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Abstract—Recent results make it clear that the compressed
sensing paradigm can be used effectively for dimension reduction.
On the other hand, the literature on quantization of com-
pressed sensing measurements is relatively sparse, and mainly
focuses on pulse-code-modulation (PCM) type schemes where
each measurement is quantized independently using a uniform
quantizer, say, of step size δ. The robust recovery result of
Candès et al. and Donoho guarantees that in this case, under
certain generic conditions on the measurement matrix such as the
restricted isometry property, "1 recovery yields an approximation
of the original sparse signal with an accuracy of O(δ). In this
paper, we propose sigma-delta quantization as a more effective
alternative to PCM in the compressed sensing setting. We show
that if we use an rth order sigma-delta scheme to quantize m
compressed sensing measurements of a k-sparse signal in RN ,
the reconstruction accuracy can be improved by a factor of
(m/k)(r−1/2)α for any 0 < α < 1 if m !r k(log N)1/(1−α) (with
high probability on the measurement matrix). This is achieved by
employing an alternative recovery method via rth-order Sobolev
dual frames.

I. INTRODUCTION

Sparse approximations play an increasingly important role
in signal and image processing. This relies on the fact that
various classes of signals, e.g., audio and images, can be well-
approximated by only a few elements of an appropriate basis
or frame. For such signals, compressed sensing (CS) [6], [8],
[11] provides an efficient sampling theory: high-dimensional
signals with sparse approximations can be recovered from sig-
nificantly fewer measurements than their ambient dimension
by means of efficient non-linear reconstruction algorithms,
e.g., !1 minimization or greedy algorithms such as orthogonal
matching pursuit (OMP).

One of the main potential applications of CS is analog-to-
digital (A/D) conversion, e.g., see [19], [22], yet the literature
on how to quantize CS measurements in an efficient and
robust way is relatively sparse. In this paper, we will establish
a link between frame quantization and compressed sensing
quantization. This will enable us to assess the limitations of
pulse code modulation (PCM) based quantization methods in
the CS setting. More importantly, using techniques from frame
quantization theory, we shall construct “noise-shaping” quan-
tizers for CS measurements that yield superior approximations.

II. BACKGROUND ON COMPRESSED SENSING

Let ΣN
k denote the space of k-sparse signals in RN .

Suppose the measurements of x are given by y = Φx where Φ
is an m×N measurement matrix with m < N . The goal in CS

is to choose Φ such that one can recover every x ∈ ΣN
k exactly

from y. For such a guarantee, it is sufficient to have a matrix Φ
that is in general position with m ≥ 2k, but only along with
a recovery algorithm, the so-called !0 minimization, that is
computationally intractable. On the other hand, under stricter
conditions on Φ, e.g., the restricted isometry property (RIP),
one can recover sparse vectors by means of computationally
efficient algorithms, such as !1 minimization. Furthermore, in
this case, the recovery will be stable (if the original signal is
not sparse, but compressible) and robust (if the measurements
are corrupted by additive noise).

Suppose ŷ = Φx + e where e is any vector with ‖e‖2 ≤ ε.
Define ∆ε

1 : Rm &→ RN via

∆ε
1(ŷ) := arg min

z
‖z‖1 subject to ‖Φz − ŷ‖2 ≤ ε.

It was shown by Candès et al. [7], and by Donoho [12], that
if Φ satisfies an appropriate RIP condition, then x# := ∆ε

1(ŷ)
satisfies

‖x− x#‖ ! ε. (1)

Checking numerically whether a given matrix Φ satisfies
the RIP becomes rapidly intractable as the dimension of the
problem grows. On the other hand, it was shown that if Φ is
a random matrix the entries of which are sampled indepen-
dently, e.g., from the Gaussian distribution N (0, 1/m), then
Φ satisfies RIP (that guarantees (1) to hold) if m " k log(N

k ).

III. COMPRESSED SENSING AND QUANTIZATION

The robust recovery result outlined above justifies that CS is
effective for dimension reduction. On the other hand, it is not
clear whether CS is in fact “compressive”. For this, one needs
to convert the measurements into bit-streams, i.e., to quantize
the measurements, and compute the relationship between the
bit budget and the accuracy of the recovery after quantization.

A quantizer is a map Q : Rm &→ Am where A is a discrete
set, typically called the quantizer alphabet. Suppose y = Φx
are the CS measurements of a sparse signal x. We will focus
on how to quantize y, which consists of two sub-problems: (i)
designing the quantizer Q; (ii) finding an appropriate recovery
algorithm ∆Q, possibly tailored for the underlying quantizer
Q. Throughout, we will fix the quantizer alphabet A = δZ, and
for various quantizers and recovery methods, we will estimate
the reconstruction error ‖x−∆Q(Q(y))‖2 as a function of the
dimensional parameters m, k, and N .



Remark on normalization of Φ: In the CS literature, it
is conventional to normalize a random measurement matrix
Φ so that it has unit column variance. This scaling ensures
that E‖Φx‖2 = ‖x‖2 for any input x, which then leads
to RIP through concentration of measure, and finally to the
robust recovery result given in (1). On the other hand, such a
normalization scales the dynamic range of each measurement
yj by 1/

√
m. In this paper, we investigate the dependence of

the recovery error on the number of quantized measurements
with fixed quantizer step size δ. A fair assessment of such a
dependence can be made only if the dynamic range of each
measurement is kept constant while increasing the number
of measurements. This can be ensured by normalizing the
measurement matrix Φ such that its entries are independent of
m. In the specific case of Gaussian matrices, we can achieve
this by choosing the entries of Φ i.i.d. according to N (0, 1).
With this normalization of Φ, the robust recovery result of [7],
given above, can be modified as

‖ŷ − y‖2 ≤ ε =⇒ ‖x− x#‖2 ! 1√
m

ε. (2)

The transition between these two conventions is of course
trivial.

IV. PCM FOR COMPRESSED SENSING QUANTIZATION

Perhaps the most intuitive quantization strategy is to replace
each entry yj of the measurement vector y with qj that is
the nearest element of A to yj . The associated quantization
scheme is typically called pulse code modulation (PCM). In
this case, ‖y− q‖ ≤ 1

2δ
√

m, and thus it follows from (2) that
x#

PCM = ∆ε
1(q) with ε = 1

2δ
√

m satisfies

‖x− x#
PCM‖2 ! δ. (3)

Note that the error bound given above does not improve if
we increase the number of measurements m. Of course, the
actual error may behave differently as (3) provides only an
upper bound on the reconstruction error. However, as seen
in Figures 1 and 2, numerical experiments also corroborate
that the approximation error ‖x − x#

PCM‖2 does not decay as
m increases. This suggests that PCM quantization together
with reconstruction via !1 minimization is not utilizing extra
information obtained by collecting more measurements.

There are two ingredients in the above analysis: the quan-
tizer (PCM) and the reconstruction method (!1 minimization).
The vast logarithmic reduction of the ambient dimension N
would seem to suggest that PCM quantization is essentially op-
timal since information appears to be squeezed (compressed)
into few uncorrelated measurements. Perhaps for this reason,
the existing literature on quantization of compressed sensing
measurements focused mainly on alternative reconstruction
methods from PCM-quantized measurements and variants
thereof, e.g., [4], [9], [13], [17], [20], [23]. (The only exception
we are aware of is [5], which uses Σ∆ modulation to quantize
x before the random measurements are made.) Next, we
discuss why PCM is in fact highly suboptimal in this setting,
and give a lower bound on the approximation error ‖x−xopt

PCM‖

where xopt
PCM is the optimal (consistent) reconstruction obtained

from PCM-quantized CS measurements of x.
Compressed sensing and oversampling: Despite the “vast

reduction of the ambient dimension”, the measurements ob-
tained in CS are in fact not uncorrelated. To see this, let
x ∈ ΣN

k and let T be the support of x. Denote by xT the
vector in Rk consisting of those entries of x the indices of
which are in T (if |T | < k, just complete it to a set of size
k). Suppose we knew (recovered) T . Then in the CS setting,
we have m > k measurements of the k-dimensional signal
xT . For processing purposes it is important to remember that
the measurement vector y is in fact a redundant encoding of
xT . In particular, y = ΦT xT where ΦT is the m × k sub-
matrix consisting of the columns of Φ indexed by T . Note,
now, that the collection of the rows of ΦT is a redundant frame
(with m > k vectors) for Rk (of course assuming that Φ is in
general position), and the entries of y are the associated frame
coefficients.

Our discussion above has an important consequence for
quantizer design in the setting of CS: if a quantization scheme
is not effective for quantizing redundant frame expansions,
then it will not be effective in the CS setting. For this reason, in
the next section, we turn our attention to quantization methods
for oversampled data.

We end this section by substantiating our claim that PCM is
a highly suboptimal quantization strategy for CS even if one
uses recovery algorithms other than those based on !1 mini-
mization. The following theorem of Goyal et al. [14] illustrates
the limitations of PCM as a frame quantization strategy, which,
in the light of the discussion above, immediately translates to
the CS setting as it gives a lower bound on the approximation
error even if the support of sparse signal x is known.

Theorem IV.1 (Goyal et al.). Let E be an m×k real matrix,
and let K be a bounded set in Rk. For x ∈ K, suppose that
we obtain qPCM(x) by quantizing y = Ex using PCM with
alphabet A = δZ. Let ∆opt be an optimal decoder. Then

[
E ‖x−∆opt(qPCM(x))‖22

]1/2
" λ−1δ

where the “oversampling rate” λ := m/k and the expectation
is with respect a probability measure on K that is, for example,
absolutely continuous.

V. FINITE FRAMES AND QUANTIZATION

A collection {ej}m
1 in Rk is a frame for Rk with frame

bounds 0 < A ≤ B < ∞ if

∀x ∈ Rk, A‖x‖22 ≤
m∑

j=1

|〈x, ej〉|2 ≤ B‖x‖22.

It is easy to see that {ej}m
1 is a frame for Rk if and only if

the m× k matrix E whose jth row is eT
j is full-rank.1

Let E be a full-rank m×k matrix and F be any left inverse
of E. Then the collection of the columns of F , which is also a

1We call E and ET the analysis and synthesis matrices of the frame
{ej}m

1 , respectively.



frame for Rk, is said to be a dual of the frame consisting of the
rows of E. For x ∈ Rk, let y = Ex be the frame coefficient
vector of x, let q ∈ Am be a quantization of y, and let x̂ := Fq
be a (linear) reconstruction of x from its quantized frame
coefficients. (Here, we restrict our attention to such linear
reconstruction methods; see, e.g., [14] for further discussion.)
Ideally one would wish to choose q such that y−q ∈ Ker(F ).
Typically, however, this is not possible, and thus x̂ /= x, i.e.,
quantization is inherently lossy. One the other hand, since
m > k, Ker(F ) is an m−k dimensional subspace, and we
can at least hope to choose q such that y−q is “close” to
Ker(F ), i.e., employ a “noise-shaping2” quantization method.
Note that here we have two design goals: (i) choose a good
quantizer, and (ii) choose a good dual frame (i.e., a good left
inverse F ). Next, we discuss Σ∆ schemes, which are known
to provide efficient quantizers for redundant representations in
the settings of oversampled bandlimited functions, e.g., [10],
[15], [21], and general frame expansions, e.g., [1], [18].

Σ∆ schemes for frame quantization
An rth-order Σ∆ scheme (with the standard “greedy”

quantization rule) quantizes a vector y to q by running the
recursion

(∆ru)j = yj − qj , (4)

qj = arg min
a∈A

∣∣∣
r∑

i=1

(−1)i−1

(
r

i

)
uj−i + yj − a

∣∣∣,

with u−(r−1) = · · · = u0 = 0 (here r ∈ N). It is easy to check
that with this rule, one has |uj | ≤ 2−1δ and |yj−qj | ≤ 2r−1δ.
In turn, if ‖y‖∞ < C, then one needs only L := 20C

δ 1+2r +
1 levels. In this case, the associated quantizer is said to be
log2 L-bit, and we have

‖u‖∞ ! δ and ‖y − q‖∞ !r δ. (5)

Recently, it was shown that Σ∆ schemes can be effectively
used for quantization of arbitrary frame expansions, e.g., [1].
Let E be a full-rank m×k matrix and let F be any left inverse
of E. If the sequence (fj)m

1 of dual frame vectors (i.e., the
columns of F ) were known to vary smoothly in j (including
smooth termination into null vector), then Σ∆ quantization
could be employed without much alteration, e.g., [3], [18].
However, this need not be the case for many examples of
frames (together with their canonical duals) that are used in
practice. For this reason, it has recently been proposed in [2] to
use special alternative dual frames, called Sobolev dual frames,
that are naturally adapted to Σ∆ quantization. Among all left
inverses of E, the rth-order Sobolev dual Fsob,r minimizes the
operator norm of FDr on !2 where D is the m×m difference
matrix defined by

Dij :=






1, if i = j,
−1, if i = j + 1,

0. otherwise,
(6)

2The quantization error is often modeled as white noise in signal processing,
hence the terminology. However our treatment of quantization error in this
paper is entirely deterministic.

In fact, Fsob,r is given by the explicit formula

Fsob,r = (D−rE)†D−r. (7)

It is shown in [2] that if the rth order Σ∆ quantization
algorithm, as in (4), is used to quantize y = Ex to qΣ∆ := q,
then with x̂Σ∆ := FSob,rqΣ∆, the reconstruction error obeys
the bound

‖x− x̂Σ∆‖2 !r
δ
√

m

σmin(D−rE)
. (8)

where σmin(D−rE) stands for the smallest singular value of
D−rE. Moreover, in [2] it was also shown that if the columns
of E vary smoothly, then (8) implies that

‖x− x̂Σ∆‖2 ! λ−r (9)

where λ = m
k is the oversampling ratio of E. Note that, for

sufficiently high λ, this shows that Σ∆ schemes of order 2
or higher outperform the optimal accuracy of PCM, which is
O(λ−1), at least when the analysis frame is smooth.

The following rather surprising result [16] shows that an
error bound analogous to (9) also holds when E is a random
Gaussian matrix with high probability.

Theorem V.1. Let E be an m×k random matrix whose entries
are i.i.d. N (0, 1). For any α ∈ (0, 1), if λ ≥ c(log m)1/(1−α),
then with probability at least 1− exp(−c′mλ−α),

σmin(D−rE) "r λα(r− 1
2 )√m, (10)

which yields the reconstruction error bound

‖x− x̂Σ∆‖2 !r λ−α(r− 1
2 )δ. (11)

VI. Σ∆ QUANTIZATION FOR COMPRESSED SENSING

We now return to the quantizer design problem for CS
measurements. Let Φ be an m×N random Gaussian matrix
with independent entries drawn from N (0, 1), and let x ∈ ΣN

k .
Suppose qΣ∆ is obtained by quantizing y = Φx using an rth-
order Σ∆ quantization algorithm with alphabet A = δZ. In
this section, we will show that an accurate reconstruction of x
from the Σ∆-quantized CS measurement vector qΣ∆ can be
obtained via a two-stage procedure:

(i) Coarse recovery: !1-minimization (or any other robust
recovery procedure) applied to qΣ∆ yields a “coarse”
approximation x# of x, and in particular, the exact (or
approximate) support T of x.

(ii) Fine recovery: Sobolev dual of the frame ΦT applied to
qΣ∆ yields a finer approximation x̂Σ∆ of x.

Next, we analyze each step of our two-stage approach.

A. Coarse recovery
Our first goal is to recover the support T of x. For this

purpose we shall use a coarse approximation of x given by
x′ = ∆ε

1(qΣ∆) with ε := 2r−1δ
√

m. By (2) we know that

‖x− x′‖2 ≤ η := C · 2r−1δ

where C is the “robust recovery constant” associated with
Φ. The simplest attempt to recover T from x′ is to pick the



positions of its k largest entries. Clearly, this attempt can fail if
some entry xj /= 0 is smaller in magnitude than η for then it is
possible that x′j = 0 and therefore j is not picked. On the other
hand, if the smallest nonzero entry of x is strictly bigger than√

2η in magnitude, then this method always succeeds. In fact,
by a careful analysis the constant

√
2 can be made arbitrarily

close to 1 by picking more than k positions. The following
proposition [16] gives a precise condition on how well this
can be done.

Proposition VI.1. Let ‖x − x′‖$N
2
≤ η, T = supp(x) and

k = |T |. For any k′ ∈ {k, . . . , N−1}, let T ′ be the support
of (any of) the k′ largest entries of x′. If |xj | > γη for all

j ∈ T , where γ :=
(
1 + 1

k′−k+1

)1/2
, then T ′ ⊃ T .

B. Fine recovery

Suppose x satisfies the size condition specified in Propo-
sition VI.1 with γ =

√
2 (in which case, we can recover

the support of x perfectly). Once the support T of x is
found, E = ΦT will simply be an m × k sub-matrix of the
measurement matrix Φ and thus Theorem V.1 shows that for
all such x, ‖x− x̂Σ∆‖2 satisfies (11) with high probability. To
obtain a uniform error bound (which, with high probability,
holds for all x ∈ ΣN

k that satisfy the size condition of
Proposition VI.1), we need (10) to hold uniformly for all
the frames E = ΦT where T ⊂ {1, . . . , N} with #T=k.
Indeed, such a result holds as the proof of Theorem V.1
extends in a straightforward manner using a standard “union
bound” argument, provided λ is known to be slightly larger.
Consequently, we obtain our main result [16].

Theorem VI.2. Let Φ be an m × N matrix whose entries
are i.i.d. according to N (0, 1). Suppose α ∈ (0, 1) and
λ := m/k ≥ c(log N)1/(1−α) where c = c(r, α). Then there
are two constants c′ and C that depend only on r such that
with probability at least 1 − exp(−c′mλ−α) on the draw
of Φ, the following holds: For every x ∈ ΣN

k such that
minj∈supp(x) |xj | ≥ Cδ, the reconstruction x̂Σ∆ satisfies

‖x− x̂Σ∆‖2 !r λ−α(r− 1
2 )δ. (12)

VII. RATE-DISTORTION ISSUES

Above, we showed that Σ∆ schemes produce better ap-
proximation error when compared to PCM if both quantizers
have the same infinite alphabet A = δZ. Of course, such
infinite quantizers are not practical, and have to be replaced
with finite ones. To that end, suppose the sparse signals of
interest lie in some appropriate bounded set K := {x ∈ ΣN

k :
A ≤ |xj | ≤ ρ, ∀j ∈ T}, with A 4 ρ. Suppose, instead of
A = δZ we use a Br-bit uniform quantizer with the largest
allowable step-size, say δr, for our support recovery result in
Proposition VI.1 to hold. Here, we choose Br such that the
associated Σ∆ quantizer does not overload, i.e., Br = log2 L
where L = 20CK

δ 1 + 2r + 1 with CK = supx∈K ‖Φx‖∞,
as seen in (5). Then the approximation error (the distortion)
DΣ∆ incurred after the fine recovery stage via Sobolev duals

satisfies the bound

DΣ∆ !r λ−α(r−1/2)δr ≈
λ−α(r−1/2)A

2r+1/2
. (13)

A similar calculation for the PCM encoder with the same
step size δr and the standard !1 decoder results in the necessity
for roughly the same number of bits Br as the Σ∆ encoder,
but provides only the distortion bound

DPCM ! δr ≈
A

2r+1/2
. (14)

A comparison of (13) and (14) makes it clear that Σ∆ schemes
are superior to PCM when λ > 1 is sufficiently large. The
details of this discussion is given in [16].

VIII. NUMERICAL EXPERIMENTS

To examine the performance of the proposed scheme(s)
as the redundancy λ increases in comparison to the perfor-
mance of the standard PCM quantization, we run numerical
experiments. First, we generate a 1000 × 2000 matrix Φ,
where the entries of Φ are drawn i.i.d. according to N (0, 1).
In each experiment we fix the sparsity k ∈ {20, 40}, and
we generate k-sparse signals x ∈ R2000 with the non-zero
entries of each signal supported on a random set T , but
with magnitude 1/

√
k. This ensures that ‖x‖2 = 1. Next,

for m ∈ {100, 200, ..., 1000} we generate the measurements
y = Φ(m)x, where Φ(m) is comprised of the first m rows
of Φ. We then quantize y using PCM, as well as the 1st
and 2nd order Σ∆ quantizers, defined via (4) (in all cases
the quantizer step size is δ = 10−2). For each of these
quantized measurements q, we perform the coarse recovery
stage, i.e., we solve the associated !1 minimization problem
to recover a coarse estimate of x as well as an estimate T̃
of the support T . The approximation error obtained using
the coarse estimate (with PCM quantization) is displayed in
Figure 1 (see the dotted curve). Next, we implement the
fine recovery stage of our algorithm. In particular, we use
the estimated support set T̃ and generate the associated dual
Fsob,r. Defining Fsob,0 := (Φ(m)

eT
)†, in each case, our final

estimate of the signal is obtained via the fine recovery stage
as x̂ eT = Fsob,rq and x̂ eT c = 0. Note that this way, we obtain an
alternative reconstruction also in the case of PCM. We repeat
this experiment 100 times for each (k,m) pair and plot the
maximum of the resulting errors ‖x − x̃‖2 as a function of
λ in Figure 1. For our second experiment, we choose the
entries of xT i.i.d. from N (0, 1), and use a quantizer step size
δ = 10−4. Otherwise, the experimental setup is identical to the
previous one. The maximum of the resulting errors ‖x− x̃‖2
as a function of λ is reported Figure 2.

The main observations that we obtain from these experi-
ments are as follows:

• Σ∆ schemes outperform the coarse reconstruction ob-
tained from PCM quantized measurements even when
r = 1 and even for small values of λ.

• For the Σ∆ reconstruction error, the negative slope in
the log-log scale is roughly equal to r. This outperforms
the (best case) predictions of Theorem VI.2 which are



5 10 15 20 25 30 35 40 45 50

10−6

10−5

10−4

10−3

10−2

10−1

100

performance of various quantization/decoding schemes, k = 20

m
ax

im
um

 l 2−
no

rm
 o

f t
he

 e
rr

or

λ

PCM → l1
PCM → l1 → Fcan
Σ∆ (r=1) → l1 → Fsob,1
Σ∆ (r=2) → l1 → Fsob,2

cλ
−r, r=0.5,1,2

(a)

2.5 5 7.5 10 12.5 15 17.5 20 22.5 25

10−6

10−5

10−4

10−3

10−2

10−1

100

performance of various quantization/decoding schemes, k = 40

m
ax

im
um

 l 2−
no

rm
 o

f t
he

 e
rr

or

λ

PCM → l1
PCM → l1 → Fcan
Σ∆ (r=1) → l1 → Fsob,1
Σ∆ (r=2) → l1 → Fsob,2

cλ
−r, r=0.5,1,2

(b)

Fig. 1. The worst case performance of the proposed Σ∆ quantization and
reconstruction schemes for various values of k. For this experiment the non-
zero entries of x are constant and δ = 0.01.

obtained through the operator norm bound and suggests
the presence of further cancellation due to the statistical
nature of the Σ∆ state variable u, similar to the white
noise hypothesis.

• When a fine recovery stage is employed in the case
of PCM (using the Moore-Penrose pseudoinverse of the
submatrix of Φ that corresponds to the estimated sup-
port of x), the approximation is consistently improved
(when compared to the coarse recovery). Moreover, the
associated approximation error is observed to be of order
O(λ−1/2), in contrast with the error corresponding to the
coarse recovery from PCM quantized measurements (with
the !1 decoder only) where the approximation error does
not seem to depend on λ. A rigorous analysis of this
behaviour will be given in a separate manuscript.

IX. REMARKS ON MEASUREMENT NOISE AND
COMPRESSIBLE SIGNALS

One natural question is whether the quantization methods
developed in this paper are effective in the presence of mea-
surement noise in addition to the error introduced during the
quantization process. Another important issue is how to extend
this theory to include the case when the underlying signals are
not necessarily strictly sparse, but still “compressible”.
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Fig. 2. The worst case performance of the proposed Σ∆ quantization and
reconstruction schemes for various values of k. For this experiment the non-
zero entries of x are i.i.d. N (0, 1) and δ = 10−4.

Suppose x ∈ RN is not sparse, but compressible in the
usual sense (e.g. as in [7]), and let ŷ = Φx+e, where e stands
for additive measurement noise. The coarse recovery stage
inherits the stability and robustness properties of !1 decoding.
Consequently, the accuracy of this first reconstruction depends
on the best k-term approximation error for x, and Φx−q which
comprises of the measurement noise e and the quantization
error y−q. Up to constant factors, the quantization error for
any (stable) Σ∆ quantizer is comparable to that of PCM, hence
the approximation accuracy at the coarse recovery stage would
also be comparable. In the fine recovery stage, however, the
difference between σmax(Fsob,rDr) and σmax(Fsob,r) plays a
critical role. The Sobolev duals are tailored to reduce the
effect of the quantization error introduced by an rth order
Σ∆ quantizer. In particular, obtaining more measurements
decreases the reconstruction error due to quantization even
though ‖y − q‖2 increases. At the same time, obtaining more
measurements would also increase the size of the external
noise e, as well as the “aliasing error” that is the result of the
“off-support” entries of x. However, this noise+error term is
not counteracted by the action of Fsob,r. In this case, depending
on the size of the noise term, the fine recovery stage may
not improve the total reconstruction error even though the
“quantizer error” is still reduced.
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Fig. 3. The worst case performance of the proposed leaky Σ∆ quantization
and reconstruction schemes. In each case, noisy CS measurements ŷ = Φx+
e of 100 different k-sparse vectors x were quantized using the proposed
leaky scheme with step size δ = 0.01 and leakage parameter µ = 0.8, and
reconstructed using the associated H-duals. The measurement noise e was
drawn independently from N (0, σ2) with σ = 5 · 10−4.

One possible remedy for this problem is to construct al-
ternative quantization schemes with associated “noise-shaping
matrices” that balance the above discussed trade-off between
the quantization error and the error that is introduced by other
factors. This is a delicate procedure, and it will be investigated
thoroughly in future work. However, a first such construction
can be made by using “leaky” Σ∆ schemes with noise-shaping
matrices H (instead of D) given by

Hij :=






1, if i = j,
−µ if i = j + 1,
0, otherwise,

(15)

where µ ∈ (0, 1). We again adopt the two stage recovery
approach. However, in this case, instead of Sobolev duals,
we use the “H-dual” of the corresponding frame E, which
we define via FHH = (H−1E)†. Our preliminary numerical
experiments (see Figure 3) suggest that this approach can be
used to improve the accuracy of the approximation further in
the fine recovery stage in this more general setting. Note that
the parameter µ above can be adjusted based on the expected
noise level and how compressible the signals of interest are.
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