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Strato-rotational instability without resonance

Chen Wang1,† and Neil J. Balmforth1
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Strato-rotational instability (SRI) is normally interpreted as the resonant interactions
between normal modes of the internal or Kelvin variety in three-dimensional settings
in which the stratification and rotation are orthogonal to both the background flow
and its shear. Using a combination of asymptotic analysis and numerical solution of
the linear eigenvalue problem for plane Couette flow, it is shown that such resonant
interactions can be destroyed by certain singular critical levels. These levels are not
classical critical levels, where the phase speed c of a normal mode matches the
mean flow speed U, but are a different type of singularity where (c − U) matches
a characteristic gravity-wave speed ±N/k, based on the buoyancy frequency N and
streamwise horizontal wavenumber k. Instead, it is shown that a variant of SRI
can occur due to the coupling of a Kelvin or internal wave to such ‘baroclinic’
critical levels. Two characteristic situations are identified and explored, and the
conservation law for pseudo-momentum is used to rationalize the physical mechanism
of instability. The critical level coupling removes the requirement for resonance near
specific wavenumbers k, resulting in an extensive continuous band of unstable modes.

Key words: instability, internal waves, stratified flows

1. Introduction
The instability of a stratified shear flow may play a key role in a variety of problems

from geophysics to astrophysics. The most classical stability theory considers a
horizontal mean flow that is sheared in the vertical plane. The stability problem is then
described by the Taylor–Goldstein equation, with the celebrated Richardson-number
criterion providing an important stability condition (Howard 1961; Miles 1961). A
different paradigm has arisen more recently: the stability of flow that is sheared in
the horizontal plane and rotating about a vertical axis. This alternative situation is the
setting of the so-called strato-rotational instability, or ‘SRI’, and is relevant to oceanic
currents, accretion disks and stratified Taylor–Couette experiments. SRI is different
from Rayleigh’s centrifugal instability (which is conventionally argued to arise when
the square of the angular momentum of a rotating flow decreases with radius), and
has been ascribed to resonant mode interactions (Molemaker, McWilliams & Yavneh
2001; Yavneh, McWilliams & Molemaker 2001; Dubrulle et al. 2005; Shalybkov &
Rüdiger 2005; Le Bars & Le Gal 2007; Park & Billant 2013; Ibanez, Swinney &
Rodenborn 2016; Leclercq, Nguyen & Kerswell 2016). For the geometry of a channel
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of finite width, the conditions for resonance are restrictive, demanding that instability
appears only for specific narrow bands of horizontal wavelength for which the phase
velocities of the two uncoupled modes are nearly the same. (If the outer boundary
is removed, and waves can freely radiate, the band of unstable wavelengths becomes
continuous, as shown by Billant & Le Dizès (2009) and Le Dizès & Billant (2009);
see also Le Dizès & Riedinger (2010), who establish the connection between the
resonant and radiative instabilities as the position of the outer boundary diverges.)

In the existing theory of SRI, the role of critical levels has usually been ignored.
The classical critical level, where the phase speed c of a wave matches the mean flow
speed U, introduces a singular point into the eigenvalue equations of linear theory
and plays a central role in traditional shear-flow stability problems. For the SRI
problem, another type of critical level appears where (c−U) matches a characteristic
internal-wave speed N/k, where N is the buoyancy (Brunt–Väisälä) frequency and k is
the streamwise wavenumber. This ‘baroclinic’ critical level again introduces singular
points into the linear eigenvalue problem, but their impact on stability has not
previously been considered in any detail. The only existing studies of the dynamics
of baroclinic critical levels have focused on their effect on the local propagation of
internal inertia–gravity waves through stratified shear flows (Olbers 1981; Basovich
& Tsimring 1984; Badulin, Shrira & Tsimring 1985; Staquet & Huerre 2002).

Here, our goal is to explore how the presence of baroclinic critical levels
affects the resonant mode interaction of SRI. For the task, we consider the model
Couette channel flow of Dubrulle et al. (2005) and Vanneste & Yavneh (2007)
(amongst others). We use a combination of short-wavelength asymptotics and
numerical solution of the linear eigenvalue problem, and examine how instability
can arise through wave–mean-flow interaction from the perspective of conservation
of pseudo-momentum. The model flow and governing equations, the normal-mode
equation and the baroclinic critical level are described in § 2; the eigenvalue problem
is solved in § 3 for relatively strong stratification, and then in § 4 for relatively
weak stratification. The instability mechanism is examined via the concept of
pseudo-momentum in § 5, and we conclude in § 6.

2. Mathematical formulation
2.1. Model and governing equations

The geometry of the model flow is described by the Cartesian coordinate system
(x∗, y∗, z∗) sketched in figure 1. The basic Couette flow (Λy∗, 0, 0) is horizontal,
where Λ is the shear rate, and bounded by walls at y∗ = 0 and y∗ = L. The channel
rotates around the z∗-axis at the rate f /2, and the fluid is stratified with buoyancy
frequency N. Here, the ‘∗’ notation is used to distinguish dimensional variables; to
render the equations dimensionless, we use scales for velocity, time, length, density
and pressure of ΛL, 1/Λ, L, ρ0Λ

2L/g and ρ0Λ
2L2, respectively, where ρ0 is a

reference density and g is gravity. Thus, we set (x, y, z) = L−1(x∗, y∗, z∗) and so
forth, with the dimensionless variables appearing without the star decoration. The
dimensionless rotation rate and Richardson number are Ω = f /2Λ and R = N2/Λ2.
When Ω > 0 (Ω < 0), the shear is anti-cyclonic (cyclonic). The Rayleigh discriminant
of the base flow is Φ = 2Ω(2Ω − 1); we consider the regime where the flow is
centrifugally stable, Φ > 0 (Ω > 1/2 or Ω < 0).

In the Boussinesq approximation, the linearized governing equations for the
dimensionless perturbations to the velocity field [u(x, y, z, t), v(x, y, z, t),w(x, y, z, t)],
pressure p(x, y, z, t) and density ρ(x, y, z, t) are

ut + yux + (1− 2Ω)v =−px, (2.1)
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g

L

FIGURE 1. Sketch of the model geometry.

vt + yvx + 2Ωu=−py, (2.2)
wt + ywx + ρ =−pz, (2.3)
ρt + yρx − Rw= 0, (2.4)
ux + vy +wz = 0, (2.5)

where the subscripts denote partial derivatives. The boundary conditions are that there
is no flow through the walls:

v = 0 at y= 0 and y= 1, (2.6)

and the channel is periodic in both x and z.
The linearized potential vorticity of the Boussinesq fluid is

q= (2Ω − 1)ρz − R(vx − uy), (2.7)

and satisfies

qt + yqx = 0. (2.8)

For normal modes, this implies q = 0. In this circumstance, one can then formulate
the conservation law (Vanneste & Yavneh 2007):

d
dt

∫ 1

0
p dy= 0, p=

1
R
ρ(wx − uz), (2.9)

where

(· · ·)=
1

LxLz

∫ Lx

0

∫ Lz

0
(· · ·) dx dz. (2.10)

To second order in perturbation amplitude, the conserved integral in (2.9) corresponds
to the net disturbance momentum in the streamwise direction, or the Eulerian pseudo-
momentum (Bühler 2014). That is, pt represents the acceleration of the mean flow by
a normal mode at the cross-stream position y, but (2.9) demands that the net effect
vanishes, which places an important constraint on any unstable normal mode as we
outline further in § 5.
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818 C. Wang and N. J. Balmforth

2.2. Normal modes
We search for normal modes with the form,

(u, v,w, p, ρ)= [û(y), v̂(y), ŵ(y), p̂(y), ρ̂(y)] exp(ikx+ imz− iωt)+ c.c., (2.11)

where ‘c.c.’ denotes the complex conjugate, k and m are the horizontal and vertical
wavenumbers, the (complex) frequency is ω = ωr + iωi and the corresponding
streamwise phase speed is c= ω/k= cr + ici. Note that from now on, k, m, ω and c
are dimensionless variables, in contrast to their dimensional counterparts referred to
earlier in § 1. Substitution of this form into the linear equations followed by some
algebraic manipulations leads to the eigenvalue equation (Vanneste & Yavneh 2007),

d2û
dy2
+ h

dû
dy
+ l2û= 0, (2.12)

where

h=
2µ2k(2Ω − 1)2ω̂

(ω̂2 − R)[ω̂2 − R−µ2(2Ω − 1)2]
, (2.13)

l2
=−λ2

=−k2
−

µ2k2

ω̂2 − R

[
ω̂2
−Φ +

2(2Ω − 1)ω̂2

ω̂2 − R−µ2(2Ω − 1)2

]
, (2.14)

ω̂=ω− ky= k(c− y) and µ=m/k. (2.15a,b)

The boundary conditions on the channel walls become

v̂ =

m2(2Ω − 1)(y− c)û+ (ω̂2
− R)

dû
dy

ik[ω̂2 − R−µ2(2Ω − 1)2]
= 0 at y= 0 and y= 1. (2.16)

Because the eigenvalue problem is real, the eigenvalues c and eigenfunctions û(y) are
either real or appear as complex pairs. The equations have the symmetry, (y, c)↔
(1− y, 1− c), and so if we have one eigenfunction û(y) with eigenvalue c, there is
another solution pair, û(1− y) and 1− c.

If ω or c is real, equation (2.12) has two singular points at ω̂2
= R, corresponding

to the ‘baroclinic critical levels’,

y= yb± ≡ c±

√
R

k
. (2.17)

At these points, there is a regular Frobenius series solution ûR = 1+O(y− yb±), and
a logarithmically singular one with ûS = ûR log |y− yb±| +O(1). Equation (2.12) also
possesses two additional singular points where ω̂2

= R+ µ2(2Ω − 1)2, but these can
be shown to be removable (Vanneste & Yavneh 2007) and merit no further discussion.
Note that the classical critical level, y= yc≡ c, introduces no singularity in the current
model given the constant shear of the basic flow profile.

In the following two sections, we solve the eigenvalue problem (2.12) both
numerically and asymptotically to find unstable modes (ci > 0). For the numerical
computations, we use a shooting method based on the MATLAB function ODE15s,
with trial guesses provided either by previous solutions at different parameter settings
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y

(a) (b)

FIGURE 2. Plots of l2
=−λ2 against y, illustrating the two configurations of interest for

the spatial arrangements of the classical critical level y= yc, the turning points y= yt± and
the baroclinic critical levels y= yb±, which are dictated by the sign of εb when µ2

� 1.

or the short-wavelength solutions. The calculated growth rates turn out to be relatively
small (cf. Vanneste & Yavneh (2007)), and in setting up the problem for analysis, it
is advantageous to examine the situation where ci→ 0.

In the limit of short vertical wavelength, µ2
� 1, where the character of the

solutions is dictated by the sign of l2 for ci → 0, there are two configurations to
consider depending on the sign of the factor,

εb =
2
√

R(2Ω − 1)
k[µ2(2Ω − 1)(Φ − R)+ 2R]

, (2.18)

which determines the local behaviour near the baroclinic critical levels: l2
∼

±[εb(y− yb±)]
−1. The two configurations are illustrated in figure 2; if εb is negative,

the evanescent region (l2 < 0) enclosing y = yc is bounded by two turning points
yt± of the classical WKB-type where l = 0. The short-wavelength solutions have
oscillatory character for yt+ < y < yb+ and yb− < y < yt−, with the baroclinic critical
levels bounding the propagation zones. In §§ 3 and 4, special attention is given to
modes with µ2

� 1. In this situation, our first configuration therefore applies to most
geophysical conditions for which N � | f | (R� Φ). By contrast, when εb > 0, the
evanescent region is bounded by the baroclinic critical levels yb±, and the propagation
zones occupy yb+ < y< yt+ and yt− < y< yb−. With µ2

� 1, this situation may apply
to astrophysical disks where shear and rotation are relatively fast, so that N � |f |.
We consider the case with εb < 0 (which we refer to as stronger stratification) in § 3,
and that with εb > 0 (denoted weaker stratification) in § 4. Note that, if µ2 is small
or Ω close to 1/2, the spatial structure of l2 is more complicated than indicated in
figure 2, in which case the configurations are less easily classified.

2.3. Solutions near the baroclinic critical levels
When we consider the eigenvalue problem in the short-wavelength limit, we take
parameter settings such that some of the coefficients of (2.12) become relatively
large. These choices also lead us to further analyse the solutions over a small region
near the critical levels in the limit |εb| � 1 (which is achieved below by taking
µ2
� 1). Taking y= yb+ by way of illustration, we set

η=
y− yb+

εb
(2.19)
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to find the leading-order local equation,

d2û
dη2
+

1
η

dû
dη
+

1
η

û= 0. (2.20)

The two independent solutions of (2.20) are Bessel functions,

ûI =

{
I0(2
√
−η), Re(η)6 0,

J0(2
√
η), Re(η)> 0.

(2.21a)

ûK =

{
K0(2
√
−η), Re(η)6 0,

−
π

2
[Y0(2

√
η)+ i sgn(εb)J0(2

√
η)], Re(η)> 0,

(2.21b)

where we use a particular choice for the branch cut of the square root. In particular,
we take the branch cut for

√
y− yb+ to lie along the negative real axis, which leads

to the inclusion of the sign of εb in (2.21b), assuming that ci > 0 (for ci < 0 we
replace this expression with the complex conjugate of ûK). Note that ûI corresponds
to the regular Frobenius solution ûR, and ûK to the singular one ûS. Moreover, ûI
grows exponentially away from the critical level for Re(η) < 0, whereas ûK decays
exponentially into that region; both solutions oscillate rapidly in space for Re(η) > 0.
These observations prepare the way for a match to the usual WKB solutions away
from the baroclinic critical levels.

3. Instability of flow with stronger stratification
We first consider the case εb < 0, which we refer to as a more strongly stratified

flow because the situation is achieved in the short-wavelength limit, µ2
� 1, when

R>Φ (unless Ω approaches 1/2). As illustrated in figure 2(a), we then expect modes
to possess a wave-like character for yb−< y< yt− and yt+< y< yb+. We present results
for unstable modes of the traditional SRI type that arise from a resonant coupling and
have no baroclinic critical levels (yb−<0 and yb+>1), and then describe how the form
of this instability changes when one of these singular levels enters the channel.

Figures 3 and 4 plot numerically calculated eigenvalues, cr and ci, against µ=m/k
for two typical cases with anti-cyclonic (Ω>0) or cyclonic (Ω<0) shear (the specific
examples have R= 9, k= 5 and Ω = 5/8 or Ω =−1/8, implying Φ = 5/16). The two
horizontal broken lines in the phase-speed plots of figure 3 indicate where a baroclinic
critical level appears on the wall at y= 0 or y= 1: the modes between the two lines
do not have baroclinic levels in the domain; the modes above the line ‘Re(yb−)= 0’
have the critical level yb−, and the modes below the line ‘Re(yb+)=1’ have the critical
level yb+.

3.1. Resonant instabilities
When there are no baroclinic critical levels, modes can be classified as either Kelvin
waves (KW) or internal gravity waves (IGW); see Vanneste & Yavneh (2007). The
former are localized to one of the channel walls and decay exponentially into the
interior of the flow; the latter are confined primarily to one of the propagation zones
within the channel. We denote the Kelvin wave localized to the wall at y= 0 (y= 1)
by KW− (KW+). Similarly, an internal gravity wave confined to the wave cavity on
the left (right) of y= Re(yc) is referred to as IGW− (IGW+). There is only a single
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FIGURE 3. Phase speeds against µ = m/k for R = 9 and k = 5, with (a) Ω = 5/8
(anti-cyclonic shear) and (b) Ω=−1/8 (cyclonic shear). Eigenfunctions at the points I and
II–IV are plotted in figures 5 and 6, respectively. The dotted line in (a) shows the
asymptotic solution (3.7). The horizontal broken lines indicate the phase speeds for which
modes develop baroclinic critical levels at the channel walls (Re(yb−)=0 and Re(yb+)=1).

Kelvin wave associated with each of the channel walls, but the wave cavities support
an infinite number of internal gravity waves; we distinguish the latter by adding an
integer, IGWn±, corresponding to the number of nodes in Re(û) within the cavity.
The main difference between the cases with anti-cyclonic and cyclonic shear is the
presence of Kelvin modes with phase speeds within the range of the mean flow for
the former.

As summarized by Vanneste & Yavneh (2007), resonant SRI arises when the phase
speed of different KW± and IGW± modes lock together. This leads to a multitude of
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FIGURE 4. Unstable growth rates against µ=m/k for R= 9 and k= 5, with (a) Ω = 5/8
(anti-cyclonic shear) and (b) Ω =−1/8 (cyclonic shear). The insets show magnifications
for higher µ and plot only the growth rates of the unstable modes generated by interaction
with the baroclinic critical level. The dashed line in (a) shows the asymptotic solution
(3.17); the dots in both panels show the asymptotic growth rates computed from (3.16).
Eigenfunctions at the points I and II–IV are plotted in figures 5 and 6, respectively.

narrow bands of unstable wavenumbers, as illustrated by the sharp peaks in growth
rate in figure 4. A sample unstable resonant mode is shown in figure 5, corresponding
to the interaction of IGW2+ and IGW1− (and indicated by point I in figures 3 and 4).
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FIGURE 5. Eigenfunction û of the resonant unstable mode corresponding to the coupling
of IGW2+ and IGW1− (labelled by the point I in figures 3(a) and 4(a); µ= 4.523). Red
and blue lines represent real and imaginary part of the eigenfunction, respectively. The
numerical solution is shown in solid lines, and has eigenvalue c= 0.454+ 0.00232i. The
asymptotic eigenfunction is shown in dashed lines, and is constructed using the computed
asymptotic eigenvalue c ∼ c0 + 1c ≈ 0.453 + 0.00240i together with the formulae (3.1)–
(3.4), which become inaccurate at the turning points y= yt±.

The details of the neutral modes and their unstable resonant interaction can be
understood using WKB theory: in the region near y= yc, −l2

=λ2>0 and the decaying
and growing solutions have (respectively) the exponential forms,

û− =
A
√
λ

exp
[∫ yt+

y
λ(y′) dy′

]
, û+ =

A
√
λ

exp
[∫ y

yt−

λ(y′) dy′
]

for yt− < y< yt+,

(3.1a,b)

where

A= exp
[
−

1
2

∫
h(y) dy

]
=

√∣∣∣∣ ω̂2 − R−µ2(2Ω − 1)2

ω̂2 − R

∣∣∣∣. (3.2)

Beyond the turning points (y> yt+ or y< yt−, with l2 > 0), we apply the usual WKB
turning-point connection formulae to find the oscillatory solutions,

û± =


2A

Ψ
√

l
cos
[∫ y

yt±

l(y′) dy′ ∓
π

4

]
, y ≷ yt±,

A
√

l
cos
[∫ y

yt∓

l(y′) dy′ ∓
π

4

]
, y ≶ yt∓,

(3.3)

where

Ψ = exp
[
−

∫ yt+

yt−

λ(y) dy
]
. (3.4)

Note that both û− and û+ are real for real c, indicating that they are both standing
waves over this second region.
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824 C. Wang and N. J. Balmforth

Given their respective exponential decay (û− becomes exponentially small in y> c
and û+ in y < c), the uncoupled ± modes therefore have phase speeds c± that are
given only by the boundary condition v̂(y, c)= 0 at either y= 1 or y= 0. That is,

v̂−(0, c−)= 0, v̂+(1, c+)= 0, (3.5a,b)

where

v̂±(y, c)=
m2(2Ω − 1)(y− c)û± + (ω̂2

− R)
dû±
dy

ik[ω̂2 − R−µ2(2Ω − 1)2]
(3.6)

denotes the WKB eigenfunctions for the cross-stream velocity component v. For
KW±, a further reduction for µ� 1 and Ω > 1/2 with c− y=O(µ−1) furnishes the
convenient expressions,

c+ ≈ 1−
1
m

√
2ΩR

2Ω − 1
and c− ≈

1
m

√
2ΩR

2Ω − 1
, (3.7a,b)

which are also plotted in figure 3(a).
Resonant mode coupling arises when the phase velocities of two basic modes c−

and c+ converge. The coupled modes comprise comparable proportions of û− and û+,
and so the WKB solution for û is expressed by the linear combination,

û=C−û− +C+û+, (3.8)

for two constant C±. The boundary conditions then become

C−v̂−(0, c)+C+v̂+(0, c)=C−v̂−(1, c)+C+v̂+(1, c)= 0, (3.9)

implying the eigenvalue condition

v̂−(0, c)v̂+(1, c)= v̂+(0, c)v̂−(1, c). (3.10)

The left-hand side of (3.10) combines the two leading-order dispersion relations in
(3.5), whereas the right-hand side is exponentially small in view of the decay of v̂±
towards y= 0 and y= 1, respectively. At resonance, the decoupled relations in (3.5)
are satisfied simultaneously by c+= c−= c0. Treating the right-hand side of (3.10) as
a small perturbation to the left-hand side (and neglecting the higher-order terms of the
WKB approximation (3.1) and (3.3) that also correct v̂−(0, c) and v̂+(1, c), but which
are not expected to lead to instability), we can then estimate a correction 1c to the
leading-order eigenvalue c0, namely

(1c)2 ≈
v̂+(0, c0)v̂−(1, c0)

v̂−,c(0, c0)v̂+,c(1, c0)
, (3.11)

where the subscript ‘c’ denotes a derivative of the eigenfunction with respect to
the eigenvalue. In figure 5, the leading-order WKB eigenfunction and the corrected
eigenvalue are compared satisfyingly with the corresponding numerical results for the
sample mode of that figure. Note that, according to (3.9),

C−
C+
=−

v̂+(0, c)
v̂−(0, c)

≈−
v̂+(0, c0)

v̂−,c(0, c0)1c
(3.12)

which, because 1c is purely imaginary for instability, implies a π/2 phase difference
between the two coupled basic modes, as seen in figure 5.
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Strato-rotational instability without resonance 825

3.2. Instability induced by the baroclinic critical level
As illustrated in figures 3 and 4, when modes develop baroclinic critical levels,
the eigenvalue diagrams change dramatically in two key ways. First, the KW− and
IGWn− (KW+ and IGWn+) basic modes disappear above (below) the central band,
1−
√

R/k< cr <
√

R/k, where they develop the yb− (yb+) critical level. This removes
the possibility of any resonant mode interactions whenever there are baroclinic critical
levels. Second, the same KW− and IGWn− (KW+ and IGWn+) basic modes persist
below (above) the central band, 1 −

√
R/k < cr <

√
R/k, even though they now

develop the yb+ (yb−) critical levels. More importantly, they become unstable over a
wide band of wavenumbers. In figure 4(a), for the anti-cyclonic shear, four continuous
lines of growth rate thereby appear for the KW± and IGWn± modes, with n = 1–3.
The situation is the same for the cyclonic shear in figure 4(b), although the KW±
modes are not present.

These observations can be translated into stability conditions in the limit of short
vertical wavelength: resonant SRI requires the existence of the central band, or
k < 2

√
R. For the IGWn± modes, we must further demand that 0 < yt− and yt+ < 1

in order for wave-like regions to exist. But for µ� 1, yt± ≈ c ±
√
Φ/k. Thus, the

SRI between IGWn± modes, which is the only possibility for cyclonic shear, requires
2
√
Φ < k< 2

√
R (cf. Park & Billant 2013). For anti-cyclonic shear, the Kelvin waves

(with c− > 0 or c+ < 1 for µ � 1) can participate in unstable interactions, which
modifies the condition for SRI to k< 2

√
R. By contrast, the instability of a KW− or

IGWn− mode associated with a baroclinic critical layer requires yb+ = c+
√

R/k< 1
(or equivalently, yb−= c−

√
R/k> 0 for a KW+ or IGWn+ mode). Hence, given that

c− > 0 for KW− and c− >
√
Φ/k for IGWn−, the baroclinic critical layer instability

requires k>
√

R for anti-cyclonic shear and k>
√

R+
√
Φ for cyclonic shear.

Sample unstable modes are shown in figure 6, which plots the eigenfunctions of
KW−, IGW1− and IGW2− at the points denoted II, III and IV in figures 3(a) and 4(a).
For each mode, we see sharp structure in the eigenfunction near the baroclinic critical
level yb+. To the right of these points, the mode amplitudes decay rapidly; to the left,
the real part and imaginary parts have a π/2 phase difference indicative of travelling
waves (propagating in the direction indicated by the arrows).

In WKB theory, the solution for the ‘±’ mode is again dominated by the
contribution from û± near either y= 1 or y= 0. To leading order, the phase velocity
cr = c± is again then given by one of (3.5). Focusing for the moment on the ‘−’
mode, the solution is evanescent to the right of the critical level yb+. Provided the
right-hand wall is sufficiently far from yb+, the solution is then

û=
AC
√
λ

exp
[
−

∫ y

yb+

λ(y′) dy′
]
, yb+ < y, (3.13)

with C being an arbitrary constant. The exponential decay in (3.13) is fast given that
λ� 1 near the critical level, as seen in figure 6.

To the left of y = yb+, we exploit the large argument limits of Bessel function of
the local solutions (2.21) to make the connection, which gives

û=
AC
√

l
exp

{
i
[∫ yb+

y
l(y′) dy′ +

π

4

]}
, yt+ < y< yb+. (3.14)

That is, the eigenfunction now takes the form of a travelling wave over this region,
unlike the standing-wave basic mode (which is exponentially small here). Given that
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FIGURE 6. Eigenfunction û of unstable modes with baroclinic critical levels for Ω = 5/8
and (a) KW− (µ = 5.7; point II in figures 3 and 4), (b) IGW1− (µ = 9; point III)
and (c) IGW2− (µ = 12.5; point IV). Red and blue lines represent real and imaginary
parts of the eigenfunction, respectively. The solid lines show the numerical solutions.
The corresponding results from WKB theory are shown as dashed lines, which become
inaccurate at the turning points y= yt± (the asymptotic eigenfunction is not shown in (a)
as the comparison is poor owing to the turning point y= yt− close to the boundary y= 0).
In (b), numerical computations give c=3.34×10−1

+1.54×10−4i whereas the asymptotics
indicate c= 3.35× 10−1

+ 1.56× 10−4i. In (c), the numerical and asymptotic results are
c = 3.71 × 10−1

+ 3.96 × 10−5i and c = 3.72 × 10−1
+ 3.92 × 10−5i, respectively. Insets

show magnifications of the structure near the baroclinic critical levels.

the intrinsic frequency ω̂ = k(c − y) is negative in this region, the travelling waves
propagate in +y direction as indicated by the arrow in figure 6; i.e. they are incident
on the critical level.

Over the same region, yt+ < y< yb+, the solution is also given by (3.8), and so to
match with (3.14) we must take

C− = iCΘ, C+ =
1
2

CΨΘ, Θ = exp
[

i
∫ yb+

yt+

l(y) dy
]
. (3.15a,b)
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Strato-rotational instability without resonance 827

At y= 0, the leading-order boundary condition is C−v̂−(0, c)∼ 0, giving c∼ c−. An
estimate of the correction 1c to this eigenvalue then follows on keeping the next-order
terms of C−v̂−(0, c)+C+v̂+(0, c)= 0 and using (3.15):

1c≈−
C+v̂+(0, c−)

C−v̂−,c(0, c−)
=

i
2
Ψ
v̂+(0, c−)
v̂−,c(0, c−)

(3.16)

(ignoring higher-order corrections to the WKB approximation). The predictions
computed from (3.16) for the IGWn± modes are included in figure 4 and again
compare well with numerical computations. The WKB eigenfunction û and eigenvalue
c ∼ c− + 1c also match well with the numerical solutions for the two cases with
higher µ2 shown in figure 6(b,c) (the caption reports the numerical and asymptotic
results for c).

In the limit µ� 1, we can again derive an explicit expression for KW−:

ci ≈ c− exp
(
−2
∫ yt+

0
λ(y) dy

)
. (3.17)

The prediction (3.17) is compared with the numerical results in figure 4(a).

4. Instability of flow with weaker stratification
If εb> 0, we expect that the evanescent region around y=Re(yc) is bounded by the

baroclinic critical levels yb± (see figure 2b); for µ2
�1, this case is realized for Φ>R,

and so corresponds to a more weakly stratified flow. In this situation, the exponential
tail of a Kelvin wave riding on one of the channel walls can become transformed into
internal waves beyond the adjacent critical level. If these internal waves can satisfy
the boundary conditions at the other channel wall, a new type of normal mode is
generated. Moreover, the interaction with that critical level destabilizes the mode via
a mechanism that we shed light on later. The phase speed and growth rate of such
solutions are plotted against µ in figure 7, with two sample eigenfunctions shown in
figure 8.

In figure 7(a), the line ‘Re(yb−) = 0’ lies below that for ‘Re(yb+) = 1’ because
√

R/k < 0.5 and the two Kelvin-wave speeds never intersect. Moreover, the critical
levels remove any neutral internal waves with speeds inside the range of the base flow
(which can be understood from the connection conditions across y = yb± implied by
the local solutions derived in § 2.3: ûK possesses an exponentially decaying amplitude
that corresponds to a travelling wave, which cannot satisfy the boundary condition).
Thus, resonances do not occur, precluding traditional SRI. Instead, instability is
generated purely through the interaction of the Kelvin waves with the baroclinic
critical level. As seen in figure 8, to the right of yb+ the unstable mode KW− takes
the form of a standing wave, and there is an abrupt phase change across y= yb+.

For a short-wavelength description of the unstable KW± modes, we once more
express the eigenfunction as a linear combination of decaying and growing solutions
in the evanescent region, û=C−û− +C+û+, with constants C− and C+. Focusing
again on KW−, in the evanescent region 0 6 y< yb+, û− and û+ are expressed by

û− =
A
√
λ

exp
[∫ yb+

y
λ(y′) dy′

]
, û+ =

A
√
λ

exp
[
−

∫ yb+

y
λ(y′) dy′

]
, 0 6 y< yb+,

(4.1a,b)
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FIGURE 7. (a) Phase speed cr and (b) growth rate ωi against µ=m/k for R= 2.5× 10−3,
Ω = 5/8 and k= 0.4. The horizontal broken lines indicate where baroclinic critical levels
appear at the channel walls. The dots plot the asymptotic results in (3.7) and (4.5) (which
we do not include for the first peak in the main panel of (b) because the comparison is
poor owing to the relatively small value for µ). Eigenfunctions at the points V and VI
are plotted in figure 8.

with A given by (3.2). Matching (4.1) to the local solution in (2.21), we can derive
their corresponding expressions in y> yb+:

û− =
2A
√

l
cos
[∫ y

yb+

l(y′) dy′ −
π

4

]
, û+ =

A
√

l
exp

[
−i
∫ y

yb+

l(y′) dy′ −
iπ
4

]
, yb+ < y 6 1.

(4.2a,b)

The phase jump of û+ across the critical layer rationalizes that seen in the
eigenfunction in figure 8.

For µ� 1, the boundary condition (2.16) on y= 1 implies û= 0 to leading order, so
the WKB solution in the oscillatory region yb+< y6 1 is the standing gravity wave,

û=
AC
√

l
sin
∫ 1

y
l(y′) dy′ for yb+ < y 6 1, (4.3)

where C is a constant. Reconciling (4.3) with the superposition of û± in (4.2) implies

C− =−
C
2

exp(−iθ), C+ =C sin θ, θ =

∫ 1

yb+

l(y) dy+
π

4
. (4.4a,b)
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Strato-rotational instability without resonance 829
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FIGURE 8. Eigenfunction û of unstable modes with baroclinic critical levels at the points
marked (a) V (µ= 1.85) and (b) VI (µ= 4.2) in figure 7. Red and blue lines represent
real and imaginary parts of the eigenfunction, respectively. The solid line shows the
numerical solution and the dashed line in (b) is the result of asymptotics (the asymptotic
eigenfunction is not shown in (a) as the comparison is poor owing to the relatively small
value for µ). The insets show magnifications of the structure near the baroclinic critical
levels. In (b) the numerical result for the eigenvalue is c= 6.19× 10−2

+ 8.82× 10−6i and
c= 6.66× 10−2

+ 5.30× 10−6i for the asymptotics.

At the left boundary y=0, the solution is dominated by û−, leading to a basic phase
speed c− which is again expressed by (3.7b). The contribution of û+ is exponentially
small, and keeping the next-order correction 1c to the eigenvalue that it induces
(again neglecting the potentially higher-order WKB approximations), provides the
estimate,

ci ≈−Im
[

C+v̂+(0, c−)
C−v̂−,c(0, c−)

]
≈ 4c− cos2

[∫ 1

yb+

l(y) dy−
π

4

]
exp

[
−2
∫ yb+

0
λ(y) dy

]
. (4.5)

The prediction (4.5) is included in figure 7. Note the sinusoidal dependence of ci in
(4.5) which is also evident in this figure.

At other parameter settings, a turning point yt+ may intervene between the critical
level yb+ and the wall at y = 1. A further classical turning-point analysis must then
be added to the WKB calculation, which adds an additional phase correction to
(4.3). However, this leads to no significant change to the character of the unstable
modes other than an exponential decay next to the wall, and warrants no additional
discussion.
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5. Implications of pseudo-momentum conservation

For the normal-mode form (2.11), the pseudo-momentum in (2.9) becomes

p= p̂(y)e2ωit, p̂(y)=
(µû∗ − ŵ∗)ŵ

y− c
+ c.c., ŵ=−

µω̂

[
(2Ω − 1)

dû
dy
− kω̂û

]
k[ω̂2 − R−µ2(2Ω − 1)2]

, (5.1)

where the ∗ superscript denotes complex conjugation. Thus the conservation law (2.9)
reduces to

2ωi

∫ 1

0
p̂(y) dy= 0. (5.2)

This condition places no constraint on the spatial structure of neutral modes with
ωi= 0. However, unstable modes with ωi 6= 0 must have zero total pseudo-momentum∫ 1

0 p̂(y) dy= 0. This demands that the spatial structure of the modes, as characterized
by the density p̂(y), must break down into cancelling contributions from regions of
opposite sign of pseudo-momentum.

The pseudo-momentum density p̂ is plotted against y in figure 9(a) for a mode
destabilized by the resonant coupling of traditional SRI, corresponding to the
eigenfunction of figure 5. As pointed out by Vanneste & Yavneh (2007), the IGWn±
basic modes have a ∓ sign for their pseudo-momentum, whereas the signature of
KW± depends on Ω: the KW± modes have a ∓ signature if Ω > 1/2, and a ± one
when Ω< 0. The coupled mode in figures 5 and 9(a) consists of an IGW− component
that is concentrated near the left wall with positive pseudo-momentum (implying the
local mean flow is accelerated in the positive x-direction), and an IGW+ component
confined near the right wall with negative pseudo-momentum (accelerating the local
mean flow in the negative x-direction). Unstable resonance is achieved when their net
contributions are balanced.

Figure 9(b,c) shows the density p̂ for the KW− and IGW− modes destabilized
by their interaction with baroclinic critical levels. The modes have very different
distribution of pseudo-momentum: p̂ is again locally large and positive near the left
wall reflecting the Kelvin wave or internal gravity wave localized there. The net
contribution of this wave is balanced by that from a sharp negative peak around the
baroclinic critical level.

The pseudo-momentum contribution of the baroclinic critical level can be
understood by considering the local behaviour of the solutions in the vicinity of
y= yb±. As outlined in § 2.2, dû/dy∼ a(y− yb±)

−1 for the singular Frobenius solution,
with a a constant. Thus, p̂∼O(y− yb±)

−2 near y= yb± according to (5.1). An estimate
for the contribution of the critical level yb± therefore follows as

∓
2
√

Rk|a|2

m2(2Ω − 1)2

∫
dy

|y− yb±|
2
≈∓

2π
√

Rk|a|2

m2(2Ω − 1)2|ci|
, (5.3)

which corresponds to a sharply localized acceleration of the mean flow. It is now
apparent how the basic modes KW− and IGWn− can become unstable by coupling
with the yb+ critical level (or the KW+ and IGWn+ by interacting with yb−). The
signatures of the basic modes and the critical level contributions also rationalize how
other types of modal instabilities cannot appear.
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FIGURE 9. The pseudo-momentum density p̂ in (5.1) for (a) the resonant SRI mode in
figure 5, and (b,c) the KW− and IGW− modes destabilized by their interactions with a
baroclinic critical level at y= yb+ shown in figures 6 and 8. Note that the sharp negative
peaks at the baroclinic critical levels have been truncated in (b,c) to help reveal the mode
structure.

6. Concluding remarks
In this paper, we have studied the linear instability of three-dimensional rotating

stratified shear flow, with a focus on how baroclinic critical levels impact the
strato-rotational instability (SRI). We have found that the baroclinic critical levels
destroy the resonance mode interactions between the internal gravity and Kelvin
waves that underpin traditional SRI. Instead, these waves can become unstable by
interacting directly with one of the critical levels. An immediate consequence is that
the instability no longer requires any resonance conditions on the modal wavenumber,
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832 C. Wang and N. J. Balmforth

but occupies an extensive continuous waveband. The situation is somewhat similar
to how the classical critical level can affect the linear instabilities of shear flows in
shallow water when there are potential vorticity gradients (Kubokawa 1984; Balmforth
1999).

To establish these results, we combined numerical computations of the linear
eigenvalue problem with short-wavelength asymptotics. We further examined
the pseudo-momentum of the unstable modes to shed further light on how the
mode interactions could lead to instability. This quantity must exactly vanish for
unstable modes in the stability problem we have studied, and traditional SRI
comes about through the resonant interaction of modes with different signatures
of pseudo-momentum. For modes destabilized by their interaction with a baroclinic
critical level, on the other hand, a thin layer surrounding this level provides a sharp
source of pseudo-momentum to balance that of the mode. In other words, the critical
level acts like an emitter of the relevantly signed pseudo-momentum.

A key limitation of the present analysis is the assumption of a linear velocity profile,
which is unlikely in any physical setting. Once the background vorticity gradient is not
zero, the classical critical layer can directly affect the dynamics of the normal modes,
whereas here this position plays a more subtle role (our unstable modes all require
classical critical levels within the domain to set the stage for destabilizing interactions).
Nevertheless, classical critical levels do not always appear to play a significant role
in stratified Taylor–Couette flow (Park & Billant 2013). One possible explanation for
this is that, for the current flow configuration, the singular point associated with the
classical critical level is weaker than that resulting from the baroclinic critical level
(as gauged by the singularity of the respective Frobenius solutions).

Previous studies on classical critical levels often proceed beyond inviscid linear
theory and incorporate nonlinearity and viscosity in view of the relatively high
amplitudes and sharp gradients that develop nearby. Here too there are large velocity
gradients inside the thin region around the baroclinic critical level, demanding that
both viscosity and nonlinearity are important ingredients in ‘baroclinic critical layer’
theory. We leave such a theory for future work, although we note that it must
incorporate the interesting feature that the position of the singular level depends on
the streamwise wavenumber. Thus, an interesting nonlinear filter may operate within
the associated critical layer which divorces the theory from classical analysis.
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