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A reduced model is presented for the dynamics of a slender sheet of a viscoelastic fluid.
Starting with the Oldroyd-B constitutive model and exploiting an asymptotic analysis
in the small aspect ratio of the sheet, equations are derived for the evolution of a ‘visco-
elastica’. These depend on an elastic modulus, a creep viscosity, and a solvent viscosity.
They resemble standard equations for an elastica or a viscida, to which they reduce under
the appropriate limits. The model is used to explore the effects of viscoelasticity on the
dynamics of a curling ribbon, a drooping cantilever, buckling sheets, snap-through, and
a falling catenary. We then incorporate a yield stress for a fluid that deforms by creep
only above a critical stress, revisiting the curling and cantilever problems. This model
generalises a number of previous theories for viscoelastic and viscoplastic ribbons.

1. Introduction

The similarity between the mathematical formulations of linear elasticity and slow
viscous flow led Taylor (1969) to suggest the fluid mechanical analogies of various classical
problems from solid mechanics. Continuing in this vein, a number of studies have explored
the buckling and folding of viscous sheets and the coiling and sewing of liquid threads
(Buckmaster et al. 1975; Ribe 2002; Ribe et al. 2012; Slim et al. 2008, 2012; Teichman
& Mahadevan 2003; Chiu-Webster & Lister 2006). The implications of this work range
from understanding the everyday observations of honey or syrup falling on toast, the
manufacture of glass fibres and sheets, to inferences about the fate of subducting slabs
in the Earth’s mantle. In all these studies, the relatively thin geometry of the sheet or
thread is exploited to derive reduced models describing the dynamics of the “viscida”, in
analogy with the classical solid mechanics description of Euler’s elastica (Love 1944).

Here, we pursue the analogy further, but consider the non-Newtonian version of the
fluid mechanics problem, deriving reduced model equations for viscoelastic ribbons or
sheets. We employ the Oldroyd-B model to describe the viscoelastic fluid (Bird et al.
1987), although the lack of substantial stretching in the configurations we consider means
this particular choice for the constitutive law is relatively unimportant. We then use the
reduced model to study the viscoelastic dynamics of some curling, bending and buckling
problems. Our exploration follows on from a related study in which we examined the
bending and stretching of sheets of yield-stress fluid, considering a similar suite of sample
problems (Balmforth & Hewitt 2013).

The curling of ribbons has recently been rationalized in terms of the elasto-plastic
deformation of a thin sheet of paper (Prior et al. 2016): the drawing of a straight
ribbon over a sharp edge induces an abrupt change in curvature that may plastically
deform one side of the sheet whilst the other side deforms elastically, thereby imprinting
the permanent deformation characterizing the curled ribbon. However, any viscoelastic
deformation of a thin sheet can accomplish the same task, as we illustrate here, and is
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familiar from the practicalities of curling hair (Barnes & Roberts 2000; Zuidema et al.
2003). Other curling problems in which viscoelasticity likely plays a prominent role have
been considered recently by Audoly et al. (2015), Tadrist et al. (2012) and Arriagada
et al. (2014).

The exploration of the dynamics of elastica dates back to Galileo’s cantilever, wherein
an initially straight and clamped beam bends under gravity. Similarly, the buckling of
elastic beams has a rich history. For a viscoelastic beam, one expects that the relaxation
of the elastic stress introduces residual creep that prevents the beam from maintaining
an elastically bent or buckled state. Instead, creep induces continued deformation beyond
that state, or may even induce buckling below traditional elastic thresholds. In the
solid mechanics literature, the latter is referred to as “creep buckling” (Kempner 1954;
Minahen & Knauss 1993). Our reduced model for sheets of viscoelastic fluid captures such
creep dynamics and is closely related to previous models of beams of viscoelastic solid.
Unlike our current approach, however, the developments for viscoelastic solid beams
do not typically begin with a reduction of the governing equations of solid mechanics
with a constitutive law for the solid, but start from traditional “beam theory”. As
such, curvatures are commonly taken to be small (whereas we take the curvature to be
order one), and viscoelastic behaviour is incorporated using a general memory function.
Our formulation turns out to be similar to the “standard linear solid” of that subject,
incorporating Maxwell and Kelvin elements in the behaviour, though with a more fluid
mechanical twist.

In addition to the dynamics of creep buckling, the model can also be applied to study
the analogue of elastic “snap-through” instabilities. Here, a control parameter is used to
march a structure through a bifurcation in which an elastic state is either lost or becomes
unstable, precipitating a sudden transition to another state (e.g. Plaut & Virgin (2009)).
Dissipation has been suggested to control the dynamics during snap-through in a number
of problems (Gomez et al. 2019), with biological applications ranging from the Venus fly-
trap (Forterre et al. 2005) to the snapping of the beak of a humming bird or flagella of
bacteria (Smith et al. 2011; Son et al. 2013). Our model provides a natural setting to
examine how viscoelasticity may control snap-through.

Reduced equations for “viscoelastica” have previously been presented by Roy et al.
(2006). Models for viscoelastic rods have also been considered (Linn et al. 2013; Liu
et al. 2018), together with experiments or simulations of viscoelastic sheets and threads
(Majmudar et al. 2010; Oishi et al. 2012; Tomé et al. 2019). Roy et al. used their reduced
system to consider the dynamics of a viscoelastic caternary. Their formulation is different
to ours, however, incorporating viscoelastic effects only through the inclusion of a relaxing
initial tension. By contrast, our model, arrived at by a different asymptotic scaling and
reduction, includes viscoelastic effects more generally, allowing both tension and bending
stress to develop and relax as the sheet evolves. We revisit the falling viscoelastic catenary
as a further application of the model.

2. Formulation

2.1. Coordinate system

In terms of arc length s and time t, and as illustrated in figure 1, the centreline of the
sheet has position,

rc(s, t) = X(s, t) x̂ + Y (s, t) ŷ, (2.1)
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Figure 1. Defintion sketch.

and makes an angle θ(s, t) with the horizontal (directed along x̂). The tangent and normal
directions are given by

ŝ =
∂rc
∂s

= x̂ cos θ + ŷ sin θ, n̂ = −x̂ sin θ + ŷ cos θ. (2.2)

Points close to the centreline are described by the local Cartesian coordinates, (s, n),
where n is the normal distance from the centreline. Note that rc(s, t) and κ(s, t) can be
constructed from θ(s, t) which is therefore used as the primary variable describing the
geometry.

We denote the velocity of the centreline by ∂rc/∂t = ucŝ + vcn̂. Differentiating with
respect to s provides the geometric relations,

∂θ

∂t
=
∂vc
∂s

+ κuc,
∂uc
∂s

= κvc, (2.3)

where

κ =
∂θ

∂s
(2.4)

is the curvature. The velocity of the centerline is not necessarily equal to the local fluid
velocity; relative to the (moving) centreline, we take the fluid velocity to be u(s, n, t) =
uŝ + vn̂. We then define ξ(s, n, t) = ξŝ + ζn̂ as the corresponding displacements relative
to the centreline, which satisfy

Dξ

Dt
= u. (2.5)

The material velocity components are ∂rc/∂t+ u, and the material derivative is

D

Dt
=

∂

∂t
+

(
u+

∂θ

∂t
n

)
1

1− κn
∂

∂s
+ v

∂

∂n
. (2.6)

2.2. Full equations in curvilinear coordinates

Ignoring inertia, we write the equations of force balance for a fluid sheet as

∂σss
∂s

+ (1− κn)
∂σsn
∂n
− 2κσsn = −(1− κn)f̂s, (2.7)

∂σsn
∂s

+ (1− κn)
∂σnn
∂n

+ κ(σss − σnn) = −(1− κn)f̂n, (2.8)

where the stress tensor is σij and

f̂s = f̂x cos θ + f̂y sin θ and f̂n = f̂y cos θ − f̂x sin θ, (2.9)
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represent the applied body force, with horizontal and vertical components f̂x and f̂y.
The continuity equation reads

∂u

∂s
+ (1− κn)

∂v

∂n
− κv = 0. (2.10)

At the upper and lower surface n = ± 1
2H(s, t), the kinematic conditions are(

1∓ 1

2
κH

)(
v ∓ 1

2

∂H

∂t

)
=

1

2

∂H

∂s

(
u± 1

2
H
∂θ

∂t

)
, (2.11)

and ignoring surface tension, force balance implies(
1∓ 1

2
κH

)
σsn ∓

1

2

∂H

∂s
σss = 0, (2.12)

(
1∓ 1

2
κH

)
σnn ∓

1

2

∂H

∂s
σsn = 0. (2.13)

2.3. Oldroyd-B constitutive model

We write the constitutive model relating the stress tensor and rate of strain tensor γ̇ij
as

σij = −pδij + η̂sγ̇ij + τij , (2.14)

where p is the pressure, η̂s is a solvent viscosity, and the viscoelastic stress τij satisfies

1

Ê

O
τ ij +

1

η̂
τij = γ̇ij , (2.15)

where Ê is an elastic modulus, η̂ is a viscosity, the upper convected derivative is

O
τ ij =

(
∂

∂t
+ uk

∂

∂xk

)
τij − τik

∂uj
∂xk
− ∂ui
∂xk

τkj , (2.16)

and the rate of strain tensor is given by

γ̇ij =
∂ui
∂xj

+
∂uj
∂xi

. (2.17)

If ηs = 0 this is a Maxwell model; it limits to a viscous fluid if E → ∞, and an
incompressible elastic material for η → ∞. The latter limit, coupled with a non-zero
solvent viscosity, represents a Kelvin model.

2.4. Scaled equations

Given a characteristic thickness and length, H and L of the ribbon, we introduce a
small parameter ε = H/L � 1. We then scale lengths, velocities, time and stress as

s ∼ L, n,H, ξ, ζ ∼ H, κ ∼ 1

L
, v, u ∼ U , t ∼ εL

U
, σij , τij , p ∼ P,

(2.18)
and define the dimensionless groups and body force,

E =
εÊ

P
, (η, ηs) =

U
LP

(η̂, η̂s), (fs, fn) =
L
εP

(f̂s, f̂n), (2.19)

where U and P denote typical scales for speed and stress. It is possible to choose two of
the parameters in (2.19) to be unity by selecting the stress and velocity scales. For the
moment, we retain all of them and proceed on the assumption that they are O(1).
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Avoiding any further change of notation for the dimensional and dimensionless coor-
dinates and variables, the force balance equations become

∂σss
∂s

+
1

ε
(1− εκn)

∂σsn
∂n
− 2κσsn = −ε(1− εκn)fs, (2.20)

∂σsn
∂s

+
1

ε
(1− εκn)

∂σnn
∂n

+ κ(σss − σnn) = −ε(1− εκn)fn, (2.21)

with surface conditions at n = ± 1
2H,(

1∓ 1

2
εκH

)
σsn ∓

1

2
ε
∂H

∂s
σss = 0, (2.22)

(
1∓ 1

2
εκH

)
σnn ∓

1

2
ε
∂H

∂s
σsn = 0, (2.23)

The material derivative, continuity equation and kinematic conditions become

D

Dt
=

∂

∂t
+ ε

(
u+

∂θ

∂t
n

)
1

1− εκn
∂

∂s
+ v

∂

∂n
, (2.24)

ε
∂u

∂s
+ (1− εκn)

∂v

∂n
− εκv = 0, (2.25)

and, for n = ± 1
2H,(

1∓ 1

2
εκH

)(
v ∓ 1

2

∂H

∂t

)
= ±1

2
ε
∂H

∂s

(
u± 1

2
H
∂θ

∂t

)
. (2.26)

The constitutive equations are

σss = −p+ τss + ηsγ̇ss, σsn = τsn + ηsγ̇sn, σnn = −p+ τnn + ηsγ̇nn, (2.27)

1

E

[
Dτss
Dt
− 2ε

1− εκn
τss

(
∂u

∂s
− κv

)
− 2τsn

∂u

∂n

]
+

1

η
τss = γ̇ss, (2.28)

1

E

[
Dτsn
Dt

− ε

1− εκn
τss

(
∂v

∂s
+ κu+

1

ε

∂θ

∂t

)
− τnn

∂u

∂n

]
+

1

η
τsn = γ̇sn, (2.29)

1

E

[
Dτnn
Dt

− 2ε

1− εκn
τsn

(
∂v

∂s
+ κu+

1

ε

∂θ

∂t

)
− 2τnn

∂v

∂n

]
+

1

η
τnn = γ̇nn, (2.30)

and

γ̇ss =
2

1− εκn

(
∂u

∂s
− κv

)
, γ̇sn =

1

1− εκn

(
∂v

∂s
+ κu+

1

ε

∂θ

∂t

)
+

1

ε

∂u

∂n
, γ̇nn =

2

ε

∂v

∂n
.

(2.31)

2.5. Analysis of the scaled equations

From (2.20)–(2.23) we see that σsn = τsn = O(ε) and σnn = O(ε). Hence p = − 1
2σss+

1
2τss + 1

2τnn +O(ε), and therefore

σss = τss − τnn + 2ηsγ̇ss +O(ε). (2.32)

From (2.25) and (2.26) we have v = O(ε), ∂H/∂t = O(ε), and from (2.31) we deduce

u(s, n, t) =
∂ξ

∂t
(s, t)− ∂θ

∂t
(s, t)n+O(ε), (2.33)
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where ξ(s, t) is the average in-plane displacement across the sheet. Hence

γ̇ss = 2

(
∂2ξ

∂s∂t
− n∂κ

∂t

)
+O(ε), (2.34)

so that to leading order, the constitutive equations (2.28)-(2.30) become

1

E

∂τss
∂t

+
1

η
τss = 2

(
∂2ξ

∂s∂t
− n∂κ

∂t

)
, (2.35)

1

E

∂τnn
∂t

+
1

η
τnn = −2

(
∂2ξ

∂s∂t
− n∂κ

∂t

)
. (2.36)

Thus, τnn = −τss, and from (2.32) we find that the axial stress component σss satisfies(
1

E

∂

∂t
+

1

η

)[
σss − 4ηs

(
∂2ξ

∂s∂t
− n∂κ

∂t

)]
= 4

(
∂2ξ

∂s∂t
− n∂κ

∂t

)
. (2.37)

We make use of this expression below in deriving width-integrated constitutive relations.

2.6. Width-integrated equations

Integrating the force balance equations (2.20)-(2.21) across the width of the sheet, and
ignoring a term of order ε, we find (Ribe (2002); Balmforth & Hewitt (2013))

∂N

∂s
− κ∂M

∂s
= −Hfs, (2.38)

∂2M

∂s2
+ κN = −Hfn, (2.39)

where

N(s, t) =
1

ε

∫ 1
2H

− 1
2H

σss dn, M(s, t) =

∫ 1
2H

− 1
2H

nσss dn, (2.40)

are the net axial stress and moment, respectively. Note that unless the curvature is O(ε)
or the body force is O(1/ε), the equations (2.38)-(2.39) demand that N is order one,
rather than O(1/ε) as it might otherwise appear to be from its definition.

These total force balance equations hold independently of the rheology of the material.
The rheology enters when we now use (2.37) to relate M and N to the deforming
geometry. Integrating (2.37) and its moment across the width we obtain(

1

E

∂

∂t
+

1

η

)(
εN − 4Hηs

∂2ξ

∂s∂t

)
= 4H

∂2ξ

∂s∂t
, (2.41)

(
1

E

∂

∂t
+

1

η

)(
M +

1

3
H3ηs

∂κ

∂t

)
= −1

3
H3 ∂κ

∂t
. (2.42)

From the first of these we see that the requirement that N is O(1) means that ξ(s, t)
must also be O(ε), so that the leading order strain rate (2.34) is all due to bending.

2.7. Model summary for κ = O(1)

We summarize the model derived above for order-one curvatures. The geometry is
captured by the relations,

∂θ

∂s
= κ,

∂X

∂s
= cos θ and

∂Y

∂s
= sin θ. (2.43)



7

The axial and transverse force balance equations are (2.38)-(2.39), and we may set H = 1
in view of the negligible changes to the thickness. The constitutive equation in (2.41) is
no longer needed (constraining the higher-order corrections to ξ = O(ε)), while that in
(2.42) provides the relationship between bending moment and curvature. The remaining
equations are therefore

∂N

∂s
− κ∂M

∂s
= −fs, (2.44)

∂2M

∂s2
+ κN = −fn, (2.45)

1

E

∂M

∂t
+

1

η
M = −1

3

∂κ

∂t
− 1

3
ηs

(
1

E

∂2κ

∂t2
+

1

η

∂κ

∂t

)
. (2.46)

The boundary conditions to be imposed on the system depend on the detailed configura-
tion to be explored. Below, we give specific examples, and quote the relevant boundary
conditions there.

2.8. Discussion

Note that for E = 0, or E → ∞ with ηs = 0, the model has only solvent or polymer
viscosity, and M = 1

3ηs
∂κ
∂t (after an integral in time) or M = 1

3η
∂κ
∂t , recovering the

constitutive law for a viscous ribbon without significant in-plane stretching (Buckmaster
et al. 1975; Ribe 2002; Ribe et al. 2012). If, on the other hand, ηs → 0, we recover a
Maxwell ribbon model, which demands that the elastic stress (or moment M) relax to
zero in any final state. For η →∞, the law has a Kelvin form, which permits the beam
to reach equilibrium states with finite elastic stress (bending moment). Note that we
have written the constitutive relation (2.46) in differential form, but it is also possible to
express it in integro-differential form, using the integrating factor eEt/η (cf. Gomez et al.
(2019)).

Although we have derived the model for a viscoelastic liquid described by (2.15) using
an asymptotic reduction of the governing equations, there are similarities with models for
viscoelastic beams proposed previously in the solid mechanics literature (Kempner 1954;
Minahen & Knauss 1993). Those models are typically written down for relatively small
deflections (whereas ours applies when the curvature is order one), and invariably ignore
bending-induced tensions (i.e. fixing N and ignoring (2.38)). They do however allow
for richer viscoelastic behaviour, in particular allowing for both instantaneous elastic
response and relaxation towards a static equilibrium with finite stress. Such behaviour
cannot emerge from the more fluid-like Oldroyd-B constitutive law (2.15), which only
encompasses one of those (for ηs → 0 or η →∞, respectively) and not both. Our model
is more consistent with the so-called standard linear solid model; a generalisation of
(2.46) to include this additional behaviour requires the addition of a strain term of the
form

−1

3
E1

(
1

E

∂κ

∂t
+

1

η
κ

)
,

to the right hand side of (2.37), where E1 is a second elastic modulus corresponding to the
long-term relaxed elastic state (cf. Kempner (1954)). The replacement of the integrating
factor eEt/η in the integro-differential version of (2.46) with a more general memory term
also allows for a richer viscoelastic response with multiple timescales. However, at this
stage, we loose the connection afforded by our asymptotic reduction to an underlying
constitutive model formulated with the full governing equations.
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Figure 2. (a) Snapshots of a curling experiment in which a viscoelastic sheet is first curled up
into a circle by controlling the angle of its ends, and then suddenly released (only half of the
sheet is shown: the midpoint is fixed on the axis and the dotted line shows the locus of one of
the controlled or free ends); E = η = 1 and ηs = 0.1. In (b), we plot the time series of κ(t)
and M(t) for the experiment, along with four others in which the end is released earlier or held
longer before release.

3. Viscoelastic curling, drooping and buckling

3.1. Curling

We begin our exploration of the dynamics captured by the model in (2.43)–(2.46),
by considering a simple curling problem. A viscoelastic sheet, clamped at both ends, is
deformed into an arc of a circle by rotating the angle of its ends. The ends are then
released, allowing the sheet to uncurl in the absence of any body forces. If the ends
are held such that no tension is induced, the sheet curls up uniformly: κ = κ(t) and
M = M(t). Thus, the entire ribbon evolves according to the constitutive law,

dM

dt
+
E

η
M = −1

3

[
E

(
1 +

ηs
η

)
dκ

dt
+ ηs

d2κ

dt2

]
, (3.1)

with κ(t) either fixed by the rotation of the end, or evolving freely such that M(t) = 0.
Figure 2(a) shows snapshots of a curled ribbon bent into a circle before being released,
with κ(t) = 2πt for 0 < t < 1. Figure 2(b) plots the time series of κ(t) and M(t) both for
this experiment, and for four others in which the end is either released earlier, or held
fixed for a period before the release.

The controlled curl of the ribbon induces a bending moment that relaxes viscoelas-
tically; the longer the curl develops or is maintained, the further the bending moment
relaxes. As a consequence, when the ribbon is relased, it uncurls for a period, but does
not return to its original state and converges to a shape with finite curvature.

3.2. The viscoelastic cantilever

A more interesting example of the dynamics captured by the model in (2.43)–(2.46)
is the viscoelastic version of Galileo’s cantilever. In this case, we impose a clamped end
condition at s = 0 (so that X(0, t) = Y (0, t) = θ(0, t) = 0) and demand that the other
end remain free (so that M = ∂M

∂s = N = 0 at s = 1). The cantilever then bends under a
constant vertical gravity force with fs = − sin θ and fn = − cos θ, on selecting the stress
scale P to set the amplitude of the gravitational force to unity.

A numerical solution to the model is shown in figure 3 for the relatively low value of
the solvent viscosity ηs = 0.01 (Appendix A provides details of the numerical schemes
used for this computation, and for all our other model problems). In the limit η → ∞,
the model reduces to that for a Kelvin material, with the solvent viscosity controlling the
time-dependent behaviour. For the current problem, the corresponding cantilever bends
under gravity until the elastic stresses bring the beam to rest, as shown in figure 3(a).
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Figure 3. Snapshots of viscoelastic cantilevers for E = 1, ηs = 10−2 and (a) η = ∞ and (b)
η = 10. The dotted line shows the locus of the ends. On the right, we plot the maxima in (c)
|Y |, (d) |κ|, (e) |M | and (d) |N |. The points indicate the times of the shapshots in (a)–(b);
the circles show the η →∞ solution. The dashed (red) lines show the expected, low-curvature,
elastic solution Y (x) = −x2(x2 − 4x+ 6)/8.

When η is finite, however, the material creeps. For the cantilever, the consequence is
that the beam does not reach a final state after the initial period of bending. Instead, the
relaxation of the stress (and therefore the bending moment) implies that the beam cannot
support itself against gravity over longer times, and continues to creep downwards until
it becomes vertical (see figure 3(b)). Had the model incorporated changes in thickness,
the long-time dynamics would then be dominated by a gradual thinning and extension.
The initial arrest of the fall and subsequent long-time creep is shown for a variety of
values of η in figure 3(c)–(f); over long times, evident are the increase of the curvature
near the hinge, the relaxation of the bending moment and the emergence of a dominant
tension as the beam becomes vertical and the tension balances its weight.

3.3. Classical buckling

Without gravity or other body forces (fn = fs = 0), the model system (2.43)–(2.46)
admits an equilibrium solution corresponding to a straight viscoelastic beam subject to
a compressive load, such that κ = M = 0 and N = N(t). Linear perturbations to this
state satisfy

θ =
∂Y

∂s
, κ =

∂2Y

∂s2
,

∂2M

∂s2
= −κN, (3.2)

and (
1 +

η

E

∂

∂t

)(
N
∂2Y

∂s2

)
=

1

3
η

(
1 +

ηs
η

+
ηs
E

∂

∂t

)
∂5Y

∂t∂s4
, (3.3)

where Y (s, t) is the small transverse displacement of the centreline (with s ≡ x here).
For a constant load, N = N0, with clamped edge conditions, Y = θ = 0 at s = ± 1

2 ,
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Figure 4. Growth rates of the linear buckling modes, ηsγ/E, against the scaled load Πj in
(3.6). Curves with ηs/η = 10−3, 0.01, 0.1 and 0.3 are shown; the dashed lines show the limit
ηs/η → 0.

we may take

Y ∝ eγt
[
1− (−1)j cos(2πjs)

]
, j = 1, 2, ... (3.4)

to arrive at the growth rates,

γ =
E

2ηs

Πj − 1− ηs
η
±

√(
Πj − 1− ηs

η

)2

+ 4
ηs
η
Πj

 , (3.5)

with

Πj =
3|N0|

4π2j2E
. (3.6)

Figure 4 illustrates the two growth rates as functions of Πj for a selection of values
of the viscosity ratio ηs/η. One of these growth rates is always positive, proceeding
monotonically from γ ∼ EΠj/(η+ηs) for Πj → 0, to γ ∼ EΠj/ηs for Πj � 1. The elastic
limit corresponds to taking η → ∞, in which case γ = Πj − 1 or γ = 0; the condition
Πj = 1 is therefore the classical buckling threshold. Despite this, the viscoelastic beam
remains unstable below Πj = 1, although the growth rate is much reduced for ηs/η �
1. This situation corresponds to what is referred to as “creep buckling” in the solid
mechanics literature (Kempner 1954; Hayman 1978; Minahen & Knauss 1993), wherein
creep permits deflections to grow unstably even below the elastic buckling threshold.

Numerical solutions to the full problem (2.43)–(2.46) for buckling under constant load
are shown in figure 5(a,b). In these, we fix X = 0 at the midpoint of the beam (s = 0)
and assume symmetry about this, with Y = θ = 0, and constant load N = N0 at the
end s = 1

2 . The solutions are initialized by adding the most unstable linear mode with
a small amplitude to the basic (straight) state. For each panel, two solutions are shown:
the load is below the elastic buckling threshold for one of these solutions, and above
that threshold for the other. In panel (a) we show solutions for the Kelvin model with
η → ∞. In this limit there is no creep and the compressed beam below the buckling
threshold remains stationary, with the initial shape frozen into the material. Above the
threshold, the beam buckles and evolves over a timescale set by the solvent viscosity to
the nonlinear state in which the lateral buckling is compensated by a reduction in the
distance between the ends to preserve the overall length. For finite η in panel (b), creep
occurs, which allows the beam with lower |N0| to slowly deflect away from the initial
shape (i.e. the phenomenon of creep buckling). The beam with higher |N0| again buckles
rapidly towards the expected nonlinear elastic state, but the deflection then continues to
grow under creep.



11

0 0.1 0.2 0.3 0.4 0.5

X

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Y

(b) =10

N
0
 = -15

N
0
 = -11

0 0.5 1 1.5

t

10
-4

10
-3

10
-2

10
-1

m
a

x
(|

Y
|)

(c)

N
0
=-15 =10

N
0
=-15 =

N
0
=-11 =10

N
0
=-11 =

0 0.1 0.2 0.3

X

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Y

(d) t = 1.6

=10

=

-14

-12

-10

-8

-6

-4

0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3
Y

(a) =

N
0
 = -15

N
0
 = -11

Figure 5. Snapshots of non-linear buckling solutions, (X(s, t), Y (s, t)), with ηs = 0.01, E = 1
and either N0 = −11 or −15, initiated with a small deflection from a straight beam. In (a) we
show the solution for the Kelvin limit (η → ∞), and in (b), we show the case with η = 10,
plotting half of the (symmetrical) beam in each case. The two solutions with N0 = −11 are
offset for clarity, and the circles mark the ends of the beam. Dashed lines show the expected
elastic solutions. In panel (c), we plot the maximum deflection Y (0, t) of the solutions against
time. The grey lines show the expected linear buckling behaviour, and points indicate the times
of the snapshots in (a) and (b). The shapes of the two cases at the final time are shown in panel
(d), with shading corresponding to local tension N .

3.4. Snap-through

For an elastic beam with clamped ends θ(± 1
2 , t) = 0, there are an infinite number

of buckling modes given by Πj = 1, only the first of which is stable. When the end
angles are controlled and varied away from zero, however, the finite-amplitude buckled
solutions can become connected through a series of bifurcations (cf. Plaut & Virgin
(2009)). In particular, the first mode j = 1 can be connected to the third (j = 3) by
rotating the beam’s ends counter to the direction of the buckle. The two solutions meet
in a saddle-node bifurcation that destroys the stable elastic equilibrium; varying the end
angle any further prompts a sudden “snap-through” to the remaining stable equilibrium
corresponding to a buckle with opposite sign.

Snap-through induced for a viscoelastic beam of Kelvin material (η → ∞) is shown
in figure 6. In this example, a buckled state with horizontal ends is first generated
by bringing the two ends together by a fixed distance of 0.1. Imposing such end dis-
placements in the full model (2.43)–(2.46) is not completely straightforward and is
achieved by a numerical regularization scheme described in Appendix A. For simplicity,
we demand symmetry about x = 0 (although elastic beams can suffer symmetry-breaking
bifurcations near snap-through; Plaut & Virgin (2009)). The ends are then rotated by
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Figure 6. Buckled viscoelastic beams with periodically varying end angles θ(± 1
2
, t) = cos(2πt),

for η → ∞ and E = 1, and with the horizontal distance between the ends being shortened by
0.1. (a) Snapshots for equally spaced time intervals spanning half the cycle as θ( 1

2
, t) varies from

1 to −1 radians, for ηs = 0.01. (b,d) Vertical displacement of the mid point Y (0, t) as a function
of time over two cycles and (c,e) phase portraits on the (θ( 1

2
, t), Y (0, t))−plane, for ηs = 10−3,

0.01 and 0.05 (panels (b) and (c)), and η = 0.15, 0.2 and 0.4 (panels (d) and (e)). In (b) and (c),
the dots correspond to the snapshots in panel (a). In (c) and (e), the stable elastic equilibrium
solutions are shown as black lines, while the grey lines show unstable branches. The two black
dashed lines in (a) show the elastic equilibria solution either side of the saddle node, as indicated
by the circles in (c).

periodically modulating θ( 1
2 , t) between 1 and −1 radians with a period of unity (for

a symmetric solution θ(− 1
2 , t) does the opposite). The first panel of figure 6 shows

snapshots of the beam during half a cycle as θ( 1
2 , t) is varied from 1 to −1, which forces

the solution to evolve through the saddle-node bifurcation, triggering snap-through; the
solvent viscosity is relatively small (ηs = 0.01), ensuring that the beam otherwise tracks
the stable elastic equilibrium.

The time series and phase portrait shown in figure 6(b,c) display the shadowing of the
stable elastic equilibria and the sudden snap-through in more detail; the phase portrait,
drawn on the θ( 1

2 , t), Y (0, t)−plane, displays the elastic equilibria as black lines, with the
superposed viscoelastic solution. The saddle-node bifurcations of the elastic states arise
for end angles of θ ≈ ±0.64; in fact, the solution branches can be continued further,
revealing more saddle-node bifurcations connecting to yet higher buckling modes (all of
which are unstable; see the lighter lines in figure 6(c,e)).

Figure 6(b)–(c) also includes more viscoelastic solutions with different choices for ηs.
Increasing the solvent viscosity smoothes the snap-through, at least up to ηs = 0.1 or
so, highlighting how this dissipative effect controls the dynamics here (cf. Gomez et al.
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(2019)). For higher solvent viscosities (ηs above 0.15), the dissipation slows the dynamics
so much that snap-through is prevented entirely. Adding a polymer viscosity (finite η)
complicates the dynamics yet further by introducing creep over longer timescales, but
otherwise the model still predicts the occurrence and prevention of snap-through.

4. Small curvature and the viscoelastic catenary

The model outlined in §2.7 and the examples in §3 all relate to viscoelastica with
order-one curvature (although we evolve the system from relatively straight states in
the examples). When working with strictly small curvatures, however, some rescaling
of the model is needed to account for the correspondingly smaller bending moments.
Simultaneously, one must keep track of the O(ε) stretch associated with the axial
displacement ξ. In this section, we therefore rework the reduced model to suit this limit
of the problem and apply the modified model to the fall of a viscoelastic catenary (cf.
Roy et al. (2006)).

4.1. Small displacement equations

For small displacements from the horizontal under a weak vertical body force (with an
appropriate choice of the stress scale), we rescale such that

(Y, θ, κ,M, ξ) = ε(Υ,Θ,K,M,X ), fn ≈ fy = −εG, fs ≈ fx = 0, (4.1)

where

Θ =
∂Υ

∂x
, K =

∂2Υ

∂x2
. (4.2)

We change from arc length s to straight-line distance x, with − 1
2 < x < 1

2 , noting that

∂s

∂x
= 1 +

1

2
ε2
(
∂Υ

∂x

)2

+ . . . , (4.3)

and define the geometrically-induced stretch S as the relative change in the total arc
length,

S(t) =
1

2

∫ 1
2

− 1
2

(
∂Υ

∂x

)2

dx. (4.4)

The stretch is related to the total axial displacement X , by

X ( 1
2 )−X (− 1

2 ) = S +∆, (4.5)

where ∆ represents any relative horizontal displacement of the ends.
The rescaled equations of the model now take the leading-order form,

∂N

∂x
= 0,

∂2M
∂x2

+N
∂2Υ

∂x2
= G, (4.6)(

1

E

∂

∂t
+

1

η

)(
N − 4ηs

∂2X
∂s∂t

)
= 4

∂2X
∂s∂t

, (4.7)(
1

E

∂

∂t
+

1

η

)(
M+

1

3
ηs

∂3Υ

∂x2∂t

)
= −1

3

∂3Υ

∂x2∂t
. (4.8)

Thence,

1

3
E

∂5Υ

∂x4∂t
+

1

3
ηs

(
∂

∂t
+
E

η

)
∂5Υ

∂x4∂t
=

(
∂

∂t
+
E

η

)(
N
∂2Υ

∂x2
−G

)
, (4.9)
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and since N(t) is independent of space, the tension equation can be integrated to give(
∂

∂t
+
E

η

)
N = 4E

∂

∂t
(S +∆) + 4ηs

(
∂

∂t
+
E

η

)
∂

∂t
(S +∆). (4.10)

Note that the tension evolution equation (4.10) permits a sudden change in strain ∆ to
generate a viscoelastically relaxing tension N(t), which corresponds to the only effect
of viscoelasticity in the model provided by Roy et al. (2006). By contrast, the current
model captures the full viscoelastic relaxation of both the tension and moment.

4.2. Boundary and initial conditions

We impose symmetry around x = 0, with the fluid clamped at x = ± 1
2 , so we demand

∂Υ

∂x
=
∂3Υ

∂x3
= 0 at x = 0, Υ =

∂Υ

∂x
= 0 at x =

1

2
, (4.11)

When there is no additional strain on the ends, we set ∆ = 0. The most straightforward
way to initiate the fall of the viscoelastic catenary is to suddenly turn on the gravity
force, starting from an initial state of rest with

Υ = 0,
∂Υ

∂t
= 0, N = 0 at t = 0. (4.12)

The introduction of gravity (G = 1 for t > 0) then provides an impulsive forcing on the
right-hand side of (4.9) that introduces a jump in the highest time derivative at t = 0.
For finite solvent viscosity, we therefore impose

1

3
ηs

∂5Υ

∂x4∂t
= −1 at t = 0 (4.13)

which provides the initial velocity,

∂Υ

∂t
= − 1

8ηs

(
x2 − 1

4

)2

at t = 0. (4.14)

On the other hand, if the solvent viscosity is zero (in which case no initial condition for
∂Υ/∂t is required), the initial displacement must be

Υ = − 1

8E

(
x2 − 1

4

)2

at t = 0, (4.15)

which represents an instantaneous stretch of the material that incurs a tension,

N =
1

1680E
at t = 0. (4.16)

If η →∞, the catenary is purely elastic and the steady equilibrium solution is given by
(4.15)–(4.16).

4.3. Falling catenaries

For a viscous catenary (Teichman & Mahadevan (2003); E →∞, ηs = 0), the equations
become

N = 4η
∂S

∂t
, and

1

3
η
∂5Υ

∂x4∂t
−N ∂2Υ

∂x2
= −1. (4.17)

The early time behaviour is dominated by viscous bending, with

Υ ∼ 1

8η

(
x2 − 1

4

)2

t, S ∼ t2

6720η2
, N ∼ t

840η
. (4.18)
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Figure 7. (a) Snapshots of a falling catenary for E = 1, ηs = 0.01 and η = 10. Below, we plot
(b) Max(|Υ |) and (c) N for solutions with the values of η indicated (and the same values of E
and ηs). The dotted and dash-dotted lines show the early-time behaviour of viscous catenaries
with viscosity ηs or η (respectively); i.e. (4.18), with η = ηs or η = 10. The thinner and darker
dashed lines show the stretching dominated viscous evolution in (4.19) with η = ηs = 0.01. In
all the panels, the thicker (red) dashed lines show the elastic equilibrium solution.

The large time behaviour is dominated by stretching, with narrow bending boundary
layers at the ends. Away from the latter,

Υ ∼ 91/3

2η1/3

(
x2 − 1

4

)
t1/3, S ∼ t2/3

24

(
9

η

)2/3

, N ∼
(η

9

)1/3
t−1/3. (4.19)

Numerical solutions for a falling viscoelastic catenary (equations (4.9)-(4.10)) are
shown in figure 7. The first panel of the figure shows snapshots of the catenary with
E = 1, η = 10 and ηs = 0.01. In this example, the catenary first falls by viscous bending
with a viscosity set by ηs. Elastic stresses then come into play to arrest the fall close to
the elastic equilibrium. At later times, creep sets in, re-activating the fall of the catenary,
which then falls like a viscous material with viscosity η; this later fall is again primarily
controlled by bending to begin with, as in (4.18), but then slows when stretching takes
over the force balance, as in (4.19).

The lower panels of figure 7 show solutions with different choices for η, displaying the
maximum downward displacement and tension. The duration of the quasi-steady elastic
phase decreases as η is made more comparable with ηs, and disappears entirely when
ηs > η, at which point the solvent viscosity completely controls the evolution (see the
solution for η = 10−3).
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5. Adding a yield stress

5.1. Elasto-viscoplastic model

The model outlined in §2 focusses on an Oldroyd-B fluid, and accounts for linear
viscoelastic effects. This model can, however, be generalized by adding a yield stress
τY , below which the polymeric stresses are purely elastic, and above which they be-
come viscoplastic. More specifically, we adopt the Bingham-Maxwell, visco-elasto-plastic
constitutive law (cf. Saramito (2007); Prior et al. (2016)),

1

Ê

O
τ ij +

1

η̂
max

(
0, 1− τY

τI

)
τij = γ̇ij , (5.1)

where τI =
√

1
2

∑
i,j τ

2
ij is the second invariant of τij . Other than adding the factor,

max (0, 1− τY /τI), in front of the polymer viscosity terms and the introduction of a
dimensionless yield stress parameter,

B =
τY
P
, (5.2)

the reduction is much as in §2. The main change is to (2.35), which becomes

1

E

∂τss
∂t

+
τss
η

max

(
0, 1− B

|τss|

)
= 2

∂2ξ

∂s∂t
− 2n

∂κ

∂t
, (5.3)

since τnn = −τss and τI ≈ |τss|. This equation is similar to that used by Prior et al.
(2016).

The width integrals of this equation, required to calculate N and M as in (2.41)-(2.42),
are no longer straightforward because of the nonlinear term on the left-hand side which
gauges whether or not the fluid is yielded. In particular, one must now track the yield
surfaces where |τss| = B. Some progress may be made by defining

γp(s, n, t) =
∂ξ

∂s
− nκ− τss

2E
, (5.4)

which is the unrecoverable plastic contribution to the total strain (the first two terms
on the right) that is not accommodated by the purely elastic deformation τss/2E. The
constitutive equation (5.3) can then be rewritten as the evolution equation,

∂γp
∂t

=
ςE

η
max

(
0,

∣∣∣∣∂ξ∂s − nκ− γp
∣∣∣∣− B

2E

)
, (5.5)

where ς =sgn(τss) =sgn(∂ξ/∂s−nκ−γp). Given (2.32), we can then write the stress and
moment resultants (for H = 1) as

εN = 4E
∂ξ

∂s
+ 4ηs

∂2ξ

∂s∂t
− 4E

∫ 1
2

− 1
2

γp dn, (5.6)

M = −1

3
Eκ− 1

3
ηs
∂κ

∂t
− 4E

∫ 1
2

− 1
2

nγp dn, (5.7)

Note that if γp is an odd function of n then (5.6) demands that ξ = O(ε). In this case, the
evolution equation (5.5) demands that γp remains odd in n. Hence, as in the viscoelastic
theory of §2, ξ must be small and can be neglected from the leading-order theory. (This
conclusion is not valid if the tension is O(1/ε), as in the theory of Prior et al. (2016)).
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To summarize, for order-one curvatures, the viscoplastic theory consists of the geome-
try and force balance equations (2.43)-(2.45) as before, but with the constitutive law for
the moment (2.46) replaced by (5.7), in which γp(s, n, t) evolves according to

∂γp
∂t

=
ςE

η
max

(
0, |nκ+ γp| −

B

2E

)
, ς = −sgn(nκ+ γp). (5.8)

In general (5.8) must be solved at each point in n, as well as s, which makes the
formulation less satisfying than a width-integrated theory. On the other hand, further
progress is possible when the yielded region is always expanding and the ribbon is free
of any plastic strains at the outset. In this situation, γp = 0 is zero over the unyielded
regions, allowing for a useful width-integral of (5.8), as discussed further in §5.3.

Note that if B = 0, the width-integrals of (5.8) give(
∂

∂t
+
E

η

)∫ 1
2

− 1
2

γp dn = 0,

(
∂

∂t
+
E

η

)∫ 1
2

− 1
2

nγp dn = − E

12η
κ, (5.9)

and inserting these into (5.6)-(5.7) recovers the viscoelastic constitutive laws in (2.41)-
(2.42). Conversely, if B → ∞, the material never yields, so γp = 0 and the constitutive
laws (5.6)-(5.7) reduce to those of the Kelvin model. In the limit E → ∞, the elastic
deformation of the material becomes negligible and γp → −nκ. It can then be deduced
from (5.8) that the sheet must either be unyielded across its whole width, in which case
∂κ/∂t = 0, or it must yield throughout. Expanding (5.8) for large E now gives

γp ∼ −nκ+
1

E

[
ηn
∂κ

∂t
+ sgn

(
n
∂κ

∂t

)
B

2

]
+ . . . (5.10)

which, from (5.7), implies

M = −1

3
(ηs + η)

∂κ

∂t
− 1

2
sgn

(
∂κ

∂t

)
B. (5.11)

A stress jump therefore arises across the centreline of the sheet, and we recover the
analysis of a viscoplastic ribbon presented by Balmforth & Hewitt (2013). For finite
E � 1, the jump in stress is smoothed by elastic deformation across a small unyielded
region surrounding the centreline.

5.2. Curling revisited

We now revisit the problem of §3.1, in which a sheet is gradually curled up by imposing
the angle of its ends, and then subsequently allowed to relax with no applied forces.
Again, the dynamics are independent of arc length s. There is an initial phase wherein
the curvature κ(t) is prescribed and the bending moment evolves accordingly, followed
by a second phase in which the curvature evolves without any bending moment. The
only equations to solve for this problem are those from the constitutive law, namely (5.7)
and (5.8). We consider, in particular, the curling problem in which the ribbon is initially
curled up into a circle and then held for a period, so that κ(t) = 2πt for 0 6 t 6 1 and
κ(t) = 2π for 1 6 t 6 2, and M(t) and γp(n, t) are the unknowns. Suubsequently, for
t > 2, we set M = 0, and solve for the unknowns κ(t) and γp(n, t).

Solutions are shown in figure 8 for various choices of the yield stress parameter B. For
B = 0 the solution is similar to one shown earlier in figure 2. If B > 2π, the material
never yields, and in that case the long-term behaviour is purely elastic: the sheet uncurls
to its original flat state on a timescale set by the solvent viscosity. For intermediate
values of B, the expanding yielded region occupies |n| > B/2Eκ as the curvature κ
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Figure 8. Curled elasto-viscoplastic ribbon solutions, showing (a) curvature and (b) bending
moment with B = 0, 1, 3 or 7, E = 1, η = 1

2
and ηs = 1

3
. Here κ = 2πmin(t, 1) is imposed for

0 < t 6 2, and M = 0 for t > 2. The stars in (a) mark the prediction from (5.14). Panels (c)
and (d) show the plastic strain γp(n, t), and the axial stress τss(n, t) for the case B = 1, with
the lines marking the position of the yield surfaces.

increases past B/E (the value at which the surfaces n = ± 1
2 yield), whilst the central

region |n| < B/2Eκ remains unyielded. When the sheet is released and the curvature
decreases, the yielded region shrinks again. At this stage, the yield surfaces are no longer
related directly to the curvature, but depend on the extent to which the plastic strain
has accommodated the excess stress. Eventually the stress falls below the yield stress
everywhere, and the sheet then relaxes towards a new elastic equilibrium.

As is clear from (5.7), the final state has curvature κf given by

κf = −12

∫ 1
2

− 1
2

nγp dn. (5.12)

Moreover, if the curled sheet is held at its maximum curvature κm for sufficient time
that the stress fully relaxes over the yielded region, the plastic strain from (5.5) is given
by

γp = −nκmmax

(
0, 1− B

2E|n|κm

)
. (5.13)

In this case (provided κm > B/E), the final state has curvature

κf = κm −
(

3− B2

E2κ2m

)
B

2E
, (5.14)

which is included in figure 8.

5.3. Expanding yielded regions and the viscoplastic cantilever

When the yielded region does not shrink, the unyielded sections remain free of any
plastic strains if there are none at the outset and the elastic stress there is given by
τss = −2Enκ. The yield surfaces are therefore given by |τss| = B, or n = ±Y(s, t) with

Y = 1
2min

(
1,

B

E|κ|

)
. (5.15)
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The region |n| < Y is unyielded with γp = 0, and so∫ 1
2

− 1
2

nγp dn = 2

∫ 1
2

Y
nγp dn, (5.16)

Integrating the first moment of (5.8) over the width of the sheet now gives, after a little
algebra, (

∂

∂t
+
E

η

)∫ 1
2

− 1
2

nγp dn =
E

4η

[
−1

3
κ(1− 8Y3)− ς B

2E
(1− 4Y2)

]
, (5.17)

where ς = −sgn(κ). Combining this with (5.7) then gives(
∂

∂t
+
E

η

)(
M +

1

3
Eκ+

1

3
ηs
∂κ

∂t

)
=
E2κ

3η

(
1− 8Y3

)
+
ςBE

2η

(
1− 4Y2

)
. (5.18)

This is the viscoplastic equivalent of (2.46), to which it reduces if B = 0 (or Y = 0).
To illustrate the behaviour of this model, we reconsider the drooping cantilever consid-

ered in §3.2. To simplify the dynamics, we consider small deflections from the horizontal,
so that the curvature κ is small and the body forces in (2.44)–(2.45) are given approx-
imately by (fs, fn) = (0,−1). With free end conditions, this implies that the tension is
negligible and the bending moment is given by M = 1

2 (1 − s)2. With M(s) known and
fixed, the equation (5.18) becomes an evolution equation for κ(s, t) (with Y(s, t) given
in terms of κ by (5.15)). Having solved for κ(s, t) we can then reconstruct the geometry.

Figure 9 shows sample solutions with differing yield stresses. For the example in panel
(a), the yield stress is sufficiently strong that the gravitational stress does not breach
the yield point at the clamped end; the ribbon deflects downwards elastically on the
timescale controlled by the solvent viscosity, and then stops without any subsequent
creep (cf. figure 3(a)). The final state is given by M = −Eκ/3, and since yielding occurs
if |κ| > B/E, this solution is valid provided B > 3/2 (M = 1

2 is maximum at the clamped
end, where κ = −3E/2).

The solution in figure 9(b) has a smaller B and as a result, the gravitational stress
forces the ribbon to yield at the clamped end as the cantilever bends elastically. For
the choice of viscosities used in the solution, bending slows as the ribbon approaches
the elastic equilibrium. However, the yielded region at the clamped end introduces creep
that permits the cantilever to continue its fall. Eventually, the creep bending subsides
and the ribbon approaches an elasto-plastic equilibrium state for which (from (5.18))

M =
1

2
ςB(1− 4Y2)− 8

3
EκY3 ≡ 1

6
ςB(3− 4Y2), (5.19)

provided Y = −B/(2Eκ) < 1
2 . Hence

Y = 1
2

√
3(1− 2M/B) = 1

2

√
3[1− (1− s)2/B]. (5.20)

For the unyielded sections, κ = −3M/E and Y = 1
2 . Provided B > 1, the yielded region

therefore extends from the clamped end out to a position s = s∗ = 1 −
√

2B/3, where
M = B/3, with the ribbon remaining elastic beyond. Note that the ribbon does not yield
anywhere (s∗ < 0) when B > 3/2, consistent with the limit of the purely elastic solution
mentioned above, so this solution is valid for the range 1 < B < 3/2.

If B < 1, the solution in (5.20) ceases to exist near the clamped end where 1 − (1 −
s)2/B < 0, which corresponds to the failure of an elasto-plastic cantilever (Prager &
Hodge 1951). This third situation is illustrated in figure 9(c). Now, because one cannot



20 I. J. Hewitt & N. J. Balmforth

10
-2

10
0

10
2

t

-0.8

-0.6

-0.4

-0.2

0

Y
(1

,t
)

(d)

B=2

1.02

0.9

0 0.2 0.4 0.6 0.8 1

X

-0.5

-0.4

-0.3

-0.2

-0.1

0

Y

(b) B=1.02
0 0.1 0.2

0

0.2

0.4

0 0.2 0.4 0.6 0.8 1

X

-0.8

-0.6

-0.4

-0.2

0

Y

(c) B=0.9

0 0.1 0.2
0

0.2

0.4-0.3

-0.2

-0.1

0

Y

(a) B=2

Figure 9. Droop of an elasto-visco-plastic cantilever with E = 1, ηs = 0.1 and η = 10. Shown
are snapshots of the centerline for (a) B = 2, (b) B = 1.02 and (c) B = 0.9. The red dashed lines
show the purely elastic equilibrium. In (b), the darker solid line is the final elasto-viscoplastic
state. The insets in (b) and (c) show snapshots of the evolving yield surface Y(s, t), with darker
solid lines showing (5.20). In (d), we plot Y (1, t) for the three solutions; the dots indicate the
times of the snapshots in (a)–(c).

reach an elasto-plastic equilibrium near s = 0, the cantilever continues to bend there,
with the elastic core of the ribbon continuing to thin with time and the yield surfaces
converging to the centerline, Y → 0. Again the choice of viscosities permit the ribbon to
pause close to the elastic equilibrium, before unrestricted creep bending accelerates the
fall of the free end (cf. figure 3(a)). Thus, if the yield stress is too small, the drooping of
the cantilever cannot be halted, at least until much more significant drooping takes place
(when the geometry change and induced tension are taken into account, the bending
moment can be reduced and the yield stress may eventually halt the fall; cf. Balmforth
& Hewitt (2013)).

6. Discussion

In this article we have presented a reduced model for the curling, bending and
buckling of a viscoelastica. We employed the standard Oldyroyd-B model to describe
the viscoelastic relaxation of the fluid, which leads to a model similar to beam theory
for viscoelastic solids. We used the model to explore the creation of permanent curls,
the effect of creep on elastic buckling and snap-through, and the fall under gravity of
cantilevers and catenaries. In the Appendix, we add a further problem, the steady rolling
of a viscoelastic ruck down an incline (cf. Kolinski et al. (2009); Balmforth et al. (2015)),
for which the rolling speed is set by viscoelasticity.

Although we have used a rather simple constitutive law for viscoelasticity, the stretch-
ing rates of the sheet are relatively weak when motions are primarily due to bending.
Thus many of the generalizations of Oldroyd-B to incorporate nonlinear viscoelastic
effects related to polymer elongation (such as the FENE-type extensions) are unlikely
to be significant. Elasto-viscoplastic plastic fluids, on the other hand, present a more
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significant variation on the model, in which plastic deformation may arise beyond a yield
stress. As we have briefly discussed, this generalization of the model bridges to our earlier
model for bending viscoplastic filaments (Balmforth & Hewitt 2013) and the analysis of
Prior et al. (2016) for the curling of ribbons.

Nevertheless, following on from the work of Ribe and co-workers (Ribe 2002; Ribe et al.
2012), one can continue the asymptotic analysis for slender sheets to higher order in order
incorporate the more significant effects of stretching. The higher-order generalization
would then establish contact with existing theory for thinning threads (e.g. Chang et al.
(1999); McKinley (2005); Clasen et al. (2006)).

Appendix A. Numerical methods

To solve the model in (2.43)-(2.46) we discretise κ(s, t), M(s, t) and N(s, t) uniformly
in s, and approximate spatial derivatives by finite differences. This results in a system
of algebraic equations (2.44)-(2.45) for M and N , coupled to second order ODEs (2.46)
for κ. The latter is solved using a stiff ODE solver. Once the solution for κ(s, t), is found
the geometry is reconstructed from (2.43) by quadrature, taking boundary conditions
θ = X = 0 at s = 0 and Y = 0 at one or other of the ends.

Three further boundary conditions are required, and given that the remaining spatial
derivatives appear in (2.44)-(2.45), it is most straightforward if these are imposed on the
stress resultants N and M . For the cantilever problem in §3.2, this is indeed the case,
with N = M = ∂M/∂s = 0 at the free end. For the buckling problem in §3.3 we assume
symmetry and solve for only half of the domain 0 < s < 1

2 , allowing us to make use of the
symmetry condition ∂M/∂s(0, t) = 0. We also have an imposed load N( 1

2 , t) = N0. To
impose the final, clamped end condition, θ( 1

2 , t) = 0, we note that an integral of (2.46)
implies the constraint, ∫ 1

2

0

M ds = 0 (A 1)

(since κ = ∂θ/∂s). This completes the algebraic system that arises from the discretisation
of (2.44)-(2.45), and which is solved at each instant of the time-stepping procedure.

The boundary conditions for the snap-through problem in §3.4 are less straightforward
to implement since they are all conditions on the end displacements or angles. This is not
an issue for standard elastica or viscida problems, for which the moments are directly
related to the displacements, but obscures the current framework in view of the more
complicated relation (2.46). The procedure we have adopted is to introduce a degree of
slackness that allows us to impose conditions directly on the stresses. We again solve for
only half of the domain 0 < s < 1

2 , and apply the symmetry condition ∂M/∂s(0, t) = 0.
Then, for a desired end displacement X( 1

2 , t) = 1
2 (1−∆(t)) and angle θ( 1

2 , t) = Θ(t) we
impose

N( 1
2 , t) =

1
2 (1−∆(t))−X( 1

2 , t)

εN
, M( 1

2 , t) =
θ( 1

2 , t)−Θ(t)

εM
, (A 2)

where εN and εM are small parameters that control how tightly the conditions are
satisfied. The conditions in (A 2) can be interpreted physically as representing the stiffness
of the clamping device and as such may be a truer representation of some experimental
arrangements than a hard constraint on the displacement and angle. For the simulations
shown here we take εN = 10−5 and εM = 10−4.

For the catenary problem in §4.3 we employ a similar procedure and discretise (4.9)
uniformly in space, resulting in a system of second-order ODEs for Υ (s, t) that is coupled
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to the ODE (4.10) for N(t). Boundary conditions on Υ and its spatial derivatives are
incorporated as part of the spatial discretisation, and the integral in (4.4) is calculated
by quadrature using the finite difference approximation of ∂Υ/∂x.

For the elasto-viscoplastic curling problem in §5.2 we discretise γp(n, t) in n and solve
the resulting ODEs (5.8) in time, coupled to (5.7), which is an ODE for either M(t) or
κ(t). For the elasto-viscoplastic cantilever in §5.4 we consider only small displacements
so that the moment M(s) is fixed. The equation (5.18) for κ(s, t) is discretised in s and
solved as a set of (decoupled) ODEs in time, from which the geometry is reconstructed
by integrating ∂2Y/∂s2 = κ subject to Y (0, t) = ∂Y/∂s(0, t) = 0.

Appendix B. Rolling viscoelastic rucks

For a steadily rolling ruck on an incline with slope φ, we introduce the scaled travelling-
wave coordinate and variables,

(ς, χ(ς)) =
1

S
(s,Xi)−

V

ηs
t, �(ς) =

Yi
S
, (K(ς),!(ς)) = S(κ,M), ℵ(ς) = S2N, (B 1)

where S is the arclength of the ruck, SV/ηs is the ruck speed in terms of a scaled
parameter V , (Xi, Yi) denotes the position of the centerline using Cartesian coordinates
orientated along the incline, and we choose the stress scale such that the gravitational
force becomes (fs, fn) = (sin(θ− φ), cos(θ− φ)). We then write the model system in the
form (cf. Balmforth et al. (2015)),

θ′ = K, χ′ = cos θ, �′ = sin θ, (B 2)

ℵ′ −K!′ = S3 sin(θ − φ) +Rs, !′′ +Kℵ = S3 cos(θ − φ) +Rn, (B 3)

Here (Rs,Rn) denote reaction and friction forces exerted by the incline where contact is
made, and the sheet is held in place such that θ = K = � = 0. Where the ruck is lifted
off the plane (for 0 < ς < 1), these forces vanish. Considering the Kelvin model (η →∞),
and using the freedom in the length scale L to set E equal to unity, the travelling-wave
form of the constitutive law becomes

V K ′ = K + 3!. (B 4)

In terms of the travelling-wave coordinate, the geometry demands boundary conditions
at the contact points, ς = 0 and ς = 1, of

θ(0) = χ(0) = �(0) = θ(1) = �(1) = 0, χ(1) = 1− Ξ

S
, (B 5)

where Ξ is the length along the incline by which the sheet has been shortened in order to
create the ruck (i.e. the end strain). If we assume no energy of adhesion with the surface,
we must additionally have the boundary conditions

K(0)!(0) = K(1)!(1) = 0. (B 6)

At the lift-off point ς = 1, there may be δ−function contributions to the reaction and
friction forces Rn and Rs which, according to (B 3), allow for jumps in !′ and ℵ, but not
!. Thus we assume that ! must be continuous at this point. The constitutive law (B 4)
further suggests that there can also be no jump in the curvature either at the front or
back end of the ruck. If we assume that the sheet ahead of the ruck (ς > 1) is unstressed,
with ! = ℵ = 0, these continuity and adhesion conditions can then be written as the
boundary conditions

K(0) = K(1) = !(1) = 0. (B 7)
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Figure 10. Ruck solutions, showing (a) shapes, (b) lengths S and (c) scaled speeds SV for
varying Ξ, on a slope with φ = 0.2 radians. In (b) and (c), the data are plotted against the
powers of Ξ expected from the low−Ξ asymptotic analysis of Balmforth et al. (2015) and
compared with the corresponding analytical predictions, and the circles show the values of Ξ at
which the shapes are plotted in (a).

The nine boundary conditions in (B 5)-(B 7) permit the solution of the system in
(B 2)-(B 3) and (B 4), with S and V given as eigenvalues. Numerical solutions for ruck
shapes and speeds are shown in figure 10 (a self intersection occurs if Ξ is raised beyond
the parameter range plotted). Note that the boundary conditions in (B 7) allow !(0)
to be non-zero, implying that the ruck is laid back down on the inclined with a finite
residual bending stress. A second ruck following behind a first one will then experience
the residual stress of the first, and therefore roll at a different speed. The communication
of two neighbouring rucks through residual stresses over the flat regions separating them
is demonstrated by the ruck interactions observed by Balmforth et al. (2015).
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Tomé, MF, Araujo, MT, Evans, JD & McKee, S 2019 Numerical solution of the giesekus
model for incompressible free surface flows without solvent viscosity. Journal of Non-
Newtonian Fluid Mechanics 263, 104–119.

Zuidema, P, Govaert, LE, Baaijens, FPT, Ackermans, PAJ & Asvadi, S 2003 The
influence of humidity on the viscoelastic behaviour of human hair. Biorheology 40 (4),
431–439.


