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SOLITARY WAVES AND 
HOMOCLINIC ORBITS 
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1 .  SOLITARY WAVES IN FLUIDS 

Ever since Russell's historic observation of a solitary wave in a canal, the 
notion that fluid motion often organizes itself into coherent structures has 
increasingly permeated modern fluid dynamics. Such localized objects 
appear in laminar flows and persist in turbulent states-from the water 
on windows on rainy days, to the circulations in planetary atmospheres. 

This review concerns solitary waves in fluids. More specifically, it centers 
around the mathematical description of solitary waves in a single spatial 
dimension. Moreover, it concentrates on strongly dissipative dynamics, 
rather than integrable systems like the KdV equation. This divorces it 
from the theory of solitons, which develops analytically around the inverse 
scattering transform (e.g. Ablowitz & Segur 1 98 1). 

One-dimensional solitary waves, or pulses and fronts (kinks) as they are 
also called, are the simplest kinds of coherent structure (at least from a 
geometrical point of view). Nevertheless, their dynamics can be rich and 
complicated. In some circumstances this leads to the formation of spatio
temporal complexity in the systems giving birth to the solitary waves, and 
understanding such complexity is one of the major goals of the theory 
outlined in this review. Unfortunately, such a goal is far from achieved to 
date, and we assess its current status and incompleteness. 

As experimental analogues of the pulse or frontal dynamics we explore, 
one can draw on r�cent experiments with real fluids. Closest to what we 
describe (in the sense that the equations we use as illustration were once 
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336 BALM FORTH 

derived as a relevant model) are experiments on falling fluid films. There, 
as one can often observe on rainy windows and in gutters, waves moving 
down an incline steepen into propagating pulses (Alekseenko et al 1 985, 
Liu et al 1 993). Eventually they an: deformed in a second dimension by 
secondary instabilities, but for a substantial fraction of their evolution, 
the fluid generates an essentially one-dimensional pulse train. Properties 
of such patterns of propagating pulses are reviewed by Chang ( 1994). 

Another experimental scenario in which pulses are created involves the 
convection of a binary fluid (Anderson & Behringer 1990, Bensimon et al 
1 990, Moses et al 1 987, Niemela et al 1 990). When enclosed in a slender 
geometry like a thin annulus, this fluid can convect heat within localized 
packets of traveling cells. The manner in which such convective pulses 
drift, interact, and generally evolve provides a powerful visualization of 
pulse dynamics (Kolodner 1 99Ia,b). Analogous states of excitation exist 
in liquid crystals (Joets & Ribotta 1 988) and in fluids subject to Faraday 
instability (Wu et aI 1 984). Various other kinds of solitary waves in inter
facial experiments are reviewed by Flesselles et al ( 199 1). 

In Section 2, we give a brief account of why, theoretically, we might 

expect many systems to generate solitary waves; we derive the complex 
Ginzburg-Landau equation for a spatially extended system near a Hopf 
bifurcation. The solutions of this equation suggest that one of the rami
fications of overstability is frequently pulse and front generation. In Sec
tions 3 and 4, we turn to the heart of the review: a discussion of the 
theory of solitary-wave equilibria and dynamics within a framework of 
asymptotic analysis and dynamical :,ystems theory. In the final section we 
tie up some loose ends and briefly mention the standing of the theory with 
regard to real physical situations. 

2. PRELIMINARIES: THE COMPLEX 
GINZBURG-LANDAU EQUATION 

As a convenient example we take the partial differential equation (PDE) 

(2. 1 )  

where 11 and a are parameters. This model equation, for r:t. = 0, was derived 
by Benney ( 1966) to describe instabilities on falling fluid films; u is the 
surface displacement about the uniformly thick state. Over a wide range 
in values of the parameters, this equation possesses solutions that take the 
form of patterns of pulses (Kawahara & Toh 1987; J;:lphick et al 199 1 a; 
Chang et aI1 993a,b). 
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SOLITARY WAVES AND HOMOCLINIC ORBITS 337 
2.1 Hop! Bifurcation in an Extended System 

The solitary structures observed in systems like binary-fluid convection in 
annuli occur near the Hopf bifurcation of a spatially extended (one
dimensional) system. In this circumstance, the equations governing the 
fluid can be asymptotically reduced to a complex Ginzburg-Landau equa
tion governing the spatio-temporal evolution of the envelope of a wave 
(e.g. Manneville 1990). The thin-film equation (2. 1 )  admits a spatially 
uniform equilibrium solution, U = 0, which undergoes such a bifurcation 
when we continuously vary IY. through positive values. Hence it provides a 
simple illustration of the derivation of the complex Ginzburg-Landau 
equation. 

The bifurcation to instability occurs as IY. is decreased through 1/4. 
Infinitesimal perturbations about this state have the dependence 
exp[i(kx+wt)+'1t], where 

(2.2) 
Just below the critical point lY.e = 0.25, a band of wave numbers surrounding 
k = ke = 1 //2 becomes marginally unstable. Here, we set IY. = 0.25 -B21Y.2, 
where B is a small parameter (quantifying "just below") and 1J(2 is order 
unity. Near the maximally unstable wavenumber ke, the dispersion relation 
reduces to 

OJ � OJe +%Bf.lK and 1] � B2(1Y.2 -K2), (2.3) 
where OJe = f.l/2j2 and k-ke = BK. 

In a spatially extended domain, we see that a packet of linearly unstable 
waves develops through instability over a distance of order B-1, and on a 
timescale of order B-2. Frequency corrections occur on the shorter time
scale c t, however, and their dependence on K implies a drift in the 
envelope of the wave pattern, or a group velocity, BCg, with cg = 3f.l/2. 
This observation motivates our asymptotic scaling of Equation (2. 1 )  in 
developing a weakly nonlinear theory for the evolution of the envelope of 
a wave pattern at finite amplitude. In particular, we seek a solution 

(2.4) 
where * means complex conjugate. 

We now introduce the stretched timescales, r = Bl and T = B2l, and the 
long length scale, X = BX, so the temporal and spatial derivatives become 
at ...... Ot+BOt+B20T and ax ...... ox+BOx. We further pose the asymptotic 
expanSIOn 

(2.5) 

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 1

99
5.

27
:3

35
-3

73
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

C
am

br
id

ge
 U

ni
ve

rs
ity

 o
n 

07
/1

9/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.



338 BALM FORTH 

of which the first term is given by the right-hand side of Equation (2.4). 
At subsequent orders we derive equations for u2, U3, and so on. As is 
typical in asymptotic expansions of this kind (Manneville 1 990), these 
relations take the form of inhomogeneous linear equations. Requiring the 
corrections to be bounded enforces certain solvability conditions. In the 
example at hand, the first condition is 

(2.6) 

which has solution A = A(X - cg r, T); as advertised, the envelope of the 
wave pattern moves with the group velocity cg• A modulation equation 
for A actually emerges from solvability at order e3• It is 

(2.7) 

which is a particular case of the complex Ginzburg-Landau equation.  
In this illustrative problem, thl� sign of the nonlinear term ensures 

that spatially homogeneous patterns emerge from equilibrium beyond a 
supercritical bifurcation. In other systems, the bifurcation of such patterns 
may be subcritical, as it is, for example, in binary fluid convection (Thual 
& Fauve 1988). In these cases the equation requires further regularization 
of some kind if the amplitude is not to grow without bound. 

2.2 Real Ginzburg-Landau Equations 

The complex Ginzburg-Landau equation simplifies substantially if all of 
the coefficients are real (so J1 = 0). After suitably rescaling, we then have 

(2.8) 

where a is the real part of A. This real Ginzburg-Landau equation has 
been extensively studied in problems of phase separation in condensed 
matter physics. It has the spatially homogeneous solutions, a = 0 and 
a = ± �2' For (X2 > 0, the equilibrium a = 0 is unstable, but the finite 
amplitude states are stable. 

The real Ginzburg-Landau equation is of interest because it possesses 
solutions that take the form of fronts or kinks connecting the various 
homogeneous phases. The zero-amplitude equilibrium, for example, rap
idly evaporates when the system generates fronts that advance through 
the domain, transforming the state to one of the stable phases (e.g. Ben
Jacob et al 1 985, van Saarloos 1 989). An example of one of these fronts is 
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SOLITARY WAVES AND HOMOCLINIC ORBITS 339 

shown in Figure l a. Of more interest are the stationary kink solutions, 
a = K(X), that connect the two stable phases: 

K(X) = Ja2 tanh (X ;;;fi) (2.9) 

(see Figure Ib). The reversed solutions, -K(X), are "antikinks." These 
kinks and antikinks persist for much longer periods of time than the 
"evaporation fronts" which disappear after the rapid disintegration of the 
unstable phase. In Benney's equation (2. 1 ), they describe phase defects in 
the wave patterns (see Figure Ib) and are the central objects of the theory 
of defect dynamics (e.g. Coullet & Elphick 1 989). 

The real Ginzburg-Landau equation emerged from theories of super
conductivity and phase transitions. On multiplying by GTa and integrating 
over X, we observe 

(2. 10) 

Since the quantity :F is also bounded from below, it can be identified as 

(a) Evaporation fronts 

- 10�----�5-------1�O ------�1�5 ------ 2�O------�2�5------�30 
X 

Kink solutions 

·l�----��----��----�------�------�------� -15 -10 -5 o 5 10 15 
X 

Figure 1 Illustration of kinks in the real Ginzburg-Landau equation. (a) An "evaporation 
front" connecting the unstable and stable phases. (b) A kink connecting the two stable 
phases. The continuous and dashed curves show ±A(X), and the dotted curve shows the 
corresponding waveform. 
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340 BALM FORTH 

a Lyapunov Functional for the problem, and is commonly interpreted 
physically as a free energy. 

Depending upon boundary conditions, the existence of g; implies that 
the asymptotic state of the system is typically one of the homogeneous, 
stable phases. This suggests that th�: equation is not interesting from the 
point of view of spatio-temporal complexity, which is not actually true. 
What often happens is that the evolution proceeds rapidly from some 
initial state as the unstable phase evaporates. This evaporation drives the 
system locally towards one of the two stable phases and leaves a metastable 
state consisting of multiple, phase-separated layers partitioned by a 
sequence of alternating kinks and antikinks. The metastable state eventu
ally relaxes to the asymptotic state, but in the interim, a complicated, 
slowly evolving pattern emerges through a form of kink or frontal dy
namics. Moreover, slight perturbations can sustain kink-anti kink patterns 
indefinitely. We return to this topic in Section 4. 
2.3 The Cubic Schrodinger Equation 

In the limit of large dispersion, the large-amplitude solutions of (2.7) 
satisfy the cubic Schrodinger equation: 

iOTA = olA+2/A/2A 

(again after rescaling). This equation has the soliton solution 

A = ike-i«(fJ-(fJo) sech k(X - VT + Xo), 

where the phase is given by 

<I> = �YX +(�VZ_k2)T, 

(2. 1 1 ) 

(2. 12) 

(2.13) 
which indicates that (2. 12) is actually a two-parameter family of solitons 
with scale k and speed V, centered at Xo with characteristic phase <1>0 (e.g. 
Kivshar & Malomed 1 989). One such soliton, which describes a localized 
packet or pulse of traveling waves, is shown in Figure 2. 

The cubic SchrOdinger equation is an integrable system, and its soliton 
solutions can be studied using inver:;e scattering techniques (Ablowitz & 
Segur 1 981) .  This allows us to generate multiple solitary-wave equilibria 
and consider soliton dynamics within the framework of an exact theory. 
In the following sections we detail an approximate method dealing with 
just these issues for general, dissipative PDEs. More along these lines, 
one can use inverse scattering theory to deal perturbatively with weakly 
nonintegrable generalizations of (2. 1 1) . In particular, the physics of insta
bility and dissipation appear as small forcing terms in (2. 1 1 ) in the limit 
of large, but not infinite fJ,. Under sllch perturbations, inverse scattering 
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SOLITARY WAVES AND HOMOCLINIC ORBITS 341 

0.5,...-------,.-----,----'-'=-"r==--..,.----.,------, 

�.5�--�---�---�---�---�--� 
-15 -10 -5 0 5 10 15 

X 
Figure 2 Illustration of a soliton in the nonlinear Schr6dinger equation. The continuous 
and dashed curves show ±A(X), and the dotted curve shows the corresponding waveform. 

theory leads to ODEs governing the evolution of the soliton's intrinsic 
parameters, i.e. its position Xo, phase <1>0, scale k, and speed V (e.g. Kivshar 
& Malomed 1989). 

2.4 Spatio-Temporal Chaos in Complex Ginzburg-Landau 

For less specific choices of the coefficients, the complex Ginzburg-Landau 
equation displays a wide variety of behaviors involving coherent struc
tures. In particular, it has become fairly important as an equation modeling 
spatio-temporal chaos. The phenomenon is characterized by at least two 
regimes (Shraiman et a1 1992, Chate 1994). Near the real Ginzburg-Landau 
limit, "phase turbulence" develops. This appears to be a state of weak 
disorder reflected in the phase of A. It is closely connected to spatio
temporal chaos in the Kuramoto-Sivashinsky equation (Kuramoto 1984), 
which was derived as a phase-evolution equation for complex Ginzburg
Landau under certain conditions. The Kuramoto-Sivashinsky equation is 
the dispersionless special case of equation (2. 1 )  and we consider it again 
in Section 4. In fact, in a more appropriate, moving reference frame, the 
phase evolution equation for complex Ginzburg-Landau turns out to be 
precisely Equation (2. 1 )  but with an additional higher-order nonlinear 
term (Janiaud et al 1 992). Phase turbulence seems to be associated with 
propagating shocks or fronts in A, and pulses in the gradient of the phase 
of A. 

Near the highly dispersive limit, the characteristics of spatio-temporal 
chaos have been labeled "dispersive chaos" (Kolodner et al 1 990) or 
"defect turbulence" (Shraiman et al 1 992). The main features associated 
with such a state appear to be pulses that are briefly coherent in space 
and time. They arise through intense "self-focusing" by dispersion and 
subsequent breaking by dissipation (Bretherton & Spiegel 1983). In the 
nonlinear SchrMinger limit, these pulses probably become the solitons 
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342 BALMFORTH 

(2. 1 2). Under suitable forcing, the weakly nonintegrable dynamics of these 
solitons does show chaotic characteristics resembling the dispersive chaos 
of the complex Ginzburg-Landau equation (Nozaki & Bekki 1 986). 

Pulses, fronts, and related complex solutions are also commonly en
countered in studying generalizations of the complex Ginzburg-Landau 
appropriate to subcritical Hopf bifurcations. A more complete survey of 
pulses and fronts in this kind of equation is given by van Saarloos & 
Hohenberg (1 993). 

3. PULSE-TRAIN EQUILIBRIA 

3.1  Pulse Trains and Spacing Maps 

The arguments of the previous section concerning the common kinds of 
solutions to the complex Ginzburg-Landau equation suggest that Hopf 
bifurcations (whether subcritical or supercritical) often lead to the for
mation of propagating, coherent structures in spatially extended systems. 
Furthermore, complexity of a variety of kinds is associated with them. 

For Equation (2.1) with IX = 0, the spatially extended state bifurcates to 
instability with zero frequency. A Hopf bifurcation occurs, however, for 
spatially periodic systems as the domain size increases through a critical 
value (Elphick et aI 1 99 I a) .  The unstable modes saturate supercritically as 
nonlinear waves. They develop imo pulses on increasing the domain size 
further, thus illustrating how spatially periodic systems also form coherent 
structures. We now direct our attention to such situations. 

We journey into a theory of the patterns created by an ensemble of 
solitary waves, focusing upon pulses rather than kinks (minor modi
fications are required to treat the latter). We outline a singular perturbation 
theory to derive multiple solitaryoowave trains, or bound states of pulses 
[an alternative procedure is the variational technique discussed by Kath 
et al 1 987 (see also Ward 1992)]. We leave the question of boundary 
conditions and stability until Sections 4 and 5 .  

When we introduce a traveling-wave coordinate � = x-ct into (2. 1 )  
and integrate once, we find the ODE 

(3 . 1) 

for the steady pulse train solutions, where S(�) = u(x, t). 
The singular perturbation expansion centers around the idea that trains 

consist of widely separated pulses. The component pulses are weakly 
distorted versions of the true solitary waves. Single-pulse solutions cen
tered at various positions within the train can therefore be used as a 
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SOLITARY WAVES AND HOMOCLINIC ORBITS 343 
leading-order approximation to the pattern's structure (cf McLaughlin 
& Scott 1 978, Gorshkov & Ostrovsky 1981 ,  Kawasaki & Ohta 1982, 
Gold'shtik & Shtern 198 1 ,  Coullet & Elphick 1989). 

We let the single-pulse solution be denoted by H(e), and choose the 
origin so that H(e) has its principal peak at e = O. Away from the main 
peak, the pulse amplitude falls approximately exponentially. At the posi
tion of the preceding and following pulses, we assume that the amplitude 
is of order 8. This means that the overlap of neighboring pulses is 0(8), 
and so the intrinsic structure of each pulse is H(e) + 0(8). We illustrate 
this in Figure 3, and write the ansatz 

See) = LHG-ek)+8R+0(82), (3.2) 
k 

where ek denotes the positions of the pulses and 8R is an error correction 
term. Were they in isolation, the pulses would move at a speed Co. However, 
through interaction between the component pulses, the pattern translates 
differently, and c i= Co, but the disparity is small and c = Co+8CI +0(82), 
where C1 is order unity. 

We now introduce the expansion (3 .2) into the basic Equation (3. 1 )  and 
divide that equation into relations of distinct orders in 8. The leading-

Pulse train and ansatz 

\ +- 1 + S(�) 

o 

-1 

30 35 40 45 50 55 60 65 

Figure 3 An illustration of the pulse train and ansatz [Hk = H( � - �k)l. 
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344 BALMFORTH 

order equation is just that for the various single-pulse solutions. The 
equation at next order is a linear inhomogeneous equation for R. It has 
secularly divergent particular solutions unless we enforce a solvability 
condition upon the positions of the pulses. This condition is 

(3 .3) 

where 

1 foo F(�) = f1 -00 N(�')H(�')HG' +�.)dC (3.4) 

N(�) is an adjoint null vector related to H(�), and 

I = f�oo N(f)H(�') d�' (3 . 5) 

(e.g. Elphick, Meron & Spiegel 1990). In deriving this equation, we have 
tacitly assumed that the rate of decay of the pulse amplitude both fore and 
aft is approximately the same. 

The quantities �k == �k -�k- 1 and �k+ 1 == �k+ 1 -�k are just an adjacent 
pair of pulse spacings, and so 

(3 .6) 

determines the separations of the pulses as a map of the interval of d to 
itself. This is the spacing map from which we can build a pulse train. 
Before considering this map any further we briefly digress into the geo
metrical aspects of the pulse-train solution in the phase space of the 
dynamical system described by (3 . 1 ) .  

3.2 Pulse Trains as Dynamical Systems 

In order to apply the theory described above, we need to know the various 
kinds of single-pulse solutions, H(�), that can arise. To find these we must 
study the ODE (3.1) in a little more detail. 

In the phase space, V = (2, S', S"), Equation (3 . 1 ) describes a velocity 
field, V = V' (where' indicates differentiation with respect to argument). 
The divergence of the velocity field is just - J1. indicating that, for J1. > 0, 
the flow is volume contracting; as �: advances, an arbitrary set of initial 
points in phase space gradually condenses into a region of zero volume. 
Provided solutions remain bounded, the geometry restricts that region to 
be either a point, a curve, or some complicated object of dimension less 
than three. In other words, the system asymptotically heads towards an 
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SOLITARY WAVES AND HOMOCLINIC ORBITS 345 

attractor, which could be a fixed point, a periodic orbit, or a strange 
attractor. 

The attractors of the system are dependent upon the parameters of 
Equation (3 . 1 ). In the context of this ODE, the parameters are 11 and c 
(for the POE, c is the pattern speed and only 11 is a parameter). These form 
a two-dimensional parameter space in which the various attractors reside. 
They are destroyed or created at certain conjunctions or bifurcations, and 
the possibilities admitted by (3 . 1 ) are complicated (Arneodo et al 1985b, 
Glendinning & Sparrow 1984). 

A sample sequence of bifurcations is shown in Figure 4, which shows 
the succession of states that are realized as c is varied for 11 = 0.7. Initially 

2 .---�----�--�----�--� 

1.5 

0.5 

o 

-0.5 

-1 

-1.5 
-2 

-2.5 

(a) c = 0.9 

3 4 -��1 ----0�---7----�2----7---� 

2 .----r----�--�----�--� 
I.S 

0.5 

o 

.{l.5 

·1 

.1.5 

·2 

-2.S 

2 

1.5 

0.5 

0 

-0.5 

·1 

-1.5 

-2 (b) c = 1.1 

-2.5 

-3 ·1 o 2 3 

2 
I.S 

0.5 

0 

.{l.S 

-I 
-1.5 

-2 

-2.S 

-3_1 0 2 3 4 -3_LI ---O:---�---�2---�---u4 
Figure 4 Bifurcation sequence of Equation (3.1) for Jl = 0.7 and four values of c. The four 
panels show phase portraits projected onto a plane with coordinates (.5, S + 3(4). The stars 
mark the fixed points. (Based on Arneodo et aI 1985b.) 
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the system contains two fixed points. That at the origin, S = 0, is a saddle, 
and the nontrivial fixed point, 3:= 2c, is a stable focus. Increasing c 
eventually destabilizes the focus, and it sheds a limit cycle (Figure 4a). 
This cycle then bifurcates to a second cycle with twice its frequency (Figure 
4b) and there follows a period-doubling cascade leading to the complicated 
object shown in Figure 4c, which we interpret to be a strange attractor 
(though this is not rigorously shown). This object develops as we raise c 
again, eventually colliding with the origin. Shortly after this point (Figure 
4d), the trajectories beginning from points in the half-space::: > 0 can find 
their way along a chaotic trajectory into::: < 0, and diverge to ::: = - 00 
since the nonlinear term 32 cannot then saturate growth in amplitude. 

In this fashion, the various attractors of the system and their bifurcations 
can be catalogued to visualize the kinds of propagating patterns that solve 
(3.1) .  Of primary interest in the current context are the solutions that 
describe localized structures like pulses and kinks. These solutions neces
sarily approach constant amplitude as � -t ± 00, and so they must asymp
tote to the fixed points. The solutions that connect a fixed point to itself 
are the homoclinic orbits of the system. In real space and time, these define 
propagating pulses. The heteroclinic orbits connect different fixed points 
and represent kinks. Some examples are shown in Figure 5 .  

The homoclinic trajectory shown in Figure 5 connects the origin to 
itself. It can therefore be created by a bifurcation in which a periodic orbit 
collides with the origin. The details of this bifurcation are uncovered using 
Shil'nikov theory as we elaborate soon, but the locations of some of these 
orbits in parameter space are already suggested from the sequence shown 
in Figure 4. The object shown in Figure 4c is filled with unstable periodic 
orbits. When it collides with the origin these periodic orbits begin con
necting S = 0 and consequently become homoclinic. For any one periodic 
orbit, the point of bifurcation in c typically defines a unique point at fixed 
11 in parameter space; this is simply the solitary-wave speed, Co. For varying 
11, we expect a curve on the parameter plane, co(Il). 

3.3 Homoclinic Dynamics 

Except for a relatively short interval, the homoclinic solution shown in 
Figure 5, H( n is contained within the neighborhood of the origin. Here, 
Equation (3 . 1 )  can be approximately replaced by its linearization and we 
find the solution 

(3 .7) 

where (J and -y±iw are the eigenvalues of the flow, and a, b, and 1/1 
are constants. The homoclinic connection emerges from the origin 0 at 
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(a) Homoclinic orbits and pulses 
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Figure 5 Illustrations of the homocJinic and heteroclinic solutions of (3.1). (a) A homoclinic 

orbit and its pulse-like "time trace." (b) A heteroclinic orbit and its frontal "time trace." The 
orbits are shown projected onto the (3,3) plane. The stars shown the fixed points. (Based 
on Balmforth et a1 1994, Conte & Musette 1989.) 

� = - 00, escapes the vicinity of the origin, but rapidly returns and spirals 
back into 0 at � = 00. Thus 

(3 .8) 

The two sections of the solution for H correspond to two invariant mani
folds intersecting 0: a one-dimensional unstable manifold and a stable 
two-dimensional manifold. The homoclinic orbit is the intersection of 
these two manifolds. 

Nearly homoclinic trajectories typically get caught near the invariant 
manifolds, and consequently they "skirt" H (�) during any excursion away 
from O. But since they generally do not reenter the vicinity of the origin 
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(b) HeterocIinic orbits and fronts 
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Figure 5b. 
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with a = 0 identically, the trajectories do not fall into 3: = O. Instead they 
become thrown out from the origin's vicinity along the unstable manifold 
after spending a lengthy period there. Because the reinjection process is 
relatively rapid, the solution 3:(C;) takes on the appearance of a train of 
widely separated pulses, as illustrated in Figure 6. Two trajectories begin 
on the unstable manifold. One defines the homo clinic connection. In the 
second, that connection is broken with C = CO+6C1, and the trajectory 
proceeds into further pulses after th{: first. 

The nearly-homoclinic solutions spend long durations circulating near 
the origin, where we have solution (3.7). The main peak of the pulse, on 
the other hand, shadows the homoclinic's loop and :a: (�) � H (�). This 
means that the solution is relatively insensitive to the details of the path 
taken away from the origin, but is critically controlled by the flow near 
:a: = O. By connecting the solutions in these two representative regions, we 
furnish an approximation for the pulse train. This geometrically motivated 
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Figure 6 An illustration of homo clinic dynamics. (a) A homoclinic orbit H(�) and a nearly 
homoclinic trajectory S(�) beginning from the unstable manifold of the origin. The cylindrical 

central region re is identified. (b) Magnification of the region surrounding re. 
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analysis, or Shil'nikov theory (Shil'nikov 1965, 1 970; Tresser 1 984a), pro
vides a parallel description to singular perturbation theory. 

3.4 Shil'nikov Theory 

The flow portrayed in Figure 6 surrounds the unstable manifold emerging 
from the origin. In the homoclinic condition, this manifold connects to 
the stable manifold. In the nearly homoclinic conditions in which we 
operate, the two manifolds do not meet, but twist around one another in 
a complicated geometrical way. We visualize the dynamics of the flow by 
placing a surface through the phase space and determining the succession 
of intersections of a trajectory with it. This surface is an example of 
a Poincare section. Moreover, the relation between the coordinates of 
successive intersections is a return map which completely characterizes the 
flow. 

Within the cylindrical region l(f, the flow is approximately given by the 
linear system: 

and 

(3.9) 

(3. 1 0) 

(3 . 1 1  ) 

with (1, <.0, and y real and positive. There is a linear transformation between 
the two sets of coordinates, U and (Xl> X2, X3). In this way, the coordinate 
axes of x are the invariant manifolds of the flow within l(f. In particular, 
the homo clinic orbit departs l(f along the X3 axis, then returns and spirals 
back into 0 in the XI-X2 plane. Likewise, the flow leaves l(f through its top 
surface, shadows the homoclinic orbit, and then reenters the vicinity of 
the origin through the lateral surface of l(f. 

The central domain l(f is bounded by the surfaces xi + x� = 82r2 and 
X3 = 8Zo. Within it, the flow geometry is given by 

Xl = 8re-C1(�-[k) sin [w(� -�:)+ CPkL 

X2 = 8re-C1(�-[k)cos[w(�-GJ+CPk] 

and 

(3 . 12a) 

(3. 1 2b) 

(3. 1 2c) 

for some CPb &, and Zk. �: records the "time" of reinjection into l(f, the 
instant when the trajectory intersects the curved surface. This surface acts 
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as  our Poincare section, and Zk and ({Jk  are the section's (curvilinear) 
coordinates. 

Trajectories exit t'(J at the top surface and the interval in � spent within 
t'(J is given by 

(3. 1 3) 

It now remains to connect the values of ({Jk and Zk with their subsequent 
values. In Shil'nikov theory, one normally makes some simplifying 
assumptions regarding the flow outside t'(J. This amounts to linearly relating 
the coordinates on the upper surface of t'(J to ({Jk+ 1 and Zk+ 1 (e.g. Arneodo 
et al 1 985b), and leads to 

({Jk+l = ({Jo + qe-crTk sin (wTk+({Jk+'P1) 

and 

(3. 14) 

(3 . 1 5) 

where ({J, C, q, Q, 'P 1, and 'P 2 are constants. These two equations constitute 
a map of the Poincare section into itself: the advertised return map. 
Because of the simplifications, the constants are not defined in closed form 
and are normally treated as parameters. 

3 . 5  Return Maps vs Spacing Maps 

Although we suggested earlier that the two ways to analyze pulse train 
equilibria ran parallel, the spacing map (3.6) is quite clearly not equivalent 
to the two-dimensional return map (3. 14)-(3. 1 5). The reason for this is 
that the Shil'nikov theory is not strictly consistent in retaining terms of 
similar asymptotic order. In order for the pulses to be widely separated, 
the interval in � spent within t'(J must be longer than the traversal interval 
outside it. This means that Tk is relatively long, and so the exponentials 
exp( -UTk) are small-in fact of order 1>. Glancing back at Equation 
(3. 1 4) for the phase coordinate ({JHI reveals that, to this order, ({Jk '"" ({Jo, 
and so 

(3 . 1 6) 

where qJ = qJO+'P2 and Tk is given by (3 . 1 3). This is a map of the interval, 
and arises from what amounts to a local, strong "contraction" of nearby 
points in phase space towards the curve qJk = ({Jo on the Poincare section. 

The interval spent outside t'(J is essentially a constant, �R' and so the 
"flight time" between the successive intersections with the Poincare section 
is 11k = Tk+�R' When we use this quantity as the iterative variable, the 
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map takes the form of a spacing map. It is identical to (3.6) if the functions 
F(tJ.) are evaluated using the asymptotic solution given by (3.8) and 
Cl = ee. 

In the limit of widely separated pulses, the two approaches therefore 
lead to similar results. Singular perturbation theory is more powerful than 
conventional Shil'nikov theory in Ihat one can compute the function 
F(tJ.) without any free parameters (though in principal we could extend 
Shil'nikov's theory). Shil'nikov analysis reveals that the underlying map 
describing the flow is truly two-dimensional, and it is only through strong 
contraction that it appears one-dimensional. As a consequence, the spacing 
maps that one extracts from numerical solution of an ODE like (3 . 1 )  
appear one-dimensional only to leading order in e, and have hidden fractal 
structure (Balmforth et aI 1 994). 

3.6 Bifurcation Theory 

The one-dimensional return map (3. 1 6) is often called Shil'nikov's map. 
We write it more explicitly as 

(3. 1 7) 

where B and <I> are constants, tJ = y/o, and n = w/tJ. The map is illustrated 
in Figure 7 for C = 0 in the two cases tJ > 1 and tJ < 1 .  

Periodic orbits intersect the Poincare section at a distinct set of points 
and appear as recurrent iterations in the map. The fixed points of the map, 
Z = Zk = Zk+ I = feZ), correspond to the lowest-order periodic orbits of 
(3 . 1 ) .  Such orbits hit the Poincare section at a single point, and their 
periods follow from IT = �R-log(Z/Zo)/y. If we view C as a bifurcation 
parameter, then (3. 1 7) predicts the behavior of the periodic orbit as C 
scans through the homoclinic value, and reveals the bifurcation sequence 
that creates H(�) (Glendinning & Sparrow 1 984). 

When tJ > 1 ,  there is a single orbit for which Z monotonically 
approaches 0 as C decreases to homoclinicity. The orbital period IT simul
taneously diverges (inset of Figure 7a). In other words, the homoclinic 
connection is created by a single periodic orbit colliding with the origin. 

For tJ < 1 ,  a periodic orbit winds into homoclinicity through an infinite 
sequence of saddle-node bifurcations (inset of Figure 7b). Moreover, 
shortly beyond each saddle-node bifurcation along the locus, there are 
period-doubling cascades (Glendinning & Sparrow 1 984). This sequence 
of bifurcations generates infinitely many unstable periodic orbits at C = O. 
In the vicinity of the homoclinic connection, we therefore predict the 
existence of a chaotic, dense set (i.e. the union of the unstable periodic 
orbits). This is the essence of ShiI'ni.kov's theorem for tJ < 1 (Shil'nikov 
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Figure 7 An illustration of Shil'nikov's map for (a) (j = 2 and (b) (j = 0.5. The inset panels picture the behavior of a fixed point of the map as C 
varies. (Based on Glendinning & Sparrow 1984.) 
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1965, 1 970; Tresser 1984a). In this region of parameter space we anticipate 
chaos, although the long-term stability of the set is not determined by the 
theorem and we cannot claim the existence of a strange attractor. If such 
an object nevertheless exists, we find "Shil'nikov" or "homoclinic chaos," 
which is observed as a train of irregularly spaced pulses: steadily propa
gating, spatially chaotic patterns in the PDE. 

3 .7 Sample Spacing Maps and Homoclinic Chaos in Other 
Systems 

In the context of our current example, the ODE (3 . 1 ), it is actually fairly 
difficult to find strange attractors near the homoclinic bifurcation. Figure 
8 shows a sample pulse train and its spacing map. The asymptotic map 
agrees with numerically determined spacings, and both terminate after a 
short sequence of pulses. The train terminates because the trajectory of 
the solution finds a way around the stable manifold at the origin and then 
diverges to 8 --+ - 00. On the map, the final iteration reaches negative 
values for Z, implying that the trajectory exits the domain C(j of Figure 6 
through its lower surface and fails to return. Such divergence leads to the 
gaps that are evident in the spacing map of Figure 8b. 

Although the generic behavior of the pulse train is to terminate, by 
judiciously using the map, one can nevertheless find trains that continue 
indefinitely. This amounts to locating intervals in Z or Ll that remain 
invariant under the action of the ma.p, but they constitute a tiny part of 
the phase space and their basins of attraction are small. 

Although we have approached the: problem from the physical point of 
view of spatial complexity in solitary wave patterns, homoclinic chaos is 
relevant also to systems that can be described simply by ODEs. For 
example, in modal approximations of fluid convection, Arneodo et al 
( 1 985a) and Knobloch & Weiss ( 1983) observed homoclinic behavior. 
Further examples, and even experimental indications, ofhomocIinic chaos 
are described in a recent conference proceedings (Physica 620). 

The divergent behavior associated with trajectories rounding the stable 
manifold at the origin can be avoided if Equation (3 . 1 )  contains a different 
nonlinear term. In particular, if we replace 82 with a cubic nonlinearity, 
the equation gains the symmetry 8 .� - 8 and becomes identical to the 
model considered by Arneodo et al ( l985a). Then the homoclinic orbit 
H (�) has a mirror image, -H (  f,). Traversal of the stable manifold now 
leads to an "anti-pulse" rather than divergence, and the prospect of finding 
global strange attractors is more promising. A solution of the equation 
with cubic nonlinearity is shown in Figure 9. In this case, the unmodified 
spacing or timing map contains no gaps, but it is double-valued (the Z
map is not-Glendinning 1 984, Balmforth et al 1 994). This cubic ODE 

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 1

99
5.

27
:3

35
-3

73
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

C
am

br
id

ge
 U

ni
ve

rs
ity

 o
n 

07
/1

9/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.



20 

10 

-----
'WJ' 

0 '-" 
[Il 

-10 

-20 
0 20 40 

+- 15 
.... <1 14 

13 
12 
11 
10 
9 

8 
8 

SOLITARY WAVES AND HOMOCLINICORBITS 355 
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Figure 8 (a) Sample pulse train and (b) the associated spacing map. The curves indicate the 
asymptotic map; the stars and iteration show the computed spacings. !l = 1/)2 and 
c = 1.92847. (Based on Balmforth et al 1994.) 

also describes the steady traveling wave solutions of a modified version of 
(2. 1 ), a model which arises in other fluid dynamical contexts (Tilley et al 
1 992). 

The existence of the anti-pulse in the symmetrical version of (3 . 1 ) 
amounts to the presence of a mechanism that reinjects trajectories back 
into the vicinity of the origin on either side of the stable manifold. The 
reinjection process need not be nearly homo clinic, nor does it guarantee 
the asymptotic stability of the homoclinic strange set. In fact, the object 

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 1

99
5.

27
:3

35
-3

73
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

C
am

br
id

ge
 U

ni
ve

rs
ity

 o
n 

07
/1

9/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.



356 BALMFORTH 

22 
..... + 
� 20 <I 

18 

16 

14 

12 

10 

8 

2 
---
<J.Jo 

--[I) 

0 

-1 

-2 0 100 200 

(a) Timing map 

10 15 

300 400 500 600 

20 

700 800 900 1000 
� 

Figure 9 An invariant set for Equation (3.1), but with cubic nonlinearity. Jl = 0.7 and 
c = 1.1. (a) Empirical (measured) spacing or timing map. A sample iteration is also plotted 
as the dashed lines, and the diagonal is drawn as the dotted line. (b) Part of the pulse
antipulse train. (c) Phase portrait projected onto the (E, 8) plane. The stars indicate the fixed 
points. (Based on Balmforth et aI1994.) 

shown in Figure 9 does not even satisfy Shil'nikov's criterion for the 
existence of a strange set (parameters are chosen such that (j > 1 ), yet it is 
probably a strange attractor. 

3 .8 Variations 

In the example we have considered so far, we have the image of Figure 6; 
the homo clinic orbit ascends from the origin along the one-dimensional 
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(c) Phase portrait 

unstable manifold, and then returns in a decaying spiral within the two
dimensional stable manifold. A somewhat different picture emerges when 
the homoclinic trajectory winds out of the origin and descends mono
tonically back in. The pulse is a reversed version of our original image, 
and we refer to it as an "inverse Shil'nikov" orbit. A chaotic solution 
beginning near such an object is shown in Figure 1 0  [generated from a 
piecewise linear equation of Tresser ( 198 1 )]. The trajectory occasionally 
approaches the homoclinic orbit in this example, but more often than not, 

5r-____ �----C� ha�o�s�
n�e a�r�M�i n�v�e�r��S� hi�l n=ik��� h�om�oc=lirn�

'
c�o= ro=u�� ______ � 

Z' )( 0 

o 50 100 150 200 250 300 350 

Figure 10 The time trace of a chaotic solution in the vicinity of an inverse Shil'nikov 
homocJinic orbit (adapted from Tresser 1981). Not shown is a nearly homoclinic precursor. 
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it wanders well away from it. As a result, the solution does not resemble 
a train of widely separated pulses and is difficult to analyze with singular 
perturbation theory. Argoul et al ( 1987) attempted Shil'nikov theory for 
these reversed orbits and interpreted experimental data from a chemical 
reaction in terms of "inverse" Shil'nikov chaos. 

Pulses also need not possess oscillatory tails to either the fore or aft if 
the system is to admit potentially chaotic solutions. In particular, mono
tonically decaying homoclinic orbits are frequently encountered in systems 
like the Lorenz equations (e.g. Sparrow 1982). There, the counterpart of 
Shil'nikov theory has been widely adapted to understand some of the 
bifurcations leading to the Lorenz and related attractors (although typi
cally those attractors themselves are far from being in a homo clinic con
dition). Tresser ( 1984b) summarizes the various kinds of homoclinic situ
ations for flows in three dimensions. 

Shil'nikov theory can also be adapted to study higher-dimensional 
systems. In four dimensions one anticipates homoclinic orbits connecting 
the two-dimensional stable and unstable manifolds of the origin (Glen
dinning & Tresser 1 985). Fowler & Sparrow ( 199 1) have derived return 
maps expected in the case when the pulses wind both in and out of 
the origin. Typically, these are maps of the plane and not simple, one
dimensional Shil'nikov maps. If we follow singular perturbation theory, 
it is not immediately clear how we can account for this, since the analysis 
proceeds without any explicit statement regarding dimension, and so the 
theory predicts the one-dimensional spacing map (3.6) even for bifocal 
homoclinic orbits. There is currently little work on these higher dimen
sional pulses; Champneys & Toland ( 1 993) have recently found bifocal 
homoclinic orbits in certain Hamiltonian systems. 

A different step up in complexity is provided by bifurcation off the 
homoclinic orbit itself. Under suitable conditions, the homo clinically con
nected origin can lose stability altogether. If this occurs through a Hopf 
bifurcation, then the origin sheds a limit cycle. The stable and unstable 
manifolds of this limit cycle can play :;imilar roles to the original manifolds 
of the origin, and in the same fashion that the original homoclinic orbit 
was established, they can intersect one another. This creates a "Shil'nikov
Hopf" homo clinic orbit which connects the limit cycle to itself (e.g. Gas
pard & Wang 1 987), and we can again use Shil'nikov theory to study the 
dynamics nearby (Hirschberg & Knobloch 1993). 

These examples serve to illustrate the variety of homoclinic behavior, 
and each type of orbit can arise as a solitary wave solution of a PDE. This 
suggests that patterns of propagating pulses can comprise many different 
kinds of spatial complexity. 
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(a) Phase portrait 
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Figure 1 1  Heteroc1inic chaos in the Howard-Krishnamurti model. (a) Phase portrait pro
jected onto the (A, B) plane, where A and B are two of the variables of Howard & Krish
namurti (1986). (b) Time trace of A. (c) Empirical (measured) timing map. The first few 
iterations are indicated by the dashed lines, and the dotted line is the diagonal. (Based on 
Howard & Krishnamurti 1986; their parameter values are (J = 1, ex = 1.2, and R = 86.) 

The richness associated with homoclinic dynamics also carries over to 
situations with heteroclinic connections. For these we can again develop 
Shil'nikov theory, and under suitable conditions we then predict "hetero
clinic chaos," again with reservations concerning asymptotic stability. 
Along these lines, Howard & Krishnamurti ( 1 986) found strange attractors 
related to heteroclinic connections in ODEs that model shearing convec
tion. Figure 1 1  shows a solution computed from that system and its 
spacing or timing map. For spatio-temporal systems, heteroclinic chaos 
corresponds to steadily propagating patterns of irregularly spaced fronts 
or kinks (cf Kopell & Howard 1981) .  
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(c) Timing map 
5 r-�r-�---�--�--�--�--� 

Figure lIe. 

;: 4.5 
.... <1 

4 

3.5 

3 

2.5 r,-------;· 
./ 

2 ! /  r·�;F 
1.1.; 2 25 

4. PULSE DYNAMICS 

4. 1 Pulse Interactions 

3 3.5 4 

// 
/ .' 

5 

In the previous section we began by discussing steadily propagating pulse 
trains. We then digressed substantially into the theory of homo clinic orbits. 
Now we return to the more physical aspects of pulses, and consider the 
dynamical evolution of patterns of pulses by extending the methods of the 
last section. 

In order to make the problem tractable from an analytical point of view, 
we restrict ourselves to consider only certain kinds of pulse dynamics. In 
what follows, we envision an ensemble of pulses which are nearly locked 
into a steadily propagating pattern. However, through an initial pertur
bation, or perhaps an intrinsic instability, the pulses within the pattern are 
in a state of dynamical adjustment. This probably precludes the kinds of 
dynamics familiar in integrable systems, like soliton collisions. Just as 
importantly, we also cannot cope with pulse creation and destruction (the 
former of which is critical to the pulses of Benney's equation, as we shortly 
indicate). But to take these effects into account, we need another theory, 
and one is not yet available. An alte:mative way around this is to "patch" 
numerical solutions into the asymptotic theory when necessary. In this way 
Ward ( 1994) treated front collision:; by substituting a numerical solution 
whenever the fronts approached another too closely. 

The assumption of weak adjustme:nt means that the pulses of the pattern 
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are all traveling at roughly the same speed, and so they all possess shapes 
given by weakly distorted homoclinic orbits. Thus, we can once more 
apply singular perturbation theory to determine the positions of the pulses. 
However, rather than a map of equilibrium pulse spacings, we now derive 
a set of coupled ODEs describing the evolution of the pulse's positions 
(McLaughlin & Scott 1 978, Gorshkov & Ostrovsky 1 982, Kawasaki & 
Ohta 1 982, Coullet & Elphick 1989, Ohta & Mimura 1 990). 

To derive the asymptotic equations, we again introduce the traveling
wave coordinate � = x - ct, where, since the pattern is now not steady, we 
set c = Co. In this coordinate frame, the pulses move slowly under mutual, 
long-range interaction. To account for this we introduce the slow time
scale, , =  et, upon which the pulse positions depend: �k = �k(')' The 
asymptotic expansion then proceeds as in Section 3 . 1 ,  the only difference 
being the replacement of the velocity correction term, ec 1 Hk l with �'kHk ' 
The solvability condition is (e.g. Elphick et al 1990), 

�k = F(dk)+F( - dk+ 1), (4. 1 )  

which i s  the equation of  motion of  the kth pulse. 

4.2 Sample Pattern Dynamics 

An example of the pulse evolution predicted by Equation (4. 1 )  is shown 
in Figure 1 2, which shows 1 2  isolated pulses adjusting from a set of 
arbitrary initial positions. The initial separations cover a moderate range 
and the pulses slowly lock into a steady pattern after proceeding through 
two distinct steps. The pulses first lock into three distinct, quasi-steady 
subgroups (Figure 1 2a). The subgroups then interact much more weakly; 
eventually they approach one another and merge into a single steady 
formation (Figure 1 2b). Evolution with two disjoint time and length scales 
arises from the exponential form of the interaction. This suggests that 
patterns of very many pulses evolve on a whole spectrum of scales, and 
that pulse dynamics creates spatio-temporal complexity (Elphick et al 
1 989). 

A typical feature of evolution under the system (4. 1 )  is gradual locking 
into a steady pattern. This highlights the importance of the equilibrium 
solutions discussed in the previous section. These equilibria only exist 
if F(dk) + F( -dk+ 1) = constant has nontrivial solutions. In our current 
example this is guaranteed by the oscillatory tail of the homoclinic pulse, 
and the final pattern is one of a multitude of existing equilibria. 

The example shown in Figure 1 2  follows the adjustments of an isolated 
group of 1 2  pulses. The steady pattern to which the pulses evolve is 
constrained by the termination of the pattern to the left and right. Different 
patterns result if the pulses are arrayed periodically (Elphick et al 1 989), 
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(a) Initial evolution xl04 5 �,,--�,,-r�--,,-r�----� 
4.5 

3.5 
3 

(b) Subsequent evolution 

� 2.5 
2 

1.5 

0.5 
�50 50 100 150 

Position Position 
Figure 12 An example of the evolution of 12 pulses from arbitrary initial conditions 
computed using Equation (4. 1) .  Initially, the pulses lock into 3 almost steady subgroups (a). 
These subgroups eventually coalesce into a single formation (b). In (b), a synchronized drift 
in the position of all of the pulses has been subtracted out. Parameter values are as in Figure 
8. 

or when they are sequentially generated at a fixed location (Elphick et al 
1 99 1b, Chang et aI 1 993a). Such constraints are equivalent to the boundary 
conditions imposed on the PDE. 

4.3 An Example of Frontal Dynamics 

An alternative kind of example, depicted in Figure 1 3 ,  follows the evo
lution of an ensemble of kinks and antikinks for a real Ginzburg-Landau 
equation (Section 2.2; Elphick et al 199 I c). The heteroclinic orbits cor
responding to those kinks and antikinks monotonically decay into the 
fixed points. Consequently, the interaction potential represented by F(Il) 
contains no minima and so the force between kinks and antikinks is 
always attractive. As a result, the kinks and antikinks drift slowly towards 
one another under mutual interaction. This creates slowly evolving meta
stable states. Inevitably, each state terminates in th� catastrophic collision 
of a kink-anti kink pair. This marks a violent event which cannot be 
captured by the asymptotic method. In Figure 1 3, the collisions have been 
crudely treated by assuming a smooth collision of the front positions. 

The collision destroys one of the layers and a new metastable state then 
begins. The succession continues until as many annihilations as possible 
have occurred, all internal layers have vanished, and the asymptotic state 
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(a) Frontal dynamics 
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F(qure 13 Frontal dynamics. (a) Positions of the fronts as they initially evolve and collide. 
(b) The eventual evolution and annihilation of the remaining four fronts after the initial 
phase. (Based on R\phick et a\ \ 99\ c.) 

is obtained . Further details of the problem are discussed by Carr & Pego 
(1 989), Fusco & Hale ( 1 989), and Nagai & Kawahara ( 1 983). 

The long-lived process illustrated in Figure 1 3  was derived for pattern 
evolution in a thermally relaxing medium (Elphick et aI 1 99 1 c). Relaxation 
proceeds through fairly simple frontal dynamics which engender the run
down ofcomplexity. The introduction of forcing can halt such a rundown. 
For example, Thual & Fauve ( 1 988) and Malomed & Nepomnyashchy 
(1 990) create kink-antikink bound states by introducing terms into the 
equation modeling weak dispersion. Elphick et al ( l 991c) generated com-
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plica ted steady patterns through a spatially periodic forcing. In either case, 
we add terms to the equations of motion (4. 1 )  which change its steady 
solutions (the equilibrium patterns). 

4.4 Spacing Limitation and Some Setbacks 

We have used the PDE (2. 1 )  as an example throughout this review to 
illustrate the theory of equilibrium states and dynamics of propagating 
pulses. This PDE is a particularly good example because the dynamics 
embodied in (4. 1 )  fails completely to describe the solution if the pulse 
spacings become too large. This regime is precisely where one would expect 
the asymptotic theory to be most accurate, and the failure illustrates some 
of the pitfalls one could fall into by blindly applying the asymptotic 
machinery. A second common pitfall concerns additional invariances in 
the governing equation. These lead to extra free parameters in the theory 
that, in principle, one should fix by singular perturbation theory along 
with the pulse positions which represent translational invariance. For 
example, (2. 1 )  also possesses Galilean invariance, although this does not 
appear to modify the dynamics unless the pattern is spatially extended. In 
contrast, the scale invariances of the nonlinear Schrodinger equation must 
be taken into account in any singular perturbation theory (Keener & 
McLaughlin 1 977, Bretherton & Spiegel 1 983); otherwise, the dynamics 
of the solitons are of an artificially low order. 

To return to our example, the dynamical theory fails because a train of 
widely separated pulses contains extensive regions in which the amplitude 
of u is essentially vanishingly small. Linear theory, however, tells us that 
this vacuum state is unstable. In other words, if the pulse separations are 
too large, the remnant instability of the vacuum comes into play (Toh & 
Kawahara 1985, Chang et al 1993b). The instability takes the form of 
spatially un localized waves that we refer to as "radiation." These are not 
taken into account by weak pulse interactions, and so (4. 1 )  fails entirely 
to describe the dominant dynamics. 

For large dispersion, the instabilities are subcritical and rapidly ampli
fying radiation modes destroy the pulse configuration. The outcome is the 
violent creation of new pulses (Toh & Kawahara 1985, Toh 1987, Elphick 
et aI 1 99 1 a) .  The new state consists ora denser train of pulses, and radiation 
then damps out. This leaves an equilibrium state that can be described by 
the asymptotic theory. 

Because radiative instabilities are critical at large spacings, the solutions 
shown in Figure 1 2  cannot be realised. Therefore, pulse dynamics alone 
cannot create spatio-temporal complexity on the liquid film. For alter
native PDEs, however, like those describing excitable media (e.g. Ohta & 
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Mimura 1990) for which the vacuum state is stable, there are no limits on 
separation and spatio-temporal complexity can be obtained. 

4.5 Radiation and Chaos in the KS Limit 

For smaller dispersions, the bifurcation of separation-limiting radiation 
can be supercritical. Then we can find equilibrated states consisting of 
coexisting pulses and finite-amplitude radiation. One such state is shown 
in Figure 14. The radiation saturates at low amplitude, but it is sufficient 
to affect the tail of the pulse . This "shakes" the pulse just as the tails of 
neighboring pulses affect its position in a pattern. Forced oscillations of 
coherent structures have also been observed for fronts (Elezgaray & Arne
odo 199 1 ,  Ikeda & Mimura 1993, Hagberg & Meron 1994). 

A feature of the PDE (2. 1 ) is that the separation-limiting Hopf bifur
cations occur at smaller spacings at smaller dispersion. By the time dis
persion disappears (the Kuramoto-Sivashinsky or KS limit), even mod
erately spaced pulses are unstable. Moreover, in this physical regime, the 
characteristic rates of amplitude decay away from the center of a pulse, (J 

and y, become increasingly disparate. At J1 = 0, their ratio is 1 /2, and 
pulses are too asymmetrical to be described by unmodified perturbation 
theory (Balmforth et al 1 994). The limit is consequently not accessible to 
the present prescription of pulse dynamics. 

The inability of our theory to describe pulse dynamics in the KS limit is 

x 

6 7 

8 

Figure 14 An illustration of a pulse with a supercritically saturated, radiative instability. 
Shown is a space-time surface plot, computed for periodic boundary conditions and Jl = 0.4. 
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Figure 15 A two-pulse chaotic state. Shown is a space-time surface plot, computed for 
periodic boundary conditions and /.l = 0 . 1 .  Time recedes into the page; space increases to the 
right. (Based on Elphick et aI 199 I a.) 

particularly unsatisfying because here one typically finds spatio-temporal 
chaos (e.g. Hyman et a1 1 986, Pumir 1. 985); incoherent interactions between 
pulses and a bath of radiation may be responsible for producing such a 
state (Toh 1987, Elphick et al 1 991a). Figure 1 5  shows a chaotic state 
arising from a two-pulse equilibrium state subject to three radiative insta
bilities. 

The bifurcation structure of the Kuramoto-Sivashinsky equation and 
its chaotic states are varied and complicated (Hyman et aI 1 986). Our view 
of KS chaos as interacting pulses and radiation is excessively simplistic. 
For example, it is not always possible to unambiguously distinguish mov
ing pulses from the radiation. We also cannot ignore the fact that pulses 
are occasionally destroyed and nucleated as a result of hard collision and 
violent instability (Sekimoto et a1 1 987, Toh 1987). Moreover, in addition 
to pulses like that shown in Figure 5, there are other, multiply peaked 
pulses and shock solutions (Balmforth et al 1 994, Chang et al 1 993b, 
Hooper & Grimshaw 1 988, Kent & Elgin 1 992, Michelson 1 986) that may 
also play a role in the full dynamics. 

5 .  SOME LOOSE ENDS AND OUTLOOK 

In this final section we mention some related issues to the main discussion. 
Our survey is not meant to be a complete one, and we only summarize 
some topics of particular interest. Firstly, we address some important 
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issues of stability that might arise in attempting to apply the asymptotic 
machinery in any practical situation. Then, we establish the connection 
between the theory outlined here and some other related techniques. 
Finally, we remark on the relevance of the theory to the real world. 

5 . 1  Issues of Stability 

In discussing either interacting pulses or dynamics near homo clinic orbits, 
we have implicitly made an assumption regarding the stability of these 
special types of solutions. One circumstance in which this assumption 
breaks down is radiative instability, but there are other cases. 

In the context of ODEs, for nearly-homoclinic dynamics, there is an 
intrinsic notion that trajectories in phase space hug the homoclinic orbit 
as they traverse the main peaks of the pulses. Then, in the geometrical 
vision of Shil'nikov theory, the trajectory does not deviate too wildly from 
H(�) as it circulates outside of the region !(j shown in Figure 6. In singular 
perturbation theory, there is no such assumption, but there is also no 
guarantee that the approximate solutions characterized by the spacing 
map possess any degree of stability whatsoever. In other words, for either 
visualization, in order for the homoclinic solutions to be interesting, they 
must, in some sense, possess a degree of both stability and instability. 
Without the former, no trajectory ever remains nearly homoclinic, but 
without the latter, the solutions are not chaotic. 

For three-dimensional homoc1inics, trajectories often remain near H(�) 
when that orbit possesses a large and negative Floquet exponent. If the 
flow in phase space contracts volumes sufficiently strongly (i.e. if Ii is 
sufficiently large), one exponent is likely to be of this form. For chaos, 
the other nontrivial Floquet exponent should be small but positive, and 
Shil'nikov theory tells us that this transpires for (j � 1 .  

Stability of a pulse in the PDE is not the same as the stability of H(�) 
in the phase space of the associated dynamical system. For pulse solutions 
of a PDE, the question of stability constitutes a more delicate issue. 
Radiative instability highlights the possibility that the pulse may be a 
stable homoclinic orbit in the ODE, but it does not evolve accordingly. In 
fact, there is no reason to suppose that, in general, the pulse train is 
remotely stable. In Equation (2. 1 ), the supercritical bifurcation of the 
periodic vacuum state is partly the reason why the pulse solutions are 
stable at short spacing. 

Pulse stability can be rigorously established in some circumstances. In 
more general situations, numerical stability analysis (e.g. Toh & Kawahara 
1985, Chang et al 1 993b, Elphick et al 199 1a) or variants of the Nyquist 
method (e.g. Evans & Feroe 1975, Swinton & Elgin 1 990) can be used. 
For the Fitz-Hugh/Nagumo equation it has been established that pulses 
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are often stable. Interestingly, these correspond to strongly unstable homo
clinic orbits, in contrast to the solitary waves of Equation (2. 1 ) .  Therefore, 
even though the nerve equation generates spatially irregular patterns of 
pulses (Elphick et al 1 99 1  b), one cannot find corresponding strange attrac
tors as solutions to the associated ODE. 

5.2 Hamiltonian Dynamics and Melnikov Theory 

In this review we have been concerned primarily with dissipative systems. 
Equally well, however, we could ha.ve specialized to Hamiltonian homo
clinic dynamics. The parallel of Shil'nikov theory which is typically used 
for Hamiltonian systems is Melnikov theory. Like Shil'nikov theory, this 
is a geometrically based approach to uncovering the dynamics in the 
vicinity of a broken homoclinic connection (Melnikov 1 963). The ideas 
are most simply illustrated for a Hamiltonian system with a single degree of 
freedom under periodic perturbation (e.g. Drazin 1 993). If the unperturbed 
system admits a homo clinic solution, then under perturbation, the con
nection of the stable and unstable manifolds is broken; Melnikov theory 
amounts to determining the distance between the two manifolds. 

The key ingredient in Melnikov's analysis is an integral M(to) which 
measures the splitting of the manifolds (to parameterizes the position 
along the unperturbed homoclinic orbit). This integral is commonly called 
Melnikov's function. If, for some /0, it vanishes, then we infer that the 
manifolds cross. Because the perturbation is also periodic, it further implies 
that M(to) is likewise periodic, and 80 the manifolds intersect one another 
an infinite number of times. The entangling of the manifolds (a "homo
clinic tangle") signifies the existence of chaotic orbits, and is the analogue 
of Shil'nikov's theorem. 

Melnikov theory is rather elegantly formulated in the framework of 
Hamiltonian dynamics. But it need not be couched in those terms (Chow 
et al 1 980). In fact, as pointed out by Coullet & Elphick ( 1 987), the 
Melnikov method for dissipative systems is essentially the same as singular 
perturbation theory. The Melnikov function in that context is simply 
the integral solvability condition; the requirement that it vanish ensures 
bounded solutions in the asymptotic calculation, which is equivalent to 
saying that the manifolds entangle. But, just as Shil'nikov theory provides 
more geometrical information regarding the dynamics around the homo
clinic orbits than the spacing map, �:o too does Melnikov theory. 

5 .3  Painleve Analysis and Pole Expansion 

Our approach to the problem of pulse dynamics has been founded on the 
idea that solitary waves correspond to homoclinic orbits of the dynamical 
system associated to the governing PDE. Save for some special cases, these 
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orbits need to be determined numerically, at least for most dissipative 
systems. This is not, however, the only approach one can take to the 
problem. Exact, analytical solitary solutions can also be furnished by 
Painleve analysis (Weiss et al 1 983). Though intimately connected with 
integrable systems, the Painleve method occasionally works for dissipative 
systems. The heteroclinic solution of the KS equation which is pictured in 
Figure 5 can be uncovered in this fashion (Conte & Musette 1989), as can 
several frontal solutions of Equation (2. 1 )  at particular values of the 
dispersion parameter (Kudryashov 1990). The trouble with uncovering 
analytical solutions in this way is that it is rarely possible, and certainly 
gives no indication of the wealth of solutions possible. Yet when the 
analysis furnishes an analytical solution, it can be very useful. 

A somewhat related method for pulse dynamics is pole expansion. This 
was first applied to derive soliton solutions for the KdV equation and some 
of its relatives (KruskaI 1975, Airault et aI 1 977). Unlike approximation by 
homoclinic orbits, the method centers around the idea that, by choosing an 
appropriate selection of rational functions, we can obtain exact nonlinear 
solutions. This amounts to finding a finite set of movable singular or pole 
solutions that solve the PDE exactly, provided their positions satisfy 
certain ODEs. Once again, this method only works under special cir
cumstances, and is at least partially connected to integrability. But unlike 
singular perturbation theory and Equation (4. 1) ,  the dynamical equations 
that one extracts with pole expansion are exact nonlinear evolution equa
tions for the pole positions, which may or may not resemble individual 
pulses. In addition to the KdV equation, this technique has been employed 
to find solutions of the dissipative Benjamin-Ono equation (Meiss 1 980, 
Birnir 1 986, Qian et al 1 989) and a variation of the Boussinesq equation 
(Qian & Spiegel 1994). 

5.4 Relevance to the Real World 
What we have described in this review is a theory of the dynamics of 
homoclinic orbits in an ODE, and of pulses in a PDE. In the real world, 
most systems have too many degrees of freedom to be described by a 
simple theory of this kind. For systems describable by ODEs, this is the 
main reason why there are very few examples of experimental spacing 
maps like those pictured here, even when the object under study bursts 
sporadically and would appear nearly homoclinic [laser dynamics has 
something of the flavor of homoclinic theory (Arrechi et al 1993, Papoff 
et al 1991)]. One important difference is that there can be intrinsic noise 
in experimental systems. This restricts the accessibility of phase space near 
the origin, with critical repercussions on the spacing map (Hughes & 
Proctor 1 990, Stone & Holmes 199 1 ,  Arrechi et al 1 993). 
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In asymptotic theory, noise can be added perturbatively. This influences 
the solvability condition in a similar fashion to the perturbations of the 
Ginzburg-Landau equation mentioned in Section 4.3. The equations of 
motion become 

(5. 1 )  

where gk depends on the pulse positions for deterministic perturbations, 
and is a stochastic variable in the case of noise. Accordingly, deterministic 
perturbations intrinsically change the pattern map for the equilibrium 
pulse trains. Noise, on the other hand, stochastically drives the pulses like 
pollen grains forced into Brownian motion. 

As regards experimental observations of pulse dynamics in spatio-tem
poral systems, the situation is again difficult to compare with theory. 
Solitary waves on fluid films are subject to secondary instabilities which 
typically wreck the possibility of recording persistent one-dimensional 
interaction (Chang et al 1 993a). In spite of this drawback, some of the 
results of Liu & Gollub ( 1 994) suggest that experimental analogues might 

be found for fluid films.  In binary :fluid convection, only a small number 

of pulses invariably emerge in the system, and it does not seem currently 
possible to describe these with simple PDEs. 

The theory described here is most useful in pointing to a way of com
pletely describing spatio-temporal complexity in a simple system. Though 
real systems are generally substantially more complicated, the under
standing gained in such a simple situation will hopefully provide invaluable 
insights into more physical cases. In higher dimension, things only become 
worse and we open Pandora's box. Geometrically alone, pulses can take 
shapes of all kinds, from disks and spheroids to spirals and scrolls. Weak 
interaction theory could provide the interaction potentials necessary for 
the dynamics of these coherent structures, if they could be regarded as 
point particles. Then, many-body dynamics could be attempted. But even 
in one dimension, we have seen that this approach often is not enough. 
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