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a b s t r a c t

The final shape of a two-dimensional viscoplastic slump is constructed assuming that the fluid yielded
everywhere in its passage to the final state and that the yield stress dominates except in a viscous boundary
layer at the base. These assumptions reduce the problem to a related one in plasticity theory. Two methods
are presented. First, an asymptotic expansion based on small aspect ratio, �, is used to build an analytical
eywords:
iscoplastic fluids
ield stress
eposit shape

solution valid to third order in �. Second, a slipline method is used to construct slump shapes for arbitrary
aspect ratio. The slipline theory exposes flaws in the assumption that the fluid yields everywhere, and
rigid plug zones must be inserted in the solution to match all the boundary conditions. The results are
compared to a set of experiments with Carbopol in which fluid slumps down a channel. Care is taken to
ensure that the width of the channel, any slip over the walls, and the mechanism of emplacement are not
important. Despite this, the experiments and theory are not in particularly good agreement, suggesting
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. Introduction

A large number of industrial and geophysical problems involve
he spreading of viscoplastic fluids under gravity over horizontal
nd inclined surfaces. Unlike viscous fluids, which continue to flow
ntil restricted by physical obstructions or surface tension, vis-
oplastics can come to rest under the action of the yield stress.
n fact, in certain rheological tests, the resting shape of a slumped
iscoplastic fluid is used to infer the yield stress. This “slump test”
s widely used to gauge the yield strength of concrete [1–3], and has
een used for a variety of other industrial and geophysical materials
4–6].

In the current paper we examine the final shape for a two-
imensional deposit of viscoplastic fluid on an inclined surface.
uch a situation is relevant for flow along an infinitely wide channel,
nd could be the result of a slump, a dam break, or an extrusion from
vent. But for a single exception, all previous theoretical work on

his problem that attempted to construct explicitly the final shape
as been carried out using a simplifying shallow-layer approxima-
Please cite this article in press as: N. Dubash, et al., What is the final sh
doi:10.1016/j.jnnfm.2008.08.004

ion, which is appropriate when the yield stress is relatively small
7]. The exceptional study is by Nye [8], who built a slump shape as a

odel of a glacier, assuming that ice behaved like a slowly moving,
erfectly plastic material and using the slipline method of plasticity
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heory [9,10]. Nye’s solution is relevant to the current viscoplastic
roblem because, in the zero-shear-rate limit, a viscoplastic fluid

s controlled predominantly by its yield stress and the constitutive
aw then reduces to that for a perfect plastic. Moreover, Nye’s plas-
ic glacier slides over a lubricating layer at its base, and the stresses
re locally dominated by the shear stress; this situation is mirrored
y a viscoplastic fluid as it brakes to rest because the bulk of the
uid most likely rides over a viscous boundary layer adjacent to
he underlying plane [11].

In the current study we extend the known theoretical results in
wo ways. First, we continue to higher order in the aspect ratio the
symptotic expansion whose leading order provides the standard
hallow-layer approximation. This provides a more accurate ana-
ytical formula for the slump profile as one advances away from the
hallow limit. Second, we reformulate Nye’s analysis for the current
roblem, giving a solution valid for any aspect ratio. As we shall see,
ye’s solution is the natural extension of the shallow-layer theory.
owever, it also turns out that, in order to satisfy all the boundary
onditions, some rigid plug zones must be inserted into the slipline
olution.

To compare with the theoretical prediction, we also conduct
suite of simple experiments using Carbopol (Ultrez 10 & 21).

his proto-typical viscoplastic material was previously used by
ape of a viscoplastic slump? J. Non-Newtonian Fluid Mech. (2008),

ochard [12] in dambreak experiments down an inclinable chan-
el (see also [13]), and we use some of the data reported there

n our comparisons. The current experiments extend Cochard’s
esults by varying the channel’s width and the mechanism by which
he fluid is released, all to gauge the effect of the correspond-

dx.doi.org/10.1016/j.jnnfm.2008.08.004
http://www.sciencedirect.com/science/journal/03770257
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ng physical effects (side-wall resistance and the emplacement
echanism).
The outline of the paper is as follows. In Section 2 we present the

overning equations. Section 3 contains the shallow-layer pertur-
ation analysis. The slipline theory construction for non-shallow
lumps is presented in Section 4. In Section 5 the results of the two
ifferent theories are examined and compared, and Section 6 con-
ains the experimental results. Section 7 draws our conclusions. The
ppendices contain technical details of the asymptotic and slipline
nalysis.

. Problem formulation

.1. Dimensional equations

The momentum equations for a deposit of viscoplastic material
n a plane inclined at an angle � to the horizontal are

∂p̂

∂x̂
+ ∂�̂xx

∂x̂
+ ∂�̂xz

∂ẑ
+ �g sin � = 0, (1)

∂p̂

∂ẑ
+ ∂�̂xz

∂x̂
+ ∂�̂zz

∂ẑ
− �g cos � = 0, (2)

here p̂ is the pressure, �̂ij is the deviatoric stress tensor, � is the
ensity, and g is the gravitational acceleration. The coordinates x̂
nd ẑ are orientated along and perpendicular to the inclined plane,
espectively. (The hats are added to distinguish the dimensional
ariables we begin with from their dimensionless counterparts
hich appear below.)

The deviatoric stresses follow from a viscoplastic constitutive
aw which we assume to take the yielded form,

ˆjk =
[

�Y

�̇
+ �(�̇)

]
�̇jk, (3)

here �̇jk denote the components of the deformation rate tensor,
˙ jk = ∂uj/∂x̂k + ∂uk/∂x̂j , �̇ is its second invariant and uj denotes the
omponents of the velocity field; �Y is the yield stress and � is the
iscosity. In the limit that deformation rates approach zero, the
ield stress dominates and

ˆjk → �Y

�̇
�̇jk. (4)

Thus,

ˆ2
xx + �̂2

xz = �2
Y, (5)

f the fluid is incompressible, implying �̂zz = −�̂xx.
We assume that the fluid approaches its final state after yielding

verywhere, so that (5) holds throughout the final deposit. Unfor-
unately, this assumption leads to an inconsistency since the stress
eld implied by (1) and (2) does not in general furnish velocity
elds through (4) that satisfy the no-slip condition on the underly-

ng plane. Guided by shallow-layer theory [11], we argue that the
nal sheared motion of the fluid actually takes place mainly in a
iscous boundary layer adjacent to the underlying plane. In this
oundary layer, the viscous terms cannot be neglected in compar-

son to the yield stress, and their reinstatement allows the velocity
eld to be corrected to accommodate the no-slip condition.

The principal effect of the viscous boundary layer on the stress
eld is to demand that shear stresses dominate the stress tensor as
Please cite this article in press as: N. Dubash, et al., What is the final sh
doi:10.1016/j.jnnfm.2008.08.004

ˆ → 0, leading to the basal boundary condition,

ˆxz → �Y, �̂xx → 0 for ẑ → 0. (6)

Thus the problem reduces to Nye’s plasticity problem in which
perfectly plastic material slides over a lubricated base.

�

h

 PRESS
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The other boundary condition required is at the free surface,
enoted by ẑ = ĥ(x̂), where the force balance imposes

−p̂ + �̂xx �̂xz

�̂xz −p̂ − �̂xx

)(
−ĥx̂

1

)
=
(

0
0

)
, (7)

ith ĥx̂ = ∂ĥ/∂x̂.

.2. Dimensional considerations

The principal dimensional constants (g, � and �Y) imply a char-
cteristic lengthscale,

= �Y

�g cos �
. (8)

Moreover, since there are only two dimensional constants with
he units of space and time, one might therefore conclude that there
re seemingly no free dimensionless parameters in the problem
ther than the inclination of the plane, �. The flaw in the argument
s that the slump always begins with a fixed amount of material
expressed as an area,A), which is conserved throughout the subse-
uent motion. Thus, there is a second lengthscale,

√A, and another
imensionless parameter, 	/

√A.
Nevertheless, our construction of the final shape proceeds with-

ut knowing the final area and ignores all the preceding dynamics,
nd so we have no way of connecting the solution with

√A a priori.
o make matters worse, one of our goals is an asymptotic expan-
ion based on the small aspect ratio of the final deposit. Hence the
haracteristic length and height of the final deposit are not even
f the same order. In this situation, it is not convenient to use

√A
s a characteristic lengthscale, and we must proceed slightly dif-
erently. Instead, we introduce a characteristic height scale for the
nal shape, Hchar, and determine its relation with

√A a posteriori.
oreover, for the asymptotics and the slipline theory we choose

char in two different ways in order to simplify the analyses; see
ection 2.3.

Given the scale, Hchar (which is indicated in Section 2.3), we now
on-dimensionalize the equations: we scale heights (ẑ and ĥ) and

ength (x̂) by Hchar and �−1Hchar, respectively, where

= 	

Hchar
= �Y

�gHchar cos �
. (9)

Pressures are scaled with �gHchar cos �, and stresses with �Y.
qs. (1)–(5) then become

∂p

∂x
+ �

∂�xx

∂x
+ ∂�xz

∂z
+ S = 0, (10)

∂p

∂z
+ �2 ∂�xz

∂x
+ �

∂�zz

∂z
− 1 = 0, (11)

2
xx + �2

xz = 1, (12)

here

= 1
�

tan �. (13)

After a little algebra, and using the yield condition (12), the
orce balance conditions on the free surface can be written in the
lternative, dimensionless form,

= �, �xx = −�zz = − (1 − �2hx
2)

1 + �2hx
2

,

ape of a viscoplastic slump? J. Non-Newtonian Fluid Mech. (2008),

xz = − 2�hx

1 + �2hx
2

, on z = h. (14)

Here, we have made the implicit assumption that the material
as slumped to the right (the positive x direction) and that the

dx.doi.org/10.1016/j.jnnfm.2008.08.004
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aterial surface is in compression, so that ux < 0 and �xx < 0 on
= h. The basal boundary condition becomes

xz = 1, �xx = 0 on z = 0. (15)

.3. Scaling issues

The preceding dimensionless formulation contains an arbitrary
haracteristic height scale, Hchar. This scale can be selected in order
o simplify the asymptotic analysis and the slipline theory. How-
ver, the choices are different, which forces us to connect explicitly
he two formulations after describing each separately.

More specifically, the asymptotic analysis (Section 3) is expe-
ited if we choose Hchar as the maximum height of the final deposit,
nd then demand � � 1 for the effective aspect ratio, �. The con-
ection of the analysis with a small-yield-stress theory is then clear

rom the definition of that parameter.
The numerical computation of the slipline theory (Section 4), on

he other hand, proceeds far more simply if we choose � = 1. That is,
e use 	̂ to scale all lengths and heights. This leaves an apparently
arameterless problem in (10)–(15) with a unique solution for each
alue of �. This “master profile” has no maximal height specified,
nd one ends the calculation by truncating the profile and thereby
dentifying this parameter. How the truncation relates to the actual
oundary conditions will also be given in Section 4.

The truncation furnishes both the maximum dimensionless
eight and also the length of the deposit, LM ≡ f (HM; �). In dimen-
ional terms, one may then write,

ˆ = 	f

(
Ĥ

	
; �

)
, (16)

here L̂ and Ĥ are the dimensional length and height. Now, if we
nstead choose Ĥ to scale lengths, then

= L̂

Ĥ
= Bf (B−1; �), (17)

here

≡ 	

Ĥ
= �Y

�gĤ cos �
, (18)

s an equivalent yield-stress parameter, or Bingham number. For
xample, to find the length of the slump for B = 0.5 we simply
valuate the length of the master profile at HM = B−1 = 2 and then
ultiply that length by a factor of 0.5. Note that B → � � 1 for the

symptotics, and therefore our rescaled problem corresponds to
hat theory in the small aspect ratio limit. However, lengths in x are
caled with an additional factor of �−1 in the asymptotic analysis.

. Shallow-layer theory

For shallow slumps where � � 1, the profiles may be calcu-
ated using a perturbation expansion. We further assume shallow
nclines with tan � = O(�) and thus S = O(1). The details of these
alculations are given in Appendix A, and we quote only the main
esults here.

For a horizontal surface (S = 0), we obtain

=
√(

1 + 


2
�
)2

− 2x − 


2
� + O(�3). (19)

The corresponding slump length is then given by
Please cite this article in press as: N. Dubash, et al., What is the final sh
doi:10.1016/j.jnnfm.2008.08.004

= 1
2

+ 


2
� + O(�3). (20)

The leading (zeroth-)order parabolic profile, given by � = 0, was
reviously obtained by Nye [14]. Later, Nye [8] also reported the

h

t
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rst-order correction term to (20), although it was derived through
more heuristic argument. As we see in (20), Nye’s correction is

ctually accurate to order �3.
For an inclined surface (S /= 0), we write the solution for the

rofile implicitly as

− 1 +
[

1
S

+ �



2
+ �2

(
3 − 
2

4

)
S

]
log
(

1 − Sh

1 − S

)
+ O(�3) = Sx.

(21)

Such solutions only exist for S < 1, which reflects the general
esult that the yield stress can only hold the fluid layer on the slope
rovided that the depth is not too large. The slump length is

= −1
S

− 1
S2

log(1 − S) − �



2S
log(1 − S)

−�2

(
3 − 
2

4

)
log(1 − S) + O(�3). (22)

Again, the leading order terms in (21) and (22), have been
erived previously [6,14,15].

. The master profile

.1. Slipline theory

We now consider the Eqs. (10)–(15) with � = 1. In addition we
ntroduce a new variable,

= p + z − xS, (23)

hich represents the (non-dimensional) pressure with the hydro-
tatic component extracted. Thus (10) and (11) become

∂P

∂x
+ ∂�xx

∂x
+ ∂�xz

∂z
= 0, (24)

∂P

∂z
+ ∂�xz

∂x
+ ∂�zz

∂z
= 0, (25)

nd the first equation of (14) becomes

− h + xS − 1 = 0 on z = h. (26)

Following standard plasticity theory we introduce a set of
rthogonal characteristic curves or sliplines, denoted by ˛ and ˇ
9,10]. (For the two-dimensional problem the sliplines and the char-
cteristics are the same.) These sliplines are orientated such that
he direction of the algebraically greatest principal stress bisects
he angle between the ˛- and ˇ-characteristics. (The sliplines are
rientated in the directions of maximum shear stress.) If � is the
ounterclockwise angle the ˛-characteristic makes with the x axis,
e write

xx = −�zz = − sin 2�, �xz = cos 2�. (27)

Along the characteristic curves the following quantities are con-
erved [9,10]:

+ 2� = constant along an ˛-characteristic, and (28)

− 2� = constant along a ˇ-characteristic. (29)

From Eq. (14) we can write
ape of a viscoplastic slump? J. Non-Newtonian Fluid Mech. (2008),

x
2 − 2hx tan 2� − 1 = 0, on z = h. (30)

After some algebra this can be factored to obtain

an(tan−1 hx − �) = ±1 on z = h. (31)

dx.doi.org/10.1016/j.jnnfm.2008.08.004
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ig. 1. A sketch of the slipline field, showing the initial expansion fan (ABE) and its
ontinuation.

For our slipline convention, this indicates that at any point along
he surface, the ˛- and ˇ-characteristics must intersect the free
urface at angles of 
/4 and 3
/4, respectively. Finally,

= 0 on z = 0. (32)

.2. Nye’s construction

In order to begin the construction of the slipline field, we require
known curve along which the values of � and P are prescribed.
nfortunately, neither the base, z = 0, nor the surface, z = h(x), is so
rescribed as we do not know the pressure on z = 0 or the position
f the surface. Instead, following Nye, we begin the calculation by
ntroducing an artificial construct at the left-hand edge of the pro-
le that generates a complete ˇ-characteristic along which P and �
re known. The construct is an expansion fan of ˛-characteristics
manating from a single point A upstream of the origin, as shown
n Fig. 1. The fan opens with an angle 
/4 − ˛0, and extends up
o the point B, with height H∗, where it intersects the free surface.
he ˇ-characteristics within this fan are circular arcs, and the final
-characteristic, progressing from B to E, has the parametric form,

= H∗ cos �

sin(
/4 − ˛0)
− a, z = H∗ sin �

sin(
/4 − ˛0)
, 0 ≤ � ≤ 


4
− ˛0,

(33)

ogether with the pressure distribution (from (26) and (29)),

= 2� + H∗ + 1 − 


2
+ 2˛0. (34)

Because of the surface boundary condition (30), the angle of
he free surface from the horizontal at point B is �B − 
/4 = −˛0.
he parameters, ˛0 and H∗, must be specified at the outset, but
ltimately the precise choices become irrelevant for the reasons
utlined presently.

Given the positions and values of � and P at the points B and
in Fig. 1, we may use the properties of the characteristics, the

ocal slope of the surface and the boundary conditions to compute
he location and characteristic values at the adjacent surface point,
. Given the points and values at D and F, we can then construct
oint G, and so on. The ˇ-characteristic starting at F can then be
ompletely determined, including the point, J, on z = 0 using the
asal boundary condition. We then extend the ˛-characteristic DG
o a new surface point K, and repeat the procedure to construct
he ˇ-characteristic which emanates from K. In this manner we can
Please cite this article in press as: N. Dubash, et al., What is the final sh
doi:10.1016/j.jnnfm.2008.08.004

onstruct the entire slipline field; further details of the algorithm
re summarized in Appendix B.

Two important features of the construction were established by
ye. First, although the slipline field is initially dependent on the
etails of the expansion fan, and, in particular, the parameters ˛0

t
m
s
D
c

ig. 2. The surface profiles for (a) H∗ = 8, 9, 10 with ˛0 = 10◦ and (b) ˛0 =
0◦, 15◦, 20◦ (increasing from top to bottom) with H∗ = 10. Sufficiently far away from
he starting point all the profiles converge to one “master profile” (dotted line).

nd H∗, as one progresses downstream the solution quickly con-
erges to one that is independent of those details. Fig. 2 illustrates
his feature, and plots profiles constructed with different values of
∗ with a given ˛0, and profiles with varying ˛0 for a given H∗. In

he figure, each profile is suitably shifted in x in order to show the
onvergence. Thus, provided we take H∗ to be sufficiently large and
0 to lie over the range (1◦, 20◦), for example, we may construct
master profile on discarding the initial transient, for a particular

nclination S. If S = 0, any large value of H∗ suffices, as there is no
imit on the layer height. However, for S > 0, there is an additional
onstraint on the maximum layer height demanded by the require-
ent that the yield stress holds the fluid in place on the slope:
∗S < 1 with the current notation. We must then take a value for
∗ that is sufficiently close to S−1, in order to begin the slipline field.

Second, Nye established that although the ˛-characteristics
hich emanate from the base (E, J, . . . in Fig. 1) are initially con-

ave up, as the surface height becomes smaller we eventually reach
point where an ˛-characteristic from the base becomes con-

ave down somewhere along its length (see the curve from point
in the inset of Fig. 3). If we continue the construction further,
e reach another point where an ˛-characteristic from the base

urves downwards immediately (point B, inset of Fig. 3). To prevent
uilding a stress field below z = 0, we must halt the construction
efore we reach this problematic ˛-characteristic and terminate
he computation via a different route. Following Nye, we observe
hat between the ˛-characteristics starting at points A and B, there
ape of a viscoplastic slump? J. Non-Newtonian Fluid Mech. (2008),

ust be a third curve, beginning at point C in Fig. 3, that inter-
ects the free surface exactly at the fluid edge, h(x) = z = 0 (point
). We then take this ˛-characteristics to be the final one in our
onstruction, and continue the ˇ-characteristics no further below

dx.doi.org/10.1016/j.jnnfm.2008.08.004
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Fig. 3. A diagram of the slipline field near the end of the profile.

his curve. Because any of the characteristic curves can be consid-
red to be a yield surface, the fluid sandwiched between the last
-characteristic and the base can be considered to be a rigid plug.
hether this is compatible with the idea of an underlying viscous

oundary layer is not clear. In practice though, this plug on the base
s very small.

Finally, to determine a profile for a slump with maximal height
ˆ , we truncate the master profile at the height h = Ĥ/	 = B−1, as
n Eq. (18). Provided that B−1 is sufficiently smaller than H∗, the
ffects of the initial expansion fan and ˛0 are thereby removed,
eaving a master profile beginning on the left with a distinguished
-characteristic; see Fig. 4. Again, the wedge of material to the left
f that ˇ-characteristic can be taken to be a rigid plug. In this way,
Please cite this article in press as: N. Dubash, et al., What is the final sh
doi:10.1016/j.jnnfm.2008.08.004

e can join the solution onto a stagnant wedge abutting a back wall,
n upstream layer of unyielded fluid, or a unyielded core separating
eposits that slumped in either direction (see Fig. 4). The relevant
pstream boundary conditions are thereby taken care of, if at the
xpense of the introduction of a rigid plug.

i
(
(

ig. 4. (a) The slipline construction is truncated along a ˇ-characteristic sufficiently far fr
o (b) a stagnant wedge abutting a back wall, (c) an upstream layer of unyielded fluid, or (
nyielded regions near the front of the slumps have been exaggerated for visibility.
ig. 5. The surface profile and slipline field for a slump with B = 0.1 and � = 0. The
otted line is the leading order shallow-layer profile (the second-order solution is

ndistinguishable from the slipline profile).

. Results

Typical slipline fields and surface profiles are shown in
igs. 5 and 6 for B = 0.1 and 0.8, respectively (and � = 0). Fig. 6
shows the detail of the slipline field near the end of the profile.
ote that only a fraction of the calculated sliplines are shown, in
rder to avoid cluttering the figures. Also shown in Figs. 5 and 6
re the shallow-layer profiles predicted by Eq. (19), (the leading
rder solution h = √

1 − 2x, as well as the second-order solution).
ig. 7 compares slump profiles from the slipline theory with those
rom the shallow-layer theory (Eq. (21)), for different inclination
ngles and for different values of B. (In these cases the leading order
pproximation is much more inferior and is omitted for clarity.)
ote that the cases with � < 0 correspond to slumps upslope.

Fig. 8 shows the length, L, of the deposit for � = 0 as a function
f B. The asymptotic analysis (with small B ≡ �) predicts the length,

= 1
2B

+ 


2
. (35)

Recall that in Section 3 lengths are scaled with additional fac-
or of �−1.) Using a force balance argument over the entire profile
including the initial expansion fan), Nye [8] derived the alternative,

= 1 + 1. (36)
ape of a viscoplastic slump? J. Non-Newtonian Fluid Mech. (2008),

2B

Both predictions (35) and (36) are included in Fig. 8. Unsurpris-
ngly, while both predictions match the general trend of the data
Fig. 8, inset), the asymptotics are more accurate for small B, because
36) incorporates the effect of the initial expansion fan. As pointed

om the initial expansion fan (on the left). The resulting solution can then be joined
d) an unyielded core separating deposits slumped in either direction. Note that the

dx.doi.org/10.1016/j.jnnfm.2008.08.004
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Fig. 6. (a) The surface profile and slipline field for a slump with B = 0.8 and � = 0. The dotted and dashed lines are, respectively, the leading order and second-order
shallow-layer profile given by Eq. (19). (b) Detail of slipline field near the end of the profile. Here no new ˛-characteristics are being generated.

ow-layer theory (second-order solution, dashed lines) for various values of � and B.

o
a

i
h
t
s
o
r
h
p

F
t
E
L

Fig. 7. Slump profiles given by the slipline theory (solid lines) and by the shall

ut by Nye, in his force balance the pressure is assumed to be linear
t the left edge, which is not the case even for shallow slumps.

Fig. 9 shows the slump length as a function of B for different
nclination angles. As noted before, for � /= 0, there is a critical layer
eight above which the deposit cannot be held on the slope by
he yield stress. After rescaling the master profile as in Section 2.3,
o that the height is unity, this limit translates to a lower bound
Please cite this article in press as: N. Dubash, et al., What is the final shape of a viscoplastic slump? J. Non-Newtonian Fluid Mech. (2008),
doi:10.1016/j.jnnfm.2008.08.004

n B which must be exceeded for the slump to become static. The
elevant critical values of B are also shown in Fig. 9. Because we
ave imposed that the fluid must slump to the right, we can in
ractice obtain slump profiles for arbitrarily small B when � < 0.

ig. 8. The behaviour of the slump length, L, as a function of B from the slipline
heory (solid line) and the shallow-layer theory (dashed line); � = 0. Also shown is
q. (36) for Nye’s force balance (dotted line). The inset shows the general trend for
; the dotted line represents a slope of 1/2.

Fig. 9. The behaviour of the slump length, L, as a function of B, for � = 0◦, 6◦, 12◦ , and
18◦ (upper panel, � increasing from left to right) and � = −18◦, −12◦, −6◦ , and 0◦

(lower panel, � increasing from top to bottom). The solid lines represent the slipline
theory, the dashed lines represent the shallow-layer theory, and the dotted lines
represent the critical B values required for a static slump to exist.

dx.doi.org/10.1016/j.jnnfm.2008.08.004
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ig. 10. The contact angle (relative to the inclined surface) plotted versus the angle
f inclination, �, from the asymptotic analysis (solid line, left axis scale), and the
lipline theory (×, right axis scale).

owever, physically, these uphill slumps are also restricted by the
ower bound in B, as otherwise they cannot hold themselves up
gainst collapsing to the left (i.e., downhill).

In both the slipline theory and the asymptotics, the angle of the
urface at the edge of the deposit (the “contact angle”) is finite and
ndependent of B. For � = 0, the slipline theory predicts a contact
ngle of about 47.72◦, as also mentioned by Nye. The corresponding
symptotic result is tan−1(2/
) ≈ 32.48◦. These values vary weakly
ith the slope (see Fig. 10). In the slipline theory the contact angle

s directly calculated in the construction, and in the asymptotics the
ontact angle is determined by differentiation of (19) and (21). Phys-
cally, one expects the contact angle to increase with �, which is the
rend given by the slipline analysis. The asymptotics, on the other
and, show the opposite; however, here the analysis breaks down
s we approach the front of the slump, so the angle predictions
hould be considered less than trustworthy.

. Experiments

The majority of existing experimental work on the final shape
f slumped deposits is either axisymmetric or fully 3D. And most
f the reported experiments carried out in channels [16] either do
ot fully come to rest, or are overly affected by either inertia or the
ide-walls. Thus, in order to compare our theory with observations,
e conducted our own experiments with Carbopol in a horizontal

lass tank 100 cm long, 30 cm wide, and 16 cm high. The base of the
ank was covered by a thin textured foam sheet in order to prevent
lip which is a known problem with Carbopol.1 Slip was observed to
ccur along the side and back walls of the tank. However, as the pri-
ary purpose of the experiments was to test the two-dimensional

heory, we considered the slip along the walls to be beneficial. The
ajority of the experiments were done with the full channel width,

0 cm, however some addition experiments were done in narrower
hannels (10 cm, 20 cm) to gauge the extent of the wall effects. It
as found that for the 30 cm wide channel the wall effects were
Please cite this article in press as: N. Dubash, et al., What is the final sh
doi:10.1016/j.jnnfm.2008.08.004

egligible (at least as far as the centre-line profile was concerned).
n fact, wall effects only became noticeable when the channel width
as reduced to 10 cm, and then only for the largest volume slumps
ith the smallest yield stress fluid.

1 An experiment was also done where the base was covered with waterproof
andpaper (P220 ISO grit) and the result was identical to that with the textured
oam sheet.

s
“

a
fi
fi

s
s

ig. 11. Experimental results: our experiments, 
 (tilted) and � (gate); data from
ochard, © and × (wall effect). Also shown are the results for the shallow-layer
heory (dashed line) and the slipline theory (solid line).

Two different Carbopol solutions were used. The solutions were
repared according to the method described in [12]. The first was a
.15 wt.% solution of Carbopol Ultrez 21, which had a yield stress of
0 ± 2 Pa; the second was a 0.30 wt.% solution of Carbopol Ultrez 10,
hich had a yield stress of 91 ± 2 Pa. The yield stress was measured
sing successive creep tests in a Bohlin rotational rheometer with a
errated plate–plate configuration. A range of different initial fluid
reas A (i.e., volumes) were used—from 24 cm2up to 300 cm2.

The experimental data is non-dimensionalized using
√A, thus

he quantities of interest are

A = 	√A
= �Y

�g
√A

, LA = L̂√A
, HA = Ĥ√A

. (37)

To begin with, the fluid was released by quickly raising a gate in
he tank, in the manner of a conventional dambreak experiment.
owever, this release mechanism would always leave an impres-

ion along the free surface (in the form of a sharp ridge across the
ntire surface), and for the smaller values of A the size of the ridge
ould become comparable to Ĥ. In order to avoid the gate effect,
e chose instead to tilt the tank backwards and emplace a tri-

ngular wedge of fluid of the desired volume. The tank was then
lowly tilted back to the horizontal position. In all cases, all of the
released” material flowed.

Our theory only builds the final resting shape, and the basic
ssumption is that this shape is independent of the passage to the
ape of a viscoplastic slump? J. Non-Newtonian Fluid Mech. (2008),

nal state. Thus, different initial conditions should lead to the same
nal profile.

Experimental data for the scaled final lengths and heights are
hown in Fig. 11. The different data all appear to collapse onto the
ame curve, indicating that the various release mechanisms did not

dx.doi.org/10.1016/j.jnnfm.2008.08.004
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Fig. 12. Slump profile from an experiment (solid line) compared with the profile
predicted by the slipline theory (dotted line). (The slipline profile and the shallow-
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ayer profile are in such close agreement in this case that the latter has been omitted
or clarity.) The experiment was with Carbopol Ultrez 10 with a yield stress of 91 Pa,
nd an initial volume corresponding toA = 100 cm2. Note also that the contact angle
s much larger than that predicted by the theory.

ave a significant effect on the recorded final lengths and heights.
e have also included some experimental results from Cochard

12] for dam breaks using Carbopol solutions in a channel. Note that
e believe that some of Cochard’s data (those denoted by ×) exhibit

ome wall effects resulting in larger HA and smaller LA values. For
mall values of 	A (the small-yield-stress limit), the experiments
nd the theory agree. However, for larger values of 	A there is a
oticeable discrepancy—the theory predicting longer profiles than
ctually obtained. We have yet to come up with a satisfactory expla-
ation of this. Fig. 12 shows the slump profile from an experiment
ompared with the theoretical profile. The discrepancy is clearly
isible in this case (here 	A = 0.092). Of further concern is that the
ontact angle in the experiments were all closer to 90◦ rather than
he predicted 47.7◦ (see Fig. 12).

The discrepancy between the experiments and the theory indi-
ate that some of the theoretical assumptions may be invalid, or
hat there are other physical effects which need to be accounted
or. For example, surface tension could have an appreciable influ-
nce on the slump shape. Also, Carbopol has been observed to have
ome elastic effects at low stresses. One would expect that both
urface tension and elastic effects would result in shorter slumps.
urthermore, a practical concern with the experiments is when can
slump be considered to have come to rest. In our experiments the
nal profile was measured once the front velocity had decreased to
elow 1 mm/h (usually about 3–6 h). However, in a careful experi-
ent, Cochard [12] showed that the front could continue to move

or up to 40 h (albeit at velocities much smaller than 1 mm/h) at
hich point evaporation of the fluid became a concern. In order to
etermine the source of the discrepancy, these issues will need to
e examined in more detail.

. Concluding remarks

In this article we have built the final shape of a viscoplastic
lump using two methods: an asymptotic expansion for small B,
nd a slipline computation for arbitrary B, where B is an effec-
ive aspect ratio, or equivalently, a dimensionless yield stress.

notable feature of the equations is that if we do not impose
he maximal height of the slump (or the total volume per unit
idth), then the governing equations (scaled with 	 as the length

cale) are invariant under the transformation (x, z, h, p, �ij, B) →
�x, �z, �h, �p, ��ij, �B); i.e., magnifying a slump profile for a Bing-
am number B by a factor of � results in a solution for the system
ith Bingham number �B. Unfortunately, to initiate the slipline

onstruction a maximal height must be imposed. Nonetheless, it
Please cite this article in press as: N. Dubash, et al., What is the final sh
doi:10.1016/j.jnnfm.2008.08.004

s the above invariance that allows the construction of the master
rofile (for a sufficiently large maximal height). The slipline theory
lso requires the inclusion of a rigid plug region near the slump tip.
he compatibility of this with the viscous boundary layer can not
e determined from the present analyses, and further work will be

e

−
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ecessary to resolve this matter. We are in the process of conduct-
ng detailed numerical simulations of the problem which we hope

ill clarify the matter; the results of which will be presented in a
uture work.

Another notable feature of the slipline theory is that we may
uild solutions for very large values of B. This is surprising in view of
he idea that a rectangular (or triangular) block of material may not
eform at all when released if its yield stress is sufficiently high. In
his context, our results can be explained by the fact that the slipline
onstruction gives an admissible stress field for a given volume of
uid. But there may be other admissible stress configurations, and
hich one of these configurations ultimately results depends on

he initial condition and flow path. Hence, in an experiment that
egins with a rectangular profile and large B, we may not be able
o “reach” the solution constructed by the sliplines.

Pertaining to this, some work has been done to study the incip-
ent failure of a rectangular block of viscoplastic material [1,17,18].
ashias et al. [1] used a uniform stress model to predict that B ≤ 1/2
or slumping to occur. Chamberlain et al. [17], on the other hand,
sed plasticity theory and a slipline construction to show that the
riterion for failure depends on the aspect ratio of the block, with
ritical values of B over the range 0.5–1.

In this paper we have studied two-dimensional deposits. We
lso attempted to apply the theory to axisymmetric slumps. How-
ver, this leads to several problems. In the general slipline problem,
long with Eqs. (1)–(5), there are also the velocity equations (see, for
xample [9]). In two dimensions, the equations for the stress decou-
le from the velocity equations, and given suitable stress boundary
onditions, the stresses can be determined independently, as we
ave done here. In the axisymmetric case, with an additional non-
rivial component of stress, the stress equations no longer decouple,
nd the velocity field must be solved simultaneously with the stress
eld. One also needs an analogue of the expansion fan to begin
he slipline construction, and suitable velocity boundary conditions
n the free surface. One method which has been used to over-
ome some of these issues is the so-called Haar-Karman hypothesis
19,20], which assumes that the intermediate principal stress is
qual to one of the other two principal stresses. Thus, one can
liminate one of the stress components from the stress equations,
hich then decouple from the velocity equations. However, with

he Haar-Karman hypothesis, incompressibility is violated, a phys-
cal principle that we were reluctant to let go.
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ppendix A. Shallow-layer perturbation equations

In this appendix we present the details of the asymptotic expan-
ion of (10)–(15) for � � 1, assuming S is order one and that the
aximal height h|x=0 = 1. We begin by expanding all variables

xcept h in powers of � according to f = f0 + �f1 + �2f2 + · · · . In order
o avoid having to expand the boundary conditions (7) on the free
urface as part of this first expansion, we assume h is known and
rop the boundary condition on the base (15). Once �xz is obtained
o the desired order, we impose this boundary condition and find
n equation for h. That equation can then be solved by a second
ape of a viscoplastic slump? J. Non-Newtonian Fluid Mech. (2008),

xpansion in � to yield the required profiles.
At leading order in �, the governing equations, (10)–(12), become

∂p0

∂x
+ ∂�0xz

∂z
+ S = 0,

∂p0

∂z
+ 1 = 0, �2

0xx + �2
0xz = 1, (A.1)

dx.doi.org/10.1016/j.jnnfm.2008.08.004
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ubject to

0xz = 0 and p0 = 0, on z = h, (A.2)

ith solution

0 = h − z, �0xz = , �0xx = −
√

1 − 2, (A.3)

here (x, z) = (hx − S)(z − h).
At order �, the governing equations are

∂p1

∂x
+ ∂�0xx

∂x
+ ∂�1xz

∂z
= 0,

∂p1

∂z
+ ∂�0xx

∂z
= 0,

0xx�1xx + �0xz�1xz = 0, (A.4)

ith boundary conditions

p1 − �0xx)hx + �1xz = 0 and p1 + �0xx = 0 on z = h, (A.5)

nd solution

1 =
√

1 − 2, �1xz = ∂

∂x

(

√

1 − 2 + sin−1 

hx − S

)
,

1xx = √
1 − 2

�1xz. (A.6)

Finally, at order �2, we have

∂p2

∂x
+ ∂�1xx

∂x
+ ∂�2xz

∂z
= 0, −∂p2

∂z
+ ∂�0xz

∂x
− ∂�1xx

∂z
= 0, (A.7)

ith

p2 − �1xx)hx + �2xz = 0 and p2 + �1xx + hx�0xz = 0 on z = h,

(A.8)

ielding

2 = ∂

∂x

[
2

2(hx − S)

]
− √

1 − 2

∂

∂x

(

√

1 − 2 + sin−1 

hx − S

)
,

(A.9)

2xz = 2
∂

∂x

[
hxx

(hx − S)3

(
 −
√

1 − 2 sin−1 
)]

−1
2

∂2

∂x2

[
3

(hx − S)2

]
. (A.10)

Note that in (A.7) we have omitted the order �2 equation derived
rom (12) as it is not required for the solutions (A.9) and (A.10).

Imposing the basal boundary condition we now find

= V + �
∂

∂x

(
V
√

1 − V2 + sin−1 V

hx − S

)

+�2

(
2

∂

∂x

[
hxx

(hx − S)3

(
V −
√

1 − V2 sin−1 V
)]

−1
2

∂2

∂x2

[
V3

(hx − S)2

])
+ O(�3), (A.11)

here V = (x, 0) = −(hx − S)h. Expanding h = h0 + �h1 + �2h2 +
· · and setting h|x=0 = 1, we can then find the expressions for the
Please cite this article in press as: N. Dubash, et al., What is the final sh
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lump profiles.
For a horizontal surface (S = 0), we obtain

= h0 + �



2

(
1
h0

− 1
)

+ �2 
2

8h0

(
1 − 1

h2
0

)
+ O(�3), (A.12)

o

P

P
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here h0 = √
1 − 2x. Unfortunately, because h0 → 0 as x → 1/2,

his asymptotic sequence becomes disordered for x − 1/2 ∼ �2. The
ingularity at x = 1/2 can be removed to improve the uniformity of
he asymptotic series by shifting the leading edge of the slump, as
n the method of strained coordinates [21]. Alternatively, we can
ecognize the divergent terms in (A.12) as the Taylor series expan-
ion of h0 about an edge that is shifted by an order � distance from
= 1/2. This observation leads us to regroup the divergent terms

nto the non-singular solution (19) quoted in Section 3 (which can
lso be derived directly using the method of strained coordinates).

For S /= 0, the expansion of (A.11) furnishes the solution,

= h0 + �



2S

1 − Sh0

h0
L + �2

[(
3 − 
2

4

)
1 − Sh0

h0
L

− 
2

8S2

1 − Sh0

h3
0

L2 − 
2

4S

1 − Sh0

h2
0

L
]

+ O(�3), (A.13)

hereL(S, h0) = log(1 − Sh0) − log(1 − S) and h0(x) is given implic-
tly by h0 − 1 + L/S = Sx. This expansion again becomes disordered
s x → − log(1 − S)/S2 − 1/S and h0 → 0. Once more, we recognize
he divergent terms as the Taylor series expansion of h0 and refor-

ulate the solution in the non-singular fashion of (22).

ppendix B. Calculation of the slipline field

The following calculations make reference to the slipline field
ketched in Fig. 1. Note that in practice, however, the initial arc from
he expansion fan (BE in Fig. 1) is partitioned into 160 intervals.
oubling the partition size to 320 resulted in negligible changes

n the slipline field and the surface profile; the change was on the
rder of 0.01%.

.1. Surface point

Given, for example, the values xB, zB, PB, and �B and xC , zC , PC ,
nd �C corresponding to the points B and C, respectively, from Eqs.
28) and (26) we obtain

F + 2�F = PC + 2�B, (B.1)

F − zF + xF S − 1 = 0. (B.2)

We can also write first order expressions for the slopes of BF and
F:

F − zB = (xF − xB) tan
(

1
2

(�F + �B) − 


4

)
(B.3)

F − zC = (xF − xC ) tan
(

1
2

(�F + �C )
)

. (B.4)

In (B.3) we have implicitly used Eq. (30)(i.e., that the sliplines
ust intersect the surface at angle of ±
/4). Eqs. (B.1)–(B.4) are

hen solved to obtain xF , zF , PF , and �F .

.2. Interior point

Given, for example, the values xF , zF , PF , and �F and xD, zD, PD,
nd �D corresponding to the points F and D, respectively, we can
hen calculate the values xG , zG , PG , and �G . From (28) and (29) we
ape of a viscoplastic slump? J. Non-Newtonian Fluid Mech. (2008),

btain

G + 2�G = PD + 2�D, (B.5)

G − 2�G = PF − 2�F . (B.6)

dx.doi.org/10.1016/j.jnnfm.2008.08.004
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Also, the first order expression for the slopes of DG and FG are,
espectively,

G − zD = (xG − xD) tan
(

1
2

(�G + �D)
)

(B.7)

G − zF = (xG − xF ) tan
(

1
2

(�G + �F ) − 


2

)
. (B.8)

Eqs. (B.5) and (B.6) can be rearranged to obtain

G = 1
2

(PD + PF ) + (�D − �F ), (B.9)

G = 1
4

(PD − PF ) + 1
2

(�D + �F ). (B.10)

With �G now known (B.7) and (B.8) can be solved for xG and zG:

G = 1
T∗ − T

(zD − zF + T∗xF − TxD), (B.11)

G = 1
T∗ − T

(T∗zD − TzF + T∗TxF − T∗TxD), (B.12)

here

= tan
(

1
2

(�G + �D)
)

, and T∗ = tan
(

1
2

(�G + �F ) − 


2

)
.

(B.13)

.3. Base point

At a base point we must have z = 0 and � = 0. Furthermore,
iven, for example, xI , zI , PI , and �I we may write

J − 2�J = PI − 2�I (B.14)

J − zI = (xJ − xI) tan
(

1
2

(�J + �I) − 


2

)
. (B.15)

Combining these conditions we can then write
Please cite this article in press as: N. Dubash, et al., What is the final sh
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J = PI − 2�I, (B.16)

J = 0, (B.17)

[

[

[
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J = xI − zI

tan((1/2)�I − (
/2))
, (B.18)

J = 0. (B.19)
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