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Background and mathematical model

Satellite altimetry has revealed that significant dissipation of the barotropic tide occurs in the
deep ocean in the vicinity of large topographic features (e.g. Egbert & Ray, 2000, Nature,
405, 775). This has been attributed to the generation of internal gravity waves as the tide
flows over such obstacles.

Linear inviscid theory of the tidally generated gravity waves indicates that these disturbance
can take the form of intense wave beams propagating away from the points on the topography
where the slope of the radiating gravity waves matches the slope of the bottom surface (e.g.
Balmforth, Ierley & Young, 2002, JPO, 32, 2900).

The perturbations to the density gradient induced by these beams are formally singular in
inviscid theory, suggesting that they may immediately behave nonlinearly, suffering shear or
other kinds of instability, or creating density inversions that overturn the stratification.

Linear, two-dimensional, inviscid gravity waves

The problem is formulated in terms of a streamfunction and buoyancy (density) perturbation,

(u,w) = Re (−ψz, ψx)e
−iωt and b = Re

N2

iω
ψxe

−iωt

where ω is the tidal frequency and N the buoyancy frequency.

The internal wave equation is
(

N2

ω2
− 1

)

∂2ψ

∂z2
=
∂2ψ

∂x2

Thus waves travel at an angle tan−1
√
N2ω2 − 1 to the horizontal; the phase and group veloc-

ities are orthogonal.

Boundary conditions and solution technique

On the topography:
ψ(x, h(x)) = Uh(x)

For an infinitely deep ocean, the waves generated at an obstable propagate off to z → ∞, and
we impose an outgoing radiation condition.

We distribute sources with density, Γ(x), along the topography and use a Green function,
G(x, x′, z, z′), to write:

ψ(x, z) =

∫

G(x, x′, z, h(x′))Γ(x′) dx′

(cf. Petrelis, Llewellyn Smith & Young, 2007, JPO, 36, 1053). The lower boundary condition
then furnishes an integral equation for Γ(x).

We use periodic topography in x: either a sinusoid or a “periodic Gaussian”,

h(x) = h0 ×

{

sin(kx)
exp[−γ(1 − cos kx)]

where γ is a separation parameter (γ → 0 recovers the sinusoidal profile, and γ → ∞ gives an
isolated Gaussian).

Far-field representation

Above the crests of the topography, the Green function can be simplified and the solution
written in the form,

ψ(x, z) =

∞
∑

p=1

Γp
p
e−ipµkz + constant,

where µ =
√

N2/ω2 − 1 and the γp’s are certain integrals of Γ(x).

Assuming the viscosity to be small, we can improve this solution to account for viscous smooth-
ing of the wave beams using perturbation theory. This replaces the factor, e−ipµkz, with

exp

[

−ipµk −
νk2N4

ω3(N2 − ω2)

]

z

The wave structures are then no longer singular and can be compared with experiments.
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Figure 1: Beam generation and interference for sinusoidal topography, and the (dimensionless)
energy conversion rate vs. ε, the ratio of topographic slope to wave slope.
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Figure 2: Beam generation above periodic Gaussian ridges (and trenches), and
the conversion rate vs. ε for different bump separations, γ.

Wavebeams leave the topography at the critical slopes; the beams scatter either up or
down and can interfere with one another constructively or destructively. This leads to
an energy conversion rate with a complicated dependence on the topographic height (or
relative maximum slope, ε; cf. Nycander, 2006, JFM, 567, 415).

The experiment

The experiment consists of a tank of stratified salty fluid, with an obstable on the bottom that is dragged
back and forth sinusoidally with a given frequency and amplitude. The digital Schielern technique (Suther-
land, Dalziel, Hughes & Linden, 1999, JFM, 390, 93) is used to image the internal wave field.

Figure 3: A gaussian bump and the limiting knife edge.

The experiment runs at relatively low Reynolds number (of order 100). As a result, viscosity is crucial in
smoothing the wave beams and their amplitude becomes relatively weak (compare the viscous and inviscid
curves). Consequently, we have yet to observe any secondary instabilities or overturning in the wavebeams.

Figure 4: Comparison of theory and experiment.

We have, however, observed the generation of weak beams at twice the tidal fre-
quency (the second harmonic).

We are still in search of more significant nonlinear effects...


