) , s = 1, 2. . . . , d0,

and k = k(r) > 0, {as,ℓ}d0,ks=1,l=0, {bs,ℓ}d0,ks=1,l=1 are constants to be defined later.
Next, for s = 1, 2, . . . , d0, we set

ψ2s−1(t) =
√

2d cos(2sπt) + as,0 +

k∑

ℓ=1

as,ℓ cos((d0 + ℓ)2πt),(8.10)

ψ2s(t) =
√

2d sin(2sπt) +

k∑

ℓ=1

bs,ℓ sin((d0 + ℓ)2πt).(8.11)

With this notation, we have fNn = 1
N [ψ1(n/N), ψ2(n/N), . . . , ψd(n/N)]T . As in

Lemma 8.1, one has the following dual frame lemma for F dN = {fNn }Nn=1.

Lemma 8.5. If 1 ≤ k < N − d0 then F dN , defined by (8.7), (8.8) and (8.9), is a

dual frame to Hd
N for every choice of {as,ℓ}d0,ks=1,ℓ=0, {bs,ℓ}

d0,k
s=1,ℓ=1 ⊂ R.

Proof. Similar to Lemma 8.1, this result follows from discrete orthogonality rela-
tions for cosine and sine. We omit the details. �

Given r > 0, our goal is to choose {as,ℓ}d0,ks=1,ℓ=0, {bs,ℓ}
d0,k
s=1,ℓ=1, so that the func-

tions {ψs}ds=1 satisfy the requirements of Property 7.1. As in Section 8.1, this is
achieved by ensuring that lower order terms in the power series expansion of each
ψs vanish. Note that that the ψ2s−1 are even functions, the ψ2s are odd functions,
and all are 1-periodic.

The power series expansions about t = 0 for the ψs, 1 ≤ s ≤ d0, are given by

(8.12) ψ2s−1(t) =
∞∑

n=0

β2s−1,2n t
2n and ψ2s(t) =

∞∑

n=0

β2s,2n+1 t
2n+1,

where

β2s−1,0 =
√

2d+

k∑

ℓ=0

as,ℓ,

∀n ≥ 1, β2s−1,2n =
(−1)n(2π)2n

(2n)!

(
s2n

√
2d+

k∑

ℓ=1

as,ℓ(d0 + ℓ)2n

)
,

∀n ≥ 0, β2s,2n+1 =
(−1)n(2π)2n+1

(2n+ 1)!

(
s2n+1

√
2d+

k∑

ℓ=1

bs,ℓ(d0 + ℓ)2n+1

)
.

Let Vd0,k be the following k × k Vandermonde matrix

(8.13) Vd0,k =




1 1 · · · 1
(d0 + 1)2 (d0 + 2)2 · · · (d0 + k)2

(d0 + 1)4 (d0 + 2)4 · · · (d0 + k)4

...
...

...
...

(d0 + 1)2k−2 (d0 + 2)2k−2 · · · (d0 + k)2k−2



,

and let Md0,k be the k × k diagonal matrix with [d0 + 1, d0 + 2, · · · , d0 + k] on its
main diagonal.
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Lemma 8.6. Fix k > 0 and define {as,ℓ}d0,ks=1,ℓ=0 and {bs,ℓ}d0,ks=1,ℓ=1 as follows. Let

as = [as,1, · · · , as,k]T and bs = [bs,1, · · · , bs,k]T

be chosen as the unique solutions to

Vd0,kM
2
d0,kas = −

√
2d [s2, s4, s6, · · · , s2k]T ,

Vd0,kMd0,kbs = −
√

2d [s, s3, s5, · · · , s2k−1]T ,

and also let

as,0 = −
√

2d−
k∑

ℓ=1

as,ℓ.

Note that bs,ℓ = (d0+ℓs )as,ℓ, for 1 ≤ ℓ ≤ k. If the functions {ψs}ds=1 are defined as
in (8.10) and (8.11) with the above choice of constants, then, for each 1 ≤ s ≤ d0,

∀ 0 ≤ j ≤ 2k, ψ(j)
s (0) = 0.

Equivalently, for each 1 ≤ s ≤ d0, the power series coefficients in (8.12) satisfy
β2s−1,2n = β2s,2n+1 = 0 for all 0 ≤ n ≤ k − 1.

In particular, if one is given r ≥ 3, takes k = ⌈r/2⌉ − 1, and lets F dN be the
alternative dual frame for Hd

N given by (8.7),(8.8) and (8.9), with {as,ℓ}, {bs,ℓ} as
above, then Hd

N , F
d
N satisfy Property 7.1.

The choice of {as,ℓ}, {bs,ℓ} in Lemma 8.6 was made to ensure that appropriately
many lower order power series coefficients of ψs are zero. Similar to the results
for roots-of-unity frames in Section 8.1, Property 7.1 follows here since the ψs are
entire functions whose restrictions to R are 1-periodic.

Harmonic frames in odd dimension d. When the dimension d = 2d0 + 1 is
odd, we modify the previous construction as follows. For s = 1, · · · , d0 define

(8.14) ψ2s−1(t) =
√

2d cos(2sπt) +
k+1∑

ℓ=1

as,ℓ cos((d0 + ℓ)2πt),

(8.15) ψ2s(t) =
√

2d sin(2sπt) +

k∑

ℓ=1

bs,ℓ sin((d0 + ℓ)2πt),

(8.16) ψ0(t) =
√
d+

k+1∑

ℓ=1

a0,ℓ cos((d0 + ℓ)2πt).

where k = k(r) and {as,ℓ}d0,k+1
s=0,ℓ=1, {bs,ℓ}

d0,k
s=1,ℓ=1 are constants to be defined later.

Note that if d > 2 is an odd integer then F dN = {fNn }Nn=1 defined by

(8.17) fNn =
1

N
[ψ0(n/N), ψ1(n/N), . . . , ψd−1(n/N)]T

is an alternative dual frame for Hd
N (in the same manner as in Lemma 8.5). Let

the matrices Vd0,k and Md0,k be defined as in (8.13).
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Lemma 8.7. Fix k > 0 and define {as,ℓ}d0,k+1
s=0,ℓ=1 and {bs,ℓ}d0,ks=1,ℓ=1 as follows. Let

∀ 0 ≤ s ≤ d0, as = [as,1, · · · , as,k+1]
T and ∀ 1 ≤ s ≤ d0, bs = [bs,1, · · · , bs,k]T

be chosen as the unique solutions to

Vd0,k+1a0 = −
√
d [1, 0, 0, · · · , 0]T ,

∀ 1 ≤ s ≤ d0, Vd0,k+1as = −
√

2d [1, s2, s4, s6, · · · , s2k]T ,
∀ 1 ≤ s ≤ d0, Vd0,kMd0,kbs = −

√
2d [s, s3, s5, · · · , s2k−1]T .

If the functions {ψs}d−1
s=0 are defined as in (8.14), (8.15) and (8.16) with the above

choice of constants, then, for each 0 ≤ s ≤ d− 1,

∀ 0 ≤ j ≤ 2k, ψ(j)
s (0) = 0.

In particular, if one is given r ≥ 3, takes k = ⌈r/2⌉ − 1, and lets F dN be the
alternative dual frame for Hd

N given by (8.14), (8.15), (8.16) and (8.17) with
{as,ℓ}, {bs,ℓ} as above, then Hd

N , F
d
N satisfy Property 7.1.

Similar to Lemma 8.6, writing out the power series expansions for ψs shows that
the choice of {as,ℓ} and {bs,ℓ} in Lemma 8.7 is made to ensure that appropriately
many lower order power series coefficients of the ψs are zero. As in Lemma 8.6,
Property 7.1 follows from power series properties of the ψs since each ψs is an entire
function whose restriction to R is 1-periodic.

The following theorem provides error estimates when the alternative dual frames
from Lemmas 8.6 and 8.7 are used to linearly reconstruct Σ∆ quantized harmonic
frame coefficients.

Theorem 8.8. Let r ≥ 3 be a positive integer and let Hd
N = {hNn }Nn=1 ⊂ Rd be the

harmonic frame for Rd defined by (2.4) and (2.5). Take k = ⌈r/2⌉ − 1 and define
the dual frame F dN (r) = {fNn }Nn=1 through Lemmas 8.6 or 8.7 depending on whether
d is even or odd.

Suppose we are given a stable rth order Σ∆ scheme (5.6), and let C1, C2 >
0 be the associated stability constants as in (5.7). For x ∈ Rd, ‖x‖ < C1, let

x̃N =
∑N
n=1 qn(x)fNn (r) where qn(x) is produced via the rth order Σ∆ scheme by

quantizing 〈x, hNn 〉. Then

‖x− x̃N‖ ≤ CHF

Σ∆(r, d)

N r
,

where CHF

Σ∆(r, d) is the corresponding constant from Theorem 7.2.

Proof. Lemmas 8.6 and 8.7 show that Property 7.1 is satisfied by F dN (r). Thus the
result follows from Theorem 7.2. �

Numerical experiments. Figure 4(a) and (b), plot the norm of the boundary
term in (5.10) as a function of N , for frames F 6

N (4) and F 7
N (11), respectively.

To illustrate Theorem 8.8 in dimension 4, let x = (1/2)(1/π,
√

3/17,−1/2, e−1/2)
and suppose that the frame coefficients of x with respect to the frame H4

N are
quantized with the 3rd order Σ∆ scheme from [14]. We compare the approximation
error when the canonical dual frame and the alternative dual frame F 4(3) are used
to reconstruct the quantized frame coefficients. Part (a) of Figure 5 shows a log-log
plot of both corresponding approximation errors ||x − x̃N || as a function N . As
predicted, the error is of order 1/N3.
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Figure 4. Parts (a) and (b) show log-log plots of the norm of
the boundary terms in (6.5) for the frames F 6(4) and F 7(11), re-
spectively. For comparison, boundary terms for the canonical dual
frame of H7

N are also shown.

To illustrate Theorem 8.8 in dimension 5, let

y = (1/3)(1/π,
√

3/17,−1/2, e−1/2,
√

1/2)

and suppose that the frame coefficients of y with respect to H5
N are quantized

using the 7th order Σ∆ scheme from Example 5.2 with δ = 2−8 ≈ 0.0039 which
guarantees that the scheme is stable. Part (b) of Figure 5 shows a log-log plot of
the corresponding approximation errors ||y − ỹN || as a function N . As predicted,
the error is of order 1/N7.
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9. Appendix: uniform distribution

This appendix provides some necessary background on uniform distribution
which is used in the previous sections. The discussion follows the references [22, 25],
except that we choose to work with the interval [−1/2, 1/2), instead of [0, 1). We
identify [−1/2, 1/2) with the torus T. Given x ∈ R, we define [[x]] to be the unique
number in the interval [−1/2, 1/2) such that x ≡ [[x]] modulo 1, i.e, x− [[x]] ∈ Z.
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Figure 5. The approximation error for two Σ∆ schemes. The
frame expansions of (a) x = (1/2)(1/π,

√
3/17,−1/2, e−1/2) with

respect to H4
N , and (b) y = (1/3)(1/π,

√
3/17,−1/2, e−1/2,

√
1/2)

with respect to H5
N are quantized using (a) the 3rd-order scheme

of [14], and (b) the 7th-order Σ∆ scheme, as described in Example
5.2 with δ = 2−8 ≈ 0.0039. In both (a) and (b), we show the
approximation error ‖x− x̃‖ where x̃ is obtained using the canon-
ical dual (’err can’), along with the approximation error that is
obtained when the alternative duals F 4

N (3) and F 5
N (7) were used,

respectively (’err alt’).

The sequence {un}∞n=1 ⊂ R is uniformly distributed modulo 1 if

∀ interval I ⊆ [−1/2, 1/2), lim
N→∞

card{1 ≤ n ≤ N : [[un]] ∈ I}
N

= |I|.

The classical theorem of Weyl gives useful equivalent conditions for a sequence
to be uniformly distributed, [22, 25].

Theorem 9.1 (Weyl). Let {un}∞n=1 ⊂ R. The following are equivalent:

(1) {un}∞n=1 is uniformly distributed modulo 1,
(2) For every Riemann integrable function f on T,

lim
N→∞

1

N

N∑

n=1

f(un) =

∫

T

f(x)dx.

Polynomials with irrational coefficients provide basic examples of uniformly dis-
tributed sequences, e.g., see Theorem 3.2 in [22].

Lemma 9.2. If Pk(x) = ckx
k + ck−1x

k−1 + · · ·+ c1x+ c0 is a polynomial of degree
k ≥ 1 for which at least one cj ∈ R\Q, with j ≥ 1, then {Pk(n)}∞n=1 is uniformly
distributed modulo 1.

The next lemma shows that certain perturbations of uniformly distributed se-
quences remain uniformly distributed, e.g., see page 23 of [22].
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Lemma 9.3. If {un}∞n=1 ⊂ R, satisfies un = vn +wn, where {vn}∞n=1 is uniformly
distributed modulo 1 and

lim
N→∞

1

N

N∑

n=1

|wn| = 0,

then {un}∞n=1 ⊂ T is uniformly distributed modulo 1.

The following lemma shows that the sequence {BN}∞N=3 resulting from the
boundary terms in the proof of Theorem 6.2 is indeed uniformly distributed.

Lemma 9.4. For almost every (a, b) ∈ R2, the sequence {BN}∞N=3 defined by

BN =
−aN

2
+

bN

2 tan(π/N)
,

is uniformly distributed modulo 1.

Proof. Note that BN = VN +WN , where

VN =

(
bN2

2π
− aN

2
− bπ

6

)
+

bπ3

18(N2 + π2/3)
,

and

WN =
bN

2

(
1

tan( πN )
− 1

π
N + π3

3N3

)
.

A direct calculation shows that |WN | . 1/N2, so that limM→∞
1
M

∑M
N=1 |WN | = 0.

Lemma 9.2 and Lemma 9.3 show that {VN}∞N=1 is uniformly distributed modulo 1.
Applying Lemma 9.3 a second time shows that {BN}∞N=1 is uniformly distributed
modulo 1 and completes the proof. �
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