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Abstract

Many discrete lattice systems possess solutions that take the form of localized, stationary structures. In this communication
we introduce the discrete version of the Evans function, an analytic function whose zeros correspond to the eigenvalues of
the linear stability problem for a spatially localized equilibrium solution. This function provides a convenient and useful tool
for investigating the linear eigenvalue spectrum. Notably, it allows us to construct sufficient stability conditions and detect
“internal modes” (neutral oscillatory modes that correspond to localized oscillations about the static structure). We illustrate
with the discrete sine-Gordon equation, also known as the Frenkel–Kontorova model. A complementary approach suitable for
systems with nearest neighbour coupling and based upon techniques of linear algebra (the bisection method) is also described.
©2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

A rapidly increasing number of papers over the last 15 years (commencing with the work of Peyrard and Kruskal in
1984 [1]) have demonstrated significant differences in the behaviour of the partial differential equations of continuum
nonlinear field theories (such as the sine-Gordon, or the nonlinear Schrödinger models) and their spatially discrete
relatives. The discretization of these equations (usually involving the replacement of second spatial derivatives
with differences by means of three-point stencils) brings about a number of critically important modifications to
the dynamics. Notably, the discretization destroys the translational invariance of the system and, in many cases,
precludes the existence of steadily propagating solutions. Instead, the moving kinks and solitary waves of the
continuum theories become propagating structures that decelerate by shedding “radiation” (unlocalized wave-like
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disturbances) as they traverse the lattice sites. This ultimately brakes the structures and brings them to rest, or “pins”
them [1–5]. Thus, rather than the familiar interactions and dynamics of moving coherent structures, the analysis of
lattice systems often focusses on stationary, localized objects.

A similar phenomenon occurs for discrete models of reaction–diffusion systems [6]. Here, propagation ceases
when the elements of the system lose their interconnectivity (at weak coupling strength). This “propagation failure”
has potentially important applications for excitable neurological systems [7,8], in chemical reactions [9] and optics
[10]. Notably, the failure of propagation in these systems is associated with the existence of stationary front solutions
at low coupling strength. Conversely one can view the emergence of propagating structures as resulting from the
disappearance of such stationary solutions as one increases the coupling.

A useful technique in the study of spatially localized structures is a method that we attribute to Evans [11].
Basically, the method allows us to predict if such a structure is linearly stable, and, if not, enables us to detect what
kinds of instabilities the equilibrium may suffer. In the continuum theories this method involves the construction of
a function, the Evans function, from a differential eigenvalue problem. This function contains detailed information
regarding the linear eigenspectrum of the stability problem for coherent structures. It was originally introduced
by Evans to study the stability of impulses in continuum nerve axon models, but has lately been implemented in
the stability analysis of travelling waves or pulse solutions in a variety of other continuum models [12–15]. More
specifically, according to several rigorously proved theorems [12,16], the zeros of this function correspond to the
discrete unstable eigenvalues of the coherent structures under study.

Our goal in the present work is to adapt the Evans function to discrete systems. As we shall show for lattices,
the construction of the Evans function is even more straightforward than in the corresponding continuum problems.
However, our formulation is restricted to studying the stability of stationary equilibria. The reason for this is
connected to the lack of translational invariance, and the difficulty in finding travelling wave solutions (these satisfy
advance–delay difference equations [6]).

To illustrate, we consider the discrete version of the sine-Gordon equation, also known as the Frenkel–Kontorova
model [17]. This equation describes evolution of the displacements,yn(t), of the elements of a lattice, and can be
written in the form,

ÿn = (yn+1 + yn−1 − 2yn) − 1

d2
sinyn, (1)

where the subscriptsn − 1, n andn ± 1 denote successive lattice sites andd is a parameter measuring the degree
of discreteness (smalld implies large discreteness and asd → ∞ we recover the continuous sine-Gordon system).
The equation also describes a lattice of coupled pendula.

This model has a variety of stationary kink solutions [1] (see also Section 2). In this instance, although the
Evans functions are of limited usefulness for ascertaining the stability of the kinks, they are helpful in uncovering
several other features of the linear eigenspectrum (see Section 3). In particular, we can detect “internal” or “shape
modes”, spatially localized oscillations about the kink equilibrium [18,19]; these kinds of oscillations are important
in understanding kink dynamics and pinning. In addition, along the way, we uncover some interesting properties of
a certain class of kinks (Peyrard and Kruskal’s 4π -kinks).

We also connect the Evans function method with a technique from linear algebra; this is the bisection method
which works for tridiagonal matrix systems [20,21]. This is the form that the stability problem takes for discrete
systems with nearest neighbour coupling, such as the discrete sine-Gordon. Although the matrix methods are
formally finite dimensional we can adapt them for the infinite dimensional problem we face in Section 4. A simple
connection with Evans functions emerges, and this simplifies the stability theory even further for systems like
discrete sine-Gordon.
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2. Tracing equilibria from the uncoupled limit

The stationary kink equilibria,yn(t) = Yn, satisfy

0 = Yn+1 + Yn−1 − 2Yn − 1

d2
sinYn, (2)

with Yn → constant asn → ±∞. In general, we cannot solve this equation in closed form, and we turn to
numerical techniques. These techniques are based on Newton iteration; we focus on a lattice of finite size, and
apply boundary conditions based on the form of the exponentially decaying tails of localized kinks. To begin the
iteration we could choose the continuum sine-Gordon kink, but this proves not to be very efficient at lower coupling
strengths and misses many of the equilibria of the problem. Instead, we trace equilibria from the uncoupled limit:
d = 0.

At d = 0 we replace Eq. (1) by

sinYn = 0. (3)

From here, we read off the equilibria of the pendulum:Yn = πm, m = 0, 1, 2, . . . . Moreover, we know that the
solutions withm even are stable, and those with oddm are unstable.

Now we couple the systems back together. For sufficiently smalld, the equilibria existing atd = 0 remain in
existence; moreover, they also remain stable or unstable according to their uncoupled stability (this can be proved
using the implicit function theorem in some appropriate function space; see [10,23]). The goal is now to exploit this
property of the system, and build solutions for finited from the uncoupled equilibria [24].

Evidently, any combinationYn = πm is a solution of the uncoupled problem. Those that look like fronts have
Yn = 0 off to the left, andYn = 2Mπ off to the right (we restrict the rightward asymptote to be an even multiple
of π for obvious reasons of stability).

For 2π -kinks we may take either

Yn =
{

0, for n < 0,

2π, for n ≥ 0,
or Yn =




0, for n < 0,

π, for n = 0,

2π, for n > 0.

(4)

If we continue these solutions to finited, we will generate two 2π -kinks. Results of this procedure are shown in
Fig. 1 which displays the kink energiesd−2∑

n cosYn againstd. The first kink is off-centred in the sense that the
displacements at its two central lattice points straddleπ . Since this structure is stable atd = 0, we expect that it
remains so for finite coupling. The second is a centred kink and unstable atd = 0. Asd increases, the energies of
the kinks becomes similar and the solutions converge to the form of the continuum sine-Gordon kink. Based on
the fact that the off-centred kink has lower energy, one expects that this kink remains stable at higherd, and the
centred kink continues to be unstable; the energy difference is the “Peierls–Nabarro” energy (a term coined from
the theory of dislocations, wherein it corresponds to the amount of energy required for a dislocation to move by
one site on the lattice) [1]. Nonetheless, the presence of this energy barrier separating the two equilibria does not
establish stability or instability, which motivates the analysis of Section 3.

For 4π -kinks, we may again do a similar construction. From

Yn =
{

0, for n < 0,

4π, for n ≥ 0,
or Yn =




0, for n < 0,

2π, for n = 0,

4π, for n > 0,

(5)
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Fig. 1. Energies for 2π -kinks and some 4π -kinks. The centred 2π -kink is shown as the solid line, the off-centred version by the dashed line.
The energies of 4π -kinks are shown as dots. These particular kinks are generated by tracing uncoupled equilibria with the structure (7) to larger
d. The dashed line that these equilibria largely follow is twice the energy of the off-centred 2π -kink. The circles indicate where these branches
of kink solutions end in saddle-node bifurcations. The termination points move to largerd asN1 + N2 increases.

we generate two types of kinks, off-centred or centred at 2π . Since both are stable atd = 0, we expect them to
remain stable at small enoughd also. But we can also produce a kink from

Yn =



0, for n < 0,

π or 3π, for n = 0,

4π, for n > 0,

(6)

which is unstable, and a whole slew of other, more complicated solutions in which we take the central region of the
kink to be more structured.

Evidently, there is a huge number of possible uncoupled solutions that can be continued to finited. Some particular
solution branches are shown in Figs. 1 and 2. The branches resulting from continuing (5) and (6) appear in Fig. 2, along
with the kinks given atd = 0 by(. . . , 0, 0, π, 2π, 3π, 4π, 4π, . . . ) and(. . . , 0, 0, π, 2π, 2π, 3π, 4π, 4π, . . . ), and
all those with(. . . , 0, 0, x0, x1, 4π, 4π, . . . ), wherex0 andx1 are all permutations of 0, π, 2π, 3π and 4π .

Many of the branches end in saddle-node bifurcations. Fig. 2(a) gives the misleading impression that there appear
to be three branches terminating at some of these bifurcations; further inspection shows that there are actually four
branches that end at nearby coupling strengths. Two branches terminate in a pitchfork on a third branch just below
the saddle node (see panel (b)). This first bifurcation is a symmetry-breaking bifurcation in which two kinks appear
without the symmetryyn → 2π − y−n.

Some other interesting solutions consist, atd = 0, of

Yn =



0, for n ≤ −N1,

2π, for − N1 < n ≤ N2,

4π, for n > N2,

(7)
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Fig. 2. Panel (a) shows energies of different 4π -kinks as a function ofd. Panel (b) shows the coordinates of three oscillator kinks nearest the kink
centre. The kinks displayed are constructed by tracing the equilibria given atd = 0 by (. . . , 0, 0, x0, x1, 4π, 4π, . . . ), wherex0 andx1 are all
permutations of 0, π, 2π, 3π and 4π . In addition, the kinks with(. . . , 0, 0, π, 2π, 3π, 4π, 4π, . . . ) and(. . . , 0, 0, π, 2π, 2π, 3π, 4π, 4π, . . . )

atd = 0 are included. The branches that are stable when they begin atd = 0 are drawn as thicker lines.
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which take the form of kinks with increasingly wide central “plateaux”. These are again stable atd = 0. The first 15
kinks of this form (withN2 +N1 < 16) are continued to finited as shown in Fig. 1. These branches again disappear
in saddle-nodes. But as the number of oscillators contained in the central plateau increases, the kinks continue to
exist at higherd. This is just a consequence of the fact that as we increase the number of lattice sites in the plateau,
the two pieces of the kink become widely separated, and the solution develops into individual (off-centred) 2π

kinks which exist as stable solutions for arbitrarily larged. But, evidently, the 4π -kink equilibria that persist to the
highest coupling strength consist of widely separated 2π -kinks.

3. Stability

The goal of what we are doing is to find the equilibria, and look at their stability. Having found the equilibria by
the techniques described above, we now turn to stability. Essentially, we adapt the Evans function analysis to look
at the stability of the numerically generated kinks. In general, this technique uncovers instabilities that are localized
to the fronts. Here, for example, in the case of 2Mπ -kinks with M > 1, instabilities can arise that break them
apart.

The stability problem is formulated as follows. We perturb the lattice about the stationary kink:

yn(t) = Yn + un(t), (8)

whereYn denotes the equilibrium kink. After introducing this decomposition into the governing equation and
linearizing inun, we find

ün = un+1 + un−1 − 2un − un

d2
cosYn. (9)

The eigenvalue spectrum is determined by takingun ∝ expλt and applying the boundary conditions,un → 0 as
n → ±∞.

We then have:

λ2un = un+1 + un−1 − 2un − un

d2
cosYn. (10)

This is an infinite dimensional matrix problem. However, it is real and symmetric. Thus eigenvalues must arise as
either real pairs or imaginary pairs; there are no quartets as can occur in other Hamiltonian systems. This severely
constrains the types of instabilities that can occur, and indicates that the passage to instability always takes place
through the origin.

3.1. Evans functions

To the left of the kink, the amplitude ofYn decays exponentially quickly to zero. Similarly,Yn → 2Mπ to the
right. Hence

n → ±∞ :

(
λ2 + 1

d2

)
un ∼ un+1 + un−1 − 2un. (11)

This linear system has solutions

un = C±(λ)rn
1 + D±(λ)rn

2 ≡ C±(λ) eν1n + D±(λ) eν2n, (12)
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whereC±(λ) andD±(λ) are independent ofn and

r2,1 = 1

2

[
λ2 + 2 + 1

d2
±

√(
λ2 + 1

d2

) (
λ2 + 4 + 1

d2

)]
or ν2,1 = ±sin h−1

√
λ2 + 1

d2
(13)

(so thatν1 < 0 andν2 > 0).
We may begin the construction of an eigenfunction to the left by settingC−(λ) = 0; then

un ∼ D−(λ)rn
2 = D−(λ) eν2n for n → −∞. (14)

On taking a specific choice forD−(λ), we begin an iteration of (10) from large, negative values ofn, progress
through the kink (centred at or nearn = 0), then out to large, positive values ofn. At that stage, for generalλ, the
solution takes the form,

un ∼ C+(λ)rn
1 + D+(λ)rn

2 = C+(λ) eν1n + D+(λ) eν2n. (15)

Crucially, un, diverges unlessD+(λ) = 0. This coefficient is equivalent to the transmission coefficient of a
wave-scattering problem, and depends uponλ. The functionD+(λ) is only zero ifλ is an eigenvalue, thus the
functionD+(λ) and its determination encapsulates the eigenvalue problem. Explicitly, if we continue the iteration
to n = L then

D+(λ) = uL+1 − r1uL

rL+1
2 − rL

2 r1
≡ r2uL − uL−1

rL−1
2 (r2

2 − 1)
, (16)

where we use the relations,

r1r2 = 1, uL+1 = χuL − uL−1, χ = 2 + 1

d2
+ λ2 (17)

(which hold to within an exponentially small error ifn = L is sufficiently far from the centre of the kink).
The coefficientD+(λ) is essentially our dispersion relation. ShouldD+(λ) = 0, then the solution decays ex-

ponentially to both right and left, and we have an eigenmode. As it stands this coefficient clearly has the analytic
structure ofr1,2, together with any structure that we add into the coefficientD−(λ). Notably, r1,2 have branch
points atλ = ±i/d and±i

√
4 + 1/d2; to connect these points we take the branch cuts, [i/d, i

√
4 + 1/d2] and

[−i/d, −i
√

4 + 1/d2].
These branch cuts locate the continuous spectrum of the kink; it is not difficult to show that along these spectral

cuts, there is no spatially decaying linear solution. The cuts of the continuum correspond to the “phonon frequency
band”.

For technical reasons it is convenient to select the initial functionD−(λ) such thatD+(λ) has a special form for
large|λ|, namely unity. In order to find a suitable choice we note that for large|λ|, an approximate solution to (10)
follows usingr1 ∼ λ2, r2 ∼ λ2 and

un+1 = λ2un. (18)

This indicates that, if we begin on the left atn = −L, then continue through the kink up ton = +L,

D+(λ) ∼ λ4LD−(λ). (19)

By takingD−(λ) = r2L
1 ∼ λ−4L, the transmission coefficient,D+(λ), therefore approaches unity on the right.

A second technicality concerns the denominator in (16). This denominator introduces poles intoD+(λ) at the
zeros ofrL−1

2 and 1− r2
2. However, becauser1r2 = 1, there are no zeros of the first quantity in the finite complex
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plane. But the second factor of the denominator vanishes forr2 = ±1, which occurs at the branch points of the
continuous spectrum. Though this does not directly affect the analytic structure ofD+(λ), it does obscure the
Nyquist theory that we describe below, and it is convenient to explicitly remove these poles from the transmission
coefficient. We do this by scalingD−(λ) with the factor

(
r2
2 − 1

)
/r2

2 ≡ (
1 − r2

1

)
, which leaves the largeλ form of

D+(λ) unchanged. Overall, the analytic structure ofD+(λ) remains that ofr1,2. Thus, with this selection ofD−(λ),
we letD+(λ) = D(λ), theEvans function.

3.2. Nyquist theory

Now,D(λ) is a complex function that is analytic over the complex plane, but for branch cuts that locate the contin-
uous spectrum. Moreover,D(λ) → 1 as|λ| → ∞. Thus, if we define a region of the complex plane with perimeter
C that does not contain either of the branch cuts, Cauchy’s residue theorem tells us that the integral defined by

Nc = 1

2πi

∫
C
D

′
(λ)

D(λ)
dλ (20)

is equal to the number of zeros ofD(λ) inside the contourC. In particular, ifC is a semicircle of infinite radius
enclosing the right-half plane,

Nc = 1

2πi

∫ ε+i∞

ε−i∞
D

′
(λ)

D(λ)
dλ (21)

counts the number of zeros withRe(λ) > ε, asε → 0. This determines the number of unstable eigenmodes.
By the argument principle, the integral is equal to the integral change of phase ofD(λ) asλ varies alongC.

Equivalently this is the number of times the curveD(λ) winds around the origin on the(Dr ,Di )-plane. Thus we can
visualize the behaviour ofD(λ) conveniently and the procedure becomes standard Nyquist technology; an example
is shown in Fig. 3.

This figure shows that the centred kink is unstable, but the off-centred one is stable (a known result, and one
anticipated by the stability atd = 0). This is seen from the final magnification which shows how the tortuous path of
the Nyquist plot eventually skirts to the right of the origin in the off-centred case, leading to no enclosures. However,
the centred kink circles around the origin, implying instability.

In other words, the centred kink possesses two purely real eigenvalues, a growing–decaying mode pair. The
spectrum of the off-centred kink, on the other hand, lies along the imaginary axis. In fact, for the off-centred kink,
there are two discrete modes lying on the imaginary axis in addition to the continuous spectrum. This pair, and the
real pair of the centred kink, can be thought of as resulting from the breaking of the translational symmetry of the
sine-Gordon equation by discretization. The imaginary eigenvalues of the off-centred kink are “pseudo-Goldstone”
modes (the translational symmetry of the continuous system leads to a purely neutral, translation mode in the linear
eigenspectrum; this mode is often referred to as the Goldstone mode). For the off-centred kink, the frequency of the
pseudo-Goldstone modes is shown in Fig. 4; the eigenvalue decays roughly exponentially withd. Also, as indicated
in Fig. 4, there is a further pair of imaginary eigenvalues for the off-centred kink that exist over a limited range in
d; we return to these “shape modes” in Section 3.4.

3.3. Remarks on the Evans functionology and Nyquist technology

There are several useful general features of the Evans functions and Nyquist plots that expedite the determination
of stability. First, becauseλ2 appears in the iteration equation (10), the Nyquist plots are symmetrical under reflection
about the real axis.
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Fig. 3. Panels (a) and (b) show Evans functions for 2π -kinks with d = 1, and (c)–(e) show Nyquist plots. A rather large value ofε is used
(ε = 10−2) to reveal the structure more easily. The shaded regions in (a) and (b) denote the continuum bands. In panel (f) we displayDr (λ) for
λ over the imaginary axis between−1/d and 1/d, with d = 0.7 andε = 10−10. Stars indicate the value ofDr (λ) beside the branch points of
the continuous spectrum, and circles indicate zero-crossings.
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Fig. 4. Discrete modes of the off-centred, 2π -kink. Panels (a) and (b) show circles locating the frequencies,ω, of the discrete modes computed
by finding the zeros of the Evans function by Newton iteration. The lines that track the circles are the two lowest eigenfrequencies as computed
from the stability matrix resulting from assuming that perturbation displacements vanish at the ends of the computational lattice; the two sets
of eigenvalues are practically indistinguishable. The shaded region shows the frequency range occupied by the continuous spectrum. Panel (c)
shows the frequency shift of the “shape mode” discussed in Section 3.4 from below the lower edge of the continuum(1/d − ω). In (c), the three
solid lines reflect results for the second approximate method with different lattice sizes (200, 300 and 400).

Second, and perhaps most importantly, because instability always proceeds through the origin, it is sufficient to
monitorD(0) < 0 in order to detect instability. Indeed,D(0) < 0 is a sufficient condition for instability for the
example used above, where there is the possibility of one unstable mode. However, when there may be multiple
instabilities,D(0) must necessarily cross through zero repeatedly. This obscures that simple picture, and more
knowledge of the Nyquist curve is needed. In Fig. 5 we display the Evans functionD(0) for the two 2π -kinks also
shown in Fig. 3; one (the centred kink) hasD(0) < 0 implying instability.

More examples are shown in Figs. 6 and 7. The first picture displays eigenvalues and Evans functions for one of
the 4π -kinks shown in Fig. 2. The bifurcation diagram suggests that the branch that is tracked from the uncoupled
limit is initially stable, but then bifurcates to instability in a symmetry-breaking bifurcation just before it disappears
in a saddle node. This sequence is confirmed by tracking the eigenvalues (panel (a)) and by plotting the Evans
functionD(0) (panel (b)).

Third, one negative aspect of the Nyquist plots is that they can be very convoluted; the curve often loops many
times, with many tight turns near the origin that require several successive magnifications (see Fig. 3). This makes it
difficult to pick out the number of enclosures. However, we may automate the identification of encirclings by noting
that the integral in (21) is equivalent to lnD evaluated at the beginning and end of the contourC. As a function of
D = Dr + iDi , this quantity has a branch cut alongDi = 0 andDr < 0. The change of phase ofD(λ) arises as the
Nyquist curve passes through that branch cut and begins and ends on different Riemann sheets of the ln function.
Thus to determine the change of phase we record the crossings of the real axis to the right of the origin, noting the
sense of crossing, and hence the passage onto either an upper or lower Riemann sheet:
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Fig. 5. Evans functions for 2π -kinks: (a)D(0), (b)D(λ2 = i/d − i0) and (c)D(λ3), whereλ3 = i(4 + l/d2)1/2 + i0 lies just above the upper
limit of the continuous spectrum.

1

2πi
1 argD =

∑
sgn

(
∂Di

∂λ

)
Di=0,Dr<0

. (22)

This yields the number of encirclings.
Lastly, along the real axis, away from the branch cuts of the continuous spectrum,r1 andr2 are real. Consequently,

Di (λ) = 0 along these sections of the locus ofλ. Moreover, here, the Evans function is analytic, so we may Taylor
expand to find:

Di (ix) = ε
dDr (ix)

dx
, (23)

for λ = ix + ε.
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Fig. 6. Eigenvalues and Evans functions for a 4π -kink. At d = 0, this kink has the structure,(. . . , 0, 2π, 4π, . . . ). Panel (a) shows the frequency
of two discrete modes (one of which disappears neard = 0.25) and the continuum band as a function ofd. Panels (b) and (c) show the Evans
functions,D(0) andD(i/d − i0).

Fig. 7. Evans functionD(i/d − i0) for a 4π -kink given, atd = 0, by (7) withN1 + N2 = 11. Circles indicate zero-crossings and the numbers
refer to the number of shapes modes supported by the structure over that range ofd.

On a more technical note, it is evident from Fig. 4 that Evans functions and Nyquist methods are not the only
simple means of detecting stability. In this picture we compare the eigenvalues determined as zeros of the Evans
functions with frequencies determined by a more direct, approximate method. In this method, we assume that the
lattice has a finite size and adopt the boundary conditions that the perturbation displacements vanish at the ends;
the eigenvalues then follow as those of a matrix of finite size. This computational procedure (used also by Braun
et al. [18]) is less accurate in its treatment of the tails of the kink and its linear eigenmodes. As a result, it fails to
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treat the continuous spectrum properly and instead represents this portion of the spectrum as a dense collection of
discrete modes whose separation decreases with the size of the matrix. But nevertheless, provided the computational
domain is sufficiently large, the discrete eigenvalues so determined agree with the zeros of the Evans function (the
two are indistinguishable in the picture). However, as we indicate next, Evans functions reveal features of the linear
eigenspectrum that one cannot extract with these other techniques.

3.4. Internal shape modes

Several studies of the sine-Gordon equation and its relatives have outlined the importance of intrinsic modes of
vibration of the kink [18,19]. These modes appear in the linear eigenspectrum as additional discrete eigenvalues
(Fig. 4). Their presence is also detectable using Evans functions.

One such pair of modes is evident in the final panel of Fig. 3. This figure displaysDr (λ) over the central portion
of the path ofλ. In this case, withε → 0, the zero-crossings ofDr (λ) reflect modes that lie on the imaginary axis.
For the off-centred kink, there are two pairs of crossings. The first pair, atλ ≈ ±i0.827 are the pseudo-Goldstone
modes. The others,λ ≈ i1.420, lie just outside the continuous spectrum (see Fig. 4).

One curious aspect of the shape modes is that they do not exist for alld. In fact, as we lower the coupling
strength, the shape modes revealed in Fig. 3(f) disappear by entering the continuous spectrum through the branch
point atλ = ±i/d. This is a novel type of bifurcation from the continuous spectrum, one previously studied in [25].
Because the shape modes appear (or disappear) by detaching from the continuous spectrum, they are detected by
looking at the value of the Evans function asλ limits to the branch points from outside the continuum; that is, from
D(i/d − i0) andD(i

√
4 + l/d2 + i0). These functions are shown in Fig. 5. At the zero crossings of this function,

the shape modes appear through the branch points.
The rescaling ofD−(λ) adopted earlier to generate the Evans functionD(λ) has some significance for this

computation: we rescale using a quantity that vanishes at the branch points in order to explicitly remove the poles
that would otherwise occur there. However, the main idea is thatD(λ) also contains a zero at a point that gradually
moves along the imaginary axis as we vary parameters. At the point of bifurcation the zero coincides with the pole
at the branch point, and this leads to a finite value of the Evans function after an appropriate continuation argument.
Equivalently, we detect the occurrence of that finite value by monitoringD(i/d − i0) orD(i

√
4 + 1/d2 + i0).

For the off-centred 2π -kink, the functionD(λ2 = i/d − i0) passes through zero neard ≈ 0.515 (see Fig. 5).
For d greater than this value, the shape modes appear out of the lower branch points as discrete modes. A similar
bifurcation occurs for the 4π -kink represented in Fig. 6, as revealed in panel (c). Note that we never observed
any shape modes to detach from the upper edges of the continuum (cf. Braun et al. [18]); the Evans function
D(i

√
4 + 1/d2 + i0) invariably appeared to have one sign.

Importantly, the Evans function clearly reveals that the shape modes continue to exist at largerd for the off-centred
2π -kink. However, it becomes impossible from a numerical perspective to find these modes explicitly whend is
much above 1.3. This is shown in panel (c) of Fig. 4, which displays the frequency shift of the shape mode from
below the lower branch point of the continuum; for largerd it becomes too close to the continuum to find without
an excessive increase in the size of the lattice used in the computation (presumably for this reason, Braun et al.
reported the mode as existing only up tod ≈ 1.2).

An even more interesting bifurcation structure is shown in Fig. 7, which shows the Evans functionD(i/d − i0)

for a kink of the form (7) atd = 0 andN1 + N2 = 11. This kink is stable over almost the whole range over
which the solution exists. But near the saddle node at which the kink disappears, there is a loss of stability much
like that revealed in Fig. 6. However, there are several bifurcations of shape modes over this range in coupling
strength. First, as we raised, three complex conjugates appear in Fig. 7, leading to a total of four pairs. Then two of
these successively disappear, leaving two pairs of shape modes that each resemble the pair of the 2π -kink (which
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is expected at this stage, since the kink closely resembles two well-separated 2π -kinks). The two pairs of shape
modes that exist for 0.55 < d < 0.9 may well be rationalized in terms of kink interactions.

3.5. Kink depinning

There are apparently two generic features of the 4π -kinks that have increasingly wide plateaux at their centres.
First, as shown in Fig. 1, the corresponding solution branches terminate in saddle nodes at successively higher
coupling strengths. Second, shortly before that termination, the kinks all appear to lose stability. We briefly digress
from the issue of linear stability in order to determine the fate of the kinks that lose stability in this way. In order to
do this, we conduct some numerical simulations of the sine-Gordon lattice, starting from initial conditions close to
the unstable kinks. Two sample results are shown in Fig. 8. In the first example, the two pieces of the kink drift apart
and settle into a vacillation around a neighbouring equilibrium kink with a slightly wider plateaux (one that is still
stable at that value ofd). That vacillation is partly described by the shape modes considered above. A significant
amount of radiation is also generated and propagates to the edges of the domain.

In the second example there is little radiation generated and the two parts of the kink drift apart, leading to a
stationary 2π -kink and a moving one. The latter presumably generates low amplitude radiation that will eventually
damp its motion and pin it. In other words, the loss of stability of the 4π -kink at this stage leads to two widely
separated 2π -kinks.

These experiments suggest that as we begin fromd = 0, these 4π -kinks gradually split into two 2π -kink
components. At largerd, the radiation that brakes moving kinks becomes so slight that the components can drift
well apart.

3.6. Analytical results for approximate, highly discrete kinks

Finally, we mention some analytical results for stability. These are based on an approximation to the lattice
equations that is valid whend is small.

In the limit d → 0, the system becomes highly discrete and the kink consists of a jump from the left asymptotic
value to the right asymptote across just a few lattice points. In this instance, we may build kink solutions by
asymptotic means; these are kinks for which the elements all lie at the values 0 or 2Mπ , but for a small number of
elements lying near the kink centre. The computation of the kink profile then reduces to finding the amplitudes in
these distinguished elements.

Rather than follow the asymptotic route, we take a short-cut (reminiscent of a Galerkin truncation) and consider
a kink with a given number of distinguished elements, simply ignoring the errors that occur elsewhere along the
lattice. We select thefour-pointkink by way of example. This kink has the distinguished sites,n = −2, −1, 0 and
1. Then,Yn = 0 for n < −2 andYn = 2Mπ for n > 1. The mean lattice values satisfy

d2(2π + Y0 − 2Y1) = sinY1, d2(Y1 + Y−1 − 2Y0) = sinY0 (24)

and

d2(Y0 + Y−2 − 2Y−1) = sinY−1, d2(Y−1 − 2Y−2) = sinY−2, (25)

which constitutes an algebraic problem for theYj ’s.
By following the route laid out above, we construct the Evans function. After some algebra we obtain:

D4 = (1 − r13−2)(1 − r13−1)(1 − r130)(1 − r131)

−r2
1[1 + r2

1313−2(r130 + r13−1 − 1 − r2
1) − r2

1(303−2 + 313−1)], (26)
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Fig. 8. Initial-value problems at (a)d = 0.584 and (b)d = 1.0375. Shown are values ofyn(t) againstn and t at intervals of 0.25 and 2,
respectively.

where

3j = 1

d2
(1 − cosYj ). (27)

One class of four-point kinks is symmetrical withY−2 = 2Mπ − Y1 andY−1 = 2Mπ − Y0. This indicates that
31 = 3−2 andλ0 = 3−1 and the formula forD4 simplifies somewhat.
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We may extract simpler expressions from this formula for kinks with fewer distinguished sites simply by setting
various of the3j ’s to zero. For example, for the three-point kink occupying the sitesn = −1, 0 and 1,

D3 = (1 − r13−1)(1 − r130)(1 − r131) − r2
1(1 − r2

1313−1). (28)

For symmetrical three-point kinksY−1 = 2Mπ − Y1 andY0 = Mπ . Hence31 = 3−1, and so

D3 = (1 − r131)[(1 − r130)(1 − r131) − r2
1(1 + r131)]. (29)

After even more simplification, we reduce to the two-point kink overn = −1 and 0:

D2 = (1 − r13−1)(1 − r130) − r2
1 . (30)

This time symmetry demandsY−1 = Mπ − Y0, so30 = 3−1 and

D2 = (1 − r130)
2 − r2

1 . (31)

In this second case we may explicitly find the eigenvalues by solving a quadratic (cf. Braun et al. [18]).
To compare the analytic versions of the Evans functions with those constructed numerically above, we explicitly

consider the symmetrical, 3-point, 4π -kink. This kink is given byY−1 = Y1 = a andY0 = 2π , where

2d2(π − a) = sina. (32)

There are various solutions to this transcendental equation, each giving various kink structures. In particular, there
is a kink with a = 0 at d = 0, that corresponds to the 4π -kink shown in Figs. 1, 2 and 6. The solution to (32)
increases withd up tod = 1/

√
2 ≈ 0.707, where it disappears. This value should be compared withd ≈ 0.58, the

saddle-node bifurcation point of the numerically constructed kink. Though the two values compare relatively well,
the 3-point kink actually ends in a pitchfork bifurcation rather than a saddle node, and so the bifurcation structure
is qualitatively wrong.

This 3-point kink has the Evans function,

D = (1 − r13)[(1 − r2
1) − r13(1 + r2

1)], (33)

where 3 = (1 − cosa)/d2. From this formula, we may extract the Evans functions,D(0), D(i/d) and
D(i

√
4 + 1/d2). The results are shown in Fig. 9. Again, somewhat surprisingly, the results agree with the nu-

merical computations in Fig. 6, showing the bifurcation of a shape mode neard = 0.25 and a loss of stability
shortly before the termination of the branch.

In fact, the shape mode eigenvalue factorizes cleanly out of the Evans function in (33):

D = DsDg, where Ds = 1 − r13 and Dg = (1 − r2
1) − r13(1 + r2

1). (34)

Fig. 9. Evans functions,D1 = D(0), D2 = D(i/d − i0) andD3 = D(i[4 + l/d2]1/2 + i0) for the symmetrical, three-point, 4π -kink. The stars
indicate zero-crossings.
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The first factor,Ds, is that part of the Evans function corresponding to the shape mode. Provided3 < 1 we may
explicitly solveDs = 0:

1 = r13 or ω2 = 2 + 1

d2
− (3 + 3−1). (35)

This frequency coincides with the lower edge of the continuum whend ≈ 0.2497 anda ≈ 0.355 (and does not
exist for3 < 1 and lowerd, since|r1| < 1).

The second factor,Dg, gives another discrete mode satisfying

ω2 = 2 + 1

d2
−

(
r + 1

r

)
and 1− r2 = r3(1 + r2). (36)

This is the pseudo-Goldstone mode. It is straightforward to show that there is always one solution forr in the range
[0, 1]. Ford < 0.65, the eigenvalue is imaginary and the kink is stable. But just above this value, the eigenvalue is
real and the kink loses stability, in agreement with the results of Fig. 9.

4. Bisection methods

In the previous section we have outlined the construction of an Evans function for stationary solutions of the
discrete sine-Gordon equation. The procedure is much the same for more general systems. However the stability
condition embodied in the sign ofD(0) mentioned in Section 3.3 can also be derived in a different way. This
alternative method is based on the bisection method for the determination of eigenvalues for symmetric, tridiagonal
matrices [20,21]. A similar method has been proposed by Baesens et al. [22] for determining when eigenvalues
detach from the continuous spectrum.

For finite dimensional matrices this method surrounds the construction of the leading principal minorspj of
orderj, defined by the system of difference equations,

pn+1(ν) = (An − ν)pn(ν) + Bnpn−1(ν) ≡
(

2 + 1

d2
cosYn − ν

)
pn(ν) − pn−1(ν), (37)

whereAn, andBn, are the diagonal and off-diagonal entries of the matrix andν is a fixed parameter. This system
is in fact identical to our linear stability equations ifν = −λ2. For computational reasons it is often useful to let
sn = pn/pn−1. This turns the equation into

sn+1 =
(

2 + 1

d2
cosYn − ν

)
− 1/sn (38)

and this is the same equation that one would obtain for the pivots in a Gaussian elimination scheme.
For a finite matrix, we begin from the initial condition given by the first entry of the matrixp1 = A1. Evidently

we might use a similar procedure here if we truncated our lattice at finite values ofn to both sides of the kink
and applied boundary conditions of vanishing perturbation displacement (in the same way the matrix eigenvalue
problem was solved in Fig. 4). However we prefer to continue in the same vein set out by the Evans method and
make as few approximations as possible in dealing with the infinite kink. Thus we need to generalize the bisection
method to infinite matrices.

Because the kink is localized the stability matrix converges to constant entries to the far left and right of the kink,
and

sn+1 ∼ 2 + 1

d2
− 1/sn (39)
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for |n| � 1. This simple difference equation has two fixed points, namelysn = r1 andr2, in the notation of Section
3. In fact, it is straightforward to see thatsn = r2 is a stable fixed point of the map (39). This means that to the
right of the front thesns converge tor2 for a general initial condition, but this does not help us in initiating that
initial-value computation.

To initiate the construction ofSn, we argue that asn → −∞ the sn should remain bounded. The only option
for such a condition is thatsn ∼ r2 asn → −∞. Thus in a way akin to our Evans function analysis we can take
pn = rn

2 for somen = −L with L sufficiently large, and use this as the initial value. Alternativelys−L = r2, and we
can express the solution to (39) as a continued fraction (in the same fashion we could also write down an explicit
continued fraction for the Evans function).

Now, the key argument in the bisection method is that the number of eigenvaluesµ of our matrix withµ < ν is
determined by the number of sign changes of the sequence(. . . , pn−1, pn, pn+1, . . . ). Or, equivalently, the number
of negative elements of(. . . , sn−1, sn, sn+1, . . . ). In particular, ifν = 0 the number of sign changes in the sequence
pn is simply the number of unstable modes.

Examples of the construction of thesn sequence are shown in Fig. 10. This picture reproduces results found with
Evans functions.

4.1. Connections with the Evans function

To connect the bisection method described above with our Evans functionology we first notice that the equation
for pn(ν = 0) is the same as our linear stability equation withλ = 0, and

D(λ = 0) =
(

r2 − 1

sL

)
uL

rL−1
2

. (40)

Fig. 10. Panel (a) shows the sequencesn for 2π -kinks atd = 1.5 (centred kink shown by solid lines, off-centred kink by dotted lines), and
panels (b) and (c) show the same for 4π -kinks atd = 0.2. In (b), we show the sequence for kinks with structures(. . . , 0, π, 3π, 4π, . . . ) and
(. . . , 0, 0, 4π, 4π, . . . ) atd = 0; in (c), we showsn for kinks with (. . . , 0, π, 2π, 3π, 4π, . . . ) and(. . . , 0, 0, 2π, 4π, 4π, . . . ) atd = 0.
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In generalλ = 0 is not an eigenvalue, so we expectsL = r2 and thus

D(λ = 0) =
√

1 + 4d2 uL

drL−1
2

. (41)

Hence our conditionD(0) < 0 for one unstable mode hinges on the sign ofuL.
But un = snun−1, and so ifsn > 0 for all n, thenuL is positive (we begin withu−L > 0 in order to satisfy the

normalization conditionD(λ) → (1, 0) as|λ| → ∞). But if just one of thesn’s is negative, thenyL < 0 and we
violate that stability condition.

Thus, in the case of a single unstable mode, there is one sign change in the sequencesn, andD(0) < 0. However,
if we have multiple instabilities,D(0) can be of either sign and we must study the structure of the Nyquist plot in
more detail to detect their total number. Yet this case of multiple instabilities is unravelled much more easily with
the bisection method; we need only count the number of sign changes in the sequencesn (see Fig. 10(b) and (c)),
which is also the computation needed to constructD(0). Thus we have a shortcut to a sufficient stability condition.

The bisection method, though being in this sense more convenient, relies on the special tridiagonal form of the
stability matrix. The Evans function on the other hand is applicable to much more general systems. In any event,
the methods provide systematic and powerful tools to determine stability.

One can also derive some rigourous results for stability based on the bisection method even without computing
the form of the kink. These results follow on replacing the diagonal entries,An, with either their upper and lower
bounds. Constructions of this kind allow us to show, for example, that centred 2π -kinks are unstable ford < 0.865.
Because these kinks are actually unstable for alld we do not give details of the calculation here.

5. Conclusions

In this article we have introduced a discrete version of the Evans function technique for studying the linear
eigenvalue spectrum of localized structures. In particular, for illustration, we have considered kinks in the discrete
sine-Gordon system. For that system previous numerical simulations and simple arguments based on energy and
thed = 0 limit have indicated that off-centred 2π -kinks are stable, as well as several 4π -kinks. The Evans function
analysis neatly extracts these previously observed stability results, and accurately detects internal modes. Thus the
Evans functions allow us to study the modifications of the eigenspectrum wrought by discreteness.

Another method for analyzing stability is via the energy stability theory often used in Hamiltonian systems [26].
This theory can also be applied in the current context, and has similarities with that of Laedke et al. [27–29], who
show the stability of solitary structures in the discrete nonlinear Schrödinger equations. Unfortunately the energy
stability theory offers little insight into the stability of fronts in the discrete sine-Gordon system; Evans function
and bisection methods prove to be more powerful.

Another class of solutions for the sine-Gordon model where stability is not so clearly determined arebreathers.
That is, spatially localized excitations with temporal periodicity [23,30]. Intensive studies of the stability of these
solutions have recently been undertaken in [31–33]. The analysis of the stability of breathers is substantially
more involved than the kink stability we have described; essentially, it is an infinite-dimensional Floquet problem.
However, in the rotating waveapproximation[34–36], this stability problem simplifies significantly, and we have
been able to address the problem with Evans functionology [37]. This approximation amounts to studying small
amplitude breather excitations involving only a few lattice sites; importantly, we neglect all temporal harmonics of
a base frequency, and so the analysis reduces to a form much like the kink stability problem. Nevertheless, the most
natural way to address the general stability problem of breathers on infinite lattices is perhaps through techniques
related to our Evans functions.
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Because the types of bifurcations to instability are somewhat limited in the sine-Gordon model, our results are
in this sense a little disappointing. However, the primary purpose for using this particular lattice is mainly one of
illustration. For general systems Evans functions have important utility in categorizing the kinds of instabilities an
equilibrium can suffer. This catergorization is basically reflected in the geometry of the Nyquist plots. Evans functions
are particularly useful in studying bifurcations to instability directly through the continuous spectrum (the examples
here always occur through the origin, away from continuum). In continuous PDEs, such instabilities were analyzed
with Evans functions in [12–15]. In fact, the model considered in [14] was the continuum limit of a discrete lattice.

An important distinction with the continuous problem is that Evans functions provide a general technique for
analyzing the stability of localized structures whether they are moving or static. The reason why we are unable
to provide a similar, general theory here, is basically the lack of translational invariance. That lack of symmetry
indicates that travelling solutions rarely exist without an attendant radiation loss in the sine-Gordon model. Such
structures do exist in some modified versions of discrete sine-Gordon [38,39], and in discrete Klein–Gordon and
Nagumo models [6,40]. However, such systems cannot be dealt with very easily because the equations for these
moving objects are, in general, differential equations with advances and delays over a lattice spacing. This makes
the problem of determining the kinks themselves significantly more involved, let alone the stability analysis. A
comprehensive theory of these structures is the next, very challenging step (some asymptotic theories are given in
[6,8], and some related developments in simple coupled map lattices are described in [41]).

Despite this caveat, static solutions (or breathers in a rotating wave approximation) are simpler to deal with, and
this is where our Evans technology can be immediately applied. In this regard, we emphasize that we need not deal
with Hamiltonian systems such as the sine-Gordon model. Evans functionology works equally as well for dissipative
systems. Thus one might also study the damped and driven Frenkel–Kontorova model (which is used as a model
in molecular dynamics and friction), and in the coupled Lorenz model explored in [42], where stationary fronts
appear. Static localized structures in coupled map lattices can also be studied with our methods. Indeed, in coupled
logistic maps, kink dynamics is of notable importance [43]. Though time is now also discrete in these systems, the
Evans functionology can be immediately carried over, because the eigenvalue problem is identical.

We are also not restricted to problems in one spatial dimension. The stability of structures such as planar fronts
can also be determined using Evans functions [42]; the extension of the theory amounts to simply decomposing
perturbations transverse to the front into Fourier components, each of which then satisfies a one-dimensional
equation. One application is the stability of interfaces in the coupled map lattices studied by Kapral et al. [44].
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