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Abstract. We identify the rigid dualizing complex of the (generic) affine Hecke algebra Hq attached to a reduced
root system and deduce some structural properties as a consequence. For example, we show that the classical Hecke

algebra Hq± as well as Hq/q are, under a certain condition on the root system, Frobenius over their centers with

Nakayama automorphism given by an explicit involution ι.
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1. Introduction

In the introduction we work over a fixed field k (in the rest of the paper we work over a more general ring
R). Attached to a reduced based root system (X,Φ, X̌, Φ̌,Π) one has an affine Coxeter system (Waff , Saff) and an
extended affine Weyl group W . The affine Hecke algebra Hq associated to this sytem is the k[q]-algebra with basis
{τw}w∈W and relations

τwτw′ = τww′ if `(ww′) = `(w) + `(w′)

τ2
s = (q− 1)τs + q for s ∈ Saff

where ` is the length function on W arising from (Waff , Saff).
If we invert q we get the more common affine Hecke algebra Hq± studied in the complex representation theory

of p-adic reductive groups and in geometric representation theory ([Lu], [KL] for example). These algebras can be
recovered geometrically from categories of constructible sheaves on affine flag varieties or from categories of coherent
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sheaves on Steinberg varieties. If we set q = 0 we get Hecke algebras H0 that appear naturally in the mod-p
representation theory of p-adic reductive groups and geometrically as coherent sheaves on affine flag varieties.

We study a natural graded version Ha,b of Hq (§2.2) which is defined over k[a,b] with quadratic relations

(Ts − a)(Ts − b) = 0 for s ∈ S.

This algebra can be interpreted as the Rees algebra of Hq with respect to a natural filtration by length. One recovers
Hq by setting Ts = −τs,a = −q,b = 1.

The algebra Ha,b is equipped with an involution ι which fixes k[a,b] and satisfies ι(Ts−a) = −(Ts−b) (see (11)).
The main result of this paper is the following explicit identification of the rigid dualizing complex RHa,b

of Ha,b.

Theorem 1.1. As Ha,b-bimodules we have RHa,b
∼= (ι)Ha,b[rk(X) + 2] where (ι) denotes the left action twisted by ι.

Rigid dualizing complexes [Ber] (along with earlier work on balanced dualizing complexes [Ye1]) are an attempt to
extend Grothendieck duality to non-commutative algebras. In particular, if A is a commutative algebra of finite type
over k, its rigid dualizing complex corresponds to π!(k) where π : SpecA → Spec k. We review dualizing complexes
in Section 3.1.

Theorem 1.1 above follows from Corollary 4.5 where the +2 in the shift is a reflection of working over k[a,b]. By
base change (Corollary 3.14), Theorem 1.1 also identifies the rigid dualizing complexes of related algebras such as
Hq± or H0. For example, RH0

∼= (ι)H0[rk(X)].
One of the main implications of Theorem 1.1 is that, under a certain condition on the root lattice Q = Z[Φ], the

algebras H0 and Hq± are (free) Frobenius algebras over their centers (Corollary 5.10).

Corollary 1.2. If X/Q is a free abelian group then Hq± and H0 are Frobenius algebras over their centers with
Nakayama automorphism ι.

The centers of Hq± and H0 are known to be isomorphic to k[X̌]W0 [q±] ([Lu]) and k[X̌+] ([Ol2]) respectively,

where W0 is the finite Weyl group and X̌+ the semigroup of dominant coweights. This suggests that the center of
Ha,b should be isomorphic to k[a,b][X̌]W0 (Conjecture 5.2). Assuming this conjecture, Theorem 1.1 likewise implies
that Ha,b is Frobenius over its center with Nakayama automorphism ι (again if X/Q is free).

The Frobenius structure from Corollary 1.2 is difficult to see directly. When the root system is associated to SL2,
the trace morphism from H0 to its center was worked out explicitly in [OS3, Prop. 2.13]. Generally we do not have
an explicit description of the trace maps from Hq± or H0 to their centers. This is because the general structure of
Ha,b over its center is difficult to study. For example, it is easy to see that in general Ha,b cannot be a matrix algebra
over its center because one can find one dimensional characters such as Ts 7→ a, a 7→ a for any a ∈ k.

Even deciding if Ha,b is projective over its center is non-trivial. Classical results ([Lu]) tell us that Hq± contains
a commutative subalgebra Aq± over which it is finite and projective. If X/Q is free then Aq± can be shown to be
projective over the center which explains why Hq± is projective over its center. Likewise, H0 also contains a natural
commutative subalgebra A0 ([Vig1]) but H0 is no longer free (or even flat) over A0 ([Ol1]). Nevertheless, assuming
X/Q is free, H0 remains projective over its center (Proposition 5.3). The argument for this is indirect, using Theorem
1.1 together with the non-commutative version of Hironaka’s criterion (or miracle flatness) from Proposition 3.15.

The representation theory of Ha,b is sensitive to the parameters a,b. The fact that (ι)Ha,b[rk(X) + 2] is a rigid
dualizing complex captures many features of Ha,b in a uniform way. For example, by Proposition 3.17, if M is a
finite dimensional Ha,b-module then

ExtiHa,b
(M,Ha,b) ∼=

{
(ι)M∨ if i = rk(X) + 2

0 otherwise

Similar results hold by base change for Hq± and H0. This result was obtained previously in [OS1, Cor. 6.12, Cor.
6.17] by more detailed analysis for the Iwahori-Hecke k-algebra of a connected split semisimple group G over a p-adic
field. The argument above explains how it is a formal consequence of Theorem 1.1.

The key tool used to prove Theorem 1.1 is a certain resolution of Ha,b constructed in Section 2.6 as follows.
Consider the Coxeter complex A associated to (Waff , Saff). It is a polysimplicial complex of dimension d = rk(Q).
We define a right Ha,b-equivariant coefficient system Ha,b on A which is locally constant in the sense of Remark

2.15. It yields an augmented complex

(1) 0 −→ Corc (A(d), Ha,b) −→ . . . −→ Corc (A(0), Ha,b) −→ Ha,b −→ 0
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of oriented chains which is exact because of the contractibility of certain subcomplexes of A . In Proposition 2.18 we
show that

Corc (A(i), Ha,b) ∼=
⊕
F∈Fi

Ha,b(jF )⊗HF
Ha,b

where Fi is a set of facets of dimension i in the standard chamber, HF is the (finite) Hecke algebra attached to
F and (jF ) is the twist of the action of HF by a certain orientation character. Subsequently, (1) becomes an exact
complex of Ha,b-bimodules (cf. Corollary 2.19)

(2) 0 −→
⊕
F∈Fd

Ha,b(jF )⊗HF
Ha,b −→ . . . −→

⊕
F∈F0

Ha,b(jF )⊗HF
Ha,b −→ Ha,b −→ 0.

This resolution is inspired by [OS1] which proves (2) for the Iwahori Hecke k-algebra of a connected split reductive
group G over a p-adic field F, namely for the specialization of Hq to q 7→ pf where pf is the size of the residue
field of F. The construction in [OS1] is different in that one starts from a resolution of the smooth representation
k[G/I] of G given in [SS], where I is an Iwahori subgroup of G. Then passing to I-invariants gives a resolution of
Hpf

∼= k[I\G/I] as an Hpf -bimodule.

1.1. Acknowledgements. We would like to thank Amnon Yekutieli and Eric Vasserot for their generous an-
swers that helped clarify our thoughts. The authors are grateful for the support of the Fondation des Sciences
Mathématiques de Paris, Université d’Orsay and the Ecole Normale Supérieure-PSL for support and a serene and
stimulating work environment.

2. Affine Hecke algebras

2.1. Based root systems. Consider a (reduced) based root system (X, X̌,Φ, Φ̌,Π) (cf. [Lu, 1.1]). Then X and X̌
are free abelian groups of finite rank equipped with a perfect pairing 〈−,−〉 : X × X̌ → Z. The finite sets Φ ⊂ X
and Φ̌ ⊂ X̌ are the sets of roots and coroots. There is a bijection α↔ α̌ such that 〈α, α̌ 〉 = 2. For every α ∈ Φ, the
reflections

sα : X → X, x 7→ x− 〈x, α̌〉α resp. sα̌ : X̌ → X̌, x̌ 7→ x̌− 〈α, x̌〉α̌
preserve Φ and Φ∨ respectively. The base Π ⊂ Φ consists of simple roots and defines the sets Φ+ and Φ− of positive
and negative roots.

Denote by Q = Z[Φ] the root lattice. We let Q⊥ := {x̌ ∈ X̌ : 〈α, x̌〉 = 0,∀α ∈ Φ} and X̌+ = {x̌ ∈ X̌ : 〈α, x̌〉 ≥
0,∀α ∈ Φ} the set of dominant coweights.

Define the set of affine roots by Φaff = Φ× Z = Φ+
aff

∐
Φ−aff where

Φ+
aff := {(α, r), α ∈ Φ, r > 0} ∪ {(α, 0), α ∈ Φ+}, Φ−aff := {(α, r), α ∈ Φ, r < 0} ∪ {(α, 0), α ∈ Φ−}.

There is a partial order on Φ given by α � β if and only if β − α is a linear combination with (integral) nonnegative
coefficients of elements in Π. Denote by Πm the set of roots that are minimal elements for �. The set of simple affine
roots is Πaff := {(α, 0), α ∈ Π} ∪ {(α, 1), α ∈ Πm}.

We denote by W0 the finite Weyl group, namely the subgroup of GL(X) generated by {sα}α∈Φ. Let S0 := {sα}α∈Π.
Then (W0, S0) is a (finite) Coxeter system. The extended affine Weyl group is W = W0nX̌. An element w0x̌ ∈W0nX̌
acts on Φaff by w0x̌ : (α, r) 7→ (w0α, r − 〈α, x̌〉).

The length ` on the Coxeter system (W0, S0) extends to W in such a way that, the length of w ∈W is the number
of affine roots A ∈ Φ+

aff such that w(A) ∈ Φ−aff . For any A ∈ Πaff and w ∈W it satisfies

(3) `(wsA) =

{
`(w) + 1 if w(A) ∈ Φ+

aff ,

`(w)− 1 if w(A) ∈ Φ−aff .

where sA is the affine reflection associated to A.
Let Saff := {sA}A∈Πaff

and define the affine Weyl group as Waff := 〈sA〉A∈Φaff
⊂ W . The pair (Waff , Saff) is a

Coxeter system with length function ` ([Bki-LA, V.3.2 Thm. 1(i)]). If Ω ⊂ W is the abelian subgroup consisting of
length zero elements then W ∼= Ω nWaff ([Lu, 1.5]).

The action of Ω on W by conjugation preserves Saff . Consider the character

(4) W →W/Waff
∼= Ω→ {±1}

where the second map is the signature of Ω acting on Saff . In §2.4 we will denote this character by εC and it will be
used in Remark 2.14 to define the involution (11).
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2.2. Generic Hecke algebras: definitions and basic properties. Fix a Noetherian ring R. The extended affine
Hecke algebra Hq is the R[q]-algebra which is free as an R[q]-module with basis {τw}w∈W and subject to relations

τvτw = τvw if `(vw) = `(v) + `(w)

(τs − q)(τs + 1) = 0 for s ∈ Saff .

We denote Hq± := Hq ⊗R[q] R[q±1] and H0 := Hq/q. There is a natural filtration on Hq such that FiHq is the free

R-module with basis {qjτw : j + `(w) ≤ i}. The associated Rees algebra with parameter x is the graded algebra
Rees(Hq) :=

⊕
i≥0 x

iFiHq equipped with the natural multiplication.

On the other hand, consider the R[a,b]-algebra Ha,b which is a free R[a,b]-module with basis {Tw, w ∈W} and
subject to relations

TvTw = Tvw if `(vw) = `(v) + `(w) (braid relations)(5)

(Ts − a)(Ts − b) = 0 for s ∈ Saff (quadratic relations)(6)

It is generated as an R[a,b]-algebra by {Ts}s∈Saff
and {τω}ω∈Ω. One can check that Ha,b

∼= Rees(Hq) by taking

a 7→ −qx, b 7→ x and Tw 7→ (−x)`(w)τw for w ∈W .

Remark 2.1. By [Bki-LA, IV Exercices §2, 23], there is a unique R[a,b]-algebra Haff with basis {Tw}w∈Waff
satisfying

(5) and (6). One can then check that Ha,b
∼= Haff ⊗R[a,b] R[a,b][Ω] with the product on the right given by (Tv ⊗

Tω) · (Tv′ ⊗ Tω′) = (TvTωv′ω−1)⊗ (TωTω′).

Remark 2.2. Notice that Ha,1
∼= Hq and H0,1

∼= H0 while H0,0 recovers the affine nil-Coxeter algebra.

Proposition 2.3. There exists an R[a,b]-linear algebra involution ι of Ha,b determined by

(7) ι(Tω) = Tω if `(ω) = 0 and ι(Ts − a) = −(Ts − b) for s ∈ Saff .

Proof. Recall that Hq± is equipped with a R[q]-linear algebra involution τw 7−→ (−q)`(w)τ−1
w−1 which restricts to an

involution ι1 of Hq ([Vig1, Cor. 2]). This involution preserves the filtration (FiHq)i≥0 and induces an involution ι
on Rees(Hq) ∼= Ha,b. Since ι1(τω) = τω if `(ω) = 0 and ι1(τs) = q− 1− τs for s ∈ Saff it follows that ι(Tω) = Tω if
`(ω) = 0 and ι(Ts) = a + b− Ts for s ∈ Saff . �

Proposition 2.4. The algebra H0,0 is finite over its center which itself is a finitely generated R-algebra.

Proof. The relations in H0,0 are

TvTw =

{
Tvw if `(vw) = `(v) + `(w)

0 otherwise

for any v, w ∈ W . It contains the commutative subalgebra A0,0 with R-basis {Tx̌}x̌∈X̌ . Following the proof of [OS1,
Prop. 8.5] we find that H0,0 is finite over A0,0 which is itself a finitely generated R-algebra. Consider the subalgebra

AW0
0,0 where W0 acts via its natural action on X̌. Then AW0

0,0 is a finitely generated R-algebra and A0,0 is finite over

it. Therefore, H0,0 is finite over AW0
0,0 .

We now check that AW0
0,0 is central in H0,0. For ω ∈ Ω and x̌ ∈ X̌ we have TωTx̌ = Tωx̌ω−1Tω where ωx̌ω−1 is a

W0-conjugate of x̌. Thus Tω commutes with AW0
0,0 . On the other hand, for s ∈ Saff we have `(sx̌) = `(x̌) + 1 (resp.

`(x̌s) = `(x̌) + 1) if and only is 〈αs, x̌〉 ≥ 0 (resp. 〈αs, x̌〉 ≤ 0). In this case TsTx̌ = Tsx̌ (resp. Tx̌Ts = Tx̌s). Otherwise

TsTx̌ = 0 (resp. Tx̌Ts = 0). This shows that Ts commutes with the subspace A
〈s〉
0,0 of s-invariants in A0,0 and therefore

it commutes with AW0
0,0 .

Thus AW0
0,0 is contained in the center of H0,0. Since H0,0 is finite over AW0

0,0 it is also finite over its center. Moreover,

AW0
0,0 is Noetherian (since R is Noetherian) which implies that the center is also finite over AW0

0,0 . This means that the
center of H0,0 is a finitely generated R-algebra. �

Corollary 2.5. The algebra Ha,b is Noetherian.

Proof. Recall that Ha,b = Rees(Hq) is a graded algebra with a,b homogeneous of degree one. By Proposition 2.4
we know H0,0 is Noetherian. It follows that Ha,b is also Noetherian by applying [ATVdB, Lemma 8.2]. �

We denote z := R[a,b][Q⊥] ⊂ Ha,b. This is a central subalgebra of Ha,b. Since Q⊥ ⊂ W is a free group of finite
rank z, is a Laurent series ring over R[a,b].
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2.3. Coxeter complexes. Consider the affine Coxeter complex A associated to (Waff , Saff) (cf. [Bki-LA, Ch. V. §3]
and [BT, I.3.1]). It is a polysimplicial complex of dimension d := rk(Q) ([BT, I.3.4]). The group W acts on A and
we call C the chamber of A whose stabilizer in W is Ω ([Bki-LA, VI, §2.3]).

Remark 2.6. The group Waff acts simply transitively on the chambers and given a facet F there is a unique facet
contained in C which is Waff -conjugate to F ([Bki-LA, V.3.2 Thm 1], [BT, I.3.5]).

Let i > 0 and F a facet of dimension i. The (i + 1)! arrangements of the i + 1 vertices of F decompose into two
classes under the action of the even permutations. These two classes are called the orientations of F . For a formal
definition of the oriented facets of dimension ≥ 0, we refer to [SS, II.1]. We will denote an oriented facet by (F, c) as in
loc. cit. with the convention that the 0-dimensional faces always carry the trivial orientation. A facet F of dimension
≥ 1 has two possible orientations, (F, c) and (F,−c). The orientation (F, c) induces an orientation (F, c)|F ′ on each
of the facets F ′ of F of dimension i− 1. It satisfies (F,−c)|F ′ = −(F, c)|F ′ .

To a facet F contained in C we associate the subset SF ⊂ Saff fixing F (pointwise) and the corresponding subset
ΠF ⊂ Π. Let W 0

F ⊂ Waff be the finite subgroup generated by SF ([Bki-LA, V.3.6 Prop. 4]). The pair (W 0
F , SF ) is

a Coxeter system with length function `|W 0
F

([Bki-LA, IV.1.8 Cor. 4]). We let ΦF := {A ∈ Φaff : sA fixes F} and

Φ+
F := ΦF ∩ Φ+

aff .

Proposition 2.7. Let F be a facet contained in C.

i. The set DF := {d ∈W : d(Φ+
F ) ⊂ Φ+

aff} is a system of representatives of the left cosets W/W 0
F . It satisfies

(8) `(dw) = `(d) + `(w)

for any w ∈W 0
F and d ∈ DF . In particular, d is the unique element with minimal length in dW 0

F .
ii. If s ∈ Saff and d ∈ DF then we are in one of the following situations:

A. `(sd) = `(d)− 1 in which case sd ∈ DF .
B.i. `(sd) = `(d) + 1 and sd ∈ DF .
B.ii. `(sd) = `(d) + 1 and sd ∈ dW 0

F .

Proof. This result follows as in [OS1, Prop. 4.6]. The main point to note is that the argument for (ii) goes through
with s ∈ Saff even if only the case s ∈ SF is considered in [OS1]. �

Denote by ΩF ⊂ Ω the subgroup stabilizing F . We have ΩF = {ω ∈ Ω, ωSFω
−1 = SF } and W 0

F is normalized by
ΩF ([OS1, §4.5]). Denote by WF ⊂ W the subgroup generated by W 0

F and ΩF (it is a semi-direct product of these
two subgroups). Note that WC = Ω and WF ∩Waff = W 0

F . By [OS1, Lemma 4.9], we have WF = {w ∈W : wF = F}.

Proposition 2.8. i. Let F be a a facet of A . There a unique chamber C(F ) at closest distance to C (in terms
of gallery distance) which contains F in its closure and a unique element dF in Waff such that C(F ) = dFC.
We have dF ∈ DF0

where F0 := d−1
F F .

ii. If F and F ′ are two facets such that F ′ ⊆ F we have `(dF ′) + `(d−1
F ′ dF ) = `(dF ) .

Proof. Let F be a facet of A . By [OS1, Prop. 4.13-i], there is a unique chamber C(F ) at closest distance to C (in
terms of gallery distance) which contains F in its closure. Since Waff acts simply transitively on the chambers, there
is a unique dF ∈Waff such that C(F ) = dFC.

Let F0 := d−1
F F and d ∈ DF0

such that dF = du ∈ dW 0
F0

. Then dC contains F in its closure and `(d) = `(dF )−`(u)

of C. Therefore u = 1 and dF = d ∈ DF0
. Now let F ′ a facet such that F ′ ⊆ F . Both facets F ′0 := d−1

F ′ F
′ and d−1

F dF ′F
′
0

are contained in C. By Remark 2.6 we have d−1
F dF ′F

′
0 = F ′0 and d−1

F ′ dF ∈W 0
F ′0

. Point ii then follows from (8).

�

Definition 2.9. Given s ∈ Saff , a facet F of A and F0 := d−1
F F ⊆ C we say that F is

• of type A for s if `(sdF ) = `(dF )− 1 in which case we recall that sdF ∈ DF0
,

• of type B.i for s if `(sdF ) = `(dF ) + 1 and sdF ∈ DF0 ,
• of type B.ii for s if `(sdF ) = `(dF ) + 1 and sdF 6∈ DF0 . Equivalently, F is of type B.ii for s when sF = F .

Lemma 2.10. Given two facets F ′, F such that F ′ ⊆ F and s ∈ Saff ,

• if F is of type A, then F ′ is of type A or B.ii for s.
• if F is of type B.i, then F ′ is of type B.i or B.ii for s.
• if F is of type B.ii, then F ′ is of type B.ii for s.
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Proof. With the notation of the proof of Proposition 2.8, we have dF = d′Fu where u ∈W 0
F ′0

and `(dF ) = `(dF ′)+`(u).

If F ′ is of type B.i, then `(sdF ) = `(sdF ′u) = `(sdF ′) + `(u) = `(dF ′) + 1 + `(u) = `(dF ) + 1 so F is not of type A.
If F ′ is of type A, then `(sdF ) = `(sdF ′u) = `(sdF ′) + `(u) = `(dF ′)− 1 + `(u) = `(dF )− 1 so F is not of type B.i.
Suppose that F is of type B.ii, then sF = F so sF ′ = F ′ and F is also of type B.ii. �

For F a facet in C, the set DF is stable by right multiplication by ΩF . By [OS1, Lemma 4.12-i], a chosen system

of representatives D†F of the orbits of DF under the right action of ΩF is a system of representatives of the left cosets
W/WF .

2.4. Finite Hecke algebras and orientation characters. For a facet F in C consider the free R[a,b]-submodule
HF ⊂ Ha,b with basis {Tw}w∈WF

. It is a subring of Ha,b.

Proposition 2.11. Ha,b is free as an HF -module on the right (resp. left) with basis {Td}d∈D†F (resp. {Td−1}d∈D†F ).

Proof. This follows from Proposition 2.7 and (5) (cf. [OS1, Prop. 4.21]). �

Proposition 2.12. We have

(1) HF is finite and free over z.
(2) HF is a Noetherian ring.

(3) As a right (resp. left) HF -module, Ha,b is free of basis {Td, d ∈ D
†
F } (resp. {Td−1 , d ∈ D

†
F }).

Proof. Recall that WF is the semidirect product of the finite group W 0
F and of the subgroup ΩF (containing Q⊥) of Ω.

Hence WF /Q
⊥ is finite and HF is free over z with basis the set {Tw} where w ranges over a system of representatives

[WF /Q
⊥]. Point 2 follows immediately. Point 3 comes from the definition of D†F (see the very end of §2.3 and (8))

and from the braid relations (5). �

For w ∈ WF , set εF (w) = +1 (resp. −1) if w preserves (resp. reverses) a given orientation of F . This defines a
character WF → {±1} which is trivial on Q⊥ (cf. [OS1, 3.1 and 3.3.1]).

Lemma 2.13. The R[a,b]-linear map

(9) jF : HF −→ HF , Tw 7−→ εF (w)Tw

is an involutive automorphism of HF which acts trivially on z.

Proof. An element w ∈WF fixes F pointwise so εF factors through WF /W
0
F
∼= ΩF → {±1}; namely, for w = w0ω ∈

W 0
F o ΩF = WF , we have jF (Tw) = εF (Tω)Tw. We want to show that jF (TvTw) = jF (Tv)jF (Tw) for all v, w ∈ WF .

By induction it is enough to do it when v ∈ ΩF and v ∈ SF which is immediate using (5) an (6). �

Given a left (resp. right) HF -module M we will denote by (jF )M (resp. M(jF )) the left (resp. right) HF -module
M where the action of HF is twisted by jF .

Remark 2.14. Recall that WC = Ω. The character εC of Ω extends to a character of W as in (4). It is easy to check
that the involution jC of HC extends to an involution of Ha,b which we still denote by jC and which is given by

(10) jC : Ha,b −→ Ha,b, Tωw 7→ εC(ωw)Tωw = εC(ω)Tωw for ω ∈ Ω and w ∈Waff .

Define

(11) ι := ι ◦ jC
where ι was given in (7). It is an involution of Ha,b which acts trivially on z.

2.5. Coefficient systems. Following [SS, II.2] we define a (contravariant) coefficient system M of right Ha,b-
modules on A as the following data: a right Ha,b-module MF for each facet F of A and a right Ha,b-equivariant

transition map rFF ′ : MF →MF ′ for each pair of facets F and F ′ such that F ′ ⊆ F satisfying

rFF = idMF
, and rFF ′′ = rF

′

F ′′ ◦ rFF ′ whenever F ′ ⊆ F and F ′′ ⊆ F ′.
For i ≥ 0 we denote by Ai (resp. A(i)) the set of facets (resp. oriented faces) of dimension i of A . To a coefficient
system M as above, we attach the oriented chain complex of right Ha,b-modules

(12) 0 −→ Corc (A(d),M)
∂−−→ . . .

∂−−→ Corc (A(0),M) −→ 0

where, for i ∈ {0, . . . , d}, the space of oriented i-chains Corc (A(i),M) consists of all finitely supported maps

γ : A(i) →
∐
F∈Ai

VF such that for any oriented facet (F, c) of dimension i we have
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• γ((F, c)) ∈MF and if i ≥ 1,
• γ((F,−c)) = −γ((F, c)),

and when i ≥ 1, the differential ∂ : Corc (A(i),M) −→ Corc (A(i−1),M) is given by

γ 7−→ [(F ′, c′) 7→
∑

(F,c)∈A(i),F ′⊆F

rFF ′(γ(F, c(F ′,c′)))]

where (F, c(F ′,c′)) is the orientation on F which induces the orientation (F ′, c′) on F ′.

2.6. A resolution for generic Hecke algebras. In Proposition 2.8, we introduced, for a facet F of A , the chamber
C(F ) which is closest to C in terms of gallery distance and such that F ⊂ C(F ) and the element dF ∈ Waff such
that C(F ) = dFC. For facets F and F ′ such that F ′ ⊆ F , we consider the right Ha,b-equivariant maps

rFF ′ : Ha,b −→ Ha,b

h 7−→ Td−1

F ′ dF
h(13)

Remark 2.15. If C(F ′) = C(F ) then rFF ′ is the identity map.

The following technical lemma will be used in the proof of Proposition 2.18. We refer to Definition 2.9. For w ∈W ,
we see Tw below as a the right Ha,b-equivariant map of left multiplication by Tw on Ha,b.

Lemma 2.16. Let F a facet of dimension > 0 and F ′ a facet in F of codimension 1. Let s ∈ Saff .

(a) If F and F ′ are of same type for s, then rsFsF ′ = rFF ′ .
(b) If F is of type A and F ′ of type B.ii for s, then (a + b)rFF ′ − ab rsFF ′ = Td−1

F ′ sdF ′
◦ rFF ′ .

(c) If F is of type B.i and F ′ of type B.ii for s, then rsFF ′ = Td−1

F ′ sdF ′
◦ rFF ′ .

(d) If F is of type B.ii then rFF ′ ◦ Td−1
F sdF

= Td−1

F ′ sdF ′
◦ rFF ′ .

Proof. We make a preliminary remark: for F a facet in A , F0 := d−1
F F and s ∈ Saff , we have sdF ∈ DF0

if and only
if sF 6= F . More precisely, if sdF ∈ DF0

then dsF = sdF and in particular sF 6= F . Otherwise, by Proposition 2.7-ii,
we have sdF = dFu with u ∈W 0

F0
and in particular sF = F .

We turn to the proof of the Lemma.
For (a), notice that if none of F and F ′ is of type B.ii for s then dsF = sdF , dsF ′ = sdF ′ . If they are both of type
B.ii then F = sF and F ′ = sF ′.
For the other properties we introduce A ∈ Πaff such that s = sA and we let B := d−1

F ′ A. Note that if F ′ is of type

B.ii then B ∈ Πaff and sB = d−1
F ′ sAdF ′ .

For (b), assume that F is of type A and F ′ of type B.ii for s. We have (d−1
F ′ dF )−1B ∈ Φ−aff so `(sBd

−1
F ′ dF ) =

`(d−1
F ′ dF )− 1 and
TsBTd−1

F ′ dF
= (a + b)Td−1

F ′ dF
− abTsBd−1

F ′ dF
= (a + b)Td−1

F ′ dF
− abTd−1

F ′ sAdF
= (a + b)Td−1

F ′ dF
− abTd−1

F ′ dsAF
.

For (c), assume that F is of type B.i and F ′ of type B.ii for s. Then (d−1
F ′ dF )−1B ∈ Φ+

aff so `(sBd
−1
F ′ dF ) = 1+`(d−1

F ′ dF )
and TsBTd−1

F ′ dF
= Td−1

F ′ sAdF
= Td−1

F ′ dsAF
.

Lastly if F (hence F ′) is of type B.ii for s, let C := d−1
F A ∈ Πaff and sC := d−1

F sAdF . We have d−1
F ′ dFC ∈ Φ+

aff so

`(d−1
F ′ dF ) + 1 = `(d−1

F ′ dF sC) = `(d−1
F ′ sAdF ) and Td−1

F ′ sAdF
= Td−1

F ′ dF
TsC . On the other hand (d−1

F ′ dF )−1B ∈ Φ+
aff so

1 + `(d−1
F ′ dF ) = `(sBd

−1
F ′ dF ) = `(d−1

F ′ sAdF ) and TsBTd−1

F ′ dF
= Td−1

F ′ sAdF
. Hence TsBTd−1

F ′ dF
= Td−1

F ′ dF
TsC . �

Obviously rFF is the identity map. Furthermore, it follows from Proposition 2.8-ii that `(d−1
F ′′dF ′) + `(d−1

F ′ dF ) =

`(d−1
F ′′dF ) for facets F, F ′, F ′′ such that F ′′ ⊆ F

′ ⊆ F , and therefore, using (5), we have rF
′

F ′′ ◦ rFF ′ = rFF ′′ . We may
therefore consider the coefficient system of right Ha,b-modules Ha,b given by the following data: to each facet F

we attach right Ha,b-module Ha,b and, for facets F and F ′ satisfying F ′ ⊆ F , we choose the transition maps rFF ′
as defined in (13). The coefficient system Ha,b yields a complex of right Ha,b-modules as in (12). We define a right

Ha,b-equivariant augmentation map by

α : Corc (A(0), Ha,b) ∼=
⊕
x∈A(0)

Ha,b −→ Ha,b

(hx)x 7−→
∑
x

Tdxhx.
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Theorem 2.17. The augmented complex

(14) 0 −→ Corc (A(d), Ha,b)
∂−−→ . . .

∂−−→ Corc (A(0), Ha,b)
α−→ Ha,b −→ 0

is an exact complex of right Ha,b-modules.

Proof. We first verify α ◦ ∂ = 0. Given a 1-dimensional facet F with vertices x and y we consider the 1-chain with
support F and value h ∈ Ha,b at (F, cF ). Its image by ∂ is, up to a sign, the 0-chain supported by {x, y} with values

x 7→ Td−1
x dF

h and y 7→ Td−1
y dF

h .

The image of this 0-chain by the augmentation map is TdxTd−1
x dF

h − TdyTd−1
y dF

h (up to a sign) which, by (5) and

Proposition 2.8-ii, is zero.
The proof of the exactness goes through exactly as in [OS1, Theorem 3.4]. The ingredients are the following.

1) Given a facet F in A , the transition map r
C(F )
F is the identity map (Remark 2.15).

2) For n ≥ 1 and D a chamber at (gallery) distance n of C, define A (n − 1) to be the set of facets contained in
the closure of the chambers at distance ≤ n− 1 of C. The simplicial subcomplexes A (n− 1) and A (n− 1) ∪D are
contractible. This is proved in [OS1, Proposition 4.16]. �

For i ≥ 0 fix a (finite) subset of facets Fi ⊂ Ai ∩ C representing the W -orbits of Ai.

Proposition 2.18. Each Corc (A(i), Ha,b) carries the structure of an Ha,b-bimodule such that:

(1) this extends its natural structure as a right Ha,b-module,
(2) Corc (A(i), Ha,b) ∼=

⊕
F∈Fi

Ha,b(jF )⊗HF
Ha,b,

(3) the maps ∂ and α in (14) are Ha,b-biequivariant.

Proof. Fix an orientation (F0, cF0) for each facet in C. For any facet F of A we let F0 := d−1
F F and we choose

(F, cF ) := dF (F0, cF0). Given w ∈Waff , it is then easy to check that

(15) w(F, cF ) = (wF, cwF ) .

Given two orientations (F, c) and (F, c′) of F we let δ
(F,c)
(F,c′) := 1 if (F, c) = (F, c′) and δ

(F,c)
(F,c′) := −1 otherwise.

Given a facet F and h ∈ Ha,b we denote by (F, cF ) 7→ h the oriented chain with support F and value h at (F, cF ).

We define an isomorphism of right Ha,b-modules

Corc (A(i), Ha,b) −→
⊕

G0∈Fi

Ha,b(jG0
)⊗HG0

Ha,b(16)

as follows. Let F be a facet of dimension i. For h ∈ Ha,b, we consider the oriented i-chain γ : (F, cF ) 7→ h . The

facet F0 := d−1
F F in C is Ω-conjugate to a unique G0 ∈ Fi. We choose ω ∈ Ω such that F0 := ωG0. We attach to γ

the element

δ
(F0,cF0

)

ω(G0,cG0
) TdF Tω ⊗ Tω−1h ∈ Ha,b(jG0

)⊗HG0
Ha,b .

It is easy to see that this does not depend on the choice of ω because if ω′ ∈ Ω is such that ω′G0 = F0, then

u := ω−1ω′ lies in ΩG0
and by definition εG0

(u) = δ
u(G0,cG0

)

(G0,cG0
) = δ

ω′(G0,cG0
)

ω(G0,cG0
) .

We define a map in the other direction. GivenG0 ∈ Fi, we haveHa,b(jG0
)⊗HG0

Ha,b
∼= ⊕d∈D†G0

Td⊗H (Proposition

2.11). Let d ∈ D
†
G0

, h ∈ H and F := dG0. Then ω := d−1
F d lies in Ω (because d−1F and d−1

F F both are facets in C).

We attach to the element Td ⊗ h ∈ Ha,b(jG0
) ⊗HG0

Ha,b the oriented i chain (F, cF ) 7→ δ
(F,cF )
d(G0,cG0

)Tωh. It is easy to

check that this defines an inverse for (16).
Let i ≥ 0. We endow Corc (A(i), Ha,b) with the structure of Ha,b-bimodule inherited from

⊕
F∈Fi

Ha,b(jF ) ⊗HF

Ha,b, thus extending its natural structure of right Ha,b-module. We describe the left action of Ha,b on Corc (A(i), Ha,b).

Let F be a facet and F0 := d−1
F F . For h ∈ Ha,b, we consider the oriented i-chain γ : (F, cF ) 7→ h .

I. Let ω ∈ Ω. The action of Tω maps γ onto the oriented i-chain Tω · γ : (ωF, cωF ) 7→ δ
ω(F0,cF0

)

(ωF0,cωF0
)Tωh .

II. Let s ∈ Saff . We refer to Definition 2.9.
– Suppose F is of type A for s. The action of Ts maps γ onto the sum of oriented chains

(F, cF ) 7→ (a + b)h + (sF, csF ) 7→ −abh .
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– Suppose F is of type B.i for s. The action of Ts maps γ onto the oriented chain (sF, csF ) 7→ h.
– Suppose F is of type B.ii for s. The action of Ts maps γ onto the oriented chain (F, cF ) 7→ Td−1

F sdF
h.

Before showing that α and ∂ are left H-equivariant, we recall the remark at the beginning of the proof of Lemma
2.16 and add the following one: for a facet F and ω ∈ Ω, we have dωF = ωdFω

−1.
We show that α is left H-equivariant. Let F = x be a vertex and recall that α(γ) = Tdxh.

(1) We have dωx = ωdxω
−1. Therefore α(Tω · γ) = Tωdxω−1Tωh = TωTdxh = Tωα(γ).

(2) Let s ∈ Saff . We refer to Definition 2.9.
(a) Suppose that x is of type A for s. Then sdx = dsx and

α(Ts · γ) = Tdx(a + b)h− abTsdxh = TsTsdx(a + b)h− abTsdxh = Tsα(γ) .

(b) Suppose `(sdx) = `(dx) + 1.
(i) if x is of type B.i then dsx = sdx so α(Ts · γ) = Tsdxh = TsTdxh = Tsα(γ) .
(ii) if x is of type B.ii then α(Ts · γ) = TdxTd−1

x sdx
h = Tsdxh = TsTdxh = Tsα(γ) .

We show that ∂ is left H-equivariant. Suppose i ≥ 1. By definition, ∂(γ) is the sum over the facets F ′ of dimension

i−1 contained in F of the chains (F ′, cF ′) 7→ δ
(F,cF )|F ′
(F ′,cF ′ )

Td−1

F ′ dF
h where we recall that (F, cF )|F ′ is the facet F ′ equipped

with the orientation induced by (F, cF ). We let G′0 := d−1
F ′ F

′.

(1) The action of Tω on ∂(γ) gives the sum over the same F ′s of

(ωF ′, cωF ′) 7→ δ
ω(G′0,cG′0

)

(ωF ′0,cωF ′0
)δ

(F,cF )|F ′
(F ′,cF ′ )

TωTd−1

F ′ dF
h

while ∂(Tω · γ) is the sum over the F ′s of

(ωF ′, cωF ′) 7→ δ
(ωF,cωF )|ωF ′
(ωF ′,cωF ′ )

δ
ω(F0,cF0)
(ωF0,cωF0

)Td−1

ωF ′dωF
Tωh = δ

(ωF,cωF )|ωF ′
(ωF ′,cωF ′ )

δ
ω(F0,cF0)
(ωF0,cωF0

)TωTd−1

F ′ dF
h .

We check that the two displayed formulas above are equal. Note that u := d−1
F ′ dF ∈WF ′0

. So

δ
ω(G′0,cG′0

)

(ωF ′0,cωF ′0
)δ

(F,cF )|F ′
(F ′,cF ′ )

= δ
ω(G′0,cG′0

)

(ωF ′0,cωF ′0
)δ
dF (F0,cF0

)|F ′
dF ′ (F

′
0,cF ′0

) = δ
ω(G′0,cG′0

)

(ωF ′0,cωF ′0
)δ
u(F0,cF0

)|F ′0
(F ′0,cF ′0

) = δ
u(F0,cF0

)|F ′0
ω−1(ωF ′0,cωF ′0

) = δ
ωu(F0,cF0

)|ωF ′0
(ωF ′0,cωF ′0

)

while, if we let (F0, κF0
) := ω−1(ωF0, cωF0

),

δ
(ωF,cωF )|ωF ′
(ωF ′,cωF ′ )

δ
ω(F0,cF0

)

(ωF0,cωF0
) = δ

ωuω−1(ωF0,cωF0
)|ωF ′0

(ωF ′0,cωF ′0
) δ

ω(F0,cF0
)

(ωF0,cωF0
) = δ

ωu(F0,κF0
)|ωF ′0

(ωF ′0,cωF ′0
) δ

(F0,cF0
)

(F0,κF0
) = δ

ωu(F0,cF0
)|ωF ′0

(ωF ′0,cωF ′0
) .

(2) Now we consider the action of Ts for s ∈ Saff .
• Suppose that F is of type A for s. Recall (using (15)) that ∂(Ts · γ) is the sum over the facets F ′ of

codimension 1 in F of the chains (F ′, cF ′) 7→ δ
(F,cF )|F ′
(F ′,cF ′ )

(a + b)rFF ′(h) and (sF ′, csF ′) 7→ −δ(F,cF )|F ′
(F ′,cF ′ )

ab rsFsF ′(h).

To see that it is equal to Ts · ∂(γ), we use Lemma 2.16(a),(b) and we write it as the sum of

(F ′, cF ′) 7→ δ
(F,cF )|F ′
(F ′,cF ′ )

(a + b)rFF ′(h) and (sF ′, csF ′) 7→ −δ(F,cF )|F ′
(F ′,cF ′ )

abrFF ′(h)

where F ′ ranges over the facets F ′ of codimension 1 in F which are of type A for s and of

(F ′, cF ′) 7→ δ
(F,cF )|F ′
(F ′,cF ′ )

[(a + b)rFF ′(h)− abrsFF ′ (h)] = δ
(F,cF )|F ′
(F ′,cF ′ )

Td−1

F ′ sdF ′
rFF ′(h)

where F ′ ranges over the facets F ′ of codimension 1 in F which are of type B.ii.
• Suppose that F of type B.i for s. Here ∂(Ts · γ) is the sum over the facets F ′ of codimension 1 in F of

the chains (sF ′, csF ′) 7→ δ
(F,cF )|F ′
(F ′,cF ′ )

rsFsF ′(h) . To see that it is equal to Ts · ∂(γ), we use Lemma 2.16(a),(c) and

write it as the sum of the chains

(sF ′, csF ′) 7→ δ
(F,cF )|F ′
(F ′,cF ′ )

rFF ′(h) .

where F ′ ranges over the facets F ′ of codimension 1 in F which are of type B.i and of

(F ′, cF ′) 7→ δ
(F,cF )|F ′
(F ′,cF ′ )

Td−1

F ′ sdF ′
rFF ′(h) .

where F ′ ranges over the facets F ′ of codimension 1 in F which are of type B.ii.
• Lastly suppose that F is of type B.ii. Here ∂(Ts · γ) is the sum over the facets F ′ of codimension 1

in F of the chains (using (15)) (F ′, cF ′) 7→ δ
(F,cF )|F ′
(F ′,cF ′ )

rFF ′(Td−1
F sdF

h) . To see that it is equal to Ts · ∂(γ),
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we use Lemma 2.16(d) and write it as the sum over the facets F ′ of codimension 1 in F of the chains

(F ′, cF ′) 7→ δ
(F,cF )|F ′
(F ′,cF ′ )

Td−1

F ′ sdF ′
rFF ′(h) .

�

Corollary 2.19. We have an exact resolution of Ha,b by Ha,b-bimodules

(17) 0 −→
⊕
F∈Fd

Ha,b(jF )⊗HF
Ha,b −→ . . . −→

⊕
F∈F0

Ha,b(jF )⊗HF
Ha,b −→ Ha,b −→ 0.

Moreover, each term in this resolution is free as a left (resp. right) Ha,b-module.

For later use we record an explicit description of the first (left) differential in (17). For simplicity, fix an orientation
(C, cC) of C and for each of its codimension 1 facet F choose the orientation (F, cF ) := (C, cC)|F . In this case one
checks (using the explicit form of the isomorphism (16), also compare with [OS1, Cor. 6.7]) that the first differential
in (17) is given by

(18) ∂ : Ha,b(jC)⊗HC
Ha,b 3 1⊗ 1 7−→

∑
F∈Fd−1

∑
ω∈Ω/ΩF

jC(Tω)⊗ Tω−1 ∈
⊕

F∈Fd−1

Ha,b(jF )⊗HF
Ha,b.

3. Dualizing complexes

In this section we work over a fixed ground field k. We assume that all rings are left and right Noetherian algebras
over k. For a k-algebra A we denote by Db(A) the bounded derived category of finitely generated A-modules.

3.1. Rigid dualizing complexes. The following definition follows [Ye1].

Definition 3.1. An object R ∈ Db(A⊗k Ao) is called a dualizing if

(1) R has finite injective dimension over A and Ao,
(2) the cohomology of R is given by bimodules which are finitely generated on both sides,
(3) the natural morphisms A→ RHomA(R,R) and A→ RHomAo(R,R) are isomorphisms in D(A⊗k Ao).

More generally, suppose z ⊂ A is a finitely generated, commutative, central k-subalgebra so that A is flat over z.
Then R ∈ Db(A⊗z A

o) is called dualizing if its restriction to Db(A⊗k Ao) is dualizing.

Remark 3.2. We could weaken the assumption that A is flat over z to A having finite tor-dimension over z but at
the cost of working with dg-algebras.

Remark 3.3. A dualizing complex R ∈ Db(A⊗k Ao) induces equivalences

RHomA(−,R) : Db(A) � Db(Ao) : RHomAo(−,R)

which explains the terminology “dualizing complex” (see [Ye1, Prop. 3.5]).

Definition 3.4. Let z ⊂ A be as in Definition 3.1. Then R ∈ Db(A⊗z A
o) is z-rigid if there is an isomorphism

φ : R→ RHomA⊗zAo(A,R⊗z R)

in D(A⊗z A
o). If z = k then we say that R is rigid.

Remark 3.5. The definition above appears in [Ber, Def. 8.1] when z = k. We will need the mild generalization above
for our applications. It is shown in [Ber] that, if they exist, rigid dualizing complexes are unique. The same argument
also shows that z-rigid dualizing complexes are unique (when z is regular this also follows from Lemma 3.6 below).
When it exists we will denote the rigid (resp. z-rigid) dualizing complex by RA (resp. RA/z).

If πz : Spec z → Spec k is the natural map then Rz := π!
z(k) ∈ D(z) is rigid when viewed as a z-bimodule. Here

π!
z is the usual twisted inverse image functor from Grothendieck duality. Similarly, if A is commutative then RA :=

π!
A(k) ∈ D(A) is rigid (where πA : SpecA→ Spec k) and RA/z := π!(z) ∈ D(A) is z-rigid where π : SpecA→ Spec z.

Thus Definition 3.4 is an attempt to identify this canonical relative dualizing object when A is not commutative.
Since π is flat it also follows that π!(Rz) ∼= π!(z) ⊗z Rz (see for example [LH, Thm. 4.9.4]). In other words,

RA
∼= RA/z ⊗z Rz. The following result is a non-commutative analogue of this observation.

Lemma 3.6. Let z ⊂ A be as in Definition 3.1 and suppose z is regular with rigid dualizing complex Rz. Then A
has a rigid dualizing complex RA if and only if it has z-rigid dualizing complex RA/z. In this case

(19) RA
∼= RA/z ⊗z Rz ∈ D(A⊗z A

o).
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Proof. Since z is Noetherian and regular its rigid dualizing complex Rz is invertible. Thus, for RA and RA/z satisfying
(19), it follows that RA is dualizing if and only if RA/z is dualizing. It remains to show that RA is rigid if and only
if RA/z is z-rigid.

To see this, consider the following sequences of isomorphisms

RHomA⊗kAo(A,RA ⊗k RA) ∼= RHomA⊗zAo(A⊗A⊗kAo (A⊗z A
o), (RA/z ⊗z Rz)⊗k (RA/z ⊗z Rz))

∼= RHomA⊗zAo(A⊗z⊗kz z, (Rz ⊗k Rz)⊗z⊗kz (RA/z ⊗k RA/z))

∼= RHomA⊗zAo(A,RHomz⊗kz(z, (Rz ⊗k Rz)⊗z⊗kz (RA/z ⊗k RA/z)))

∼= RHomA⊗zAo(A,RHomz⊗kz(z,Rz ⊗k Rz)⊗z⊗kz (RA/z ⊗k RA/z))

∼= RHomA⊗zAo(A,Rz ⊗z⊗kz (RA/z ⊗k RA/z))

∼= RHomA⊗zAo(A,Rz ⊗z (RA/z ⊗z RA/z))

∼= RHomA⊗zAo(A,RA/z ⊗z RA/z)⊗z Rz

Here the first isomorphism is by adjunction of restriction and induction, the second is by base change noting that

A⊗z A
o ∼= (A⊗k Ao)⊗z⊗kz z

the third is by adjunction between tensor product and hom, the fourth uses that z is perfect inside D(z⊗k z) because
z is regular, the fifth uses that Rz is rigid, the sixth uses that the left and right actions of z on Rz agree and the last
uses that Rz is (up to shift) a locally free z-module since z is regular. Since Rz is invertible, the result follows. �

3.2. Traces.

Definition 3.7. Let f : A→ B be a finite morphism of k-algebras and suppose A and B have rigid dualizing complexes
(RA, φA) and (RB , φB). Then trB/A : RB → RA in D(A⊗kA) is called a trace morphism if the following conditions
hold:

(1) trB/A induces an isomorphism in D(A⊗k A)

(20) RB
∼= RHomA(B,RA) ∼= RHomAo(B,RA)

(2) the following diagram in D(A⊗k A) commutes

(21) RB
φB //

trB/A

��

RHomB⊗kB(B,RB ⊗k RB)

trB/A⊗trB/A

��
RA

φA // RHomA⊗kA(A,RA ⊗k RA)

If they exist, trace morphisms trB/A are unique [YZ1, Thm. 3.2]. A consequence of traces is the following duality
result. It is a non-commutative counterpart of the result in algebraic geometry which states that for a proper morphism
f : X → Y of schemes of finite type one has

f∗RHomX(M,f !(N)) ∼= RHomY (f∗M,N)

for coherent sheaves M,N on X,Y respectively.

Corollary 3.8 (Prop. 3.9(1) [YZ1]). Suppose we are in the setup of Definition 3.7. Then trB/A induces a natural
isomorphism

(22) ResB
o

Ao ◦RHomB(−,RB) ∼= RHomA(ResBA(−),RA) : Df (B)→ Df (Ao).

3.3. Existence results. There are various results which guarantee the existence of rigid dualizing complexes. We
highlight the ones which are relevant to our situation.

Definition 3.9. Following [YZ2] we say that A is a differential k-algebra of finite type if it has an exhaustive filtration
{FiA}i∈Z such that the associated graded grF (A) is a finite module over its center which is a finitely generated
k-algebra.

A nice consequence of [YZ2, Thm. 3.1] is that any differential k-algebra A of finite type has a rigid dualizing
complex RA [YZ2, Thm. 8.1]. More generally, if A→ B is a finite centralizing homomorphism of k-algebras then B
also has a rigid dualizing complex RB and moreover there exists a trace morphism trB/A : RB → RA [YZ1, Thm.
6.17]. Here A→ B is finite centralizing if there exists a finite set {bi} ⊂ B commuting with A such that B =

∑
A ·bi.

In particular, this implies the following result.
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Proposition 3.10. Suppose A is finite over a central subalgebra Z ⊂ A which is a finitely generated k-algebra. Then
there exist rigid dualizing complexes RA and RZ with RA

∼= RHomZ(A,RZ). Moreover, there exists a trace map
trA/Z : RA → RZ . If Z is also regular then RA/Z

∼= RHomZ(A,Z).

Proof. Since Z → A is finite centralizing we know there exist rigid dualizing complexes RA and RZ as well as the
trace map trA/Z . The isomorphism RA

∼= RHomZ(A,RZ) follows from the proof of [Ye2, Prop. 5.9]. Finally, if Z is
regular, then RZ is invertible and RHomZ(A,RZ) ∼= RHomZ(A,Z)⊗Z RZ . Thus the last isomorphism follows from
Lemma 3.6. �

We say A is Gorenstein if A itself is a dualizing complex (cf. [Ye1, p. 68]). In this case any dualizing complex is
invertible ([Ye1, Thm. 3.9]).

Proposition 3.11. Consider z ⊂ A as in Definition 3.1 where z is furthermore regular and A is Gorenstein. If A
has a z-rigid dualizing complex RA/z then

(23) R−1
A/z = RHomA⊗zAo(A,A⊗z A)

where the action of A⊗z A
o is via the outer action on A⊗z A.

Proof. This is proved in [Ber, Prop. 8.4] when z = k but essentially the same argument works more generally. We
reproduce it here for completeness. Using that RA and Rz are invertible we find, using Lemma 3.6, that so is RA/z.
Then we get

RHomA⊗zAo(A,A⊗z A
o) ∼= RHomA⊗zAo(A,RA/z ⊗A R−1

A/z ⊗z R−1
A/z ⊗Ao RA/z)

∼= RHomA⊗zAo(A, (RA/z ⊗z RA/z)⊗A⊗zAo (R−1
A/z ⊗z R−1

A/z))

∼= RHomA⊗zAo(A,RA/z ⊗z RA/z)⊗A⊗zAo (R−1
A/z ⊗z R−1

A/z)

∼= RA/z ⊗A⊗zAo (R−1
A/z ⊗z R−1

A/z)

∼= R−1
A/z ⊗A RA/z ⊗A R−1

A/z
∼= R−1

A/z.

�

3.4. Base change. Let z ⊂ A be as in Definition 3.1 and z′ a commutative, finitely generated k-algebra. Our
running assumption in this section is that z, z′ are regular. Consider the base change A′ := A⊗z z

′ with respect some
homomorphism z→ z′.

Lemma 3.12. If R ∈ Db(A⊗z A
o) has finite injective dimension over A (resp. Ao) then RHomA⊗zAo(A′ ⊗z′ A

′,R)
has finite injective dimension over A′ (resp. A′o).

Proof. For any N ′ ∈ Db(A′) we have

RHomA′(N
′,RHomA⊗zAo(A′ ⊗z′ A

′,R)) ∼= RHomA⊗zAo((A′ ⊗z′ A
′)⊗A′ N ′,R)

∼= RHomA⊗zAo(A′ ⊗z′ N
′,R)

∼= RHomA⊗zAo(A⊗z N
′,R)

∼= RHomA⊗zAo((A⊗z A
o)⊗A N ′,R)

∼= RHomA(N ′,R)

Thus, if R has finite injective dimension over A then RHomA⊗zAo(A′ ⊗z′ A
′,R) has finite injective dimension over

A′. The case of Ao and A′o is similar. �

Proposition 3.13. If R is a dualizing complex of A then R⊗z z
′ is a dualizing complex of A′.

Proof. We need to check that R′ := R ⊗z z
′ satisfies the three conditions of Definition 3.1. Condition (2) is easy

to see since z′ has finite tor-dimension over z (since they are both regular rings). Condition (3) follows from the
commutativity of the following rectangle

A′
∼ //

��

A⊗z z
′

��
RHomA′(R

′,R′)
∼ // RHomA′(R⊗z z

′,R⊗z z
′)

∼ // RHomA(R,R⊗z z
′)

∼ // RHomA(R,R)⊗z z
′
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It remains to prove condition (1), namely that R′ has finite injective dimension over A′ and A′o. We first reduce
to the case z′ is finite over z. To do this it suffices to check condition (1) when z′ ∼= z[x]. This follows since if R has
injective dimension e over A (resp. Ao) then R⊗z z[x] has injective dimension e+ 1 over A⊗z z[x] (resp. Ao ⊗z z[x]).

Thus we can assume z′ is finite over z. In this case,

RHomA⊗zAo(A′ ⊗z′ A
′,R) ∼= RHomA⊗zAo(A⊗z A⊗z z

′,R)

∼= RHomA⊗zAo(A⊗z A,R)⊗z RHomz(z
′, z)

∼= R⊗z RHomz(z
′, z).

By Lemma 3.12 it follows that R⊗z RHomz(z
′, z) has finite injective dimension over A′ and A′o. Since z′ is finite over

z with both regular rings it follows that RHomz(z
′, z) ∼= Rz′/z is invertible as a z′-module and thus R ⊗z z

′ also has
finite injective dimension over A′ and A′o. This completes the proof. �

Corollary 3.14. If RA/z is the z-rigid dualizing complex of A then RA/z⊗z z
′ is the z′-rigid dualizing complex of A′.

Proof. By Proposition 3.13 we know RA′/z′ := RA/z ⊗z z
′ is a dualizing complex so it remains to show that it is

z′-rigid. Note that

(24) A⊗A⊗zA (A′ ⊗z′ A
′) ∼= A⊗A⊗zA ((A⊗z z

′)⊗z′ (A⊗z z
′)) ∼= A⊗A⊗zA (A⊗z A⊗z z

′) ∼= A⊗z z
′ ∼= A′.

Thus we get

RHomA′⊗z′A
′(A′,RA′/z′ ⊗z′ RA′/z′) ∼= RHomA′⊗z′A

′(A′, (RA/z ⊗z z
′)⊗z′ (RA/z ⊗z z

′))

∼= RHomA′⊗z′A
′(A⊗A⊗zA (A′ ⊗z′ A

′),RA/z ⊗z RA/z ⊗z z
′)

∼= RHomA⊗zA(A,RA/z ⊗z RA/z ⊗z z
′)

∼= RHomA⊗zA(A,RA/z ⊗z RA/z)⊗z z
′

∼= RA/z ⊗z z
′ ∼= RA′/z′

where the second isomorphism is by rearranging and using (24), the third is by adjunction between induction and
restriction, the fourth uses that z and z′ are regular, the fifth is because RA/z is z-rigid and the last is by definition.
This proves that RA′/z′ is z′-rigid. �

3.5. Further consequences.

Proposition 3.15. Suppose A is finite over a connected, regular, central subalgebra Z ⊂ A which is finitely generated
as a k-algebra. Then RA is supported in one degree (i.e. A is Cohen-Macaulay) if and only if A is projective over Z.
In this case RA is supported in degree −d where d is the Krull dimension of Z.

Proof. Note that by Proposition 3.10 we know A has a rigid dualizing complex RA. Since Z is regular we have

(25) RHomZ(A,M) ∼= RHomZ(A,Z ⊗Z M) ∼= RHomZ(A,Z)⊗Z M

for any M ∈ Db(Z). In particular, taking M = RZ , this gives

RHomZ(A,Z) ∼= RHomZ(A,RZ)⊗Z R−1
Z
∼= RA ⊗Z R−1

Z .

Thus, if RA is Cohen-Macaulay, then RHomZ(A,Z) is supported in one degree. But Z ↪→ A and after localizing this
map splits. It follows that RHomZ(A,Z) must be supported in degree zero.

On the other hand, HomZ(A,−) is left exact and tensoring is right exact so (25) must be supported in degree zero
for any module M . In particular, this means HomZ(A,−) is exact and thus A is projective over Z.

Conversely, if A is projective over Z then RHomZ(A,RZ) ∼= RA is supported in the same degree as RZ . Since
RZ is supported in degree −d the result follows. �

Remark 3.16. The result of Corollary 3.15 when A is commutative is called Hironaka’s criterion (or miracle flatness).

Proposition 3.17. Suppose A is a differential k-algebra of finite type and M a finite dimensional A-module. Then

(26) RHomA(M,RA) ∼= M∨ ∈ D(Ao)

where RA is the rigid dualizing complex of A.
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Proof. The following argument follows the one from [Ye3, Cor. 2.2] (we thank Amnon Yekutieli for pointing out his
result). Let B := A/I where I is the kernel of the canonical map A→ Endk(M). Note that A→ B is surjective and
hence finite centralizing. It follows by [YZ1, Thm. 6.17] that there exists a trace map trB/A.

By construction we have a canonical M ′ ∈ D(B) with M = ResBA(M ′). Thus, using (22), we get that

(27) ResB
o

Ao RHomB(M ′,RB) ∼= RHomA(M,RA).

On the other hand, since B is finite dimensional over k, RB
∼= B∨ = Homk(B, k). It is standard to check that

HomB(M ′,Homk(B, k)) ∼= Homk(M ′, k). Since ResB
o

Ao (Homk(M ′, k)) ∼= M∨ the required isomorphism (26) follows
from (27). �

4. Rigid dualizing complexes of affine Hecke algebras

In this section we assume R is a regular, finitely generated k-algebra. This condition on R is only used to ensure
that z = R[a,b][Q⊥] ⊂ Ha,b is also regular.

4.1. The rigid dualizing complex of HF . Let F be a facet in C and HF the associated Hecke algebra as in §2.4.
Let w0 be the longest element of the finite Weyl group W 0

F and define the R-linear involution

iF : HF −→ HF , Tw 7−→ Tw0ww
−1
0

.

As usual (iF )HF is the HF -bimodule HF with the left action twisted by iF .

Lemma 4.1. (1) The map iF is an algebra automorphism which acts trivially on z.
(2) There exists an isomorphism of HF ⊗z H

o
F -modules

(28) (iF )HF
∼= RHomz(HF , z)

Proof. From Proposition 2.12 and its proof, HF is free over z with basis {Tw}w∈[WF /Q⊥] = {Tw−1w0
}w∈[WF /Q⊥].

Consider, as in [OS1, Prop. 5.4-iii], the z-linear map

θ : HF −→ z,
∑
w∈W †F

awTw 7−→
∑
ξ∈Q⊥

aξw0ξ .

The same arguments as in loc. cit. ensure that the matrix [θ(TwTv−1w0
)]v,w∈[WF /Q⊥] with coefficients in z is invertible.

This means that the homomorphism of right HF -modules

(29) HF −→ Homz(HF , z), 1 7−→ θ

is an isomorphism. We are going to check that θ(iF (x)−) = θ(−x) for any x ∈ HF . Given that (29) is bijective, this
identity will imply that iF is an algebra automorphism while also proving (28). To prove the identity, we show for
w ∈WF that

(30) θ(iF (Tw)Tv) = θ(TvTw) for any v ∈WF .

By induction it is enough to verify this for `(w) ≤ 1.
• An element ω ∈ ΩF normalizes W 0

F and since the longest element of W 0
F is unique, we have ωw0ω

−1 = w0.

Furthermore, since w0Φ+
F = Φ−F , we have w0ωw

−1
0 ∈ ΩF . This allows to check (30) when w = ω.

• Now assume w has length 1. Write w = sω for s ∈ SF and ω ∈ ΩF . Since w0ΠF = −ΠF there is s′ ∈ SF
and ω′ ∈ ΩF such that w′ := w0ww

−1
0 can be written as ω′s′. Let v ∈ WF . Note that vw ∈ Q⊥w0 if and only if

w′v ∈ Q⊥w0 in which case they are equal.
If vw ∈ Q⊥w0 and w′v ∈ Q⊥w0 then `(vw) = `(v)+1, `(w′v) = `(v)+1. So θ(TvTw) = θ(Tvw) = θ(Tw′v) = θ(Tw′Tv).
Otherwise vw 6∈ Q⊥w0 and w′v /∈ Q⊥w0.

• If `(vw) = `(v) + 1 and `(w′v) = `(v) + 1 then θ(TvTw) = θ(Tw′Tv) = 0.
• If `(vw) = `(v) + 1 and `(w′v) = `(v)− 1, we still have θ(TvTw) = 0 and the quadratic relations implies that
Tw′Tv is a linear combination of Tw′v and Tω′v. None of w′v and ω′v lie in Q⊥w0. So again θ(Tw′Tv) = 0.

• If `(vw) = `(v)− 1 and `(w′v) = `(v) + 1 then θ(Tw′Tv) = 0, as above we find θ(TvTs) = θ(Ts′Tv) = 0.
• Suppose that `(vw) = `(v) − 1 and `(w′v) = `(v) − 1. If vω ∈ Q⊥w0 then ω′v = vω and (by (6)) we

have: θ(TvTw) = θ((a + b)Tvω) = (a + b)θ(Tω′v) = θ(Tw′Tv). If vω /∈ Q⊥w0, then ω′v /∈ Q⊥w0 and again,
θ(TvTw) = θ(Tw′Tv) = 0.

�
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Recall from Proposition 2.11 that HF is finitely generated over z which is a finitely generated k-algebra. Hence
HF has a ridig dualizing complex.

Corollary 4.2. The z-rigid dualizing complex RHF /z of HF is isomorphic to (iF )HF . In particular,

RHF
∼= Rz ⊗z (iF )HF

and HF is Gorenstein with the same self-injective dimension as z.

Proof. Recall that z is regular. By Proposition 3.10 and Lemma 4.1 it follows that RHF /z
∼= (iF )HF . Lemma 3.6

then implies that RHF
∼= Rz ⊗z (iF )HF .

By Proposition 3.10 and Corollary 3.8 the injective dimension of RHF
(and hence of HF ) is at most the injective

dimension of Rz (which is the same as the self-injective dimension of z). But since HF is free over z (by Proposition
2.12) this inequality must be an equality. Thus HF is Gorenstein with the same self-injective dimension as z. �

4.2. The rigid dualizing complex of Ha,b.

Proposition 4.3. The algebra Ha,b is a differential k-algebra of finite type.

Proof. One can filter Ha,b by length so that R[a,b] lies in the smallest filtered piece. Then the associated graded
algebra is isomorphic to H0,0 ⊗R R[a,b]. By Proposition 2.4 this is finite over its center which is a finitely generated
k-algebra. �

As a consequence of Proposition 4.3 and the discussion in Section 3.3 it follows that Ha,b has a rigid dualizing
complex. In this section we will identify this complex explicitly.

Theorem 4.4. We have RHa,b/z
∼= (ι)Ha,b[d] ∈ Db(Ha,b ⊗z H

o
a,b) where d = rk(Q) and ι is defined in (11).

Since z is regular, this has the following consequence by combining with Lemma 3.6.

Corollary 4.5. We have RHa,b
∼= (ι)Ha,b[d]⊗z Rz.

The rest of this section is devoted to proving Theorem 4.4. To simplify notation we will write H instead of Ha,b.
Recall the resolution

(31) Hd → · · · → H0 → H

of H ⊗z H
o-modules from (17) where Hi :=

⊕
F∈Fi

H(jF )⊗HF
H. We will check below that:

(1) H is Gorenstein (Lemma 4.6),
(2) each RHomH⊗zHo(Hi, H ⊗z H) is supported in cohomological degree zero (Lemma 4.8),
(3) the cokernel of the induced map

RHomH⊗zHo(Hd−1, H ⊗z H)→ RHomH⊗zHo(Hd, H ⊗z H)

is isomorphic to (ι)H as an H-bimodule (Lemma 4.9).

By (1) and Lemma 3.6, [Ye1, Thm. 3.9] we know that the z-rigid dualizing complex RH/z is supported in one

cohomological degree. By Proposition 3.11 we also know that R−1
H/z
∼= RHomH⊗zHo(H,H ⊗z H). Finally, from (2)

and (3) we conclude that this is isomorphic to (ι)H[−d], from which Theorem 4.4 follows.

Lemma 4.6. The algebra H is Gorenstein with self-injective dimension rk(X).

Proof. Tensoring (31) with an H-module M , we get a length d resolution of M by H-modules of the form H(jF )⊗HF

M . On the other hand, by adjunction we have

RHomH(H(jF )⊗HF
M,H) ∼= RHomHF

(M |HF
, H|HF

).

Since H is a free HF -module H|HF
and HF have the same (finite) injective dimension. It follows that H has finite

self-injective dimension. Lastly, H is Noetherian by Corollary 2.5.
The argument above actually implies that the self-injective dimension of H is bounded above by d + r where

d = rk(Q) and r is the self-injective dimension of z. Given Corollary 4.5, an application of Proposition 3.17 implies
this bound is sharp, namely H has injective dimension d+ r = rk(X).

�

Remark 4.7. Compare Lemma 4.6 with [OS1, Theorems 0.1, 0.2-ii].

Lemma 4.8. The object RHomH⊗zHo(Hi, H ⊗z H) is supported in cohomological degree zero.
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Proof. For F ∈ Fi we want to show that

RHomH⊗zHo(H(jF )⊗HF
H,H ⊗z H)

is supported in degree zero. First note that, by base change

H(jF )⊗HF
H ∼= (H(jF )⊗z H)⊗HF⊗zHF

HF
∼= (H ⊗z H)⊗HF⊗zHF

(jF )HF

where, for the second isomorphism, we use the fact that jF is an involution. Thus we get

RHomH⊗zHo(H(jF )⊗HF
H,H ⊗z H) ∼= RHomH⊗zHo((H ⊗z H

o)⊗HF⊗zHo
F

(jF )HF , H ⊗z H)

∼= RHomHF⊗zHo
F

((jF )HF , H ⊗z H)

where the second isomorphism is by adjunction. Since H is a free HF -module (Proposition 2.11), it follows that H⊗zH
is a free HF ⊗z H

o
F -module. Thus, since (jF )HF is a finitely presented HF ⊗z H

o
F -module, it suffices to show that

RHomHF⊗zHo
F

((jF )HF , HF⊗zHF ) (or equivalently RHomHF⊗zHo
F

(HF , HF⊗zHF )) is supported in degree zero. Since
HF is Gorenstein (Corollary 4.2) and z regular, it follows from Proposition 3.11 that RHomHF⊗zHo

F
(HF , HF ⊗zHF )

is isomorphic to R−1
HF /z

∼= (i−1
F )HF which is clearly supported in degree zero. �

Next we apply RHomH⊗zHo(−, H ⊗z H) to (31) and study the cohomology on the far right.

Lemma 4.9. The cokernel of

RHomH⊗zHo(Hd−1, H ⊗z H)→ RHomH⊗zHo(Hd, H ⊗z H)

is isomorphic to (ι)H as an H ⊗z H
o-module.

Proof. By Lemma 4.8 we need to identify the cokernel of the map

(32) ∂∗ : HomH⊗zHo(
⊕

F∈Fd−1

H(jF )⊗HF
H,H ⊗z H)→ HomH⊗zHo(H(jC)⊗HC

H,H ⊗z H)

induced by the following map from (18)

H(jC)⊗HC
H 3 1⊗ 1 7−→

∑
F∈∈Fd−1

∑
ω∈Ω/ΩF

jC(Tω)⊗ Tω−1 ∈
⊕

F∈Fd−1

H(jF )⊗HF
H.

The modules H ⊗z H inside the Homs above carry two actions of H ⊗z H
o that we will need to keep track of. For

x⊗ y ∈ H ⊗z H we have:

- the outer action (T ⊗ S) ∗ (x⊗ y) := Tx⊗ yS (where T ⊗ S ∈ H ⊗z H
o),

- the inner action (x⊗ y) ? (T ⊗ S) := xS ⊗ Ty (where T ⊗ S ∈ Ho ⊗z H).

Note that, to simplify notation, we write the inner action as a right action of Ho ⊗z H. Since the inner and outer
actions commute the spaces RHomH⊗zHo(Hi, H ⊗z H) are H ⊗z H

o-modules via the inner action.

For a facet F contained in C, we denote by MF the subspace

MF = {X ∈ H ⊗z H, (jF (Tw)⊗ 1− 1⊗ Tw) ∗X = 0 ∀w ∈WF }.
It is a right submodule of H ⊗z H over Ho ⊗z H (for the ? action). Using base change as in the proof of Lemma 4.8,
the left hand space in (32) identifies with⊕

F∈Fd−1

HomHF⊗zHo
F

((jF )HF , H ⊗z H) ∼=
⊕

F∈Fd−1

MF

and the right hand side with
HomHC⊗zHo

C
((jC)HC , H ⊗z H) ∼= MC .

Hence we are studying the cokernel of the map

(33)
∂∗ :

⊕
F∈Fd−1

MF −→ MC

X ∈MF 7−→
∑
ω∈Ω/ΩF

jC(Tω) ⊗ Tω−1 ∗X .

It is an homomorphism of right Ho ⊗z H-modules. For F a facet contained in C, we define

θF :=
∑

ω∈ΩF /Q⊥

jF (Tω) ⊗ Tω−1 =
∑

ω∈ΩF /Q⊥

εF (ω)Tω ⊗ Tω−1 ∈ H ⊗z H

which we will also see as an element in H ⊗z H
o or Ho ⊗z H.
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Fact 4.10. We have MC = θC ∗H ⊗z H. It coincides with the right Ho ⊗z H-module generated by θC .

Proof of fact 4.10. Since H is a free R[Ω]-module on the left and on the right, the left HC ⊗z H
o
C-module H ⊗z H

(for the ∗ action) is a direct sum of copies of HC ⊗z HC . It is therefore enough to check the equality

(34) {X ∈ HC ⊗z HC , (jC(Tω)⊗ 1− 1⊗ Tω) ∗X = 0 ∀ω ∈ Ω} = θC ∗ (HC ⊗z HC) .

For the indirect inclusion, it is easy to check that the product (jC(Tω)⊗1−1⊗Tω)θC in HC ⊗z H
o
C is zero for ω ∈ Ω.

For the direct inclusion, we fix a system of representatives U of Ω/Q⊥ containing 1 ∈ Ω and we consider the basis
{Tu ⊗ Tv}u∈U,v∈Ω of HC ⊗z HC . Consider a generic element

(35) X =
∑

u∈U,v∈Ω

λu,vTu ⊗ Tv ∈ HC ⊗z HC .

Assume it lies in the left hand space of (34). Let ω ∈ U and v ∈ Ω. Considering the component in T1 ⊗ Tv of
(jC(Tω−1)⊗ 1− 1⊗ Tω−1) ∗X we see that εC(ω−1)λω,v = λ1,ωv and therefore

X =
∑

u∈U,v∈Ω

εC(u)λ1,uvTu ⊗ Tv =
∑

u∈U,v∈Ω

εC(u)λ1,vTu ⊗ Tvu−1 = θC ∗
∑
v∈Ω

λ1,vT1 ⊗ Tv .

�

For F a facet of codimension 1 of C, we denote by sF ∈ Saff the reflexion defining the wall containing F .

Fact 4.11. For F a facet of codimension 1 of C, we have MF = θF (TsF ⊗ 1− 1⊗ ι(TsF ) ∗H ⊗z H which coincides
with the right Ho ⊗z H-module generated by θF ∗ (TsF ⊗ 1− 1⊗ ι(TsF )) = (TsF ⊗ 1− 1⊗ ι(TsF )) ∗ θF .

Proof of fact 4.11. Recall that conjugation by an element in ΩF leaves sF invariant. Therefore HF is a commutative
algebra and θF and (TsF ⊗1−1⊗ ι(TsF )) commute in HF ⊗z H

o
F . Using Proposition 2.11, the left HF ⊗z H

o
F -module

H ⊗z H is a direct sum of copies of HF ⊗z HF . Therefore, it is enough to show that

{X ∈ HF ⊗z HF , (jF (Tw)⊗ 1− 1⊗ Tw) ∗X = 0 ∀w ∈W †F } = (TsF ⊗ 1− 1⊗ ι(TsF ))θF ∗ (HF ⊗z HF ) .

For the indirect inclusion, first recall that ι(TsF ) = ι(TsF ) = α−TsF and TsF ι(TsF ) = −β where momentarily we set
α := a + b and β := −ab. It is enough to verify, in HF ⊗z H

o
F :

(jF (TsF )⊗ 1− 1⊗ TsF )(TsF ⊗ 1− 1⊗ ι(TsF )) = (TsF ⊗ 1− 1⊗ TsF )(TsF ⊗ 1− 1⊗ ι(TsF ))

= (αTsF + β)⊗ 1− TsF ⊗ ι(TsF )− TsF ⊗ TsF − β ⊗ 1

= αTsF ⊗ 1− TsF ⊗ (α− TsF )− TsF ⊗ TsF = 0

and the identity (jF (Tω)⊗ 1− 1⊗ Tω)θF = 0 for ω ∈ ΩF .

For the direct inclusion, notice that the (commutative) algebra HF ⊗z H
o
F is a tensor product of HF ⊗R HF by

R[ΩF ]⊗z R[ΩF ]. Therefore, it is enough to show that
1) an element in HF ⊗RHF which is annihilated by (jF (TsF )⊗1−1⊗TsF )∗ lies in (TsF ⊗1−1⊗ ι(TsF ))∗HF ⊗RHF ,
2) an element in R[ΩF ]⊗zR[ΩF ] which is annihilated by (jF (Tω)⊗1−1⊗Tω)∗ for all ω ∈ Ω lies in θF ∗(R[ΩF ]⊗zR[ΩF ]).
For 2) we proceed just like in the proof of Fact 4.10. For 1), we consider a generic element

X = λ1,1T1 ⊗ T1 + λ1,sT1 ⊗ TsF + λs,1TsF ⊗ T1 + λs,sTsF ⊗ TsF ∈ HF ⊗R HF .

Assuming that X is annihilated by (jF (TsF )⊗ 1− 1⊗ TsF ), we obtain by direct calculation that

X = (TsF ⊗ 1− 1⊗ ι(TsF )) ∗ (λs,sT1 ⊗ TsF + λ1,sT1 ⊗ T1) .

�

Fact 4.12. The image of the map ∂∗ as in (33) is the right Ho ⊗z H-module generated by all θC ∗ (1⊗ h− ι(h)⊗ 1)
for h ∈ H.

Proof of Fact 4.12. For the direct inclusion, let F ∈ Fd−1. By Fact 4.11, the right Ho ⊗z H-module MF is generated
by θF ∗ (1⊗TsF − ι(TsF )⊗ 1) whose image by ∂∗ is θC ∗ (1⊗TsF − ι(TsF )⊗ 1). We use here the fact that εC |ΩF = εF
because the choice of an orientation on C determines an orientation on its codimension 1 facets.

For the indirect inclusion, we show, for w ∈ W , that θC ∗ (1 ⊗ Tw − ι(Tw) ⊗ 1) lies in the image of ∂∗. We pro-
ceed by induction on `(w).
1) If `(w) = 0 namely w ∈ Ω, then ι(Tw) = εC(w)Tw and θC ∗ (1⊗ Tw − ι(Tw)⊗ 1) = 0.
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2) If `(w) = 1, we first consider the case w = sF for F a facet in Fd−1. Then θF ∗ (1⊗ TsF − ι(TsF )⊗ 1) lies in MF

and according to (33) its image by ∂∗ is θC ∗ (1⊗ TsF − ι(TsF )⊗ 1).
For s ∈ Saff , there is ω ∈ Ω and F ∈ Fd−1 such that s = ωsFω

−1. Then using the identity θC(Tω⊗Tω−1) = εC(ω)θC ,
we verify θC ∗ (1⊗ Ts − ι(Ts)⊗ 1) = εC(ω)θC ∗ (1⊗ TsF − ι(TsF )⊗ 1) ? Tω ⊗ Tω−1 ∈ im(∂∗).
Lastly, write an arbitrary element of length 1 as ωs for s ∈ Saff and ω ∈ Ω. We have θC ∗ (1 ⊗ Tωs − ι(Tωs) ⊗ 1) =
θC ∗ (1⊗ Ts − ι(Ts)⊗ 1) ? Tω ⊗ 1 ∈ im(∂∗) (using (jC(Tω)⊗ 1− 1⊗ Tω)θC = 0).
3) Now let w of length ≥ 1 and s ∈ Saff such that `(sw) = `(w) + 1. We have

θC ∗ (1⊗ TsTw − ι(TsTw)⊗ 1) = θC ∗ (1⊗ Tw − ι(Tw)⊗ 1) ? Ts ⊗ 1 + θC ∗ (1⊗ Ts − ι(Ts)⊗ 1) ? 1⊗ ι(Tw)

which lies in im(∂∗) by induction.
�

TheH ⊗z H
o-module (ι)H is equivalently a rightHo ⊗z H-module with action (h, T⊗S) 7→ ι(T )hS . The surjective

map

(36)
µ : H ⊗z H −→ (ι)H

x⊗ y 7−→ ι(y)x

is then equivariant for the Ho ⊗z H-action on the right.

Fact 4.13. The map µ factors through the kernel of the (left) action of θC ∗ .

Proof. In a first step we let X =
∑
u∈U,v∈Ω λu,vTu ⊗ Tv be a generic element in HC ⊗z HC as in (35), where U is a

chosen set of representatives of Ω/Q⊥ containing 1. Write θC =
∑
ω∈U εC(ω)Tω−1 ⊗ Tω. Given v ∈ Ω, the coefficient

of the component in T1 ⊗ Tv of θC ∗X is
∑
ω∈U λω,vω−1εC(ω) while µ(X) =

∑
v∈Ω εC(v)Tv

∑
ω∈U λω,vω−1εC(ω). So

θC ∗X = 0 implies µ(X) = 0.
Now notice that H ⊗z H is a free left HC ⊗z HC-module (for the ∗ action) with basis Tx ⊗ Ty, x, y ∈ Waff . An
element X ∈ H ⊗z H may therefore be written as X =

∑
x,y∈Waff

Xx,y ∗ Tx ⊗ Ty =
∑
x,y∈Waff

Xx,y ? Ty ⊗ Tx with

Xx,y ∈ HC ⊗z HC . Assume θC ∗X = 0. It is equivalent to θC ∗Xx,y = 0 which implies µ(Xx,y) = 0 for all x, y ∈Waff .
But µ is right Ho ⊗z H-equivariant so µ(X) = 0. �

By Fact 4.12, it is clear that µ also factors through im(∂∗). Hence we have a well defined surjective right Ho ⊗z H-
equivariant map on coker(∂∗) = MC/ im(∂∗) = (θC ∗H ⊗z H)/ im(∂∗) given by

(37)
µ̄ : coker(∂∗) −→ (ι)H

θC ∗X mod im(∂∗) 7−→ µ(X)

for X ∈ H ⊗z H. We show that it is also injective by introducing the linear map

f : (ι)H −→ coker(∂∗), h 7−→ θC ∗ (h⊗ 1) mod im(∂∗) .

Notice, for x⊗ y ∈ H ⊗z H that

f(µ(x⊗ y))− θC ∗ (x⊗ y) = θC ∗ (ι(y)x⊗ 1− x⊗ y) = θC ∗ (ι(y)⊗−1⊗ y) ? 1⊗ x ∈ im(∂∗)

This shows that f ◦ µ̄ = idcoker(∂∗) and µ̄ is bijective. �

5. The structure of Ha,b over its center

In this section we continue to assume R is a regular, finitely generated k-algebra.

5.1. Projectivity over the center. Let us denote by Zq± , Z0 and Za,b the centers ofHq± , H0 andHa,b respectively.

Lemma 5.1. We have Zq±
∼= R[q±][X̌]W0 and Z0

∼= R[X̌]W0 with Hq± and H0 finitely generated over them.

Proof. If q is invertible then classical results going back to Bernstein ([Lu, Prop. 3.11]) show that there exists a
commutative subalgebra Aq± ⊂ Hq± such that

(1) Hq± is finitely generated and free over Aq± ,

(2) Aq±
∼= R[q±][X̌] and

(3) Zq± := AW0

q±
∼= R[q±][X̌]W0 is the center of Hq± .



RIGID DUALIZING COMPLEXES OF AFFINE HECKE ALGEBRAS 19

This proves the claim involving Hq± .
The picture for H0 is similar. The algebra H0 again contains a commutative subalgebra A0 over which it is finite

[Vig1, Thm 3]). Moreover, Z0
∼= AW0

0 ([Vig1, Thm 4], see also [Ol2, 2.2.3]). One then follows the proof of [Ol2, Prop.
2.10] to identify Z0 with R[X̌+] which is isomorphic to R[X̌]W0 (cf. Theorem in Section 2.4 of [Lo]). �

Lemma 5.1 suggests the following natural extension.

Conjecture 5.2. We have Za,b
∼= R[a,b][X̌]W0 with Ha,b finitely generated over it.

Next we recall the following properties involving Z[X̌]W0 . If X/Q is free then

• Z[X̌] is free over Z[X̌]W0 ,
• Z[X̌]W0 ∼= Z[Q⊥]⊗Z Z[X̌/Q⊥]W0 ,
• Z[X̌/Q⊥]W0 is a polynomial algebra in the fundamental coweights.

The first result follows from the Pittie-Steinberg theorem [St2, Thm. 1.1]. More precisely, the first statement above
is proven in [St2, Thm. 2.2] (with X in place of X̌). The second and third results follow from [St2, Thm. 1.2(c)]
(interpreted in terms of root systems) and [St1, Thm. 6.1].

In particular, if X/Q is free, R[X̌]W0 is isomorphic to the tensor product of a Laurent series ring and a polynomial
ring. For example, for the based root systems associated to PGLn, GLn and SLn the quotients X/Q are trivial, Z and
Z/nZ respectively. Meanwhile, Z[X̌]W0 is isomorphic to Z[x1, . . . , xn−1], Z[x1, . . . , xn−1, x

±
n ] and Z[x1, . . . , xn−1]Z/nZ

respectively (where the Z/nZ acts by xi 7→ xi+1 for i 6= n− 1 and xn−1 7→ −(x1 + · · ·+ xn−1)).

Proposition 5.3. If X/Q is free then Hq± and H0 are both projective over their centers.

Proof. If X/Q is free then Z0
∼= R[X̌]W0 is regular, connected. On the other hand, by Corollary 4.5, RHa,b

is
supported in one degree. By base change (Proposition 3.13) this implies that RH0 is also supported in one degree.
Thus Proposition 3.15 (miracle flatness) implies that H0 is projective over Z0. The proof for Hq± is the same. �

Remark 5.4. If the based root system is associated to the group SL2 then X/Q ∼= Z/2Z is not free. However, the
results of Proposition 5.3 still hold since in this case R[X̌]W0 ∼= R[x]Z/2Z ∼= R[x2] is a polynomial algebra so the
argument from Proposition 5.3 still applies. This recovers [OS2, Cor. 3.4].

Remark 5.5. In the case of Hq± the standard proof that it is projective over its center uses the fact that it is free
over the intermediate subalgebra Aq± . However, this direct argument fails in the case of H0. In this case the algebra
A0 is more complicated and, in particular, H0 is not projective over A0 (see the introduction of [Ol1]). Nevertheless,
it is still true (if X/Q is free) that H0 is projective over Z0 as a result of miracle flatness (as used in the proof of
Proposition 5.3).

Proposition 5.6. If X/Q is free then RHq±/Zq±
∼= (ι)Hq± and RH0/Z0

∼= (ι)H0.

Proof. We prove the claim for H0 as the proof for Hq± is the same. By Proposition 3.10

RH0
∼= RHomZ0

(H0, Z0)⊗Z0
RZ0

where Z0 is regular because X/Q is free. On the other hand, since H0 = Ha,b/(a,b− 1), we obtain from Corollary
4.5 using base change that

RH0
∼= (ι)H0[d]⊗z0,1 Rz0,1

where z0,1 := z/(a,b− 1) ∼= R[Q⊥]. It follows that

RHomZ0(H0, Z0) ∼= (ι)H0[d]⊗Z0 R−1
Z0
⊗R[Q⊥] RR[Q⊥]

∼= (ι)H0[d]⊗Z0 R−1
Z0/R[Q⊥]

∼= (ι)H0.

The third isomorphism above is because Z0
∼= R[Q⊥]⊗R R[X̌/Q⊥]W0 where R[X̌/Q⊥]W0 is a polynomial algebra in

d variables over R and therefore RZ0/R[Q⊥]
∼= Z0[d]. �

Corollary 5.7. If X/Q is free then assuming Conjecture 5.2 the algebra Ha,b is finitely generated, projective over
Za,b and RHa,b/Za,b

∼= (ι)Ha,b.

Remark 5.8. The result above follows as in the proofs of Propositions 5.3 and 5.6. Conversely, applying base change
(cf. Corollary 3.13), Corollary 5.7 immediately implies Propositions 5.3 and 5.6.

Remark 5.9. By Proposition 3.10, we know that RH0
∼= RHomZ0(H0,RZ0) which implies in particular that RH0 is

an H0 ⊗Z0
Ho

0 -module. As we saw above, using base change, we have RH0
∼= (ι)H0[d] ⊗z0,1 Rz0,1 . It follows that ι

must act trivially on Z0. The same is true for Hq± and Zq± . This recovers [Ol2, Prop. 3.2] which was proved by
explicit calculation.
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5.2. Frobenius structure. Consider a pair of rings S ⊂ S′. Recall that S′ is a Frobenius (resp. free Frobenius)
extension of S if:

(1) S′ is a finitely generated, projective (resp. free) S-module,

(2) there exists an isomorphism φ : S′
∼−→ HomS(S′, S) of (S′, S)-bimodules.

In such cases one can define the bilinear form S′ × S′ → S via 〈x, y〉 := φ(y)(x). Suppose S ⊂ S′ is a free Frobenius
extension with S commutative. By [BF, Cor. 1.2], if {xi} is a basis of S′ over S then the matrix [〈xi, xj〉]i,j is an
invertible matrix over S.

Corollary 5.10. Suppose X/Q is free and R = k. Then Hq± and H0 are both free Frobenius extensions over their
centers. The same is true of Ha,b if we assume Conjecture 5.2. The Nakayama automorphism in all three cases is ι.

Proof. By Lemma 5.1 and Proposition 5.3, H0 is finitely generated, projective over Z0. Since this center is the tensor
products of a polynomial and Laurent series and R = k it follows (e.g. [Ga, Thm. 2.1]) that H0 are actually free over
Z0. The free Frobenius structure now follows since, as we saw in Proposition 5.6, RHomZ0

(H0, Z0) ∼= (ι)H0. The
proofs involving Hq± and Ha,b are the same. �
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