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Abstract

Oscillations generated by flow of magmatic or hyrothermal fluids through

tabular channels in elastic rocks are a possible source of low frequency seis-

micity. We assess the conditions required to generate oscillations of ∼1Hz

via hydrodynamic flow instabilities, flow-destabilized standing waves set up

on the channel walls, and unstable normal modes ringing in an adjacent fluid

reservoir. Flow destabilized modes offer the most plausible explanation, but

there are limitations on what kind of standing waves comprises them.
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Introduction

Tremor, as well as shorter duration long-period (LP) seismic events, are

important indicators of unrest at volcanoes, and as such are used to evaluate

eruption hazards and to invert for the geometry and nature of fluids in

volcanoes (Chouet 1996, 2003; McNutt 2005). It is widely accepted that

this low-frequency volcano seismicity emanates from fluid channels encased

in rock, such as fluid-filled hydrofractures, dykes and cylindrical conduits.

However, the precise mechanism responsible for generating those signals is

still under debate, particularly for harmonic tremor.

One prominent explanation for these harmonic signals is that they stem

from the resonant excitation of standing waves in the fluid channel. Individ-

ually, both the fluid and solid support their own kind of waves (elastic and

acoustic, respectively). But these wave types propagate relatively quickly,

and if the standing waves have either elastic or acoustic origin, then the

resonating body may be excessively large to match typical tremor periods.

However, the coupled fluid-solid system also support a variety of interfacial

waves that can propagate much more slowly than the elastic or acoustic

speeds (Ferrazzini & Aki 1987). These “crack waves”, as they have been

called, are related to Stoneley waves, and persist even when the elastic and

acoustic wavespeeds are made infinitely large in comparison to the crack

wavespeed. In fact, in that limit, it becomes clear that the crack waves are

simply incompressible sloshing modes of the fluid in the channel, as per-

mitted by variations in its thickness and the restoring forces exerted by the

elastic walls (see Appendix A). In other words, the crack modes are anal-

ogous to the seiches of shallow fluid layers (with gravity playing the same

role as the elastic forces), as encountered in harbours, lakes and a variety

of other problems in hydraulic engineering. Connections between possible
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mechanisms for volcanic tremor and hydraulic transients were recognised

already by Ferrick, Qamar & St. Lawrence (1982).

The relatively slow speeds of standing crack waves make them attrac-

tive ingredients in the resonance mechanism. Indeed Chouet (1986, 1988)

showed that synthetic seismograms generated by such modes of a fluid-filled

tabular crack are remarkably similar to some seismograms from volcanoes.

Nevertheless, the trigger of the resonance is often neither identified nor

specified. There are many plausible origins for fluid pressure transients that

could drive resonance impulsively and thereby explain LP events (e.g. Kon-

stantinou 2002) but the source of energy driving tremor must be sustained

for minutes or much longer.

An alternative perspective presented by Julian (1994) involves a fluid

moving through a channel interacting with its deformable rock walls. Flow-

induced oscillations arise in many areas of engineering and science and ex-

plain phenomena as diverse as the flapping of flags, the sounds of some

musical instruments, and noise generation by flow in blood vessels and lung

passageways (e.g. Backus 1963, Grotberg & Jensen 2004, Pedley 1980). Ju-

lian (1994) proposed that a similar instability could be a source mechanism

for tremor and LP events at active volcanoes. The flow-induced oscilla-

tions could provide the triggering pressure fluctuations to drive resonance

with a standing crack wave, but they may also generate harmonic (and non-

harmonic) seismic signals by themselves. The mechanism is promising for

tremor because the excitation lasts as long as flow is sufficiently fast, and

can explain observations of nonlinear phenomena such as period doubling

and amplitude-dependent frequency (Julian 1994, 2000; Konstantinou &

Schlindwein 2002).

To explore the mechanism, Julian (2004) constructed a “lumped-parameter
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model” in which the channel opened and closed uniformly along its length

and the rocks were represented by masses on springs with dashpots. Balm-

forth et al. (2005) elaborated further on Julian’s ideas and developed a

two-dimensional model coupling semi-infinite elastic blocks with a viscous

incompressible channel flow to assess whether hydrodynamic instabilities

could arise under volcanological conditions. Here we review and build upon

the work of Julian (1994, 2000) and Balmforth et al. (2005). More specif-

ically, we consider how flow-induced oscillations might arise in the coupled

fluid-solid system illustrated in Figure 1. The geometry consists of two

reservoirs that are connected by a relatively narrow channel and maintained

at different pressures so that fluid is driven through the channel. For most

of the source mechanisms we assess, the details of the reservoirs are not

important, and all the action takes place in the flow through the channel,

which is relatively vigourous owing to the narrowness of that conduit.

We consider three specific types of flow-induced oscillations: hydrody-

namic flow instabilities, flow-destabilized standing waves set up on the chan-

nel walls, and unstable normal modes ringing in one of the fluid reservoirs.

The hydrodynamic instabilities are analogous to what fluid dynamicists call

roll waves (e.g. Balmforth & Mandre 2004), and exist when elastic and

acoustic wavespeeds are infinite. Normal modes of elastic origin that are

localized in the channel walls can be destabilized by the flow in a manner

similar to the mechanism behind the operation of the vocal chords (Ishizaka

& Flanaga 1972). Normal modes in one of the reservoirs can also be made

unstable via coupling to the channel flow; in this case, the mechanism has

many common points with the operation of musical instruments like the

clarinet (cf. Lesage et al. 2006). For each, we summarize the physics in-

volved and determine a criteria for instability on physical and dimensional
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grounds. With these results, as well as consideration of the factors that

set oscillation frequency, we evaluate the feasibility of them generating low

frequency volcano seismicity.

Hydrodynamic flow instabilities

Hydrodynamic flow instabilities in channels need not be generated by fluid

interactions with a moving wall. For example in high Reynolds number flow,

shear instability can occur in the wake of an irregularity in the channel. The

resulting eddy shedding has been suggested as a source of flow transients

that could trigger low frequency volcanic resonance (Hellweg 2000). How-

ever, because this mechanism requires high Reynolds number flow, it has

limited volcanic application. For flow through a deformable channel, there

are instabilities at lower Reynolds numbers that are mathematically similar

to the roll waves which develop on thin sheets of water flowing down slopes

(e.g. Balmforth & Mandre 2004). These waves are shock-like flow distur-

bances with phase speeds similar to the background fluid speed. Analogous

instabilities occur in blood flow through deformable veins (Pedley 1980;

Brooke, Falle & Pedley 1999) and in slug formation in bubbly two-phase

flow (Woods et al. 2000). The essential ingredients for roll waves include

a force driving flow, viscous or turbulent drag, and a restoring force that

flattens disturbances in the free surface (such as gravity, surface tension or,

in the volcanic context, the rock elasticity).

Balmforth et al. (2005) examined theoretically the generation of roll

waves for fluid flow through a thin channel with elastic walls. They treated

the fluid as incompressible and viscous, and the walls as semi-infinite lin-

ear elastic solids. Generally, magmatic fluids flow much slower than shear
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and compressional waves in rocks and it is reasonable to take the limit of

infinite elastic wave speeds. Assuming periodic inlet-outlet flow conditions,

Balmforth et al. found that the roll wave instability requires a finite critical

flow speed (Ucrit roll) given by

Ucrit roll ' β

√
ρs

ρf
ε, (1)

where β is the shear wave speed in the rock, ρs/ρf the rock to fluid density

ratio, and ε is the channel aspect ratio (thickness/length= H/L) with ε� 1.

This criterion can also be arrived at by simple dimensional arguments.

Roll waves are characterized by timescale L/U , where L is the length of the

crack and U is the characteristic flow speed. The pressure from the elastic

solid due to a displacement, ξ, of the wall is of order µξ/L, where µ is the

shear modulus of the solid (i.e., Hooke’s law). The elastic force induces

fluid acceleration and advection of order Uv/L, where v is the perturbation

in flow speed. Moreover, conservation of mass demands that Hv be order

Uξ. Thus, balance is achieved when µξ/(ρfL2) ∼ Uv/L ∼ U2ξ/(HL).

Rearranging and substituting β =
√

µ/ρs gives the condition of Equation

(1).

Note that the presence of the elastic wavespeed in the expression for

Ucrit roll is misleading, as there are no elastic waves in this problem; β

appears because it also characterizes the restoring force from the elastic

walls. In fact, the instability condition does contain a wavespeed, but it

is not elastic: for a thin channel of fluid with an elastic wall, waves of

thickness variation exist with the wavespeed,
√

µkH/ρf ≡ β
√

kHρs/ρf ,

where k ∼ L−1 is the wavenumber. This wavespeed is the limit of the

dispersion relation of Ferrazzini & Aki (1987) when the elastic and acoustic

waves are relatively large (see Appendix A). In other words, Ucrit roll is the

speed of travelling crack waves.
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The critical condition implies that roll waves are destabilized by fast

flow of dense fluid through long, thin channels. The limitations of roll wave

instabilities as a source of volcanic tremor are illustrated in figure (2) which

shows Ucrit roll versus ε at several values of ρf for typical rock properties

of β = 1 km/s and ρs = 2500 kg/m3. Aspect ratios of magma dykes are

usually 10−3 to 10−2, and even for a magma with density as high as 3000

kg/m3, sustained flow exceeding 10 m/s is required for tremor by roll waves.

Such fast flow rates are problematic given constraints on the size of the dyke

from the frequencies, f , of volcanic tremor. Because the wavespeed is order

U , f is order (U/L), where U is the average fluid speed in the basic flow.

Generally f ∼ 1Hz, which for flow at 20 m/s and ε = 10−3 implies a dyke

with L ∼20 m and H ∼2 cm (point A on Fig.2). Even flow of a low viscosity

magma with η=10 Pa s through a dyke of these dimensions requires pressure

gradients of order 107 Pa/m to overcome typical viscous drag. The situation

is improved for very long period tremor (e.g. 0.1 Hz), which is occasionally

observed at volcanoes (e.g. Kawakatsu et al. 1994) because it allows an

order of magnitude larger dyke and thus a substantial decrease in viscous

drag. However even for low viscosity basalt the possibility of generating

tremor by roll waves is marginal and it is impossible for more viscous (i.e.

crystal bearing or more silicic composition) magmas to flow sufficiently fast

in thin dykes.

The least viscous fluids at volcanoes are gases, but roll-wave development

in gas-filled channels is impeded by the low densities (Eq. 1). Despite the

small aspect ratios of hydrofractures (typically 10−5 < ε < 10−4), for gas

with ρf=1 kg/m3, roll-wave destabilization requires fluid speeds in excess

of 100 m/s (point B on Fig.2) through cracks hundreds of meters long (for

f∼1Hz). There are, however, fluids at volcanoes of both intermediate den-
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sity and viscosity (compared to magma and gases at atmospheric pressure)

such as liquid or supercritical H2O or CO2-rich fluids, or gases with substan-

tial fractions of suspended rock or magma fragments. The best candidates

for roll waves in volcanoes are hot, high pressure H2O- and CO2-rich fluids,

which have low kinematic viscosities (η/ρf ). For example H2O at 500◦C

and 50MPa has ρf ∼300 kg/m3 and η ∼ 4× 10−5 Pas (Wagner & Overhoff

2006). With such fluids, roll waves of f ∼ 1 Hz could be generated with

reasonable pressure gradients and fracture geometries but still require that

high flow speeds of order 10 m/s be sustained for the duration of tremor

(e.g. point C on Fig.2).

To this point we have assumed typical rock properties of β = 1 km/s and

ρs = 2500 kg/m3. The flow speeds required to generate of roll waves are

decreased for porous rocks (reduced ρs), partially molten or fluid saturated

rocks (reduced β). Also low oscillation frequencies (< 1Hz as assumed in

Fig.2) increase the range of feasible fluid viscosities because longer time

scales permit larger channels which in turn reduce viscous drag. However,

we still conclude that roll waves require extreme natural conditions and do

not provide an explanation for most volcanic tremor.

To make matters worse, a major shortcoming of the Balmforth et al.

(2005) analysis, on which the above discussion is based, is that the channel

has periodic inlet-outlet boundary conditions. This allows roll waves to grow

continually as they cycle repeatedly through the domain. In a finite channel,

perturbations might be flushed out the end before roll waves have time to

develop. One way to characterize the flushing action of the basic flow is in

terms of the notion of “convective” and “absolute” instability. Convective

instabilities grow exponentially as one moves with the disturbance (until

nonlinearity is important), or equivalently if the domain is periodic. At
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any given fixed position in a non-periodic channel, however, the disturbance

only grows as the instability propagates towards the observer, but is then

completely advected past and thereafter decays; i.e. it becomes flushed

out of the system and can only be sustained if continually fed by external

perturbations upstream. By contrast, an absolute instability is one that

grows exponentially even at a fixed position; it is impossible for flow to

sweep out this instability which amplifies at every point in the channel until

quenched by nonlinearity.

Further analysis of the linear stability problem using a method attributed

to Briggs (1964), numerical computations with idealized models, and labo-

ratory experiments in shallow water (Liu and Gollub 1993; Mandre 2006)

all suggest that roll waves are convective instabilities. We illustrate the es-

sential aspects of the problem in Figure 3, which show numerical solutions

of nonlinear roll waves in a model of flow down an elastic-walled channel.

Details of the equations of motion and boundary conditions involved in the

calculations are relegated to Appendix B. The first computation shown in

Figure 3a presents results for a periodic channel, and waves that reach the

end of the channel (e.g. at t ∼ 100) reappear at the start of the channel and

continue to grow with time. This is in contrast to the computations for a

finite channel (Figure 3b,c). Figure 3b is an initial-value problem beginning

with random perturbations about the equilibrium flow. Those perturbations

seed the growth of roll waves, which subsequently hit the lower boundary

and disappear. Perturbations that begin near the outlet barely grow before

being flushed out the end; perturbations initially near the inlet do grow into

roll waves but when they are flushed out at t ∼ 175, the roll-wave transient

is over. The third computation (c) shows an example in which the initial

state is the equilibrium flow but it is continually and randomly perturbed at
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the inlet. The perturbations at the boundary now feed the convective roll

waves to generate an unsteady flow downstream. How big the roll waves

grow depends on the initial level of excitation, the length of the channel and

the roll wave growth rate.

LP events could resemble roll wave transients (Fig. 3b), but to gener-

ate tremor via roll wave instabilities, there must be a continuous source of

agitation at the inlet (Fig. 3c; i.e. a trigger for the trigger). Such agi-

tation would be present in most physical systems but we further need the

channel to be long enough that the roll waves seeded by the noise amplify

sufficiently that they become recognizable nonlinear structures. At the very

least, this would require long channels and even higher flow speeds than

Ucrit roll. Taken together, the instability condition of eq (1) and the lack of

an absolute instability lead us to conclude that roll waves could rarely be a

source of volcanic tremor.

Elastic normal modes in the channel walls

Much as in Julian’s (1994) lumped-parameter formulation, simple models

of the vocal chords combine a finite, spatially uniform channel with elasti-

cally sprung walls (Ishizaka & Flanagan 1972). The fluid flow destabilizes

the oscillations of the walls to generate sound, and the frequencies that be-

come excited are closely connected to the natural oscillation frequency of

the springs. Our idealization of the problem shown in Figure 1 can have

analogous instabilities if elastic normal modes can somehow be set up in the

channel walls which play the role of the springs.

Normal modes are easily set up in finite elastic blocks because standing

waves are established in their limited geometry, and their eigenfrequencies
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are dictated by the elastic wavespeeds and the block dimensions. In a semi-

infinite elastic block, on the other hand, the compressional and shear waves

are unable to form a normal mode because they propagate off to infinity

and are never reflected back to generate a standing wave. However, the

interface also introduces localized Rayleigh waves that can set up standing

waves on the channel walls if there is sufficient reflection either from the

ends or sides of the channel. This leads to elastic “channel modes” with

frequencies determined by the Rayleigh wave speed and the length, L, or

width, W , of the channel.

For either configuration, the elastic normal modes can be destabilized

by fluid flow, as in the vocal chords, if that flow is sufficiently strong. The

precise criterion for instability can be established via linear stability theory,

as for roll waves, and depends sensitively on the boundary conditions at

the flow inlet and outlet (Mandre 2006). Simple estimates for convective

instability, which ignores those conditions indicate that the elastic normal

modes become unstable when

U > Ucrit wall ∼ fL,

where f is the modal frequency. The dimensional argument behind this

result is that the flow destabilizes the mode when the flow time down the

channel L/U becomes of the same order as the period of the mode, f−1.

Although a comparably simple absolute instability criterion is more difficult

to determine, the analysis indicates that destabilized elastic modes have an

absolute nature.

Destabilized elastic modes can be readily observed in laboratory experi-

ments of gas flow between a rigid plate and a latex membrane, or through a

thin channel cut through a block of gelatine. In either case, the elastic solid

begins to ring persistently and harmonically once the flow rate is turned up
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beyond some threshold, in line with the preceding arguments (see Figure 4).

The fact that oscillations are connected to elastic normal modes is easily

verified by checking that the frequency depends linearly on the dimensions

of the elastic body (cf. Figure 4) and also changes with its properties (e.g.,

gelatine concentration or membrane tension), but is insensitive to flow speed

and fluid density. Note that the threshold in flow speed in the experiment

of Figure 4b is roughly 6 m/sec, whereas the mode frequency is about 300

Hz and the channel length is 8cm, which is in agreement with the order of

magnitude estimate of Ucrit wall.

The unsteady flow through the air channels of both experiments gener-

ates audible acoustic signals that can be used to characterize the normal-

mode dynamics. Spectra for a number of gelatine experiments are shown in

Figure 5. Just beyond the onset of instability, the oscillations are periodic,

although the spectrum contains a rich array of harmonics (Figure 5b), as

in measurements of volcanic tremor (note that the recording device artifi-

cally filters power from the low frequencies, shifting the power maxima to

higher frequency). As one increases flow rate, the oscillations become more

nonlinear, and phenomena such as frequency gliding and period doubling

occur, sometimes even during one experiment (see Figure 5c, which shows

period doubling). At the highest flow rates, the periodicity of the signals

breaks down as the sides of the channel oscillate so violently that they “slap”

together intermittently. These wall collisions destroy the coherence of the

elastic mode and generate large amounts of high-frequency noise (Figure

5d).

Note that, because the modal frequency is order β/∆, where ∆ is the

dimension of the block along which the standing waves are set up,

Ucrit wall ∼ β
L

∆
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(for rock, the compressional, shear and Rayleigh waves all generally travel

at roughly comparable speeds). Thus, if the critical flow speed is to be

much lower than the elastic wavespeed, the block dimension, ∆, should be

much less than the length of the channel. For semi-infinite blocks, this

can only be achieved if the channel is much wider than it is long (W �

L), and the elastic mode is composed of lateral, standing Rayleigh waves.

(This requirement resonates with one of Julian’s (1994) assumptions.) The

gelatine block experiment contrasts sharply with this geometrical constraint

because shear wave speeds in this material are order m/s, speeds that are

easily surpassed by the airflow.

Clarinet modes

For both roll waves and elastic channel modes, the frequency of flow-induced

oscillations is set by the dimensions of the channel and the wavespeed within

it. Another possibility is that the oscillation timescale is set by the mag-

matic plumbing system. That is, the channel acts like a clarinet reed that

excites and interacts with standing waves in an adjacent reservoir. In that

musical instrument the sound produced is not simply a result of a resonance

between the frequencies generated by the oscillating reed and a mode in

the neighbouring air column; by itself the reed vibrates at much higher fre-

quencies. Instead, it is the coupling between the flow in the reed and the

feedback from the resonating air column at its outflow that produces the

sound as an intrinsic instability (e.g. Backus 1963).

By combining a shallow channel flow theory like that of Appendix B

with a compressible fluid column to represent the reservoir, one is again

able to formulate a simple mathematical model to explore the feasibility of
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this mechanism in the volcanic setting. A convective stability analysis with

the model then implies that the threshold for instability takes the form,

Ucrit reservoir mode ∼
cacousticL

D
, (2)

where cacoustic is the sound speed in the fluid and D is the dimension of the

reservoir. The oscillation frequency for reservoir modes is cacoustic/D, so

the instability condition again compares the flow speed with a wavespeed,

including a relevant geometrical factor.

Once more, there is a justification for this condition on physical and

dimensional grounds: A pressure perturbation at the end of the channel

will be transmitted by acoustic waves through the reservoir and return to

the channel after a time of order ∼ D/cacoustic. For L � D the pressure

perturbation at the channel outlet will affect flow at the inlet essentially

instantaneously, so to couple effectively the channel and reservoir and build

the required feedback, one must match the timescale for flow through the

channel, ∼ L/U , with the timescale for acoustic waves to traverse the reser-

voir, ∼ D/cacoustic. Note the channel could be upstream or downstream

of the reservoir. In practice, viscous forces and incomplete reflections will

cause damping of the reservoir modes, and must be overcome by the fluid

driving at the reed in order to set up and sustain tremor.

Therefore, to excite oscillations, the flow must exceed a fraction of cacoustic.

For fluids in volcanoes, cacoustic varies from less than 102 m/s in magma

with 30-70% bubbles to greater than 103m/s in bubble-free magma (H2O

and CO2-rich fluids having intermediate sound speeds; Morrissey &Chouet

2001). Although cacoustic is fast compared to flow speeds, L/D can be ex-

tremely small such that reasonable flow speeds could destabilize the reservoir

acoustic mode. Nevertheless the reservoir length must still be well over 100m

in order for the modal frequency to match typical tremor.
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Discussion

In this article, we have reviewed three mechanisms by which oscillations can

be generated by flow down an elastic channel: hydrodynamic instabilities

(roll waves), destabilized elastic wall modes, and unstable normal modes

in an adjacent reservoir. We have already pointed out that roll waves are

unlikely in the geological context because they require relatively high flow

speeds and may require seeding by external perturbations in long channels

so that they are not flushed out. Note that these disturbances are unstable

waves of thickness variation in the channel, propagating in the direction of

flow. As such, they are equivalent to travelling crack waves, modified by

the mean flow. The (convective) instability criterion for these disturbances

is equivalent to the requirement that the flow is faster than those travelling

waves.

Elastic modes in the channel walls are destabilized by the flow according

to a similar stability criterion, U > β(L/∆), with ∆ being the dimension

of the elastic body along which the elastic standing waves are set up. Such

flow speeds may be achieved in the geological context if the channel is much

wider than it is long. However, the mode frequency f is of order β/∆, and

for the O(1) Hz frequencies characteristic of tremor, the relevant dimension

of the elastic body must then be of order a kilometer and is implausibly large

(this is the same argument that dismisses any resonant elastic body as the

origin of tremor, and motivates the introduction of a fluid-filled channel).

Equivalently, if the elastic body has a realistic length, then there is a problem

with its natural timescale. This is unfortunate given the relative ease with

which the elastic modes can be destabilized and their nonlinear properties,

which resemble tremor observations.

The lumped-parameter model for volcanic tremor put forward by Julian
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(1994) does not capture propagating disturbances like roll waves, and is

much like the models of the vocal chords (or blood vessels, Pedley 1980)

in which elastic modes are destabilized. Indeed, his tremor frequencies are

partly set by the natural oscillation frequency of the wall springs. Julian

is also careful to draw a distinction between his model and resonant crack

modes. Thus, one might, at first sight, think that the instabilities in his

model may be destabilized elastic modes, in which case there is a timescale

problem. However, Julian’s model also incorporates unsteady fluid motions

which affect the frequency of fluid-induced oscillations. Julian refers to

the effect as “added mass”, giving the impression that his modes are fluid-

modified elastic modes. In fact, those unsteady fluid motions correspond to

thickness variations of the channel, and provide a natural oscillation even

if the inertia of the springs is discarded (removing the normal mode in the

elastic walls). In other words, Julian’s model also contains a type of crack

mode. And from his prescription of the restoring force, it is clear that these

modes are standing crack waves across the width of the channel. Altogether,

this suggests that the timescale problem of destabilized channel modes might

be avoided if these modes are not of elastic origin, but are hydrodynamic

crack, or “sloshing” modes, like seiches.

Channel modes are not required whatsoever in the clarinet-type mecha-

nism, which sets up the flow-destabilized oscillation in an adjacent reservoir.

In the musical instrument, the reservoir mode is of acoustic origin, and so

the sound speed and reservoir length set the timescale. Because the sound

speed can be an order of magnitude smaller than the elastic wave speed in

rock, acoustic reservoir modes have less of a timescale problem than elas-

tic channel modes. One still remains, however, because some magmas can

have quite high sounds speeds. Moreover, acoustic waves could be strongly
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damped in a viscous fluid reservoir, which raises the flow speed required to

drive instability. All these problems might again be avoided again if the

reservoir mode is not actually acoustic, but a crack or sloshing mode.

The theory for destabilized sloshing modes either in the channel or a

reservoir remains to be worked out. Our expectation is that the critical

flow speeds required to drive oscillations are related to crack wave speeds

together with a geometrical factor, as in the three mechanisms discussed

here. If this is borne out, and since the relatively low crack wave speed

could resolve the timescale problem, such modes might provide the most

plausible explanation of long-period volcanic seismicity.

Given that the mechanism and mode type might eventually be the same

for both unstable channel and reservoir modes, the distinction between them

boils down chiefly to one of geometry, and one wonders how one might choose

between them seismologically. In this regard, a key geometrical detail is

source location within the resonant body: the source for the channel modes

occurs throughout its width, although one might imagine that flow speeds

are greatest, and therefore instability strongest, closest to the midline. By

contrast, the reservoir modes are always driven from one end. Along the

lines suggested by Chouet (1988), one might then be able to use seismic

signature to tell the difference between reservoir and channel modes.

Finally, it is intriguing that there are observations of non-volcanic tremor

in singing icebergs (Müller et al. 2005) and hydrocarbon reservoirs (Dangel

et al. 2003). These other contexts can be more accessible or provide other

constraints and thereby offer critical tests of the ideas and theory.
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A Slow crack waves

If we neglect viscous drag, linear motions of two-dimensional incompressible

fluid in a thin, uniform channel can be described by the shallow-water-like

model (cf. Appendix B),

ηt + Hux = 0, ut = − 1
ρf

px

where η is the variation in channel thickness, and u and p are the associated

flow speed and pressure perturbations. Assuming wave-like disturbances of

the form, exp ik(x− ct), where k is wavenumber and c is wavespeed, we find

c2η =
H

ρf
p.

The pressure is related to the wall displacement according to the mechanics

of the elastic wall. For semi-infinite blocks with elastic wavespeed much

greater than c,

p =
kµη

2(1− σ)
,

where σ is Poisson’s ratio. Waves therefore travel with the phase speed,

c =

√
µkH

2ρf (1− σ)
.

This result is identical to the limiting form of Ferrazzini & Aki’s dispersion

relation for symmetrical crack modes. Note that Chouet’s “crack stiffness”

(which uses the ratio of solid and fluid bulk moduli) is not the natural

parameter to describe these slow crack waves in this limit because the fluid

motions are incompressible.

B Details of mathematical model

When the fluid channel is much thinner than it is wide, fluid variations

across the channel are much greater than variations in the flow directions
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and along the slot. Taking a “thin-channel” approximation (e.g. Balmforth

et al. 2005), our fluid model consists of slot-averaged equations for the local

thickness, h(x, t), and speed, u(x, t), which represent conservation of mass

and momentum along the slot (the x−direction):

ht + (uh)x = 0, ut + uux =
∆
h2

(U − u)− px

ρf
, (3)

Here, ∆ is a viscous drag coefficient, U is the mean flow speed and p(x, t) is

the pressure perturbation induced in the fluid stemming from the motion of

the wall. The model assumes p = Γ(h −H), where Γ is a constant, and H

is the equilibrium channel thickness. These choices correspond to the wall

responding like a simple elastic foundation (a mattress) and flow resistance

stemming from an approximation of laminar viscous drag. In the Figure 3

we choose units such that Γ/ρf = 1/5, ∆ = 1/5, U = H = 1 and L = 200.

For boundary conditions we use either periodic conditions on u and h

(Figure 3a), or fixed flux (hu) and pressure (equivalently h) at the inlet, and

(hu)x = 0 at the outlet (Figure 3b,c).
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Figure 1: Schematic illustration of a channel between two reservoirs. Flow is driven

through the channel by a pressure difference maintained between the reservoirs.

The channel is tabular, and its walls deform elastically in response to pressure

changes in the fluid.
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Figure 2: Critical flow speed (from Eq.1) for roll waves versus channel aspect ratio

for several fluid densities (solid lines) for constant rock properties of β = 1 km/s

and ρs = 2500 kg/m3. Dashed lines indicate crack thickness for f ∼ U/L ∼ 1 Hz.

Points A,B and C refer to conditions discussed in the text.
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Figure 3: Numerical solutions of the simple two-dimensional flow model described

in Appendix B. The three panels show how the local channel thickness h varies

with downstream position (x) and time (t). The shading indicates h as shown

in the legend in (b), with h = 1 corresponding to the unperturbed, equilibrium

thickness of the channel. In (a) the domain is periodic and the initial condition

consists of random perturbations about the equilibrium flow, concentrated near

mid-channel, with a peak-to-peak amplitude of less than 10−2. Panel (b) shows

a finite domain with the boundary conditions described in Appendix B. There is

a similar, random initial condition to panel (a), but here the perturbations are

evenly distributed throughout the channel length. Panel (c) shows a computation

in a finite domain with the same boundary conditions as (b), except that roll waves

are continually seeded by random noise added to the equilibrium flow at the inlet

(x = 0) for the entire simulation duration.
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Figure 4: a) The apparatus for experiments of gas flow between an elastic mem-

brane and a rigid plate. The components illustrated were laid on top of each other

and clamped together exposing a membrane of size W by L stretched parallel to

the y-axis. Compressed air, nitrogen or helium was input from below, flowed in

the x direction and exited at the free boundary. b) The amplitude of the sound

recorded, relative to ambient levels, versus flow speed for an elastic membrane

experiment with L = 8 cm, W = 4 cm and H = 0.19 mm. The critical fluid speed

for the onset of elastic oscillations is between 5.5 and 5.8 m/s. The inset shows

frequency of oscillations against W for a set of experiments where the membrane

tension, L and H were held constant (including data from panel a).
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Figure 5: a) The apparatus for gelatin block experiments. Air flows up a vertical

slit cut in the block. The length of the slit, L, is the height of the gelatin, which

varied from 6 to 12 cm. b) Frequency spectrum and time series (inset) of the audio

signal generated by a pressure drop of 1.5 k Pa driving air through a 10wt % gela-

tine block with L = 6 cm. The time series is filtered to remove freqencies greater

than 1200 Hz. (c) Frequency spectra illustrating period doubling. Each of the

spectra shows the frequency content for 10 seconds of the continuous experiment

(7.5% wt gelatine, L = 12cm, air pressure drop of 3.6 kPa). (d) Frequency spec-

trum and time series for a signal generated by 5% wt gelatine block with L = 12

cm and an air pressure drop of 2.8 kPa. The unfiltered time series is grey and the

low-pass filtered signal (<1200 Hz) is in black. The strongest slapping event is at

about 0.7 s. 28


