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Abstract—Sobolev dual frames have recently been proposed as
optimal alternative reconstruction operators that are specifically
tailored for Sigma-Delta (Σ∆) quantization of frame coefficients.
While the canonical dual frame of a given analysis (sampling)
frame is optimal for the white-noise type quantization error of
Pulse Code Modulation (PCM), the Sobolev dual offers significant
reduction of the reconstruction error for the colored-noise of
Σ∆ quantization. However, initial quantitative results concerning
the use of Sobolev dual frames required certain regularity
assumptions on the given analysis frame in order to deduce
improvements of performance on reconstruction that are similar
to those achieved in the standard setting of bandlimited functions.
In this paper, we show that these regularity assumptions can be
lifted for (Gaussian) random frames with high probability on
the choice of the analysis frame. Our results are immediately
applicable in the traditional oversampled (coarse) quantization
scenario, but also extend to compressive sampling of sparse
signals.

I. INTRODUCTION

A. Background on Σ∆ quantization
Methods of quantization have long been studied for over-

sampled data conversion. Sigma-Delta (Σ∆) quantization has
been one of the dominant methods in this setting, such
as A/D conversion of audio signals [9], and has received
significant interest from the mathematical community in recent
years [5], [6]. Oversampling is typically exploited to employ
very coarse quantization (e.g., 1 bit/sample), however, the
working principle of Σ∆ quantization is applicable to any
quantization alphabet. In fact, it is more natural to consider
Σ∆ quantization as a “noise shaping” method, for it seeks
a quantized signal (qj) by a recursive procedure to push the
quantization error signal y− q towards an unoccupied portion
of the signal spectrum. In the case of bandlimited signals, this
spectrum corresponds to high-frequency bands.

The governing equation of a standard rth order Σ∆ quan-
tization scheme with input y = (yj) and output q = (qj) is

(∆ru)j = yj − qj , j = 1, 2, . . . , (1)

where ∆ stands for the difference operator defined by
(∆u)j := uj − uj−1, and the qj ∈ A are chosen according to
some quantization rule that incorporates quantities available
in the recursion; the quantization rule typically takes the form

qj = QA(uj−1, uj−2, . . . , yj , yj−1, . . . ). (2)

A is called the quantization alphabet and is typically a finite
arithmetic progression of a given spacing δ, and symmetric
about the origin.

Not all Σ∆ quantization schemes are presented (or imple-
mented) in the above canonical form, but they all can be
rewritten as such for an appropriate choice of r and u. For the
noise shaping principle to work, it is crucial that the solution u
remains bounded. The smaller the size of the alphabet A gets
relative to r, the harder it is to guarantee this property. The
extreme case is 1-bit quantization, i.e., |A| = 2, which is also
the most challenging setting. In this paper, we will assume that
QA is such that the sequence u remains uniformly bounded
for all inputs y such that ‖y‖∞ ≤ µ for some µ > 0, i.e., that
there exists a constant C(µ, r, QA) < ∞ such that

|uj | ≤ C(µ, r, QA), ∀j. (3)

In this case, we say that the Σ∆ scheme or the quantization
rule is stable.

A standard quantization rule is the so called “greedy rule”
which minimizes |uj | given uj−1, . . . , uj−r and yj , i.e.,

qj = arg min
a∈A

∣∣∣
r∑

i=1

(−1)i−1

(
r

i

)
uj−i + yj − a

∣∣∣. (4)

The greedy rule is not always stable for large values of r.
However, it is stable if A is sufficiently big. It can be checked
that if

(2r − 1)δ/2 + µ ≤ |A|δ/2, (5)

then ‖u‖∞ ≤ δ/2. However, this requires that A contain at
least 2r levels. With more stringent, fixed size quantization
alphabets, the best constant C(µ, r, QA) in (3) has to be
significantly larger than this bound. In fact, it is known that
for any quantization rule with a 1-bit alphabet, C(µ, r, QA) is
Ω(rr), e.g., see [5], [6].

The significance of stability in a Σ∆ quantization scheme
has to do with the reconstruction error analysis. In standard
oversampled quantization, it is shown that the reconstruction
error incurred after low-pass filtering of the quantized output is
mainly controlled by ‖u‖∞λ−r, where λ is the oversampling
ratio, i.e., the ratio of the sampling frequency to the bandwidth
of the reconstruction filter [5]. This error bound relies on the
specific structure of the space of bandlimited functions and
the associated sampling theorem.

B. Σ∆ quantization and finite frames
Various authors have explored analogies of Σ∆ quantization

and the above error bound in the setting of finite frames,
especially tight frames [1], [2], [4]. Recall that in a finite



dimensional inner product space, a frame is simply a spanning
set of (typically not linearly independent) vectors. In this
setting, if a frame of consisting of m vectors is employed in
a space of k dimensions, then a corresponding oversampling
ratio can be defined as λ = m/k. If a Σ∆ quantization
algorithm is used to quantize frame coefficients, then it would
be desirable to obtain reconstruction error bounds that have
the same nature as in the specific infinite dimensional setting
of bandlimited functions.

In finite dimensions, the equations of sampling, Σ∆ quan-
tization, and reconstruction can all be phrased using matrix
equations, which we shall describe next. For the simplicity
of our analysis, it will be convenient for us to set the
initial condition of the recursion in (1) equal to zero. With
u−r+1 = · · · = u0 = 0, and j = 1, . . . ,m, the difference
equation (1) can be rewritten as a matrix equation

Dru = y − q, (6)

where D is defined by

D =





1 0 0 0 · · · 0
−1 1 0 0 · · · 0

0 −1 1 0 · · · 0
. . . . . . . . .

0 0 · · · −1 1 0
0 0 · · · 0 −1 1





(7)

Suppose that we are given an input signal x and an analysis
frame (ei)m

1 of size m in Rk. We can represent the frame
vectors as the rows of an an m × k matrix E, the sampling
operator. The sequence y will simply be the frame coefficients,
i.e., y = Ex. Similarly, let us consider a corresponding
synthesis frame (fj)m

1 . We stack these frame vectors along
the columns of a k×m matrix F , the reconstruction operator,
which is then a left inverse of E, i.e., FE = I . The Σ∆
quantization algorithm will replace the coefficient sequence y
with its quantization given by q, which will then represent
the coefficients of an approximate reconstruction x̂ using
the synthesis frame. Hence, x̂ = Fq. Since x = Fy, the
reconstruction error is given by

x− x̂ = FDru. (8)

With this expression, ‖x − x̂‖ can be bounded for any norm
‖ ·‖ simply as

‖x− x̂‖ ≤ ‖u‖∞
m∑

j=1

‖(FDr)j‖. (9)

Here (FDr)j is the jth column of FDr. In fact, when suitably
stated, this bound is also valid in infinite dimensions, and
has been used extensively in the mathematical treatment of
oversampled A/D conversion of bandlimited functions.

For r = 1, and ‖ ·‖ = ‖ ·‖ 2, the summation term on the
right hand side of (9) motivated the study of the so-called

frame variation defined by

V (F ) :=
m∑

j=1

‖fj − fj+1‖2, (10)

where one defines fm+1 = 0. Higher-order frame variations to
be used with higher-order Σ∆ schemes are defined similarly,
see [1], [2]. It is clear that for the frame variation to be small,
the frame vectors must follow a smooth path in Rk. Frames
(analysis as well as synthesis) that are obtained via uniform
sampling a smooth curve in Rk (so-called frame path) are
typical in many settings. However, the above “frame variation
bound” is useful in finite dimensions when the frame path
terminates smoothly. Otherwise, it does not necessarily provide
higher-order reconstruction accuracy (i.e., of the type λ−r)
due to the presence of boundary terms. On the other hand,
designing smoothly terminating frames can be technically
challenging, e.g., [4].

C. Sobolev duals

Recently, a more straightforward approach was proposed
for the design of (alternate) duals of finite frames for Σ∆
quantization [8], [3]. Here, one instead considers the operator
norm of FDr on #m

2 and the corresponding bound

‖x− x̂‖2 ≤ ‖FDr‖op‖u‖2. (11)

(Note that this bound is not available in the infinite dimen-
sional setting of bandlimited functions due to the fact that u
is typically not in #2(N).) With this bound, it is now natural to
minimize ‖FDr‖op over all dual frames of a given analysis
frame E. These frames have been called Sobolev duals, in
analogy with classical L2-type Sobolev (semi)norms.

Σ∆ quantization algorithms are normally designed for ana-
log circuit operation, so they control ‖u‖∞, which would
control ‖u‖2 only in a suboptimal way. However, it turns
out that there are important advantages in working with the
#2 norm in the analysis. The first advantage is that Sobolev
duals are readily available by an explicit formula. The solution
Fsob,r of the optimization problem

min
F
‖FDr‖op subject to FE = I (12)

is given by the matrix equation

Fsob,rD
r = (D−rE)†, (13)

where † stands for the Moore-Penrose inversion operator,
which, in our case, is given by E† := (E∗E)−1E∗. Note
that for r = 0 (i.e., no noise-shaping, or PCM), one simply
obtains F = E†, the canonical dual frame of E.

As for the reconstruction error bound, plugging (13) into
(11), it immediately follows that

‖x− x̂‖2 ≤ ‖(D−rE)†‖op‖u‖2 =
1

σmin(D−rE)
‖u‖2, (14)

where σmin(D−rE) stands for the smallest singular value of
D−rE.



D. Main result
The main advantage of the Sobolev dual approach is that

highly developed methods are present for spectral norms of
matrices, especially in the random setting. Minimum singular
values of random matrices with i.i.d. entries have been studied
extensively in the mathematical literature. For an m×k random
matrix E with i.i.d. entries sampled from a sub-Gaussian
distribution with zero mean and unit variance one has

σmin(E) ≥
√

m−
√

k (15)

with high probability [11]. However, note that D−rE would
not have i.i.d. entries. A naive approach would be to split;
σmin(D−rE) is bounded from below by σmin(D−r)σmin(E).
However (see Lemma II.1), σmin(D−r) satisfies

σmin(D−r) *r 1, (16)

and therefore this naive product bound yields no improvement
in r on the reconstruction error for Σ∆-quantized measure-
ments. As can be expected, the true behavior of σmin(D−rE)
turns out to be drastically different, and is described as part
of Theorem A, our main result in this paper.

Theorem A. Let E be an m × k random matrix whose
entries are i.i.d. Gaussian random variables with zero mean
and unit variance. For any α ∈ (0, 1) and positive in-
teger r, there are constants c, c′, c′′ > 0 such that if
λ := m/k ≥ c(log m)1/(1−α), then with probability at least
1 − exp(−c′mλ−α), the smallest singular value of D−rE
satisfies

σmin(D−rE) ≥ c′′λα(r− 1
2 )√m. (17)

In this event, if a stable rth order Σ∆ quantization scheme is
used in connection with the rth order Sobolev dual frame of
E, then the resulting reconstruction error is bounded by

‖x− x̂‖2 ! λ−α(r− 1
2 ). (18)

Previously, the only setting in which this type of approxi-
mation accuracy could be achieved (with or without Sobolev
duals) was the case of highly structured frames (e.g. when
the frame vectors are found by sampling along a piecewise
smooth frame path). Theorem A shows that such accuracy is
generically available, provided the reconstruction is done via
Sobolev duals.

II. SKETCH OF PROOF OF THEOREM A
Below we give a sketch of the proof of Theorem A as well

as describe the main ideas in our approach. The full argument
is given in [7].

In what follows, σj(A) will denote the jth largest singular
value of the matrix A. Similarly, λj(B) will denote the jth
largest eigenvalue of the Hermitian matrix B. Hence, we have
σj(A) =

√
λj(A∗A). We will also use the notation Σ(A)

for the diagonal matrix of singular values of A, with the
convention (Σ(A))jj = σj(A). All matrices in our discussion
will be real valued and the Hermitian conjugate reduces to the
transpose.

We have seen that the main object of interest for the
reconstruction error bound is σmin(D−rE) for a random frame
E. Let H be a square matrix. The first observation we make
is that when E is i.i.d. Gaussian, the distribution of Σ(HE)
is the same as the distribution of Σ(Σ(H)E). To see this, let
UΣ(H)V ∗ be the singular value decomposition of H where
U and V are unitary matrices. Then HE = UΣ(H)V ∗E.
Since the unitary transformation U does not alter singular
values, we have Σ(HE) = Σ(Σ(H)V ∗E), and because of the
unitary invariance of the i.i.d. Gaussian measure, the matrix
Ẽ := V ∗E has the same distribution as E, hence the claim.
Therefore it suffices to study the singular values of Σ(H)E.
In our case, H = D−r and we first need information on the
deterministic object Σ(D−r).

A. Singular values of D−r

It turns out that we only need an approximate estimate of
the singular values of D−r:

Lemma II.1. Let r be any positive integer and D be as in
(7). There are positive numerical constants c1(r) and c2(r),
independent of m, such that

c1(r)
(m

j

)r
≤ σj(D−r) ≤ c2(r)

(m

j

)r
, j = 1, . . . ,m.

(19)

Here we shall only give a simple heuristic argument. First,
it is convenient to work with the singular values of Dr instead,
because Dr is a banded (Toeplitz) matrix whereas D−r is full.
Note that because of our convention of descending ordering
of singular values, we have

σj(D−r) =
1

σm+1−j(Dr)
, j = 1, . . . ,m. (20)

For r = 1, an explicit formula is available [12]. Indeed, we
have

σj(D) = 2 cos
(

πj

2m + 1

)
, j = 1, . . . ,m, (21)

which implies

σj(D−1) =
1

2 sin
(

π(j−1/2)
2(m+1/2)

) , j = 1, . . . ,m. (22)

For r > 1, the first observation is that σj(Dr) and (σj(D))r

are different, because D and D∗ do not commute. However,
this becomes insignificant as the size m → ∞. In fact, the
asymptotic distribution of (σj(Dr))m

j=1 as m → ∞ is rather
easy to find using standard results in the theory of Toeplitz
matrices: D is a banded Toeplitz matrix whose symbol is
f(θ) = 1 − eiθ, hence the symbol of Dr is (1 − eiθ)r. It
then follows by Parter’s extension of Szegö’s theorem [10]
that for any continuous function ψ, we have

lim
m→∞

1
m

m∑

j=1

ψ(σj(Dr)) =
1
2π

∫ π

−π
ψ(|f(θ)|r) dθ. (23)

We have |f(θ)| = 2 sin |θ|/2 for |θ| ≤ π, hence the
distribution of (σj(Dr))m

j=1 is asymptotically the same as



that of 2r sinr(πj/2m), and consequently, we can think of
σj(D−r) roughly as

(
2r sinr(πj/2m)

)−1 which behaves, up
to r-dependent constants, as (m/j)r. Moreover, we know that
‖Dr‖op ≤ ‖D‖r

op ≤ 2r, hence σmin(D−r) ≥ 2−r.
In [7], the above heuristic is turned into a formal statement

via a standard perturbation theorem (namely, Weyl’s theorem)
on the spectrum of Hermitian matrices. Here, the important
observation is that D∗rDr is a perturbation of (D∗D)r of
rank at most 2r.

B. Lower bound for σmin(D−rE)
In light of the above discussion, the distribution of

σmin(D−rE) is the same as that of

inf
‖x‖2=1

‖Σ(D−r)Ex‖2. (24)

We replace Σ(D−r) with an arbitrary diagonal matrix S with
Sjj =: sj > 0. For the next set of results, we will work with
Gaussian variables with variance equal to 1/m.

Lemma II.2. Let E be an m×k random matrix whose entries
are i.i.d. N (0, 1

m ). For any Θ > 1, consider the event

E :=
{
‖SE‖$k

2→$m
2
≤ 2

√
Θ‖s‖∞

}
.

Then
P (Ec) ≤ 5kΘm/2e−(Θ−1)m/2.

The above lemma follows easily from the bound ‖S‖ ·‖E‖
on ‖SE‖ and the corresponding standard concentration esti-
mates for ‖E‖. Likewise, the proof of the next lemma also
follows from standard methods.

Lemma II.3. Let ξ ∼ N (0, 1
m Im), r be a positive integer,

and c1 > 0 be such that

sj ≥ c1

(
m

j

)r

, j = 1, . . . ,m. (25)

Then for any Λ ≥ 1 and m ≥ Λ,

P




m∑

j=1

s2
jξ

2
j < c2

1Λ
2r−1



 < (60m/Λ)r/2e−m(r−1/2)/Λ.

The next lemma is what we will need to prove the main
result.

Lemma II.4. Let E be an m×k random matrix whose entries
are i.i.d. N (0, 1

m ), r be a positive integer, and assume that the
entries sj of the diagonal matrix S satisfy

c1

(
m

j

)r

≤ sj ≤ c2m
r, j = 1, . . . ,m. (26)

Let Λ ≥ 1 be any number and assume m ≥ Λ. Consider the
event

F :=
{
‖SEx‖2 ≥

1
2
c1Λr−1/2‖x‖2, ∀x ∈ Rk

}
.

Then

P (Fc) ≤ 5ke−m/2 + 8r
(17c2

√
Λ

c1

)k(m

Λ

)r(k+ 1
2 )

e−m(r− 1
2 )Λ.

Proof: Consider a ρ-net Q̃ of the unit sphere of Rk with
#Q̃ ≤

(
2
ρ +1

)k where the value of ρ < 1 will be chosen later.

Let Ẽ(Q̃) be the event
{
‖SEq‖2 ≥ c1Λr−1/2, ∀q ∈ Q̃

}
. By

Lemma II.3, we know that

P
(
Ẽ(Q̃)c

)
≤

(
2
ρ

+ 1
)k (

60m

Λ

)r/2

e−m(r−1/2)/Λ. (27)

Let E be the event in Lemma II.2 with Θ = 4. Let E be any
given matrix in the event E ∩ Ẽ(Q̃). For each ‖x‖2 = 1, there
is q ∈ Q̃ with ‖q − x‖2 ≤ ρ, hence by Lemma II.2, we have

‖SE(x− q)‖2 ≤ 4‖s‖∞‖x− q‖2 ≤ 4c2m
rρ.

Choose

ρ =
c1Λr−1/2

8c2mr
=

c1

8c2

√
Λ

( Λ
m

)r
.

Hence

‖SEx‖2 ≥ ‖SEq‖2 − ‖SE(x− q)‖2
≥ c1Λr−1/2 − 4c2m

rρ

=
1
2
c1Λr−1/2.

This shows that E∩Ẽ(Q̃) ⊂ F . Clearly, ρ ≤ 1/8 by our choice
of parameters and hence 2

ρ + 1 ≤ 17
8ρ . The result follows by

using the probability bounds of Lemma II.2 and (27).
The following theorem is now a direct corollary of the above

estimate.

Theorem II.5. Let E be an m × k random matrix whose
entries are i.i.d. N (0, 1

m ), r be a positive integer, D be the
difference matrix defined in (7), and the constant c1 = c1(r)
be as in Lemma II.1. Let 0 < α < 1 be any number. Assume
that

λ :=
m

k
≥ c3(log m)1/(1−α), (28)

where c3 = c3(r) is an appropriate constant. Then

P
(
σmin(D−rE) ≥ c1λ

α(r−1/2)
)
≥ 1− 2e−c4m1−αkα

(29)

for some constant c4 = c4(r) > 0.

Proof: Set Λ = λα in Lemma II.4. We only need to show
that

max

[
5ke−m/2, 8r

(17c2

√
Λ

c1

)k(m

Λ

)r(k+ 1
2 )

e−m(r− 1
2 )/Λ

]

≤ e−c4m1−αkα

.

This condition is easily verified once we notice that m/Λ =
m1−αkα and k log m ≤ c5m/Λ for a sufficiently small c5

which follows from our assumption (28) on λ by setting c5 =
1/c1−α

3 .
Remark. Replacing E in Theorem II.5 with

√
mE, we obtain

Theorem A. Also, a closer inspection of the proof shows that
if an m×N Gaussian matrix Φ is given where k < m < N
and

λ :=
m

k
≥ c6(log N)1/(1−α), (30)
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Fig. 1. Numerical behavior (in log-log scale) of 1/σmin(D−rE) as a
function of λ = m/k, for r = 0, 1, 2, 3, 4. In this figure, k = 50 and
1 ≤ λ ≤ 20. For each problem size, the largest value of 1/σmin(D−rE)
among 50 realizations of a random m×k matrix E sampled from the Gaussian
ensemble N (0, 1

m Im) was recorded.

then the same probabilistic estimate on σmin(D−rE) holds for
every m× k submatrix E of Φ. This extension has powerful
implications on compressed sensing. The details are given in
[7].

III. NUMERICAL EXPERIMENTS FOR GAUSSIAN AND
OTHER RANDOM ENSEMBLES

In order to test the accuracy of Theorem II.5, our first
numerical experiment concerns the minimum singular value
of D−rE as a function of λ = m/k. In Figure 1, we plot
the worst case (the largest) value, among 50 realizations, of
1/σmin(D−rE) for the range 1 ≤ λ ≤ 20, where we have
kept k = 50 constant. As predicted by this theorem, we find
that the negative slope in the log-log scale is roughly equal to
r − 1/2, albeit slightly less, which seems in agreement with
the presence of our control parameter α. As for the size of the
r-dependent constants, the function 5rλ−r+1/2 seems to be a
reasonably close numerical fit, which also explains why we
observe the separation of the individual curves after λ > 5.

It is natural to consider other random matrix ensembles
when constructing random frames and their Sobolev duals.
In the setting of compressed sensing, the restricted isometry
property has been extended to measurement matrices sampled
from the Bernoulli and general sub-Gaussian distributions.
Structured random matrices, such as random Fourier samplers,
have also been considered now in some detail. Our numerical
findings for the Bernoulli case are almost exactly the same
as those for the Gaussian case, hence we omit. For structured
random matrices, we give the results of one of our numerical
experiments in Figure 2. Here E is a randomly chosen m× k
submatrix of a much larger N×N Discrete Cosine Transform
matrix. We find the results somewhat similar, but as expected,
perhaps less reliable than the Gaussian ensemble.
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Fig. 2. Numerical behavior (in log-log scale) of 1/σmin(D−rE) as a
function of λ = m/k, for r = 0, 1, 2, 3, 4. In this figure, k = 10 and 1 ≤
λ ≤ 20. For each r and problem size (m, k), a random m×k submatrix E of
the N×N Discrete Cosine Transform matrix, where N = 10m, was selected.
After 50 such random selections, the largest value of 1/σmin(D−rE) was
recorded.
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