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a b s t r a c t

The development of thermal convection is studied for a viscoplastic fluid. If the viscosity is finite at zero
shear rate, the critical Rayleigh number for linear instability takes the value given by a Newtonian fluid
with that viscosity. The subsequent weakly nonlinear behaviour depends on the degree of shear thinning:
with moderate shear thinning, convective overturning for a given temperature difference is amplified
relative to the Newtonian case. If the reduction in viscosity is sufficiently sharp the transition becomes
eywords:
iscoplastic fluids
onvection
ield stress

subcritical (the relevant situation for many regularized constitutive laws). For an infinite viscosity at
zero shear rate, or a yield-stress, the critical Rayleigh number for linear instability is infinite. Nonlinear
convective overturning, however, is still possible; we trace out how the finite-amplitude solution branches
develop from their Newtonian counterparts as the yield stress is increased from zero for the Bingham fluid.
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. Introduction

Thermal convection of viscoplastic fluids is important in many
ndustrial and geophysical applications. Perhaps the most famil-
ar example is the heating of porridge: “If porridge is cooked in a
ingle saucepan and not stirred it will burn at the bottom. It can
till be poured – it is still liquid, but at a certain stage of sticki-
ess convection currents can be prevented even when the bottom

s some hundreds of degrees hotter than the top.” [1].1 Jeffreys
ttributed the lack of convection solely to high viscosity, but por-
idge is viscoplastic [4] and its non-Newtonian rheology seems to
e important for suppressing convection. Although he did not rec-
gnize any application to porridge, Jeffreys [3] and several other
eophysicists contemplating the thermal convection of the Earth’s
antle, were among the first to appreciate that a finite “strength” of
fluid would have substantial effects on convection [5–7]. Orowan
Please cite this article in press as: N.J. Balmforth, A.C. Rust, Weakly nonli
doi:10.1016/j.jnnfm.2008.07.012

7] showed particular insight remarking that thermal convection
ould not readily initiate if the fluid has a finite yield stress, but the
ewtonian solution is a reasonable approximation once convection

s underway.

∗ Corresponding author.
E-mail address: Alison.Rust@bristol.ac.uk (A.C. Rust).

1 Rumford [2] actually initiated the scientific study of thermal convection with a
ecount of his bowl of rice porridge that after an hour on a stove became cold on
op but hot enough at the bottom to burn his mouth. As a result early articles often
eferred to thermal convection as “the porridge problem” [3].
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layer of Carbopol fluid heated from below confirm that yield strength
iently strong perturbation can initiate overturning.

© 2008 Elsevier B.V. All rights reserved.

The onset of thermal convection in a layer of Newtonian fluid
onfined between plates maintained at different temperatures (the
ayleigh–Bénard problem) is a classic model of instability theory
nd pattern formation. Indeed, the development of weakly non-
inear theory for the problem [8] laid part of the foundation for
he modern theory of dynamical systems. Our goal in the cur-
ent article is to map out a corresponding analysis for viscoplastic
uid convection. Though one might at first sight imagine this to be
traightforward, details of the constitutive model can significantly
omplicate the situation.

More specifically, a crucial detail of instabilities in viscoplastic
uids is the impact of the yield stress: when patterns develop from
motionless background state, as in the Rayleigh–Bénard prob-

em, that equilibrium is always linearly stable because the yield
tress can only be overcome by a finite perturbation (cf. [9]). Yet,
s also remarked by Orowan, it seems reasonable that the nonlin-
ar convective state is not substantially affected by the yield stress,
specially when it is small. A similar situation arises for generalized
ewtonian fluids without a yield stress if the viscosity diverges at
ero shear rate, as for a shear-thinning power-law fluid.

In Section 2, we develop the weakly nonlinear theory. We
pproach the problem by treating non-Newtonian effects as small.
his allows us to begin a perturbation expansion from the weakly
near viscoplastic convection, J. Non-Newtonian Fluid Mech. (2008),

onlinear Newtonian convection solution. We thereby build the
mall non-Newtonian effects into the weakly nonlinear model at
he same stage of the expansion as the tuned linear instability and
onlinear saturation (the key effects in the Newtonian problem
8]). Importantly, this signifies that we perturb from a fully yielded

dx.doi.org/10.1016/j.jnnfm.2008.07.012
http://www.sciencedirect.com/science/journal/03770257
mailto:Alison.Rust@bristol.ac.uk
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onvective state and we do not therefore have to face issues regard-
ng the breakup of the rigid plug characterizing the motionless
onductive equilibrium. Métivier et al. [10] propose an alternative
pproach which adds a background shear flow.

The tools developed in Section 2 allow us to draw some general
onclusions regarding the effect of shear thinning on convection
or generalized Newtonian fluids without a yield stress (Section
). We restore the yield stress and describe detailed results for
he Bingham fluid in Section 4, and compare the weakly nonlinear
esults with computations of the fully nonlinear steady convec-
ive states, which also extends the solutions to higher amplitude
nd further from the Newtonian limit. Section 5 deals with some
nalytical solutions to the problem in the limit of short horizontal
cale, and Section 6 reconsiders Orowan’s “plastic convection”. We
lso describe some laboratory experiments on the initiation of ther-
al convection in Carbopol (Section 7). We conclude by discussing

ome industrial and geological applications.

. Weakly viscoplastic and nonlinear convection

.1. Formulation

Our goal in this section is to detail a weakly nonlinear theory
or a mildly viscoplastic fluid. With that in mind, we consider an
ncompressible, two-dimensional, Boussinesq fluid layer confined
etween two horizontal plates held at different temperatures and
haracterized by some (constant) kinematic viscosity, �0. The pre-
ise choice of this viscosity will become clear later, but for now its
ntroduction allows us to develop weakly nonlinear theory as for a
ewtonian fluid, and add non-Newtonian effects as a perturbation.
he configuration is described by a cartesian coordinate system (x,
) in which z points upwards.

As in the conventional development of the Newtonian problem,
he equations of motion are expressed conveniently in a dimen-
ionless form, using the depth of the fluid layer, d, in combination
ith the thermal conductivity, �, to build units for length, speed

nd time, and the temperature difference across the plates, T1 − T2,
o measure temperatures (where T1 and T2 denote the temperatues
f the lower and upper plates, respectively). In terms of a stream-
unction, (x, z, t), describing the velocity field, (u,w) = (− z, x),
nd a temperature perturbation, �(x, z, t), the equations are

1
�

[∇2 t + J( ,∇2 )] = ∇4 + R�x + N (1)

t + J( ,�) = ∇2� + x, (2)

here J(f, g) = fxgz − fzgx and

= �0

�
and R = g˛(T1 − T2)d3

�0�
(3)

re the usual Prandtl number and Rayleigh number, with g being
ravity, and ˛ the thermal expansion coefficient. The t, x and z sub-
cripts denote partial derivatives; we depart from this notation only
hen considering the components of the stresses.

The quantity N originates from the non-Newtonian part of the
uid stresses. More specifically, we denote the dimensional devia-
oric stress tensor by

= ��0

[
�

d2

(
2ux uz +wx
uz +wx 2wz

)
+ �
�

]
, (4)
Please cite this article in press as: N.J. Balmforth, A.C. Rust, Weakly nonli
doi:10.1016/j.jnnfm.2008.07.012

hich separates the characteristic viscous stresses from the dimen-
ionless non-Newtonian components, �� (scaled by ��0). Then,

= ∂2��xz
∂x2

− ∂2��xz
∂z2

− 2
∂2��xx
∂x∂z

. (5)

A

∇

∇
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ote that we therefore assume that the motionless conduction state
s not pre-stressed in any way (so the stress � has no background
omponent). To allow us analytical inroads into the problem, we
olve the equations subject to periodic boundary conditions in x and
tress-free, impermeable conditions on the plates:  = zz = 0 on
= 0 and 1. No slip conditions, = z = 0, are potentially more natu-
al, but do not lead to analytical results. However, weakly nonlinear
heory can still be applied to that problem, yielding the ampli-
ude equation we derive shortly, but with coefficients that require
umerical evaluation.

.2. Asymptotic expansion

We find a weakly nonlinear solution of the problem by introduc-
ng a small parameter ε� 1, together with the asymptotic scalings
nd sequences,

∂

∂t
= ε2 ∂

∂T
, R = Rc + ε2R2, N = ε3N3, (6)

nd

= ε 1 + ε2 2 + ε3 3 + . . . , � = ε�1 + ε2�2 + ε3�3 + . . . (7)

he critical Rayleigh number, Rc, characterizes the onset of convec-
ion. The final relation in (6) amounts to a distinguished scaling in
hich the non-Newtonian effects are tuned to enter the expansion

t a certain order, enabling a convenient evaluation of their effect.
ow the distinguished scaling can be achieved will be described

ater, when we consider some constitutive laws explicitly.
Via the usual asymptotic machinations, we isolate the terms

f equal order in ε, and solve the resulting hierarchy of equations
equentially. At O(ε),

4 1 + Rc�1x = 0 (8)

2�1 + 1x = 0, (9)

hich have the solution,

1 = A sin(kx +�) sin�z,

�1 = �k2A

2(�2 + k2)
cos(kx +�) sin�z, (10)

here A(T) and �(T) are not yet determined. For the very onset
f convection, we should take k = �/

√
2 and Rc = 27�4/4, which

orresponds to the normal mode that first becomes unstable in the
ewtonian problem [8]. However, the weakly nonlinear analysis
pplies to modes with any horizontal wavelength so we avoid this
election of k, except in considering specific examples. The critical
ayleigh number is then Rc = (�2 + k2)

3
/k2.

At next order, we find

4 2 + Rc�2x = 1
�
J( 1,∇2 1) = 0 (11)

nd

2�2 + 2x = J( 1, �1) = �k2A2

2(�2 + k2)
sin 2�z, (12)

hich can be solved with

2 = 0, �2 = − k2A2

8�(�2 + k2)
sin 2�z. (13)
near viscoplastic convection, J. Non-Newtonian Fluid Mech. (2008),

t O(ε3),

4 3 + Rc�3x = 1
�

∇2 1T − N3 − R2�1x (14)

2�3 + 3x = �1T + J( 1, �2), (15)

dx.doi.org/10.1016/j.jnnfm.2008.07.012
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r

6 3−Rc 3xx = (1+�−1)∇4 1T+R2 1xx−Rc 1xx�2z−∇2N3. (16)

he solution requires the satisfaction of the solvability conditions,
T = 0 and

(1 + �−1)
(�2 + k2)

2

k2
AT

= R2A− 1
8

(�2 + k2)
2
A3 − 4

k2
(�2 + k2)〈N3 sin(kx +�) sin�z〉,

(17)

here the angular brackets denote the integral average over the
omain, 0 < kx < 2� and 0 < z < 1. Eq. (17) is the desired amplitude
quation; without the non-Newtonian effects and for k = �/

√
2,

t predicts the supercritical onset of steady nonlinear states with
2 = 9�2A2/16 (e.g. [8]). The final term is the non-Newtonian con-
ribution, which has been brought into the amplitude equation at
his order via the distinguished scaling, N = ε3N3. Had we chosen
larger scaling, the non-Newtonian effect would have dominated

he combination of linear instability and nonlinear saturation.

. Shear-thinning effects

Consider now a generalized Newtonian fluid with the nonlinear
iscosity,

=�(̇), ̇=
√

4u2
x + (uz +wx)2 =

√
4 2

xz + ( zz − xx)2. (18)

e focus on onset and take k = �/
√

2, implying that, to leading
rder,

˙ → 3�3ε|A|
2
√

2

√
8 cos2(kx+�) cos2�z+sin2(kx+�) sin2�z ≡ ε̇1.

(19)

hus, we identify the characteristic scale �0 =�(0), and then
he Taylor expansion of the viscosity law is � = �0 + �′(0)̇ +
1/2)�′′(0)̇2 + . . . Thence,

N ≡
(
∂2

∂x2
− ∂2

∂z2

)[(
�

�0
− 1

)
( xx − zz)

]

+ 4
∂2

∂z∂x

[(
�

�0
− 1

)
 xz

]
. (20)

ote that in writing the equation above, we must assume that �′(0)
s finite and that we can adjust the size of the coefficients �′(0) and
′′(0) as needed to ensure that N = O(ε3). However, many constitu-
ive models such as the power-law fluid have �0 = 0 and �′(0) → ∞.
t is well appreciated that such behaviour is unphysical and a reg-
larization procedure applied to limit the viscosity. The resulting
egularized model can then be analyzed as follows. Otherwise, one
ust proceed down a similar avenue to that used for the Bingham
odel in Section 4. (It is more difficult to perturb off a Newtonian

uid for constitutive models like the power-law fluid.)

.1. �′(0) = 0

If �′(0) = 0, we may write
Please cite this article in press as: N.J. Balmforth, A.C. Rust, Weakly nonli
doi:10.1016/j.jnnfm.2008.07.012

�

�0
− 1 → −ε2�2̇

2
1 , (21)

here �2 = −�′′(0)/2�0, with the sign included to reflect shear thin-
ing. The non-Newtonian term, N, automatically turns out to be

t
a

B
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rder ε3, and performing the needed integrals in the amplitude
quation (17) gives,

1 + �−1)
9�2

2
AT = R2A− 9�2

32
A3

(
1 − 601�4�2

12

)
. (22)

hus, the weakly nonlinear branch that bifurcates from the conduc-
ion state at the critical Rayleigh number is

2 = 9�2

32
A2

(
1 − 601�4�2

12

)
. (23)

or a given Rayleigh number (temperature difference), shear
hinning therefore counterbalances the suppression of the mean
emperature gradient (the main Newtonian nonlinear effect) and
llows the unstable mode to grow to greater amplitude. Indeed,
f �2 is sufficiently large, the right-hand side of Eq. (23) becomes
egative, reflecting how the nonlinear solution appears at lower
ayleigh numbers than the critical value. In other words, sufficient
hear thinning can make the transition to instability subcritical.

.2. �′(0) /= 0

If �′(0) /= 0, we take �′(0)/�0 = −ε�1, to ensure that N = O(ε3).
he non-Newtonian contribution can be evaluated to give an ampli-
ude equation with the form,

1 + �−1)
9�2

2
AT = R2A+�A2 sgn(A) − 9�2

32
A3

(
1 − 601�4�2

12

)
,

(24)

here � is a positive numerical constant proportional to �1. The
onlinear steady branch is then

2 = 9�2

32
A3

(
1 − 601�4�2

12

)
−� |A|. (25)

ufficiently close to the bifurcation, the viscosity correction embod-
ed in� dominates the nonlinear terms and generates a subcritical
ransition. Provided 1 > 601�4�2/12, the branch subsequently turns
round in a saddle-node bifurcation and becomes a stable nonlinear
ranch. Sketches summarizing the results for�′(0) = 0 and�′(0) /= 0
re illustrated in Fig. 1.

.3. Regularized constitutive laws

Regularized viscoplastic constitutive laws typically have the fea-
ure of replacing a singular character at zero shear rate with a
ewtonian, but strongly viscous, behaviour. In this situation, one
an identify the characteristic scale �0 as the regularized, zero-
hear-rate viscosity, and this viscosity dictates the linear instability
hreshold. However, by definition, the constitutive law should be
xtremely shear thinning in order to capture a sudden switch to the
nregularized viscoplastic model. Our results above then indicate
hat the transition to instability must become subcritical.

For example, a possible regularization of the Bingham model is
ncorporated in the law,

= ��p

[
1 + B

(ım + ̇m)1/m

]
̇, (26)

here �p is the equivalent plastic viscosity, m and ı� 1 are posi-
near viscoplastic convection, J. Non-Newtonian Fluid Mech. (2008),

ive parameters (with ε� ı so as not to violate the ordering of the
symptotic expansion of Section 2) and

= �yd2

��p�

dx.doi.org/10.1016/j.jnnfm.2008.07.012
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The steady finite-amplitude solutions are now given implicitly
by

R2 = 1
8

(�2 + k2)
2
A2 + B3�

|A| . (34)
ig. 1. Sketches of the bifurcating branches of steady convection for a Newtonian fl
on-Newtonian examples are given (labelled “mildly” and “strongly” thinning), sho

s equivalent to a Bingham number based on the large shear rate,
ffective yield stress, �y. We may define

0 ≡ �p

(
1 + B

ı

)
� �p,

s the characteristic viscosity, which therefore gives a critical
ayleigh number much higher than that for a Newtonian fluid with
iscosity �p. (Alternatively we may keep �p as the characteristic vis-
osity, in which case, B/ımust be taken O(ε3), as done explicitly in
he next section.)

For m = 2, �′(0) = 0 and the viscosity law Taylor expands to give

2 ≡ 1
2ı(B+ ı) ≈ 1

2ıB
� 1. (27)

his factor easily overcomes the suppression of the mean tempera-
ure gradient to reverse the criticality of the transition to instability.

If m = 1 on the other hand,

�′(0)
�0

≡ − B

ı(B+ ı) , (28)

hich can be tuned to be order εby taking B = O(ε). Thus, either way,
he transition becomes subcritical, as illustrated by the “strongly
hinning” cases of Fig. 1. Note that the popular Papanastasiou [11]
egularization gives similar results to Eq. (28), but with �1 propor-
ional to the “stress growth parameter”.

The regularizations discussed above assume a strongly viscous
ow-shear-rate behaviour. However, materials such as Carbopol also
isplay significant elasticity in this regime. A viscoelastic regular-

zation of the Bingham model actually allows for the possibility of
n oscillatory type of convective instability. In Appendix A we show
hat this instability is unlikely in practice.

. The Bingham model

.1. Weakly nonlinear results

For the Bingham model, with plastic viscosity, �0, and yield
tress, �y,

=
(
��0 + �y

̇

)
̇, if �y <

√
�2
jk

2
, (29)

e have
Please cite this article in press as: N.J. Balmforth, A.C. Rust, Weakly nonli
doi:10.1016/j.jnnfm.2008.07.012

= B ̇
̇
, (30)

here the Bingham number is again B = �yd2/(���0). To ensure that
= O(ε3), we therefore take B = ε3B3.

F
m
b

nd a shear-thinning material with (a) �′(0) = 0 and (b) �′(0) /= 0. In each case, two
the two possible behaviours.

Eq. (29) applies when the fluid is yielded; otherwise, we set ̇ =
̇2
jk
/2 = 0. The perturbation analysis assumes that the perturbed

tate remains fully yielded. Indeed, it is straightforward to show
hat, for the Newtonian normal mode, ̇ = 0 only at distinct points.
owever, it is conceivable that unyielded plugs develop about those
oints when the yield stress is introduced. We return to this issue
elow when we describe some fully nonlinear computations (see
lso [9]); for now, we assume that the development of any plugs
oes not affect the accuracy of the perturbation theory.

With this assumption, we perform the integral describing the
on-Newtonian contribution in the amplitude equation (17):

1 + �−1)
(�2+k2)

2

k2
AT = R2A− 1

8
(�2 + k2)

2
A3 − B3� sgn(A), (31)

here

� ≡ 4
k2

(�2 + k2)

×
〈√

4�2k2 cos2 kx cos2 �z+(�2−k2)2 sin2 kx sin2 �z

〉
(32)

78.32 if k = �√
2
. (33)

ote that, if A = 0, we should interpret sgn(A) = 0, which allows for
he conduction equilibrium solution in this equation.
near viscoplastic convection, J. Non-Newtonian Fluid Mech. (2008),

ig. 2. Steady solutions to the amplitude equation (31) for varying values of� B3 (as
arked). Only the solutions with positive A are shown—the corresponding solution

ranches with A < 0, are obtained by reflection about the R2-axis.

dx.doi.org/10.1016/j.jnnfm.2008.07.012
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mportantly, there is no longer any connection between the finite-
mplitude branches and the conduction state (A = 0). Instead, the
emnant of the stable nonlinear solution turns around in a saddle-
ode bifurcation near the Newtonian linear onset, and proceeds off
o (R2, A) → (∞,0) as an unstable nonlinear solution branch (Fig. 2).

The saddle-node occurs for

=
[

4B3�

(�2 + k2)2

]1/3

and R2 = 3
2

[
1
2
B3� (�2 + k2)

]2/3
. (35)

he lower, unstable solution branch also has the asymptote,

A| → �B3

R2
, (36)

or large R2. In the simple dynamical system, in addition to deter-
ining the amplitude of the unstable mode, this is also the

hreshold to which the mode amplitude must be kicked in order
o observe a transition to finite-amplitude convection on the stable
ranch.

.2. Numerical results

To complement the weakly nonlinear theory, we solve the steady
ersions of Eqs. (1) and (2) numerically using the truncated Fourier
eries,

=
J∑
j=1

N∑
n=1

[A(1)
nj

sin(2j−1)kx sin(2n−1)�z+A(2)
nj

sin 2jkx sin 2n�z],

(37)

=
J∑
j=1

N∑
n=1

[B(1)
nj

cos(2j − 1)kx sin(2n− 1)�z

+B(2)
nj

cos 2(j − 1)kx sin 2n�z], (38)

hich preserve the Boussinesq symmetry. Projection of the gov-
rning equations onto each Fourier mode generates a system of
onlinear algebraic equations that we solve by Newton iteration,
tarting with guesses guided by the weakly nonlinear theory or
xisting solutions. For simplicity, we take �→ ∞, which removes
he nonlinear advection terms from the momentum equations.

Results for B = 0 and 1 are shown in Fig. 3, which displays
Please cite this article in press as: N.J. Balmforth, A.C. Rust, Weakly nonli
doi:10.1016/j.jnnfm.2008.07.012

he bifurcated branches of nonlinear overturning states on the (R,
)-plane, where the amplitude, A = A(1)

11 (i.e. the first modal coef-
cient in the Fourier expansion of  ). Except at the highest mode
mplitudes, the weakly nonlinear theory matches the nonlinear
omputations.

(
p
s
d
r

ig. 4. Numerical solution for B = 1 and R = 5.1667Rc along the upper branch of nonlinear
hear rate, ̇ , as densities on the (x, z)-plane. The dotted contours indicate the streamfunc
onlinear result for B = 1 (B = 0). The dashed lines shows the corresponding asymp-
otic result for the regularized model (26) with B = ı= 1 and m = 2, but derived in the
imit B = O(ε3) and ı= O(ε). The points show the results of numerical computations
aking N = J = 16 and �→ ∞. The circle indicates the solution of Fig. 5.

To connect the current analysis with Section 3, we also include in
ig. 3 results for the regularized model (26) with m = 2. The weakly
onlinear results assume B = O(ε3) and ı= O(ε) in the regularization,
o the non-Newtonian contribution to the amplitude equation (17)
an be written as

2A−1B3〈̇2
1 (ı2 + ̇2

1 )
−1/2〉. (39)

or large amplitude, this contribution becomes small and we
ecover the Newtonian solution, but for A → 0, the regularized vis-
osity dominates to give a linear damping term that corrects the
ritical Rayleigh number. The results in Fig. 3 are computed with the
omewhat larger value, ı= 1, but the weakly nonlinear predictions
evertheless match the numerical computations.

Two planforms of nonlinear solutions are illustrated in
igs. 4 and 5. These pictures show a solution along the upper
ranch of stable nonlinear states, and one along the unstable lower
ranch, respectively. In both cases, the plots of the total deforma-
ion rate, ̇ , suggest that small plug regions may develop near the
oundaries and middle of the layer (the former being allowed by
he stress-free boundary conditions). These regions are not par-
icularly well captured by our numerical scheme and cause the
ourier series to converge slowly. Indeed, to improve the conver-
ence, it is helpful to include the regularization described above
near viscoplastic convection, J. Non-Newtonian Fluid Mech. (2008),

but with ı= 10−3 or so, which assists the convergence by sup-
ressing the tails of the spectra, whilst not overly smoothing the
olutions). Nevetheless, the plugs remain localized near onset and
o not appear to influence the accuracy of the weakly nonlinear
esults. Further from onset, extensive plug regions can develop, as

overturning states. Panels (a) and (b) show the temperature perturbation, �, and
tion,  .

dx.doi.org/10.1016/j.jnnfm.2008.07.012
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Fig. 5. Numerical solution for B = 1 and R = 1.375Rc along the lower bra

llustrated by the short wavelength patterns described in the next
ection.

. Short-wavelength patterns

.1. Vertically localized rolls

The nonlinear solutions constructed above have k = �/
√

2, in
ine with the most unstable modes of the Newtonian problem. We
ow depart from that choice of wavelength and illustrate a family of
olutions with short horizontal scale which can be constructed ana-
ytically: As illustrated in Fig. 6, in the limit of k � 1, the numerical
olutions become dominated by a single horizontal wavenumber
nd occupy a localized, yielded region centred in the fluid layer.
bove and below this layer, the fluid is unyielded and stagnant.
s shown in Appendix B (and illustrated in Fig. 6), these layered
olutions are approximately given by

= � (z) cos kx, (40)

ith

(z) =
{

4
3�
BM−2

[
1 + cos M

(
z − 1

2

)]
,

∣∣∣z − 1
2

∣∣∣ ≤ �M−1

0, elsewhere
(41)

nd
Please cite this article in press as: N.J. Balmforth, A.C. Rust, Weakly nonli
doi:10.1016/j.jnnfm.2008.07.012

=
√
R− k4

3k2
. (42)

hich are valid for R ∼ k4 and M ∼ k (Rc ≈ k4 for k � 1).

A

F
(
s

ig. 6. Short-wavelength, layered solutions for k = 1000 and three values of R (as indicated)
he main panel shows the streamfunction, , divided by cos kx, at 10 positions in x to emph
he asymptotic result in (41). The insets show plots of the corresponding temperature per
f nonlinear overturning states. The panels are as represented in Fig. 4.

.2. Viscoplastic elevators

A second analytically accessible family of solutions are the peri-
dic arrays of “elevators” considered by Gershuni & Zhukhovitskii
12] which are the z-independent solutions to (1) and (2) for an
nfinitely deep layer. The fluid yields and shears in localized zones
eparated by uniformly ascending and descending plugs. The ele-
ator system is illustrated in Fig. 7, and, in the current notation, can
e described as follows. If we centre one of the sheared zones at
= 0, the streamfunction there is

= A
(

cosmkx
cosm˙

+ cosh mkx
cosh m˙

)
for −˙ ≤ kx ≤˙, (43)

nd the plugs bordering this zone are given by

= 2A

[
(�/2) − kx
˙ − (�/2)

]
, over ˙< |kx|< � −˙. (44)

ere, m = R1/4/k, and the scaled half-width of the sheared region,
, is given implicitly by the relation,

= m
(
�

2
−˙

)
(tan m˙ − tanh m˙). (45)

The amplitude, A, is determined from

k2B m
[

2
(
�

) ]−1
near viscoplastic convection, J. Non-Newtonian Fluid Mech. (2008),

=
R (�/2)−˙ 3

m
2

−˙ + tan m˙ + tanh m˙ . (46)

ig. 7 shows how � and A vary with m. Note that (˙, RA/k2B) →
�/2,1/2) as m → 1 (the onset of convection in the Newtonian ver-
ion of the problem), and (˙,RA/k2B) → ((6/�)−1/3m−4/3,6/�2)

; B = 1. The regularization, ı= 0.01, has been included to help compute the solutions.
asize how the solution is dominated by a single wavenumber. The dashed lines show
turbations, �(x, z), as densities on the (x, z)-plane, with superimposed streamlines.

dx.doi.org/10.1016/j.jnnfm.2008.07.012
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ig. 7. Viscoplastic elevator solutions. Panel (a) shows part of a sample elevator syst
he solid curve showing (as given by (43)–(46), with m = 1.6 and˙ =�/4). Panel (b
or Newtonian case and for m → ∞ are shown with starts and dotted lines, respectiv

s m → ∞. Also, the combinations, m4 = R/k4, k2 B/R and kx, are all
ndependent of the layer depth, d, for a fixed background temper-
ture gradient, (T1 − T2)/d. Thus, the solution does not depend on
hat lengthscale (as must be the case) and the problem could be
caled differently at the outset.

Although the elevator solutions appear irrelevant for a layer of
nite thickness, it is conceivable that these solutions may form the
asis of roll solutions with boundary layers adjacent to the bound-

ng plates (though we have been unable to verify this numerically).

. Scalings and plastic convection

The results presented above indicate that, although strongly
nstable convective systems might be linearly stable, there is a
nite amplitude instability. Moreover, the threshold in amplitude
bove which the system must be kicked to initiate convection
ecomes increasingly lower as the Rayleigh number increases. Once
onvection begins, yield stresses become less significant and the
onvective states likely resemble the Newtonian counterparts.

The results further suggest that there are unstable steady states
hose amplitude in  or � scale like B/R (Table 1). The amplitude

caling also incorporates an additional geometrical factor which
llows for the possibility that the solutions become spatially local-
zed, with convective cells separated by rigid plugs. Though it is not
uaranteed, it seems plausible that the amplitude of these steady
tates furnishes an estimate of the threshold for finite-amplitude
nstability (as in the weakly nonlinear theory). The dimensionless
mplitude threshold can then be written as

B

R
= �y

�g˛(T2 − T1)d
, (47)

hich can be viewed alternatively as the ratio of yield stress to
uoyancy. Thus, for example, the introduction of a perturbation
Please cite this article in press as: N.J. Balmforth, A.C. Rust, Weakly nonli
doi:10.1016/j.jnnfm.2008.07.012

ith an associated temperature perturbation of order �y/(�g˛d),
ught to be sufficient to initiate convection.

Note that the asymptotic scaling, ( ,�) ∼ B/R, of the low-
mplitude unstable solutions also suggests a limiting behaviour for

able 1
stimates of amplitudes of stable branches

odel Amplitude

eakly nonlinear (Section 4.1) � B/R ≈ (78B/R) if k = kc = �
√

2
ayered solution (Section 5.1) 8k2B/�R
iscoplastic elevators (Section 5.2) 12k2B/�2R

e
(
w
b
a
e
t
fl
i
t

b

ith the shaded region indicating the yielded zones, the dashed line showingw, and
s the solutions to (45) and (46) for˙ and RA/k2B as functions of m. The solutions

→ ∞ described by the system,

x + R−1N = ∇2� + x = 0, (48)

hich was previously considered by Orowan [7] for thermal con-
ection in a perfectly plastic medium. Orowan suggested that this
ype of convection was realized physically, whereas here we see
hat this is unlikely given that the solutions are unstable.

. Qualitative laboratory experiments

To test the notion that the yield stress replaces a supercritical
ransition at finite Rayleigh number with a subcritical threshold,
e conducted a set of preliminary experiments with Carbopol 940

n a rectangular tank. The tank consists of four glass walls, each
0 cm wide, bonded with silicone sealant to the top of a hollow
etal box, which could be heated to temperatures up to 80 ◦C by
hot water circulation system. The tank was partially filled with
arbopol to a depth (d) between 4 and 11 cm. After a transient, the
asal temperature (T1) was held constant; however, the tempera-
ure at the top of the Carbopol (T2) was not controlled and gradually
armed up from room temperature. Temperatures at several points
ithin the fluid were monitored with thermocouples, and temper-

ture perturbations at the top surface were seen as colours on a
emperature-sensitive liquid–crystal-coated polyester sheet float-
ng atop the Carbopol.

Four concentrations of Carbopol were used: 0.05, 0.06, 0.075
nd 0.1 wt.% dry Carbopol dispersed in distilled water and neutral-
zed with NaOH. The density and thermal properties are essentially
he same as for pure water, and the viscosity and apparent yield
trength variations with temperature are small compared to varia-
ions with shear rate and Carbopol concentration. Estimates of yield
tress based on 1◦, 4 cm diameter cone-and-plate rheometry, and
he sinking of spheres of different sizes and densities [13] are given
n Table 2.

The different concentrations of Carbopol showed marked differ-
nces in their ability to convect: Experiments where 0.05% Carbopol
�y < 0.1 Pa; Table 2) was heated from below lead to convection
ithout imposing any external trigger. The ratio of yield stress to

uoyancy (B/R) is very low for this concentration, and the rise of
few air bubbles, slight lateral variations in temperature, or other

xternal vibrations might easily be responsible for overcoming the
hreshold for convection. Indeed, we estimate that temperature
near viscoplastic convection, J. Non-Newtonian Fluid Mech. (2008),

uctuations of less than 1 ◦C are necessary to initiate convection
n this fluid (see the final column of Table 2, which estimates the
hreshold described in Section 6).

By contrast, none of the other concentrations spontaneously
egan to convect if left undisturbed. For the range of fluid depths

dx.doi.org/10.1016/j.jnnfm.2008.07.012
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Table 2
Summary of conditions and results for a subset of the experiments

Carbopol (wt.%) �y (Pa) d (m) T1 − T2

(◦C)
Convects? B/R �y/(�g˛d)

(◦C)

0.05 <0.1 0.044 27 Yes <0.04 <1
0.05 <0.1 0.113 36 Yes <0.01 <0.4
0.06 0.3 0.1 50 No/Yes* 0.03 1.5
0.075 2 0.1 50 No 0.2 10
0.1 10 0.1 50 No 1 49

The two 0.05 wt.% Carbopol experiments quote the temperature difference recorded
at the onset of convection, whereas the temperature differences for the three other
experiments are the maxima imposed. The lengthscale d is used where necessary,
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hich underestimates the characteristic perturbation amplitude of the final col-
mn, �y/(�g˛d) (see Section 6), if the relevant lengthscale is actually the growing
oundary-layer thickness rather than d. The * indicates when tank-scale convection
as only initiated with a major perturbation.

nd temperature limits described above, convection was only ini-
iated with the 0.06% Carbopol (�y ≈ 0.3 Pa) if the system was
ubstantially perturbed by methods such as injecting large air bub-
les at the base, or mixing up a column of fluid in the tank with a
tirrer. Attempts to destabilize the 0.075 and 0.1% Carbopol (�y ≈ 2
nd 10 Pa, respectively) by such methods caused only local tran-
ient temperature perturbations and did not generate any thermal
lumes or tank-scale convection. Thus, the experiments also sug-
est that yield stress suppresses convection but can be overcome
ith a sufficient kick to the system. Furthermore, the amplitude

f the perturbation required to initiate convection increases with
ncreasing yield strength. Nevertheless, a proper quantitative com-
arison with the theoretical results of Sections 3 and 4 requires
xperiments with better controls on the temperature of the top
urface.

. Summary and applications

In this article we have explored how the steady, weakly non-
inear, overturning solutions of the Newtonian Rayleigh–Bénard
roblem are modified when the fluid is made viscoplastic. Shear
hinning amplifies the overturning states for a given temperature
ifference, and can make the transition to instability subcritical if
he degree of thinning is sufficiently large. The introduction of a
ield stress suppresses the linear convective instability entirely.
nstead, an unstable, subcritical branch of nonlinear convective
tates bifurcates from infinite Rayleigh number. That branch turns
round in a saddle node near the onset of Newtonian convection to
enerate stable overturning solutions corresponding to the orig-
nal Newtonian convective states. The theory suggests that the
nstable branch has a (dimensionless) amplitude scaling of B/R,
hich suggests that a temperature perturbation of order �y/(�g˛d)

s necessary to kick the system off the conducting state into finite-
mplitude convection.

According to weakly nonlinear theory, the turn-around in the
addle-node occurs at Rayleigh numbers of order B2/3, where B is
Bingham number based on the velocity scale, �/d (Section 3.3).

his suggests that stable convective solutions cease to exist when
he yield stress becomes as high as

y ∼ �[g˛(T2 − T1)]3/2d5/2

(�0�)1/2
. (49)

n other words, convection is turned off by a sufficiently high
ield stress. Nevertheless, two other types of solutions that we
Please cite this article in press as: N.J. Balmforth, A.C. Rust, Weakly nonli
doi:10.1016/j.jnnfm.2008.07.012

ave described (viscoplastic elevators and vertically localized rolls)
xtend down to the Newtonian onset. Though these solutions are
nstable, their existence casts some doubt on the estimate in (49).

These results are relevant to understanding and controlling flow
nd heat transfer in a wide range of industrial and geophysical

t
s
b
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ettings where viscoplastic thermal convection may occur. These
nclude ice slurries in refrigeration systems and around extrater-
estrial bodies [14], drilling muds and gels [15,16], various magma
odies [17,18], and mud volcanoes [19]. Although geophysicists

nterested in convection of the Earth’s mantle were amongst the
rst to consider the effect of yield strength on convection (Section
), the mantle is now generally thought to have a power-law or
ewtonian rheology with significant dependence on temperature
nd pressure. However, yield strength (with highly viscous or elas-
ic sub-yield-stress deformation) has recently been considered in
ttempts to explain superficial plate-like behaviour (e.g. [20,21]).

Our results suggest that in all of these applications, yield
trength will inhibit convection and heat transfer, and that the
reater the yield strength, the larger the perturbation required to
nitiate convection. Furthermore, unlike the Newtonian case, the
onditions (temperature difference and lengthscale) required to
nitiate convection can be quite different from those required to
erpetuate convection. This disparity can be particularly important
or applications where the fluid rheology could change from New-
onian to viscoplastic with time as is indeed the case with porridge.
s another example, we discuss thermal convection of crystal-rich
agmas.
Understanding the role of crystals in magma convection has

mplications for the generation of some types of economic ore
eposits [22] as well as volcanic eruption triggers and magma
egassing [18,23]. Magmas composed of pure melt (silicate liquid),
r melt with dilute suspensions of crystals, are viscous, Newtonian
uids. However, magmas containing substantial volume fractions
f crystals are generally considered to be viscoplastic, and the yield
trength can be estimated, for instance, from the shapes of lava
omes slowly extruded from volcanic vents (e.g. [24]). As a magma
ools (or in some circumstances decompresses), the crystal content,
nd thus the viscosity and yield strength, increase [25]. Hence there
ay be circumstances where crystal-rich magma can continue to

onvect despite a significant yield strength, because the magma
as Newtonian (or had a substantially lower yield strength) when

onvection began, as might occur in magma chambers beneath
olcanoes or in open-channel lava flows [26]. Moreover, for the
obilization of a stagnant layer that is already crystal-rich, it is

ot sufficient to consider the Newtonian criterion for convection
as done by [23]). In this scenario, yield strength may prevent or
ubstantially delay instability, and convection may be limited to
he hotter (less crystalline) portions of the magma chamber.

This picture of magma convection is entirely qualitative. Accu-
ate quantitative predictions of the critical Rayleigh number and
erturbation required for onset are not yet feasible in natural sys-
ems where the geometry and boundary conditions are not ideal,
nd rheology varies substantially both spatially and temporally.
ven in our more simplistic Carbopol experiments, the changing
pper boundary condition precludes quantitative agreement with
heory. Before tackling complex natural problems, experiments
pproximating the ideal conditions of the theory are required.
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ppendix A. Viscoelastic oscillatory instability
near viscoplastic convection, J. Non-Newtonian Fluid Mech. (2008),

Many viscoplastic fluids, including Carbopol, exhibit viscoelas-
ic behaviour at low stresses [27]. However, the ability of the yield
tress to suppress the linear convective instability follows in part
ecause viscoplastic constitutive laws like the Bingham model

dx.doi.org/10.1016/j.jnnfm.2008.07.012
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eglect any deformation below the yield stress. If this behaviour
s regularized by adding a low-shear-rate viscosity, the critical
ayleigh number becomes finite. This leads one to wonder how
he dynamics might be affected by viscoelasticity below the yield
tress, as might be important in materials like Carbopol. In this
ituation, the linear convective instability is controlled by a com-
ination of the viscosity and an elastic relaxation rate. Although
he latter does not influence the transition to steady convection, it
oes lead to the possibility of another type of convective instability

n which rolls overturn in an oscillatory fashion [28,29].
A simple Maxwell model provides a concise illustration since for

he linear instability calculation, all we need is a linear constitutive
aw. More specifically, we interpret �0 as a solvent-like viscosity,
nd�
�ij as the contribution from some equivalent polymeric (elastic)

tresses, with

+��
�t = �̇. (A.1)

n this dimensionless equation, the parameters � and � repre-
ent, respectively, the ratio of polymer to solvent viscosities and
he polymer relaxation time scaled by the diffusion timescale d2/�.

On combining this model with the linearized versions of (1) and
2), looking for normal modes of the form, ( ,�) ∝ eiωt+ikx sin n�z,
nd demanding that ω is purely real, we arrive at the critical con-
itions,

= 0, R = Rst = (1 +�)
K6

k2
(A.2)

r

2 = ��[(1 +�)K6 − k2R]
K2(K2 + �K2 +�)

,

R = Rosc = K2

k2

(
�

�
+ K2

)(
K2 +�+ ���

1 + �
)
, (A.3)

here K2 = n2�2 + k2. The onset of steady convection, as given by
A.2), is therefore modified according to the increase in total viscos-
ty (the factor 1 +�). Moreover, steady convection can be preceded
y the onset of oscillatory convection if the smallest value of the
ritical Rayleigh number, Rosc, in (A.3) over all k lies below the mini-
um of Rst. The most unstable modes for either steady or oscillatory

onvection have n = 1—the tallest vertical modes. The most unstable
orizontal wavenumber remains k = �/

√
2 for steady convection;

he corresponding value of k for oscillations depends on the detailed
arameter settings.

For a sub-yield-stress viscoplastic fluid, one envisions that the
olymeric stresses are relatively large, so that the material behaves
lmost like a rigid solid. That is, the parameters� and� should be
arge. In that limit, onset is given by either

c,st = Mink(Rst) → 27�4�

4
and k = kc = �√

2
(A.4)

r

c,osc=Mink(Rosc) → ��2

1 + � and k = kc ∼
(
�2�

�

)1/4

� 1. (A.5)

hus, the onset of oscillatory convection is unlikely to precede
teady convection. In other words, steady convection is favoured
f a sub-yield-stress viscoplastic fluid is to behave almost rigidly.

ppendix B. Short-wavelength and low-amplitude layered
Please cite this article in press as: N.J. Balmforth, A.C. Rust, Weakly nonli
doi:10.1016/j.jnnfm.2008.07.012

olutions

To understand the structure of the short-wavelength, low-
mplitude, layered solutions, we return to the governing
imensionless equations without the nonlinear advection terms.

R
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e introduce another small parameter, �= k−1 � 1, characterizing
he relatively short wavelength. We then rescale the horizon-
al coordinate and perturbations to suit the short scale: x =��,
u,w) = (U(�, z), �−1W(�, z)), p =�−1 P(�, z) and � =��(�, z). More-
ver, since the short-scale solutions become unstable for R ∼ k4, we
ut R =�−4 +�−2r. Thence,

� +Wz = 0, (B.1)

= −P� + U�� + �2Uzz + �2∂�Txx + �2∂zTxz, (B.2)

= −�2pz+(1 + �2r)�+W�� + �2Wzz + �2∂�Txz + �4∂zTzz, (B.3)

=��� + �2�zz +W, (B.4)

here the yield-stress terms have been rescaled so that
�
�xx,

�
�xz,

�
�zz) = (�Txx, Txz,−�Txx), and

xz = 2BU�√
(W� + �2Uz)

2 + 4�2U2
�

,

xz = B(W� + �2Uz)√
(W� + �2Uz)

2 + 4�2U2
�

. (B.5)

standard asymptotic expansion can be used to solve this set of
quations: let U = U0 +�2U2, W = W0 +�2W2, and so on. To leading
rder,

0� = U0��, 0 =�0 +W0��, 0 =�0�� +W0, U0� +W0z = 0.

(B.6)

hus, the solution is dominated by a single wavenumber:

0 =�0 = � (z) cos �, U0 = −� ′(z) sin �, P0 = −� ′(z) cos �.

(B.7)

ote that, to leading order,

xz → B sgn(W0�) = −B sgn(� sin �). (B.8)

he vertical structure function, ˚(z), follows from considering the
rder �2 equations, and, in particular,

2�� +�2 = −(2� ′′ + r� ) cos � + B∂�[sgn(� sin �)], (B.9)

2zz +W2 = −� ′′ cos �. (B.10)

t this stage, the system does not admit a solution that is periodic in
unless we apply a solvability condition, obtained on multiplying

he relations by cos � and averaging over the horizontal wavelength.
his demands that � satisfies the differential equation,

� ′′ + r� = −4B
�

sgn(� ). (B.11)

o match the numerical solutions described in the main text, we
olve this equation subject to the boundary conditions that (� ,
′) → 0 at the edges of the yielded region, which is centered in the

ayer. This gives the solution quoted in Section 5. The fluid above
nd below the centered yielded region is held rigid by the yield
tress. Although the numerical scheme converges to a solution that
s centered in the layer, in principle the asymptotic solution could
e off-centered with rigid layers of arbitrarily thickness above and
elow.
near viscoplastic convection, J. Non-Newtonian Fluid Mech. (2008),
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