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a b s t r a c t 

An analysis is presented of the thin viscoplastic film coating the wall of a slot or tube as a long bubble is 

displaced down the conduit by ambient fluid flow (the viscoplastic version of a classical viscous problem 

studied by Bretherton). Lubrication theory is used to analyse the limit of low Capillary number and ex- 

amine primarily the effect of a yield stress. The predictions are compared with the results of numerical 

simulations with the open source code Gerris. 
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1. Introduction 

In a seminal paper in interfacial fluid mechanics in 1961,

Bretherton [1] considered how a bubble contained in two-

dimensional slot or axisymmetrical tube would be displaced down

the length of that conduit by an ambient viscous fluid flow.

Bretherton used lubrication theory, which applies when the bub-

ble is long in comparison to its width or radius and the fluid

films buffering the bubble from the walls are relatively thin. In the

limit of small Capillary number (relatively strong surface tension)

Bretherton demonstrated how the speed of the bubble was con-

trolled by the thin fluid films, and provided the relation, 

h ∞ 

∼ 1 . 34 R C 2 / 3 , (1)

where h ∞ 

is the film thickness over the main bulk of the bubble, R

is the slot half-thickness or tube radius and C = μU/σ is the Cap-

illary number, defined in terms of fluid viscosity μ, bubble speed

U and interfacial tension σ . Bretherton’s analysis, which is closely

connected to the classical Landau-Levich theory for the draw-out

of a film from a fluid bath by a plate [2] , was subsequently ex-

tended to higher Capillary numbers by numerical simulations ( e.g.

[3,4] ) and generalized to a number of generalized Newtonian and

viscoelastic fluids [5–9] . 

The goal of the current article is to provide a short discussion

of the viscoplastic version of Bretherton’s problem. In particular,

we focus on how a yield stress affects the relation between the

residual film thickness and Capillary number. For the task, we use

lubrication theory to furnish asymptotic solutions in the limit of
∗ Corresponding author. 
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mall Capillary number. We compare the predictions with numer-

cal simulations using the open source code Gerris. That package

annot properly deal with a yield stress; instead, we regularize the

onstitutive model and use a bi-viscous law in the computations. 

Previous computations and experiments for the propagation of

ubbles down tubes filled with flowing viscoplastic fluid have been

iven by [10–13] . The existing computations deal with relatively

arge Capillary number, outside of the regime of validity of Brether-

on’s lubrication-style theory, and so there is minimal overlap be-

ween our results and these previous studies. Also relevant are ex-

eriments on the viscoplastic Landau-Levich problem [14,15] and

he work of [16] on the steady motion of viscoplastic plugs down

onduits representing idealized airways. A variety of other interfa-

ial flow problems involving bubbles in viscoplastic fluids, of indi-

ect relevance to the present work, are reviewed by [17] . 

. Formulation 

.1. Governing equations 

Consider a bubble in a slot or tube filled with Herschel-Bulkley

uid. The fluid flows down the conduit transporting the bubble at

 speed that differs from the mean fluid speed. The arrangement

s assumed symmetric about the midplane or centerline. Conser-

ation of mass and momentum for the velocity field u , pressure p

nd deviatoric stress τ of an incompressible fluid take the form, 

 · u = 0 , (2)

[
∂u 

∂t 
+ (u · ∇) u 

]
= −∇p + ∇ · τ, (3)

http://dx.doi.org/10.1016/j.jnnfm.2016.06.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jnnfm
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ere, ρ denotes fluid density and we adopt the Herschel-Bulkley

aw to relate the deviatoric stress tensor τ to the deformation

ates: 
 

 

 

˙ γ = 0 , τ < τY , 

τ = 

(
K ˙ γ n −1 + 

τY 

˙ γ

)
˙ γ, τ ≥ τY , 

(4) 

here K is the consistency, n the power-law index, τ Y is the yield

tress, and τ and ˙ γ represent the second-invariants of the stress

ensor and ˙ γ ≡ ∇u + (∇u ) T . 

There is no slip on the wall of the slot or tube. At the left-

and inlet of the conduit, fluid is fed in with uniform speed V .

t the right-hand outlet, “outflow” boundary conditions ( p = 0 and

 u /∂ x = 0 ) are imposed. Inbetween, the flow field converges to a

iscoplastic Poiseuille profile, which is interrupted by the bubble.

t t = 0 , the fluid inside the conduit is motionless and the bubble

s set to have circular or hemispherical ends, buffering a uniform

idsection with radius 0.9 R and length 4 R ; such bubbles are suf-

ciently long that the flow dynamics in steady state is insensitive

o the precise initial shape. On the bubble interface, there is no

angential stress and the normal stress is balanced by interfacial

ension ( i.e. n · τ · n − p = σ (∇ · n ), where n is the normal vector

o the interface). 

.2. Computational details 

We solve the governing equations numerically using the open

ource code Gerris. This scheme uses the volume-of-fluid method

o deal with the interface of the bubble, introducing a concentra-

ion field c ( x , t ) that satisfies the scalar advection equation to track

he interface and distinguish the viscoplastic fluid ( c = 1 ) from the

ubble ( c = 0 ) [18] . The code also uses an adaptive spatial discreti-

ation, providing high resolution along the interface and over the

ubricating thin film [19] . Gerris does not account for the yield cri-

erion of the viscoplastic fuid other than by a regularization strat-

gy; we adopt the following revision of (4) : 

jk = Min 

(
μ + 

cτY 

˙ γ
, μmax 

)
˙ γ jk , (5) 

here μmax is a viscous regularization parameter, along with the

inear interpolations, 

= cρ1 + (1 − c) ρ2 & μ = cK ˙ γ n −1 + (1 − c) μ2 . (6)

n practice, we use R = 1 m and a computational domain of length

7 R , which is large enough to allow the bubble to reach steady

tate as it propagates down the conduit and not be influenced by

nd effects. For the material parameters, we set σ = 1 N/m, K =
 . 03 Pa s n , ρ2 = ρ1 = 1 kg/m 

3 , μmax = 300 Pa s and μ2 = 0 . 03 Pa

. We vary the inflow speed V , yield stress τ Y and power-law index

 to vary the Capillary number and rheology. 

. Lubrication analysis 

To study the shallow film buffering the bubble from the adja-

ent wall, we use h ∞ 

as the characteristic lengthscale across the

lot or tube, and L = h ∞ 

C −1 / 3 as the scale along that conduit. For

erschel-Bulkley fluid, we define the Capillary number C in terms

f a characteristic plastic viscosity μ = K(U/h ∞ 

) n −1 . Given the di-

ensional cross-slot or radial position, r , and axial coordinate, z ,

e introduce a local dimensionless coordinate system ( x , y ) based

n the wall such that 

 = R − h ∞ 

y & z = Lx, (7)

nd denote the dimensionless surface position by y = h (x, t) . 

With ε ≡ h ∞ 

/ L ≡ C 1/3 � 1, the usual lubrication analysis indi-

ates that the pressure p is independent of y through the film. In
iew of the normal stress condition at the interface, we then find

he Laplace-Young relation, 

p = −σh ∞ 

L 2 
h xx 

(1 + ε2 h 

2 
x ) 

3 / 2 
− σ

R − h ∞ 

h 

≈ −σh ∞ 

L 2 
h xx − σ

R 

, (8) 

or the axisymmetric case and p ≈ −σh ∞ 

L −2 h xx for the planar

roblem. Here the subscript x is employed as a shorthand for

erivative. 

The lubrication theory also indicates that the shear stress ( τ rz )

nd ∂ u / ∂ r dominate the other components of the stress and defor-

ation rate tensors. The radial gradient of the shear stress must

herefore balance the axial pressure gradient in the absence of in-

rtia. One can then explicitly solve for the axial velocity field, u ( x ,

 , t ): 

 = 

{
u p [1 − (1 − y/Y ) 1+1 /n ] if 0 ≤ y ≤ Y, 

u p if Y < y ≤ h, 
(9) 

here 

 = Max 

(
h − B 

| h xxx | , 0 

)
(10) 

s the surface dividing fully sheared fluid in 0 ≤ y ≤ Y from plug-

ike flow in Y < y ≤ h , and 

 p = 

nY 1+ 1 n | h xxx | 1 n −1 

(n + 1) 
h xxx & B = 

τY h ∞ 

μU 

(11)

re the plug speed and Bingham number. If Y = 0 in (10) , u p = 0

nd the film is rigidly stuck to the tube wall. 

In steady state, the fluid flux must be constant in the frame of

he bubble ( i.e. 2 πRh ∞ 

∫ R 
0 (u − U) d y ≈ constant). Thus, after scaling,

 = h − nY 
1 
n +1 | h xxx | 1 n −1 

(2 n + 1)(n + 1) 
[(2 n + 1) h − nY ] h xxx , (12)

iven that the film becomes flat, h → 1 and h xxx → 0, away from

he ends of the bubble. 

.1. At the front of the bubble 

We now solve the preceding model in the frame of bubble us-

ng the travelling-wave coordinate ξ = x − Ut, and thereby match

he residual wall layer to the meniscus at the front of the bubble.

n terms of ξ , equations (10) and (12) can be combined into the

lgebraic-differential system, 

 

′′′ = 

B sgn (h − 1) 

h − Y 
, (13) 

nB 

1 
n Y 

1 
n +1 [(2 n + 1) h − nY ] 

(2 n + 1)(n + 1)(h − Y ) 
1 
n 

= | h − 1 | , (14)

s long as the film remains yielded (prime denoting derivative with

espect to ξ ). 

For the front of the bubble, we may assume that h ′′′ > 0 pro-

ided fluid is yielded. However, since h = 1 and h ′′′ = 0 in the flat

esidual film for ξ → −∞ , Y must vanish and the fluid become

igid at a finite yield position in ξ . To the left of this point, we

bandon the system in (13) and (14) and set h = 1 . The yield po-

ition, where h → 1 and Y → 0 from the right, can be shifted

o ξ = x − Ut = 0 in view of the translational invariance. Thus, we

ay solve (13) and (14) only in ξ > 0, given suitable boundary

onditions at ξ = 0 . 

At the yield position, Y → 0 + and so h ′′′ (0) = B . The most obvi-

us boundary conditions on the lower derivatives are that h ′ (0) =
 

′′ (0) = 0 . This would certainly be the case if the constitutive law

ad been regularized in such a way that (10) was replaced by

 = Max (ε, h − B/h ′′′ ) , with ε � 1. Then, continuity across ξ = 0 ,
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Fig. 1. (a) Solutions for a Bingham ( n = 1 ) film near the front of the bubble for B = 10 −4 , 0.01, 1 and 8. Shown are h ( ξ ) (solid) and Y ( ξ ) (dashed); h increases with B , 

whereas Y decreases with B at large ξ . (b) h ξξ (ξ → ∞ ) = κ(B, n ) versus B for n = 1 , 1 
2 

and 1 
4 

(the data decrease with increasing n ). The dashed line is the interpolant 

κ(B, 1) ∼ κ(0 , 1) + 2 . 383 B 2 / 3 ; κ(0, n ) is plotted in the inset along with the approximation 2 . 553 e −0 . 65 n (dashed line) [20] . Computations begin at ξ = 0 with (h, h ′ , h ′′ ) = 

(1 + Bδ3 / 6 , Bδ2 / 2 , Bδ) and δ = 10 −5 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. (a) Lubrication solution for h , Y and h ′ ′ at the back of the bubble for B = 

n = 1 . (b) Comparison of h and h ′ ′ for solutions with B = 0 (grey), B = 1 / 2 (dotted), 

B = 1 (solid) and B = 2 (dashed). The solutions are shifted in ξ so as to align the 

maxima in curvature. The inset of (b) shows the minimum film thickness relative 

to h ∞ against B . The computations exploit a regularization parameter δ equivalent 

to that in (31) : initially we set δ = 10 −3 and a preliminary solution is computed; 

δ is then incrementally reduced to 10 −8 by which point the solution converges to 

the viscoplastic limit. 
now defined as the location where Y = ε, would demand that

h ′ (0) and h ′′ (0) vanish for ε → 0. Any other conditions on ( h , h ′ ,
h ′ ′ ) imply jumps on those quantities across the yield position and

a singular capillary pressure that would force the yield position to

move even had the constitutive model not been regularized. 

We may now shoot away from ξ = 0 and compute the limiting

curvature of the film for ξ → ∞ , 

h ξξ (ξ → ∞ ) ≡ κ(B, n ) . (15)

As argued by Bretherton, this curvature contributes a term to the

total capillary pressure, σh ∞ 

L −2 h xx , that must match the corre-

sponding term for a circular or hemispherical cap: σh ∞ 

L −2 h xx ∼
σR −1 . Thus, 

h ∞ 

R 

∼ C 2 / 3 κ(B, n ) . (16)

Fig. 1 (a) shows computations of the predicted film thickness

h ( ξ ) and boundary of the plug-like region Y ( ξ ) with n = 1 and var-

ious values of B . For B � 1, Y converges to h except near the yield

position and for very large ξ (since h ′′′ → 0 for ξ → ∞ , Y al-

ways diverges from h for sufficiently large ξ whatever the yield

stress). For B � 1, Y becomes much less than h everywhere, signi-

fying that the bulk of the film flows in a plug-like fashion. In this

limit, h ′′′ ∼ Bh −1 . Thus h = G (B 1 / 3 ξ ) , where GG 

′′′ = 1 . 

Computations of κ( B , n ) are shown in Fig. 1 (b). For B → 0, this

quantity limits to the matching constant expected for a power-law

fluid which varies with n as plotted in the inset. For B � 1, on the

other hand, κ ∼ 2.383 B 2/3 , irrespective of n , given that G 

′ ′ → 2.383

for B 1/3 ξ � 1. A simple interpolation formula that bridges between

the two limits, and which works well for n = 1 , is 

κ(B, n ) ∼ κ(0 , n ) + 2 . 383 B 

2 / 3 . (17)

3.2. At the back of the bubble 

We can also solve the lubrication model for the thickening of

the viscoplastic film at the back of the bubble. In this instance,

we can no longer assume that h ′′′ remains of one sign. Indeed, as

indicated by Bretherton, the Newtonian solution takes the form of

a decaying oscillation (see also [21] ). The situation corresponds to

a viscoplastic contact line advancing into a pre-wetted film [22] . 

We now solve (13) and (14) subject to h → 1 on the right and

h → 

1 
2 κξ 2 on the left, with κ determined by (15) which assures

that the solution for the film at the back of the bubble corresponds

to that matching the front meniscus. As illustrated by the nu-

merical solution for B = 1 shown in Fig. 2 (a), the solution accom-

plishes the decay to h = 1 by passing through an infinite sequence

of switches in the sign of h − 1 . This demands that h ′ ′ takes the
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orm of a decaying sawtooth-like oscillation (with corners at the

ign switches). Eventually, the oscillations satisfy the simpler prob-

em h ′′′ ∼ B sgn (h − 1) , indicating that the solution converges to

 series of piecewise cubic polynomials. The oscillations decrease

teadily in wavelength as well as amplitude (unlike the Newto-

ian film which has fixed wavelength), such that the series ter-

inates after a finite distance, furnishing a finite yield position

Jalaal, Balmforth & Stoeber, in preparation ). 

Solutions with three different Bingham numbers are compared

n Fig. 2 (b). The decay to the flat film is faster for higher yield

tress, with a deeper minimum in film thickness achieved rela-

ive to the residual limit h ∞ 

during the first oscillation in h ( ξ ) (see

he inset); the Newtonian value ( h min ≈ 0.716 h ∞ 

) was quoted by

retherton. 

. The film thickness 

.1. The leading-order residual film thickness 

The result in (16) conceals the full dependence of the residual

lm thickness on the parameters of the problem because of our

hoice of dimensionless groups. In particular, both the Bingham

umber B and Capillary number C for n  = 1 are defined above us-

ng h ∞ 

. Thus (16) is actually an implicit equation for the residual

lm thickness. If we define an alternative Capillary number based

n tube radius, 

Ca = 

KU 

n 

σR 

n −1 
, (18) 

hen 

h ∞ 

R 

= Ca 2 / (2 n +1) [ κ(B, n )] 3 / (2 n +1) , (19)

hich unravels the dependence of C on h ∞ 

, if not the Bingham

umber. If we go further and employ the interpolation in (17) , we

rrive at 

(h ∞ 

/R ) (2 n +1) / 3 

κ(0 , n ) + 2 . 383 Bi 
2 / 3 

(h ∞ 

/R ) 2 n/ 3 
= Ca 2 / 3 , (20) 

n terms of another Bingham number 

Bi = 

τY R 

n 

KU 

n 
. (21) 

he relation in (20) predicts that h ∞ 

/ R ∼ 5.7 Bi 2 Ca 2 when the yield

tress term becomes dominant in the denominator, in agreement

ith dimensional analysis of plastic films [2] . 

In some other studies [10–12] , h ∞ 

has been reported as a func-

ion of a different dimensionless group than our Capillary num-

er. In particular, a group was employed based on the effective

iscosity, μ + τY R/U, rather than the plastic viscosity μ. The net

ffect of using this alternative dimensionless parameter is that, al-

hough the introduction of the yield stress at fixed Ca increases

 ∞ 

, the residual wall thickness actually decreases for fixed (μU +
Y R ) /σ ≡ Ca (1 + Bi ) . 1 

.2. Corrected film thickness 

Awkwardly, it is known ( e.g. [23] ) that the validity of Brether-

on’s asymptotic solution for the Newtonian problem is limited to

elatively low values of C (practically, C < 0.01). This limitation

s restrictive when comparing predictions with numerical simu-

ations and experiments. One way to improve the situation in a
1 This is evident from Fig. 3 , presented later, where one must translate each curve 

o the right by a factor 1 + Bi , which easily swamps the trends plotted therein. 

t  

a  

t  

f  
on-asymptotic fashion is to retain the full surface curvature in the

aplace-Young relation [9,25–27] : 

p = −σh ∞ 

L 2 
K , (22) 

here 

 = 

{
h xx (1 + ε2 h 

2 
x ) 

−3 / 2 (slot) , 
h xx (1 + ε2 h 

2 
x ) 

−3 / 2 + (R − ε2 h ) −1 (tube ) , 
(23) 

nd 

 = 

R 

ε2 h ∞ 

. (24) 

he rationale behind this inclusion is that the surface curvature

an then be matched automatically into the meniscus region where

urface gradients become arbitrarily large. As noted by Wilson [25] ,

symptotic justification can be provided by noticing that the addi-

ional terms that are thereby included constitute some of the next-

rder corrections in the lubrication theory, and those that, in par-

icular, enter the leading-order relations over the meniscus. 

We may further introduce a coordinate system based on the

xial surface angle; i.e. θ = tan 

−1 (εh ξ ) . Writing now h = h (θ ) and

 = K(θ ) , we may turn the lubrication equations into the second-

rder problem, 

d h 

d θ
= 

sin θ

ε2 (K − ) 
, 

d K 

d θ
= 

B cos θ

ε(K − )(h − Y ) 
, (25) 

here 

= 

{
0 (slot) , 
cos θ/ (R − ε2 h ) (tube ) , 

(26) 

long with the algebraic relation in (14) and the boundary condi-

ions 

(h, K) → (1 , 0) for θ → 0 (27)

nd 

 → ε−2 R for θ → 

1 

2 

π. (28)

he imposition of three boundary conditions fixes the parameter R
s an eigenvalue in addition to h ( θ ) and K(θ ) . Given this solution,

he axial position x corresponding to the local surface angle θ can

e recovered by integrating 

d x 

d θ
= 

cos θ

ε(K − ) 
. (29) 

Computations of the residual wall thickness (now given by

 ∞ 

/R = ε2 / R ) for this “corrected model” are shown in Fig. 3 . Re-

ults for both planar and axisymmetric bubbles are shown and

ompared with existing results for Newtonian fluids and our cur-

ent computations with Gerris. The predictions are first plotted at

xed B against C , and then for fixed Bi Q against Ca Q , where 

Bi Q = 

Bi 

(1 − h ∞ 

/R ) jn 
& Ca Q = Ca (1 − h ∞ 

/R ) jn , 

here j = 1 or 2 for planar or axisymmetric geometry, respec-

ively. Here, Bi Q and Ca Q are the Bingham and Capillary numbers

efined in terms of the mean fluid speed V = U(1 − h ∞ 

/R ) j (rather

han bubble speed U ), which are the more basic parameters in the

erris computations. 

The predictions of the corrected model in (25) –(29) match the

xisting Newtonian results and Gerris simulations for much higher

esidual film thicknesses than for the leading-order theory. How-

ver, there are still noticeable discrepancies between the lubrica-

ion analysis and Gerris simulations for Capillary numbers as low

s 0.003 when the residual film thickness is of order 0.1 (by con-

rast, for Newtonian fluid, the corrected lubrication analysis per-

orms well in comparison to computations upto Capillary numbers
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Fig. 3. Residual film thickness against C for (a) planar and (b) axisymmetric bubbles, for B = 0 , 0.16, 1.6 and 5 ( n = 1 ). Dashed lines show the leading-order prediction in 

(16) ; solid lines display the results of the model (25) –(29) . The black pentagrams show results using Gerris. The (red) symbols indicate previous results from [23] (circles), 

[3] (stars) and [4] (squares). The dotted line in (b) is the so-called “Taylor law” [24] . In (c) and (d), the Gerris results and asymptotic predictions for fixed Bi Q = 10 , 50 and 

100 are plotted against Ca Q . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Residual film thickness for power-law fluid with n = 0 . 652 . The leading- 

order asymptotic result is shown by the dot-dashed line. The solid and dashed lines 

show the results of the corrected model (25) –(29) for axisymmetric and planar bub- 

bles, respectively. The (almost overlapping) filled symbols show the Gerris results 

(diamonds for axisymmetric and squares for planar). The circles show experimental 

data taken from Kamisli & Ryan [8] . The dotted line shows the Taylor law. 

i  

a  

t  

o  
of order one [27] ). We uncover a possible origin of this discrep-

ancy below by looking in more detail at the flow field and bubble

shape. 

Before that, we conclude this section by showing results for

power-law fluids, which have been studied previously in the cur-

rent context both theoretically and experimentally [8,9,11] . Fig. 4

shows how the predictions of the corrected model for n = 0 . 652

compare well with Gerris simulations upto relatively high Capillary

numbers. As noted previously by Soares et al. [11] , the theoreti-

cal results are lower than measurements from the experiments of

Kamisli & Ryan [8] . The latter match the Taylor law more closely

for reasons that are not clear, but may have a rheological origin

[11] . 

5. Bubble shapes and plugs 

The corrected model of Section 4.2 can be rewritten to use arc

length s (with scaling L ) as the independent variable, which results

in the system, 

d x 

d s 
= cos θ, 

d h 

d s 
= ε−1 sin θ, 

d θ

d s 
= ε(K − ) , (30)

d K 

d s 
= 

[
(2 n + 1)(n + 1) | h − 1 | 
n [(2 n + 1) h − nY ] h 

1+ 1 n 

]n 
cos θ

[ Max (δ, Y/h )] 1+ n , (31)

along with (14) and (26) . Imposing (h, θ ) → (R /ε2 , ± 1 
2 π) at the

two end points then permits a computation of the entire bubble
ncluding both the front and back menisci (and again treating R
s an eigenvalue; cf. [27] ). To match a particular bubble volume,

he total arc length must be suitably adjusted. The alternative form

f (31) and inclusion of the regularization parameter δ eases the
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Fig. 5. Planar bubble shapes (in the frame of their center of mass) from the Gerris computations and predicted by the lubrication model in (30) and (31) for Bi Q = 10 , 50 

and 10 0, with Ca Q = 0 . 0 01 and n = 1 . The top panel compares the entire bubble profile (with Gerris solutions shown on top, asymptotic solutions below). The lower panels 

show magnifications of the back and front films, with the thickness h and yield surface Y of the asymptotics shown as solid lines and the Gerris bubble surface by dashed 

lines. The stars show the axial yield positions of the Gerris solutions, with the yield criterion defined according to where τ = τY for the regularized constitutive law. 

Fig. 6. Density maps of log 10 ˙ γ for Ca Q = 0 . 003 , n = 1 and Bi Q = 10 , 50 and 100 (top to bottom). Also shown are six streamlines (equally spaced in streamfunction) in the 

frame of reference of the bubble. 
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omputations of the plugs, by first finding solutions for larger

though still small) values of δ, then continuing these solutions to

he viscoplastic limit by incrementally reducing that parameter. 

Fig. 5 compares the bubbles shapes predicted by (30) and

31) with the Gerris results for planar bubbles with Ca Q = 10 −3 

nd three values of Bi Q . For lower Bi Q , the two agree qualitatively

ell, if not quantitatively, in the shape and thickness of the wall

lms and the yield position. For higher Bi Q , however, the discrep-

ncies are again visible. 
More details of the flow fields from Gerris simulations for

Ca Q = 0 . 003 are shown in Fig. 6 . The flow fields converge to the

iscoplastic Poiseuille profiles upstream and downstream of the

ubbles, complete with the central plugs. In the approach to the

ubbles, the fluid yields and a more complicated pattern develops.

or the case with lower yield stress ( Bi Q = 10 ), the streamline pat-

ern is similar to that for the Newtonian problem in which fluid

s recirculated up and downstream [4,28] ; two off-axis regions of

elatively low strain rate also develop near the bubble ends. For
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the case with highest yield-stress, the streamline pattern is quite

different, with flow being channelled entirely through the resid-

ual film ( Bi Q = 100 ; cf. [10,12] ). Finally, for the case with inter-

mediate yield stress ( Bi Q = 50 ), the plugs of the background flow

continue almost to the bubble surfaces, leaving a narrow weakly

yielded zone at the bubble ends that is difficult to discern in Fig. 6 .

Note that for special choices of the parameters, the bubble speed

can match the speed of the plug in the background viscoplas-

tic Poiseuille flow (see Appendix A ), which allows the background

plug to attach to the ends of the bubble. This attachment demands

that the residual film thickness must become independent of Cap-

illary number, which is not observed in Fig. 3 . The background

plugs cannot therefore be fully attached to the bubble except at

the special parameter settings. 

Overall, Fig. 6 illustrates how yield stresses in the vicinity of

the ends of the bubble complicate the flow pattern and modify

its structure from the Newtonian case. The solutions also hint that

there may be localized plugs attached to the bubble (see the exam-

ple with Bi Q = 10 ), although the identification of such regions is

obscured by our regularization of the constitutive law. Irrespective

of such details, the flow patterns suggest that the disagreement

between lubrication theory and Gerris simulations may originate

from the growing impact of the yield stress near the ends of the

bubble, as the asymptotic analysis predicts a relatively simple flow

profile over those regions. 

Note that the films buffering the bubble from the walls are al-

ways plugged in our computations. For thicker films, one can imag-

ine that the bubble might break free of the wall, forcing the film to

yield all along its length. At yet higher film thickness, one can then

envision encapsulating the bubble within the plug of the back-

ground flow [29] . 

6. Concluding remarks 

In this article we have provided a viscoplastic version of

Bretherton’s lubrication analysis of the thin films buffering a long

bubble that is displaced down a slot or tube by ambient fluid

flow. We have also provided complementary computations us-

ing the open source code Gerris. When the viscoplastic films are

sufficiently thin, the lubrication predictions match the simulation

results. However, when yield stresses are increased, those films

thicken and the agreement is poorer. We have suggested that this

discrepancy might be due to the growing impact of yield stresses

on the flow pattern at the ends of the bubble. 
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Appendix A. Attached plugs 

If the bubble becomes attached to the central plug of the back-

ground viscoplastic Poiseuille flow, then we may immediately pre-

dict the residual film thickness: considering the Bingham case ( n =
1 ), the position of the yield surface of the background flow relative

to radius or width, η = r P /R, is given by the solution to the alge-

braic equations, 

Bi Q = 

12 η

(3 + 2 η + η2 )(1 − η) 2 
or 

6 η

(2 + η)(1 − η) 2 
, (A.1)

for either the tube or channel. The plug speed is then 

u P = 

6 V 

3 + 2 η + η2 
or 

3 V 

2 + η
, (A.2)
f V is the mean flow speed. When the plug is attached, u p ≡ U =
/ (1 − h ∞ 

/R ) j , and so 

h ∞ 

R 

= 1 −
√ 

3 + 2 η + η2 

6 

or 
1 

3 

(1 − η) . (A.3)

or large Bingham number, η ≈ 1 −
√ 

2 / Bi Q , u P ≈ V and h ∞ 

≈
1 
3 R 

√ 

2 / Bi Q , for either geometry. 
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