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ABSTRACT

It is possible to blindly separate an arbitrary number of sources
given just two anechoic mixtures provided the time-frequency rep-
resentations of the sources do not overlap, a condition which we
call W-disjoint orthogonality. We define a power weighted two-
dimensional histogram constructed from the ratio of the time-fre-
quency representations of the mixtures which is shown to have
one peak for each source with peak location corresponding to the
relative amplitude and delay mixing parameters. All of the time-
frequency points which yield estimates in a given peak are exactly
all the non-zero magnitude components of one of the sources. We
introduce the concept of approximate W-disjoint orthogonality,
present experimental results demonstrating the level of approxi-
mate W-disjoint orthogonality of speech in mixtures of various or-
der, and show that even with imperfect W-disjoint orthogonality
the histogram can be used to determine the mixing parameters and
separate sources. Example demixing results can be found online:

http://www.princeton.edu/˜srickard/bss.html

1. INTRODUCTION

The blind source separation technique introduced in [1] relied on
the assumption that the sources were W-disjoint orthogonal. De-
spite the fact that for signals of practical interest, namely speech,
this assumption is often violated, the technique still achieves good
demixing results[2]. These results are possible because speech sig-
nals exhibit a level of “approximate” W-disjoint orthogonality. In
this paper, we propose a definition of approximate W-disjoint or-
thogonality and present experimental results confirming this prop-
erty for speech signals. Moreover, we show that the effects of the
imperfect disjointness on the demixing algorithm are limited.

Other work which leverages properties of sources which are
similar in spirit to approximate W-disjoint orthogonality include
[3, 4], which considered time domain disjoint sources, and [5],
which exploited the sparsity of the short-time Fourier transform
when applied to speech and music signals. All of these methods,
however, only considered instantaneous mixing.

The anechoic mixing model and source assumptions are dis-
cussed in Section 2. The two-dimensional power weighted mix-
ing parameter histogram is introduced and its role in demixing is
presented in Section 3. Section 4 defines approximate W-disjoint
orthogonality and presents experimental results for speech mix-
tures. The effect of approximate W-disjoint orthogonality on the
histogram is discussed in Section 5.
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2. MIXING MODEL AND SOURCE ASSUMPTIONS

Consider measurements of a pair of sensors where only the direct
path is present. In this case, without loss of generality, we can
absorb the attenuation and delay parameters of the first mixture,
�����, into the definition of the sources. The two mixtures can
thus be expressed as,
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where �����, � � �� � � � � � , are the � sources, Æ� is the arrival
delay between the sensors of source �, and �� is a relative atten-
uation factor corresponding to the ratio of the attenuation of the
paths between sources and sensors. We use � to denote the maxi-
mal possible delay between sensors, and thus, �Æ� � � �� ��.

Our goal is to recover the original sources given only the mix-
tures. In order to accomplish this, we assume the sources are pair-
wise W-disjoint orthogonal and satisfy the narrowband assumption
for array processing. Both of these concepts are discussed below.

We call two functions ����� and ����� W-disjoint orthogonal
if, for a given a windowing function � ���, the supports of the
windowed Fourier transforms of ����� and ����� are disjoint[1].
The windowed Fourier transform of ����� is defined,
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which we will refer to as ����
� �� where appropriate. The W-
disjoint orthogonality assumption can be stated concisely,

����
� � �����
� �� � �� �
� �� (4)

W-disjoint orthogonality is different and in general a stronger
condition than statistical orthogonality. This difference is illus-
trated in Figure 1 where it is demonstrated that speech signals are
approximately W-disjoint orthogonal whereas independent white
noise signals, while being statistically orthogonal, are not approxi-
mately W-disjoint orthogonal. A formal definition of approximate
W-disjoint orthogonality is introduced in Section 4.

When � ��� � �, the following is a property of the Fourier
transform,

	� ����� � Æ���
� � � � ���Æ	� ��������
� ��� (5)

We employ the narrowband assumption in array processing that
implies for our purposes that Equation 5 holds for all Æ, �Æ� � �,
even when � ��� has finite support[6].
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Fig. 1. Example of W-disjoint orthogonality. The top three left
column figures are grey scale images of �����
� ���, �����
� � ��,
and �����
� ������
� ��� for two speech signals ����� and �����
normalized to have unit energy. The top three right column
figures are grey scale images of �����
� ���, �����
� � ��, and
�����
� ������
� ��� for two independent white noise signals �����
and ����� normalized to have unit energy. A Hamming window
of length 32 ms was used as � ��� and all signals had length
1.5 seconds. �����
� ������
� ��� contains far fewer large compo-
nents than �����
� ������
� ���. This is confirmed in the bottom
row which contains histograms of the values in �����
� � �����
� ���
and �����
� ������
� ��� respectively. Note, almost all values in
the voice histogram are close to zero, while there are a signifi-
cant number of non-zero values in the noise histogram. Thus the
speech signals approximately satisfy the W-disjoint orthogonality
condition while the independent white noise signals do not.

2.1. Amplitude-Delay Estimation

Using the narrowband assumption, we can rewrite the model from
Equations 1 and 2 in the time-frequency domain,
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Assuming the sources are pairwise W-disjoint orthogonal, at most
one of the � sources will be non-zero for a given �
� ��, and thus,�
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where � � ��
� ��, in a slight abuse of notation, is the index of
the source active at �
� ��. The key observation is that the ratio of
the time-frequency representations of the mixtures is a function of
the mixing parameters only and does not depend on the sources.
Therefore, we can calculate the relative amplitude and delay pa-
rameters associated with the source active at �
� �� using,
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where ���� � �, �� � � � �. Note, the accurate calculation
of Æ� requires that,

�
Æ� � � �� (9)

3. HISTOGRAM DEFINITION AND DEMIXING

In order to demix, we construct a two dimensional weighted his-
togram whose peaks are in one-to-one correspondence with the
amplitude and delay mixing parameters of each source. This al-
lows for the calculation of the mixing parameters, which are then
used to construct time-frequency masks which demix the mixtures.

In practice, rather than working with the continuous windowed
Fourier transform, we use its discrete counterpart, �����
�� �����
��� � � �, where 
� and �� are the frequency and time grid spac-
ing parameters. It is well known that for any appropriately cho-
sen window function, if 
� and �� are small enough, ����� can
be reconstructed from �����
�� ����� ��� � � �. For more details,
consult [7].

The amplitude delay mixing parameter estimates associated
with ��
�� ���� are,
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A two dimensional weighted histogram can be constructed in ��� Æ�
space from the ����� ��� Æ��� ��� pairs as follows. First, we define
time-frequency mask for ��� Æ�,

���	Æ	��	�Æ���� �� �

�
�

� � � 	
 ���� ��� 	
 �� � ���� and
�Æ��� ��� Æ�� � �Æ��

� � otherwise
(11)

where �� and �Æ are the amplitude and delay resolution widths
of the histogram. Then, the weighted histogram can be defined as,

���� Æ� � ����	Æ	��	�Æ���� �������
�� ������ �
����	Æ	��	�Æ���� �������
�� ������ (12)

where � �� denotes the �� norm. Of main interest are the locations
of the histogram’s peaks and the surrounding region. These shall
be used to identify sources and to estimate demixing errors.

The histogram for sources which satisfy (4), (5), and (9) will
consist of � peaks with rectangular support with dimensions ��-
by-�Æ centered at ��� � Æ��, � � �� � � � � � . The height of each
peak will be proportional to the sum power of the corresponding
source in the mixtures.

To demix, one creates the time-frequency mask corresponding
to each peak in the histogram using (11) and uses it to mask one of
the mixtures to produce the original source time-frequency repre-
sentation. For example, for a peak located at ��� � Æ��, one obtains
source � via,

�����
�� ���� � ���� 	Æ� 	��	�Æ���� �������
�� ����� ��� �� (13)

4. APPROXIMATE W-DISJOINT ORTHOGONALITY
Clearly, the W-disjoint orthogonality assumption is not strictly sat-
isfied for our signals of interest. We introduce here a measure of
approximate W-disjoint orthogonality.

First, we define,
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so that ����� is the summation of the sources interfering with source
�. Then, consider the time-frequency mask,

���	
���� �� �
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� �� 	��������
�� ������������
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� otherwise

(15)
and the resulting energy ratio,

����� � ����	
���� �������
�� �������������
�� ������� (16)

which measures the percentage of energy of source � for time-
frequency points where it dominates the other sources by � dB. We
propose ����� as a measure of W-disjoint orthogonality. For exam-
ple, Figure 2 shows ����� averaged for groups of speech mixtures
of different orders and demonstrates the approximate W-disjoint
orthogonality of speech in mixtures of up to 10 signals.
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Fig. 2. Approximate W-Disjoint Orthogonality. Plot of ����� for
� � �� �� � � � � �� for � � �� �� � � � � ��. Note that ������ � ��
for the � � � case, and thus say that the speech signals in mix-
tures of order 2 are��� W-disjoint orthogonal at 15 dB. If we can
correctly map time-frequency points with 15 dB or more single
source dominance to the correct corresponding output partition,
we can recover ��� of the energy of the original sources. For
higher order mixtures, some level of approximate W-disjoint or-
thogonality is maintained. For example, comparing one source to
the sum of three others others, we have ��� W-disjoint orthog-
onality at 5 dB. The dotted line is for two independent Gaussian
white noise processes. The figure was generated using speech files
taken from the TIMIT database and each line represents the aver-
age over hundreds of tests.

An important demixing performance measure is the signal to
interference ratio of the outputs. We can calculate the SIR associ-
ated with a time-frequency mask using,

SIR���� �
����	
���� �������
�� ������
����	
���� �������
�� ������ � (17)

which measures the signal to interference ratio for time-frequency
points where source � dominates the sum of the other sources by
� dB. Figure 3 shows plots of ����� (in dB) versus SIR���� for
mixtures of various orders and a table of �������SIR����� pairs.
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Fig. 3. Demixing time-frequency mask performance. Plot con-
tains ����� (in dB) versus SIR���� for � � �� �� � � � � �� for
� � �� �� � � � � ��. Table contains (������SIR����) for � �
�� �� �� �� �� for � � �� ��� �� dB. For example, using the � � ��
dB mask in pairwise mixing yields 21.76 dB output SIR while
maintaining 87% of the desired source power.

5. PEAK SPREADING

The approximate W-disjoint orthogonality of speech signals brings
about a spreading of the peak region in the ��� Æ� histogram. Con-
sider the estimation of ��� Æ� mixing parameters associated with
source � in the presence of interfering sources. Using (14) and
defining,
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the time-frequency mixing equation (6) becomes,
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Defining,
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with �� � 	 � and �� � � ���� ��, the time-frequency ratio of the
mixtures becomes,
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and the estimates of the mixing parameters associated with �
� ��
are,
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Observe that the interfering sources bring about an error term in
the mixing parameter estimates.

We can evaluate the effect of these errors on the amplitude
delay estimate pairs by assuming that the phases in (20) and (21)
are uniformly independently distributed from �� to �. Using the
approximate W-disjoint orthogonality results for speech mixtures,
we can numerically evaluate the expected histogram peak region
shape generated from (23) and (24). For example, Figure 4 shows
the expected peak shape of one source for a speech mixture of or-
der four. An example of the peak spreading is shown in Figure 5
which contains the histogram for a four speech signal mixing ex-
ample. Sample mixture and demixed sound files corresponding to
this histogram can be found on the webpage listed in the abstract.
A more detailed presentation of these results, including the effect
of noise and echoes, is being prepared.

−1

−0.5

0

0.5

1

−0.02

−0.01

0

0.01

0.02

relative delay error in sampleslog relative amplitude error

lik
el

ih
oo

d

Fig. 4. Expected peak shape due to estimation errors caused by in-
terference of three other sources assuming the phases in (20) and
(21) are uniformly distributed in ���� �� and using the approxi-
mate W-disjoint orthogonality results presented in Figure 2.

6. REFERENCES

[1] A. Jourjine, S. Rickard, and Ö. Yılmaz, “Blind Separa-
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