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Experiments are conducted to study the transition from episodic avalanching (slumping)

to continuous flow (rolling) in drums half full of granular material. The width and ra-

dius of the drum is varied and different granular materials are used, ranging from glass

spheres with different radii to irregularly shaped sand. Image processing is performed

in real time to extract relatively long time series of the surface slope derived from a

linear fit to the granular surface. For the drums with glass spheres, the transition mostly

takes the form of a blend of the characteristics of episodic avalanching and continuous

flow, that gradually switches from slumping to rolling as the rotation rate increases. For

sand, a hysteretic transition can be observed in which one observes prolonged episodic

avalanching or continuous flow at the same rotation rate, spanning a window of rotation

speeds. For drums with the smallest spheres (1 mm diameter), the transition takes the

form of noise-driven intermittent switching between clearly identifiable phases of episodic

avalanching or continuous flow. This style of transition is also found for the sand in ei-

ther the largest or smallest drum (by volume). We formulate dimensionless groupings

of the experimental parameters to locate the transition and characterize the mean sur-

face slope and its fluctuations. We extract statistics for episodic avalanching, including

angle distributions for avalanche initiation and cessation, the correlations between suc-

cessive collapses, mean avalanche profiles and durations, and characteristic frequencies

and spectra.

1. Introduction

The flow of grains in a horizontally rotating drum is one of the simplest experiments

to perform, yet exemplifies most of the key features that complicate the dynamics of a

granular medium (Caponeri et al. 1995; Mellmann 2001): as the drum rotates, phases of

solid-like behaviour can co-exist with liquid-like or gas-like phases or be transformed into

them. Even when the mean flow field is steady, particles can traverse yield surfaces to

become entrained into flow or deposited into a solid bed. Finally, flow can abruptly halt

or begin at different moments in time to furnish extensive intermittent motion. Thus,

the rotating drum is perhaps the archetypal granular experiment.

If a theory existed that described the drum dynamics over all physical conditions, then

one might consider that granular media flow problems had been solved. However, despite

decades of study, most aspects of drum flow cannot be explained by any one model.

For example, continuum models based on empirical friction laws (Forterre & Pouliquen
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2008) or kinetic theory (Jenkins & Berzi 2010) chiefly apply to steady or rapid flow

conditions and do not describe all the dynamics when there are transitions from solid-

like to fluid-like behaviour. Worse, the literature on drum dynamics contains a number

of overly simplistic or inaccurate theories and a variety of conflicting observations and

interpretations, painting a poorly quantified picture of one of the more fundamental

granular flow configurations. A first step to remedy this situation is to obtain reliable,

reproducible and accurate experimental data, exploiting the continuous operation and

image processing ability of modern cameras and computers to generate long stationary

time series and high-quality statistics.

For a roughened cylinder, for which the granular material is unable to slide freely

over the container, the low-speed flows are popularly classified as either “slumping”

or “rolling” (Henein et al. 1983a; Mellmann 2001). The former consists of intervals of

solid-body rotation that are interrupted by episodic avalanches and arises at the lowest

rotation rates. The continuous steady flow of the rolling state emerges at higher rotation

speeds. For both states of motion, the granular surface often remains relatively flat and is

well characterized by a “dynamic friction angle”; there is only ever a shallow superficial

flowing layer, bordered from the rigidly rotating grains below by a yield surface. At yet

higher rotation rates, the surface profile becomes nonlinear, with a characteristic S-shape;

eventually, rapid, gas-like flow emerges associated with significant centrifuging.

The transition between episodic avalanching and continuous flow has been documented

to depend on particle diameter (relative to drum diameter) and shape, the aspect ratio

and fill fraction of the drum, and effective gravity (Henein et al. 1983a; Ding et al. 2002;

Liu et al. 2005; Brucks et al. 2007). Several studies have attempted to qualitatively de-

scribe the transition in terms of the matching of two distinct timescales. For example,

Henein et al. (1983b) and Mellmann (2001) argue that the transition occurs when the

typical duration of an avalanche matches the time taken for the same amount of material

to rotate rigidly through a comparable angular change. This criterion has some empirical

support, as do some other qualitative criteria (Ding et al. 2002; Rajchenbach 1990, 2002;

Lim et al. 2003). However, none of these conditions emerge as the prediction of a dynam-

ical theoretical model, nor do these studies address the precise form of the transition as

a bifurcation in dynamical behaviour. Indeed, experimental studies often report a “tran-

sitional regime,” wherein the flow mixes characteristics of both episodic avalanching and

continuous flow, but offer no quantitative details (e.g. Henein et al. (1983a); Davidson

et al. (2000); see also Brucks et al. (2007)).

By contrast, it has also been stated that the transition has a hysteretic form (Rajchen-

bach 1990): as one increases the drum rotation rate, episodic avalanching persists up to

a threshold, before switching abruptly to continuous flow. If one then lowers the rotation

rate, the continuous flow regime only becomes interrupted by episodic avalanching at

a second, somewhat lower threshold. Both flow states are possible over the window of

rotation rates sandwiched between the two thresholds. This description is rather different

from a dynamical melange of slumping and rolling.

Most recently Fischer et al. (2009) have suggested that the transition is noise-driven,

presenting detailed experimental observations in support of a “bifurcation by intermit-

tency.” In this scenario, there are again two co-existing states, but noise disrupts episodic

avalanching at the higher rotation rates and terminates continuous flow at low speeds.
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Over the window of the transition, the two states remain distinct and clearly identifiable,

but stochastic fluctuations prompt intermittent switches between them. It is not clear

whether the mix of behaviour reported in other studies corresponds to this intermit-

tent switching, or whether the system dynamics is rougher, with no clear division into

recognisable prolonged states of episodic avalanching or continuous flow.

A complementary theoretical approach is based on modelling the avalanching granular

medium as a fluid-like continuum accelerating under gravity but retarded by solid-like

friction (Caponeri et al. 1995; Rajchenbach 2000). The crudest models describe the dy-

namics in terms of a single evolution equation for the surface angle θ(t), allowing for

switches in flow in the manner of a stick-slip friction law. When static friction is higher

than dynamic friction at the initiation of flow, and if the latter then increases with flow

rate (as in traditional Bagnold-type friction laws), the models predict two possible flow

states at low rotation rates: a periodic stick-slip-type motion reproducing the episodic

avalanching state, and a steady state representing continuous flow. As one increases the

rotation rate, the periodic stick-slip solution eventually disappears in a deterministic bi-

furcation, with the system then converging to the rolling state. The critical rotation rate

at which the periodic oscillations disappear offers a rationalization of the transition from

slumping to rolling. Moreover, the presence of two co-existing states at lower rotation

speeds implies pronounced hysteresis. However, the continuous flow state exists for ar-

bitrarily low rotation rates and there is no transition from rolling to slumping. This can

be remedied by destabilising the steady state in another deterministic bifurcation at low

rotation rates by forcing the friction to start decreasing with flow speed (Caponeri et al.

1995; Rajchenbach 2000). Alternatively, noise can be added to the model to account for

fluctuations due to the finite-size, granular nature of the medium. One can then disrupt

the continuous flow state at lower rotation rate and episodic avalanching at higher rota-

tion rates without passing through any deterministic bifurcations, and progress from a

system showing pronounced hysteresis to one with an intermittent transition by raising

the noise level (Fischer et al. 2009).

In the current paper, we provide an experimental exploration of slumping and rolling

and the transition between the two, examining in detail the effect of drum and particle

geometry. We summarize the details of the experiment in §2, and then describe our

results for glass spheres (§3) and sand (§4). The Appendices (provided as supplementary

material) contain some further technical details of the experiments, and a collection of

additional results that back up our conclusions or provide extra information, but which

we omit to streamline the main body of the paper.

2. The experiment

2.1. Apparatus

Our experiments were conducted using drums made from two acrylic cylinders fitted

with a transparent front plate and a paper-covered back wall. For each, the position of

the back wall could be adjusted to vary the drum width W (axial length), and the inner

cylindrical surface was covered with (60 grit) sandpaper to reduce any slip of the granular

materials. Most of the experiments were conducted in the larger of the cylinders, with a

diameter D of about 30 cm, which was rotated relatively precisely at a prescribed rate
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Drum diameter (inner), D (mm) 287, 190, 152, 100 137
Drum widths, W (mm) 17, 31, 56, 110, 205 17, 31, 56, 86
Rotation rates, Ω (rad/sec) 0.004–1 0.01–1

Nominal particle Range (µm) θ1 〈θstart〉 ± σstart 〈θstop〉 ± σstop
diameter (mm)

Glass spheres
1 783–1132 21.3 21.7± 0.1 20.9± 0.1

1.5 994–1483 24.7 25.4± 0.3 24.3± 0.2
2 1800–2200 25.4 26.1± 0.3 24.9± 0.2
3 2800–3200 26.5 27.6± 0.4 25.8± 0.3
5 4800–5200 28.0 29.8± 0.7 26.9± 0.5

10 9800–10300 30.5 33.7± 1.4 28.3± 1.2
16 15600–16500 33.4 37.7± 2.0 30.1± 1.6

Sand
1 624–1335 36 38.7± 0.3 34.8± 0.4

Table 1. Dimensions of the drums, their ranges of rotation rate, and the particle diameters
and characteristic angles of the granular materials. The spheres with d ≤ 5mm are produced
by Potters Industries in a range of diameters and no further sieving was performed. The two
larger spheres (d = 10 and 16mm) were commercial glass marbles for which we measured
the diameter of spheres in representative samples directly with a caliper. Diameters less than
2 mm were measured in a Beckman Coulter LS13320 Laser Diffraction Particle Size Analyser,
which precisely measures the distribution. The size range is given by d10–d90 (the 10% and 90%
percentiles, weighted by volume) for d < 2 mm and d > 5 mm; for d = 2 mm to 5 mm, we list
the manufacturer’s quoted size range. The characteristic angles are estimated using the largest
drum (D = 287mm) with a width of W = 110mm; θ1 is the surface angle at the commencement
of continuous flow (§3.4); 〈θstart〉±σstart and 〈θstop〉±σstop are the mean starting and stopping
angles during episodic avalanching, plus or minus their standard deviations (§ 3.5).

using friction rollers driven by a computer-controlled motor (see Appendix A). The front

plate was made from glass. Cylindrical inserts with centring spacers were fabricated so

that the diameter could be changed whilst using the same driving apparatus and data

aquisition system. The smaller cylinder, with a diameter of about 14cm, had an acrylic

front face and was mounted co-axially on a shaft driven directly by a geared-down motor.

This second cylinder was used for a smaller number of more detailed measurements of

the avalanching granular surface. Detailed measurements of the drums are provided in

table 1.

To eliminate one of the experimental parameters, in all experiments the drum was half

filled with the granular media (the “fill fraction” was 0.5). We used glass spheres for the

most part, with the range of diameters listed in table 1. We also used a polydisperse sand

with a diameter of about a millimetre. Table 1 reports some characteristic friction angles

for these materials. It is conventional to determine such angles by building sandpiles or

tilting a plane layer. However, the statistics for surface slopes are far better measured

in the rotating drum. For example, in the episodic avalanching regime at low rotation

speed, we can extract satisfying statistics for the angles at which avalanching begins

(θstart) and ends (θstop). These quantities are random-looking variables with well-defined
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distributions; our measurements determine the mean values far more precisely than most

existing sandpile experiments. One awkward issue is that these angles depend on drum

width W and diameter D in our experiments (§3.4 and 3.5); table 1 quotes results for a

relatively large drum with D = 287 mm and W = 110 mm, for which at least the effect

of the side walls is minimised. Mean angles of this type are also sensitive to ambient

noise, dust and humidity. Indeed, a disturbing feature documented presently (§ 2.3) is a

persistent ageing effect that leads to secular drifts of these angles as the drums rotate

over long periods. Overall, despite their simple appeal, mean angle measurements of this

sort are not robust measures of granular dynamics. We did not attempt to calibrate an

empirical friction law like “mu(I)” using sheet flow down an inclined plane (GDR MiDi

2004).

The experiments were conducted in air-conditioned laboratories; the humidity was

monitored to be 50± 10% over their duration. Although the humidity was not precisely

controlled, once the granular materials were loaded inside the drums, the arrangement

was well sealed and so humidity was unlikely to vary during each suite of experiments

(i.e. the up-down sweeps described in § 2.3). The big drum was fixed to an optical table

set on a workbench and which contained some vibration shielding. The smaller drum was

mounted on a heavy wooden board. No further effort was made to reduce ambient noise,

with other devices in the laboratory in operation during the experiments.

2.2. Data analysis

For each rotation rate, we used a video camera to record images of the granular medium

through the front face of the drum. With a sampling rate of twenty or fewer frames per

second, the images could be processed in real time, thereby avoiding the post-processing of

excessive amounts of stored data. In particular, we used the contrast between the particles

and the back (paper covered) wall to extract the location of the granular surface near the

front glass face over a central section of the drum spanning about nine tenths of the total

surface. The time series of the dynamical friction angle, θ(t), was then recorded exploiting

a linear fit to the surface profile. Further details of the fitting process are summarized in

Appendix A. For the 137 mm drum, we recorded movies of shorter duration and extracted

the surface profile as a function of space and time.

In addition to the mean surface angle 〈θ〉 (angular brackets denoting the time average),

we also examine a number of other statistical measures extracted from the time series

of θ(t), including the standard deviation of this signal, σ, and the distance skewness

of its rate of change, Dskew (see Appendix A). The standard deviation highlights the

strength of slumping, but also measures the unsteadiness of the flow during rolling. The

distance skewness detects chiefly episodic avalanching: in this regime the time series of

θ(t) contains rising portions at fixed rate punctuated by falling sections with variable

rate, which translates to a highly skewed signal that registers strongly in the Dskew

measurement.

For episodic avalanching, it is also insightful to record the starting and stopping angles

of each collapse, θstart and θstop, and the avalanche “amplitude” ∆θ = θstart − θstop.

Practically, the angles are determined by detecting all the local extrema in the time

series that are separated in time and amplitude by preset thresholds. The thresholding

artificially deletes some of the smaller avalanches from the record; we chose the thresh-
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Figure 1. Repeated sweeps conducted with a fresh sample of 3 mm spheres in a drum with
(D,W ) = (287, 110)mm, showing (a) the secular increase of the mean surface angle 〈θ〉, (b)
the standard deviation σ of the surface angle time series, (c) the mean “avalanche amplitude”
〈∆θ〉 = 〈θstart − θstop〉, and (d) Dskew, the optimised distance skewness of θ̇(t). For the sweeps,
the rotation rate is first stepped up (dots/solid line) and then stepped back down (dashed line);
the up-down sequence is then repeated (dotted and solid lines). The circles and crosses show
up-down sweeps for spheres aged according to our burn-in protocol.

olds to be as small as possible to avoid such deletions but avoid the false detection of

events due to noise in the signal. The technical details are described in Appendix A. The

procedure records data during the rolling regime, which do not correspond to “starting”

and “stopping” angles. These measurements can still be useful as they provide another

diagnostic of the fluctuations during continuous flow. In fact, for all our experiments, the

mean avalanche amplitude 〈∆θ〉 was closely related to σ (cf. figure 1(c)).

2.3. Burn-in

To explore the transition from episodic avalanching to continuous flow, we performed

sequences of experiments corresponding to sweeps of rotation rate, holding fixed the other

experimental parameters. For each sweep, Ω was incrementally raised and then lowered,

waiting at each rotation rate for well over a hundred avalanches, identified either as the

coherent collapses in the slumping regime or on the basis of individual particles during

continuous flow. At all but the very lowest speeds the drum made at least one complete

rotation. Short sections at the beginning of each time series were deleted to remove any

transient adjustments occuring after the rotation rate was stepped up or down.

Unfortunately, at the outset of our exploration, a pronounced ageing effect became

evident that made these sweeps problematic to conduct. The ageing corresponded to a

gradual systematic drift in the mean surface angle, 〈θ〉, that we attribute to a combination

of accrued damage to the surfaces of the particles and the associated generation of fine

dust. For the bigger particles, the surface damage and dust were visible to the eye (for

d = 16 mm, the damage was substantial at the higher rotation rates, and we limited

our use of this material); for the smaller particles, the surface damage was much less

noticeable, even under a microscope. Sample secular changes are shown in figure 1 which
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shows repeated up-down sweeps with d = 3 mm glass spheres. Progressing from sweep

to sweep, the mean angles gradually drift to higher values; the net change is dramatic,

exceeding a degree.

For the larger glass spheres and sand, even though the mean angle drifted during the

repeated sweeps, the other statistical measures of the signal, σ, 〈∆θ〉 = 〈θstart−θstop〉 and

Dskew, showed little or no such trend; see figure 1(b)–(d). Thus, despite the drift, several

key features of the drum dynamics were robust, including the rotation rates characterising

the transition between slumping and rolling. The transition, occuring for rotation rates

near Ω ≈ 2× 10−4 in the figure, is detected by the sharp change the diagnostics plotted

in panels (b)–(d). By contrast, for the smaller spheres with d ≤ 1.5 mm, the mean

angle drifted to smaller values as the material aged and all the statistical measures also

changed, with the rotation rates marking the transition shifting to lower values as the

sweeps progressed. Most disconcertingly, after two up-down sweeps, the transition had

migrated to such low rotation rate that episodic avalanching could barely be observed (see

figure 31 in the supplementary material; hereon, we cite such figures using the superscript

notation “s31”).

The drift of the mean angle could also be observed if the drum was rotated steadily

at relatively high speed (0.4 rad/sec). In such experiments, the drift largely subsided

after a characteristic “burn-in” time for all the particless32. This feature provided a

convenient protocol for maturing particles to remove the problematic drift: starting with

a fresh sample of particles, we first rotated the drum at constant, relatively high speed

(Ω = 0.4 rad/sec), monitoring the mean angle. Once any drift had subsided (which usually

required many hours), we terminated this preliminary “burn-in” experiment and then

conducted the up-down sweep in rotation rate. This ensured that there was minimal

secular change between the rising and falling parts of the sweep, enabling us to look

unambiguously for any other forms of hysteresis. Results from two sweeps with different

batches of matured 3 mm spheres are included in figure 1; the elimination of the secular

drift leaves discrepancies of order 0.1 degrees between the two batches that we attribute

to basic experimental error (slight differences in the fill fraction of the drum, the fit of

the surface slope, camera or drum positioning and so forth).

The pervasive effect on the surface angle associated with surface damage does not

appear to have been reported in detail previously in the literature on rotating drums,

although it is clearly connected to the industrial process of polishing. As our main effort

was to explore the transition from episodic avalanching to continuous flow, we ignored

the phenomenon once its main effects had been eliminated by the burn-in. However,

although the protocol successfully yielded repeatable, consistent results for the larger

spheres with d > 1.5 mm and the sand, problems still remained for the smaller spheres.

For d = 1.5 mm spheres it turned out that one could remove the particles from the

drum after the first burn, wash them, and then re-mature them in a second burn-in,s32

to obtain results that were reproducible and consistent with those for larger spheres.

Unfortunately, for d ≤ 1 mm, the maturation process still did not furnish results that we

felt were sufficiently consistent and repeatable.s31 Consequently, below we report results

chiefly for spheres with d ≥ 1.5 mm.

To avoid repeating excessively long burn-in runs, we also recycled matured particles. In

particular, we first matured particles in the drum with (D,W ) = (287, 110) mm, and then



8 N. J. Balmforth & J. N. McElwaine

4000 t (secs)

0
°

2
°

Ω=0.0172 rad/sec

0.014

0.0128

0.0112

0.01

0.0088

0.0064

Figure 2. Sample time series of surface angle θ(t) for 2 mm spheres in the larger (D = 287 mm)
drum, with W = 31 mm. Six time traces are shown (vertically offset), for the rotation rates
indicated.

used the matured batches for all the subsequent sweeps in drums with different width

and radius (see table 1). The recycled material still required some degree of burn-in (due

perhaps to the loss of dust during removal and refilling of the drum), but typically less

than half the time. The sandpaper lining the drums was also worn down by conducting

repeated sweeps; we replaced the lining whenever wear became noticeable. No appreciable

wear of the glass face of the drum was discernible.

3. The results for glass spheres

3.1. Phenomenology

We first discuss the basic avalanche dynamics of the glass spheres. Figure 2 displays

sample time traces of the surface angle θ(t) for d = 2 mm and varying rotation rate in

the drum with (D,W ) = (287, 31)mm. At the larger rotations rates, the motion takes

the form of unsteady continuous flow with angle fluctuations of order a tenth of a degree.

As Ω decreases, sporadic larger-amplitude fluctuations arise, which are the signature of

incipient episodic avalanches. At first, these fluctuations correspond to unsteady flow,

with material never coming to rest. Lowering the rotation speed further, however, leads

to the momentary arrest of flow and the emergence of genuine episodic avalanches. These

events become more frequent and well developed as one lowers Ω still further, until they

dominate the time series. At no stage is there an obvious alternation between prolonged,

clear phases of either continuous flow or episodic avalanching. Hence there is a gradual

transition from continuous flow to episodic avalanching, and there is no sign of any

hysteresis if the rotation rate is varied up or down. This type of dynamics characterized

all the spheres we used for the sweeps (d ≥ 1.5mm); the melange of behaviour is likely

responsible for the loose descriptions of the transition appearing in existing literature.

The transition for the smallest particles (d = 1 mm) took a rather clearer form, with

much more obvious intermittent switching between clearly identifiable periods of episodic

avalanching and continuous flow; see figure 3. Increasing the rotation rate through the

transition, the typical residence time in the episodic avalanching gradually dwindled
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Figure 3. The intermittent transition for 1 mm spheres in the drum with
(D,W ) = (289, 110)mm.
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Figure 4. Two experiments in the smaller drum (D = 137 mm, W = 31 mm, d = 2 mm) for (a)
Ω = 0.079 rad/sec and (b) Ω = 0.019 rad/sec. Panels (a) and (b) show the surface position (in
mm) as a density on the space-time plane, after rotation by the mean angle. Panel (c) show the
corresponding time series of surface angle θ(t).

until that state was replaced by uninterrupted continuous flow. Thus, for d = 1 mm

the transition has a clear, “bursty” or intermittent character, as found by Fischer et al.

(2009), with the residence time in the two phases providing a disgnostic of the transition.

For the rest of the spheres, the time series displayed more a blend of behaviour than an

irregular switching between two distinct states, suggestive of a higher degree of intrinsic

noise in the dynamics. A residence time diagnostic was therefore difficult to extract,

leading us to prefer σ and Dskew.

Figure 4 displays sample space-time plots of the surface position for d = 2mm spheres

(less the short regions adjacent to the cylinder clipped from the base images) during
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both continuous flow and episodic avalanching. The mean surface angle is subtracted off

to emphasise the variations about that average. For the continuous flow, some residual

coherent variations are still evident. For the episodic avalanches, it is difficult to isolate

any particular position at which an avalanche begins or ends. On some occasions, the

avalanche starts at end one end of the surface; on others, collapse occurs first at drum

centre, or entire sections of the surface appear to mobilise simultaneously. Data collected

from many avalanches suggested a weak bias of the starting position towards the top

corner of the surface and the stopping position to the lower corners33.

3.2. Sweeps

Up-down sweeps of the glass spheres for different particle radius and drum geometry are

shown in figure 5; the gradual transition between episodic avalanching and continuous

flow leads to a smooth connection between Ω−independent statistics for low rotations

rates to more systematic variations at higher speeds. Figure 5(a) shows data for the

drum with (D,W ) = (287, 110)mm, and varying particle diameter d. Figures 5(b) and

5(c) show data for 3 mm spheres in drums with different diameter D and width W ,

respectively. These figures illustrate how the rotation rates characterizing transition vary

significantly with D and d, but not with W . Both the mean angle and its variability

depend significantly on all of D, W and d. Note the slight fall in the mean angle during

the transition from slumping to rolling. In this figure, and in subsequent figures, each

data point is an average over all experiments with the same parameters (Ω, d,D,W ).

As illustrated by the lowest data in figure 5(c), the mean angles and standard deviations

become independent of W once the drum is sufficiently wide. Such width-independent

behaviour appears roughly for W > 1
3D, independently of particle diameter and shape

(being similar for all the glass spheres and sand), and in agreement with data presented by

Courrech du Pont et al. (2003b). Many of the experimental drums used in previous studies

are relatively narrow according to this criterion, with mean angles that are controlled by

the side walls (Brucks et al. 2007; Félix et al. 2007; Orpe & Khakhar 2007). Despite this,

the apparent independence of the flowing layer depth on W as observed through the side

wall is sometimes taken as evidence for width-independent dynamics. Although we did

not directly measure this depth, it was apparent from our image statistics (specifically,

the mean difference between consecutive images, which highlights flowing rather than

rigidly rotating particles) that the flowing layer also did not vary significantly with W at

the front face of our drums. The situation is presumably similar to heap flows in a slot,

for which Jop et al. (2005) argue that sidewall friction always controls the flowing layer

depth and increases with W until the slot width becomes comparable to the length of

the apparatus. Thus, observations through the sidewall must be biased, with the flowing

layer being much deeper than can be seen, as has been verified in NMR experiments

(Maneval et al. 2005).

Measuring mean angles through the front face of the drum can also be problematic, as

surface slopes vary with axial position. For glass spheres, it has been reported that the

surface angle changes by as much as 4◦, with material piled up higher against the front

and back walls (Dury et al. 1998). By itself, this variation is not sufficient to explain

the differences in mean angle for different W observed for our drums (figure 5(c)). The

characteristic range of the boundary effect is reported to be of the order of 0.14D by Dury
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et al., provided the particles are not too large. This suggests that the front and back wall

are effectively isolated from one another when W > 0.28D, in agreement with our rough

criterion W > 1
3D. However, we made no attempt to quantify the axial variation of the

surface slope in our drums.

3.3. Locating the transition

To locate the slumping-to-rolling transition more definitively, we use the diagnostics,

Dskew and σ. These quantities are collected together for all the sweeps with glass spheres

in figures 6 and 7.

The Dskew values in figure 6 can be used to locate the upper edge of the transition: we

set Dskew < Dcrit, with Dcrit = O(10−2), to indicate uninterrupted continuous flow. The

upper edge of the transition is then given by Dskew = Dcrit, which identifies a critical

rotation rate Ωc for each drum geometry and particle diameter. As shown by figure 6(a),

with Dcrit = 0.02, the critical rotation rates Ωc spread over an order of magnitude and

vary significantly with the ratio d/D of particle to drum diameter, but only very slightly

with drum width. As shown in figure 6(b), the spread in Ωc can be largely suppressed

by formulating the scaled Froude number,

Fr∗ =
Fr

1 + βd/W

(
D

d

)α
, Fr = Ω

√
D

g
, (3.1)

with α ≈ 1.1 and β = 1.5. The removal of drum-width dependence using the combination

βd/W is similar to previous adjustments of surface slope measurements (e.g. Courrech

du Pont et al. 2003b; GDR-MiDi 2004), and is a device we exploit again below. With

that factor in hand, the choice of α was then determined by a least squares fit. However,

neither the inclusion of the factor (1 + βd/W )−1 with β = 1.5 nor the difference of the

exponent α from unity are especially significant. In any event, we conclude that the upper

edge of the transition is roughly given by Fr = Frupper, with

Frupper

1 + bd/W

(
D

d

)α
≈ 1

2
, (3.2)

Note that the alignment of the transition by plotting Dskew against Ω/Ωc in figure 6(b)

does not collapse the entire set of sweep data onto a single curve: this diagnostic rises

with rotation period for Ω < Ωc but spreads out due to an intrinsic dependence on drum

widths34, reflective of how episodic avalanching depend on W (see §3.5).

The lower edge of the transition is better highlighted by the standard deviation σ:

this statistic becomes largely independent of rotation rate within the slumping regime;

see figure 7(a). The data for episodic avalanching can be roughly collapsed by plotting

(σ − bd/W )(D/d)c against (D/d)a Fr, with a ≈ 1.1, c ≈ 0.9 and b = 4.5. Given that

the standard deviation is closely connected to 〈∆θ〉 = 〈θstart − θstop〉 (roughly, 〈∆θ〉 ≈
2.7σ, with angle expressed in degrees), the collapse using (σ − bd/W )(D/d)c implies a

pronounced dependence of the avalanche amplitude on the particle diameter and drum

geometry. We expand further on this dependence in §3.5. For the moment we note only

that the lower edge of the transition can be conveniently located by setting Fr = Frlower

with (
D

d

)a
Frlower = 0.3. (3.3)
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Figure 8. (a) Mean angles in continuous flow (Dskew < 0.01) for 3mm glass spheres in the
drum with (D,W ) = (287, 110)mm, plotting tan〈θ〉−tan θ1 against Fr = Ω

√
D/g, where tan θ1

is the intercept of the linear fit (3.4) (dotted lines) for four different up-down sweeps. (b) Mean
angles for all the glass sphere data, plotting (tan〈θ〉−tan θ1)/C against Fr, where C is the slope
of the linear fits, using the symbol conventions of figure 6. The fitting parameters C and tan θ1
are plotted in grey in (c) and (d). For each, the additional fits in (3.5) are used to suppress the
dependence on drum width; the adjusted values (C, tan θ1) − (βC , β1)d/W are plotted as the
dark (blue) points. The parameters β1 are plotted later in figure 11. In (d), the solid line shows
the fit of 1

2
(tan θ∞start + tan θ∞stop) from figure 11.

Both (3.2) and (3.3) indicate that the transition migrates to zero rotation rate and

disappears in the continuum limit (d/D → 0). Neither criterion is completely consistent

with estimates given in previous literature (Henein et al. 1983b; Mellmann 2001; Liu et al.

2005). Since the exponents α and a are not significantly different from unity, the estimates

of Liu et al. (2005) show the same dependence on drum and particle diameter. These

authors, however, also express the transition criteria in terms of the starting and stopping

angles θstart and θstop, which they take to be material constants. In fact, these quantities

depend on drum and particle geometry, as described in §3.5 and already documented in

the literature (Courrech du Pont et al. 2003b; GDR-MiDi 2004).

3.4. Continuous flow

Mean surface slopes, tan〈θ〉, during continuous flow are plotted in figure 8, first for a

specific example (d = 3mm spheres in the drum with (D,W ) = (287, 110)mm) and then

for the whole data set of glass spheres. This figure illustrates that over the range of our

experiments, the mean angle is well reproduced by the linear fit,

tan〈θ〉 ≈ tan θ1 + C Fr. (3.4)

For the d = 3mm spheres, the mean slope tan〈θ〉 is plotted against Froude number,

subtracting off the zero-Froude number limit, tan θ1; a further scaling by the slope of
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both scaled as indicated, for d = 3mm and 5mm. b = 1.5

the linear fit, C, is used in the plot for the entire data set. Here, the continuous flow

regime is defined as Dskew < Dcrit = 0.01, which is slightly smaller than in figure 6, but

helps to ensure that all the data are above the transition; the choice leads to a minor

improvement in fits to the data but is otherwise inconsequential.

Only at low rotation rates is there any discernible departure from (3.4), where the

impending transition to episodic avalanching prompts the data to flatten out. Other

than this feature, the mean slope data offer little warning of the transition, unlike what

would be expected for a determinisitic bifurcation in dynamical behaviour. Indeed, the

flattening of the mean slopes is consistent with the noise-driven emergence of incipient

episodic avalanching which raises slope angles (see figure 2); if one were to artificially

remove such events from the time series of θ(t), the mean surface slopes may well continue

the linear trend to even lower rotation rate.

The intercepts, tan θ1, and slopes, C, of the fits show some dependence on the drum

diameter and width. We quote the values of θ1 for (D,W ) = (287, 110) mm in table 1.

As shown in the lower panels of figure 8, much of the dependence on drum width can be

suppressed by using additional fits of the form,

C = C∞ +
βCd

W
and tan θ1 = tan θ∞1 +

β1d

W
, (3.5)

with parameters (C∞, θ∞1 , βC , β1). The adjusted mean slopes, tan θ1 − β1d/W , vary in

a clearer fashion with the ratio of particle to drum diameter, d/D (figure 8(c)). The

adjusted parameters, C − βcd/W , do not vary significantly with d/D; the remaining

scatter in figure 8(d) more likely represents differences in surface properties or dispersivity

between the different spheres.

Figure 9 shows an attempt to collapse the data for the standard deviation in the rolling

regime. In particular, if we scale σ by (D/d)3/2/(1 + 3d/2W ), there is a fair degree of

collapse for the spheres with d = 3 mm and 5 mm. However, the scaling does not collapse

the two sets of data, and works less well for other values of d. Figure 9 serves mainly to

illustrate how the fluctuations in the rolling regime sharply increase as Ω→ 0, suggesting

that the continuous flow state inevitably becomes disrupted at low flow rates by noise,

triggering the transition to episodic avalanching.
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Figure 11. The median (a) starting and (b) stopping angles for glass spheres, averaged over
the episodic regime ( Fr(D/d)a < 0.3) and plotted in grey against d/D. For each d and D,
the angles are fitted by tan θstart,stop = tan θ∞start,stop + βstart,stopd/W ; the extrapolations to
infinite width, tan θstart,stop − βstart,stopd/W , are then plotted in blue. The dashed line shows
a+ bstart,stop(e−γd/D − 1) where the parameters (a, bstart, γ) are chosen by a least-squares fit to
the extrapolated starting angle data, and bstop using a fit to the extrapolated stopping angle
data. Panel (c) plots βstart,stop against d/D (blue pentagrams and red hexagrams); the grey dots
are the fitting parameters β1 from figure 8.

3.5. Slumping statistics

Statistics of episodic avalanching for the spheres are collected together in figures 10–

12. The first picture displays histograms of the starting and stopping angles, and the

avalanche amplitudes, ∆θ = θstart − θstop, for d = 3 mm in the drum with D = 287mm

and varying width. Such angle histograms are largely independent of rotation rate,s35

allowing the combination of all the data in the slumping regime. The histograms of θstart
and θstop appear Gaussian (cf. Fischer et al. 2008), although there are hints of skewness.

Aside from a change in mean, the θstop−distribution appears to be independent of drum

width.s36(d) In the widest drums, the θstart−distribution is similar to that for θstop, but

widens significantly as the drum narrows.s36(c) The starting and stopping angle distribu-

tions also do not remain separated but overlap in the wider drums, leading to an avalanche
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Figure 12. Scatter plots of starting and stopping angles for d = 3 mm spheres in drums with
D = 287 mm and the widths indicated, taken over the entire episodic avalanching regime with
Ω < 0.005 rad/sec. In each case, three sets of data are shown: A plots θstart−〈θstop〉 against the
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∆θ = θstart− θstop; C plots θstart−〈θstop〉 against the preceding θstop−〈θstop〉. The dashed lines
show least-squares linear fits to A and C, and the solid line is the diagonal.

amplitude distribution that falls linearly to zero amplitude for ∆θ → 0,s36 allowing for

the persistence of arbitrarily small avalanches (our algorithm for finding the extrema of

the time series artificially eliminates the smallest avalanches in the histograms).

The wider spread in the starting angle distribution in the narrower drums reflects a

greater variability in the strength of the spheres due to confinement and, as we show later,

is much less prominent for sand. One interpretation of the variability in the bridging effect

is that force chains appear for some packings and not others, and more often for spheres

than for sand. Isolated stress supporting structures of this kind are perhaps more likely

to inhibit the onset of flow rather than interrupt it, thus not impacting the stopping

angle distribution.

Figure 11 displays the median values of the starting and stopping angles averaged

across the episodic regime ( Fr(D/d)α < 0.3 with α = 1.1). The width dependence of the

angle data can again be largely suppressed using fits of the form,

tan θstart,stop = tan θ∞start,stop + βstart,stop
d

W
. (3.6)

The limiting angles θ∞start,stop depend on particle and drum diameter; fits to an exponential

dependence on d/D are included in figure 11(a) and (b). The parameters, βstart,stop, are

plotted in figure 11(c) and are consistent with the fitting parameters β1 used for the

continuous flow data in figure 8 (which are also plotted), and values reported by Courrech

du Pont et al. (2003b) and GDR MiDi (2004). Note that, over the episodic avalanching

regime, the mean slope angle is equal to the average of the starting and stopping angles

to less than one percent. The average of the limiting slopes, 1
2 (tan θ∞start + tan θ∞stop), is

close to the extrapolation to zero Froude number of the mean angle during continuous

flow (see figure 8).

Figure 12 presents “scatter” plots of the starting and stopping angles and the avalanche

amplitude. The clearest feature of these plots is the tight connection between θstart and

the ensuing amplitude ∆θ = θstart − θstop (data labelled B); i.e. for a given avalanche,

the higher starting angle, the larger the avalanche (cf. Caponeri et al. 1990). As pointed

out by Fischer et al. (2008), the data also suggest a weak negative correlation between
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θstart and the subsequent θstop (data labelled A); the higher the start, the lower the stop.

The weakness of this correlation implies that intrinsic noise and dissipation during flow

are sufficient to wipe out much of the memory of the initiation of the avalanche.

Despite what is commonly assumed in the literature (e.g. Rajchenbach 2000), the

plots also suggest a comparable correlation of θstart against the previous θstop. Indeed,

as shown in figure 13, the magnitude of the average correlation of θstart with either the

subsequent or previous θstop is about 0.25 over the episodic range for the narrowest drums

(the correlations are again largely independent of Ω in this regimes37). The correlations

become stronger as the drum is widened, before falling off somewhat for the widest drums,

perhaps because of the axial decorrelation of successive avalanches.

A correlation between θstart and the preceding θstop is possible when the packing of

material at the termination of an avalanche, reflecting to some degree the θstop, affects

subsequent failure, i.e. θstart. However, each avalanche uncovers fresh material in the

upper parts of the drum, with a packing set by a much earlier collapse. Nevertheless, for

spheres, failure does not always occur first at the top of the slope but can be elsewhere

along the surface (§3.1), where the packing may have been set by the previous avalanche.

3.6. Mean avalanche durations and profiles

Figure 14 displays the mean avalanche duration, tA, for glass spheres, defined as the

average interval between the starting and stopping angles. This figure illustrates the

curious result that the avalanche duration grows logarithmically as the rotation rate

is decreased. There is also a modest but systematic dependence of tA on drum width,

which is for the most part consistent with the idea that sidewall friction slows and thereby

prolongs avalanching.

The logarithmic growth of tA with Ω disagrees with the results of Caponeri et al. (1995)

and Fischer et al. (2008, 2009), who report avalanche durations that are independent of

rotation rate. In agreement with these authors, however, the scaled avalanche duration

tA
√
D/g does not vary strongly with drum or particle diameter. Caponeri et al. (1995)

base their estimate of avalanche duration on the extrema of time series of the lower edge

of the granular surface; given the nearly linear slope of the surface, this is similar to
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our measurement tA. Fischer et al. (2008) estimate durations using a Gaussian fit to the

profile of individual avalanches.

To understand this blend of agreement and disagreement, we examine the avalanche

structure in more detail. Figure 15 shows the mean scaled avalanche profile, obtained by

averaging, over all avalanches during a particular experiment, the time series of

Φ(τ) = Φ(t− tm) =
θ(t)− θstop
θstart − θstop

, where θ(tm) = 1
2 (θstart + θstop). (3.7)

This procedure suppresses the differences between avalanches, furnishing a smooth curve

characteristic of the dynamics, much as found by Fischer et al. (2008). As shown in

figure 15, the core of the profile remains largely unchanged as the rotation rate decreases.

More significant is the change in the profile’s maxima and minima, which become very

flat and broad for low Ω, thereby lengthening the avalanche duration. In other words, tA
increases with rotation period because avalanches take longer to begin and end, not from

a change in the time required for the surface angle to fall once motion is underway. The

latter can be quantified by measuring t1/2, the time required for Φ(t) to decrease from

3/4 to 1/4. This quantity is more comparable to the characteristic avalanche duration

defined by Fischer et al., and as shown in figure 15(d), varies far less significantly with

Ω. Thus, different definitions are partly responsible for the disagreement in the rotation-

rate dependence of the avalanche time. Note that, at the higher rotation rates, the mean

avalanche profiles also display the preceding and ensuing avalanches, a feature resulting

from a well-defined mean avalanche spacing (see below).

3.7. Spectra

In figure 16, we show power spectra for 3 mm spheres in the drum with (D,W ) =

(287, 110) mm. At the lowest rotation rates (the top curves), there is a broad peak at

an angular frequency ω that is a few hundred times Ω. The spectra level out at lower

frequency, and then fall off algebraically at higher frequency, first with a dependence ω−2,

then steepening up to ω−4 and finally flattening off like ω−1-noise. As one approaches
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Figure 15. Avalanche structure for (D,W ) = (287, 110) mm and 3 mm spheres. (a) Time traces
of surface angle at Ω = 0.004 rad/sec, with the identified start and stop angles shown; the small
avalanche near t = 3secs is not identified due to the clipping tolerances in the extremum search.
(b) The mean scaled avalanche profile, obtained by averaging Φ(τ = t− tm) in (3.7). Also shown
are six sample avalanches (red) and the mean plus or minus the standard deviation (shaded
region). (c) Nine mean avalanche profiles for W = 110 mm at the rotation rates indicated in
(d)); the maxima and minima are indicated. (d) The avalache duration defined as the time
between the maximum and minimum of the mean scaled avalanche profiles. The characteristic
time t1/2 is also shown, as well as direct measurements of tA (grey crosses).

the slumping-to-rolling transition, the dominant peak sharpens and its harmonic becomes

visible. The peak almost disappears in the continuous flow regime, leaving a flat red spec-

trum that falls off algebraically at higher frequencies. The frequency of the dominant peak

of the power spectrum is plotted against rotation rate in figure 17 for (d,D) = (3, 287) mm

and varying width.

The spectra are contaminated by additional peaks at the characteristic frequency ωm
of the stepper motor and some of its harmonics. These become visible at high rotation

rate, occasionally taking over the dominant frequency. Further high-frequency peaks at

ωs = 8000ωm and its harmonics correspond to the steps of the motor. Although the

extraneous peaks appear in the spectra, it is satisfying that they have a clear origin and

there is no suggestion that they significantly influence the granular dynamics in general.

Over the episodic avalanching regime, most features of the power spectrum can be

reproduced by the relatively simple stochastic model outlined in Appendix C. In brief,

one assumes that the starting and stopping angles and the avalanche duration tA are

independent random variables (i.e. ignoring the correlations exposed in §3.5), and that

the signal for the surface angle is composed of two linear pieces: a rise at rate Ω during
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against ω/Ω for the rotation rates indicated, where ω is the angular frequency (in rad/sec). The
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solid-body rotation between θstop and θstart, then a linear collapse of duration tA between

θstart and the next θstop. The spectrum of this signal features a dominant frequency of

ω∗ =
2πΩ

〈∆θ + ΩtA〉
(3.8)

(cf. Davidson et al. 2000). This prediction is included in figure 17, using the linear fits of

tA with log Fr taken from figure 14.
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the rotation rates indicated. The two time traces in the lower panel show intermittent behaviour
over the transition.

In addition to the main peak, the spectrum of the synthetic signal is flat at low fre-

quency, where the avalanches look like a random succession of impulses (cf. Caponeri

et al. 1995). For ω∗ � ω � 〈tA〉−1, the solid-body rise of the signal becomes resolved,

but not the relatively rapid avalanches, so the signal resembles a sawtooth with the spec-

trum falling like ω−2. Finally, for ω � t−1A , the continuity of the signal over the avalanches

is resolved and the spectrum then falls like ω−4. With an avalanche duration of a few

seconds (figure 14), the cross-over in the tail of the spectrum occurs for ω ∼ t−1A ∼ 1

rad/sec, in rough agreement with the switch in scalings of the top curves in figure 16.

The model also rationalizes the relation between the standard deviation of the surface

angle and the avalanche amplitude: σ2 ≈ 1
12 〈θstart − θstop〉2 + 1

2 (σ2
start + σ2

stop) when the

avalanche duration is relatively small and σ2
start − σ2

stop � 〈∆θ〉2, where σstart and σstop
are the standard deviations of the starting and stopping angles.

4. Sand

4.1. Avalanche phenomenology for sand

To explore how the dynamics changes when we switch to aspherical particles, we per-

formed up-down sweeps with sand. Sample time series of the surface angle for different

rotation rate are shown in figure 18. The series display a much sharper switch in behaviour

at the slumping-to-rolling transition than the spheres, and the episodic avalanching is

much more regular, producing an almost periodic signal.

The space-time plots in figure 19 illustrate how the avalanche dynamics is quite dif-

ferent from the glass spheres: for sand, there are recognisable fronts that initiate and

arrest flow, as remarked by Rajchenbach (2002). The first of these appears near the top

end of the pile and propagates down to the lower end, activating the collapse. Once the

advancing front reaches the bottom of the free surface, it triggers the retreating front

which then propagates back up the surface to the upper end, switching off the flow. The
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Figure 19. A similar picture to that in figure 4, but for the sand ((D,W ) = (137, 86) mm)
with (a) Ω = 0.27rad/sec and (b) Ω = 0.06rad/sec.

starting and stopping positions of the avalanches are consequently always near the top

corner of the granular surfaces33. Neither front features in the dynamics of the spheres,

as remarked by Fischer et al. (2008).

4.2. Sweeps, intermittency and hysteresis

For both the biggest and smallest drums with (D,W ) = (287, 110) and (100, 31) mm

a smooth transition with clear intermittent switching between phases of slumping and

rolling is again evident (see the lower traces in figure 18 and the sweep data in fig-

ure 20(b)). However, for all the other drums the transition was different, occurring via a

sudden jump from rolling to slumping or vice versa. Moreover, the jump from slumping to

rolling occurred at higher rotation rates than the jump from rolling to slumping, leading

to hysteresis in the sweep data; see figure 20(a). Note that multiple sweeps focusing on

the transition are included in this figure; these demonstrate how the transitions between

the two states do not occur at a single rotation rate but at seemingly random values of

Ω spread over ranges that are narrower than the window of hysteresis.

A summary of the transitional Froude numbers for sand (as defined by Dskew = 0.02)

is provided in figure 21, which plots the data against the volume ratio D2W/d3 and scales

Fr as for the glass spheres in figure 6. The transition evidently occurs at rather higher

rotation rates than predicted by (3.2). The scaling of the Froude number is also unable

to align the data for either the intermittent drums or the two transitions bordering the

region of hysteresis. Thus, the scalings observed for glass spheres do not work for sand.

Partly responsible for this discrepancy is that the transition in sand depends significantly

on drum width, unlike for spheres. This result is made more surprising by the fact that

the statistics of rolling and slumping do not appear to depend significantly on the drum

width (see below), again in contrast to spheres.
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It is also not clear why the window of hysteresis opens in between our largest and

smallest drums. Conceivably, enhanced fluctuations with fewer particles might wash out

a hysteretic transition in the smallest drum; perhaps the opportunity for spatial decorre-

lation triggers additional perturbations and rationalises why the biggest drum also shows

an intermittent transition. Either way, the window of hysteresis likely closes at these two

extremes due to a reduction in the effective system noise.

Curiously, the mean angles for continuous flow in sand show a much more prominent

upturn as one approaches transition. This is illustrated in figure 22, which plots the

mean surface angles offset by the minimum slope and plotted against Froude number

scaled by the value Frmin where the minimum is attained. This way of plotting the data

collapses much of the variation between the different drum geometries; the minimum
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slope depends on drum diameter but not obviously on its width, whereas Frmin depends

on both (see figure 22(b,c)). In the simple model of Caponeri et al. (1995) an upturn in the

continuous flow solution arises from the non-monotonic dependence of the friction law,

and destabilises that equilibrium to trigger the switch to slumping. No such instability is

manifest in the experiments, with the upturn of the mean angle occupying a significant

range of rotation rates characterized by robust continuous flow. This feature may explain

Rajchenbach’s (1990) observation that the mean angle increases like the square of the

rotation rate, which is otherwise not supported by the data.

4.3. Avalanche statistics and profiles for sand

Figure 23 shows slumping statistics for sand; the corresponding starting-stopping-angle

correlations are compared with results for glass spheres earlier in figure 13. Figure 23

illustrates how the dependence of the starting angle distribution on drum width is much

less marked for sand. The irregular shape of this material allows particles to lock together

more tightly in static arrangements in comparison to spheres; randomly appearing force

chains bridging between the side walls may therefore be less likely to influence the dy-

namics. Moreover, in the wider drums, the starting and stopping angles remain well

separated, furnishing a more Gaussian-like amplitude distribution that favours regular

avalanching rather than collapses of arbitrarily low amplitude. The sand amplitude dis-

tribution is consequently sensitive to drum diameter but has no clear dependence on

widths38,39, unlike that for spheres.

The correlations between the starting and stopping angles are also different for sand

(figure 13(b)). In the narrow drums, θstart is poorly correlated with the previous θstop,

consistent with the observation that the avalanches begin at the top of the drum, where

fresh material has been exposed by the previous avalanche and the packing is relic from

the distant past. The starting angle, however, is strongly negatively correlated with the

subsequent stopping angle, and so dissipation and dynamical noise during flow cannot

erase the memory of avalanche initiation. Widening the drum strengthens the correlation

of θstart with the preceding θstop whilst reducing its correlation with the subsequent θstop.

In the widest drums, θstart is roughly equally correlated with both (coefficients of about

±0.5). Evidently, the wider drum features greater dynamical noise that suppresses the

memory of initiation; the correlation with the previous start is less straightforward to

understand.
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Figure 23. Avalanche statistics for sand in the drum with D = 287 mm and the widths in-
dicated, averaged over the episodic regime (Ω < 0.01). Top row: scatter plot of θstart − 〈θstop〉
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Sample avalanche profiles for sand are shown in figure 24. Once again tA increases

logarithmically with rotation period due to the increasing time taken to initiate and

terminate each avalanche. For wider drums, the time needed to start the avalanche dom-

inates, whereas the time taken to end the event is more critical in narrower drums. The

avalanche profiles contain more structure than their relatives for spheres (cf. figure 15).

Most noticeable is the kink near the midpoint of the profile, which is caused by the two

fronts that switch flow on and off: the kink occurs when the advancing front that mo-

bilises flow reaches the bottom of the sand surface and reflects into the retreating front

that arrests motion.

The preceding observations suggest a physical picture of sand avalanche dynamics:

in the wider drums, the two fronts fully traverse the granular surface. The triggering

front takes time to start at the lower rotation rates, increasing the avalanche time and

reducing the memory on the starting angle. When the arresting front returns to the top

of the drum to switch off the avalanche, it partially sets the packing there, dictating when

the next avalanche begins and correlating θstop with the following θstart. In the narrower

drums, sidewall friction slows and weakens the arresting front so that the avalanche takes

longer to terminate and the packing at the top of the drum is set by an earlier collapse,

decorrelating θstop and the next θstart.

4.4. Sand spectra

A selection of power spectra for the sand are shown in figure 25; the frequency of the

dominant peak is plotted against rotation rate in figure 26. Below transition, the en-

hanced periodicity of episodic avalanching is highlighted by the sharpness of the main
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Figure 24. (a) Time series of surface angle for sand in the D = 287 mm drum with W = 110 mm
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spectral peak and the multiplicity of its harmonics. Above the transition to continuous

flow, the spectra become broadly peaked and red. Strong additional peaks also appear

at low frequency at the higher rotation speeds which are not connected to the motor

contaminations. Direct observations of the drum indicate that these peaks correspond to

coherent oscillations of the granular surface, in the manner of some sort of sloshing mode

of the flowing layer. For example, at the higher speed in figure 25, Ω = 0.4 rad/sec, a

sloshing mode arises with a frequency of about 2.7Ω.

Figure 26 illustrates the clear switch in the dominant spectral peak when the transition

is hysteretic (compare the blue and red points). For the continuous flow data plotted in

this figure sloshing modes have yet to appear and the spectral peak characterizes noisy

flow fluctuations. The resulting characteristic frequency is clearly distinct from that for

episodic avalanching, which once more reflects the typical avalanche spacing (fits of the

form (3.8) again furnish a fair representation of the data; see figure 26). Evidently, the

transition arises when the slumping and rolling frequencies are well matched, much as

suggested previously in some qualitative prescriptions (e.g. Henein et al. 1983b; Mellmann

2001).
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Figure 26. The frequency of the dominant peak in the power spectra for sand in the big drum
with the widths indicated. Blue (red) symbols indicate frequencies in the episodic avalanching
(continuous flow) regime. The dashed line denotes the fit in (3.8) to the W = 110 mm data,
using a fit to the observed tA (figure 40) and the mean avalanche amplitude over the episodic
regime 〈∆θ〉 ≈ 4◦; the solid line uses least squares with (3.8), including ∆θ, t0 and Γ as fitting
parameters.

5. Conclusions

In this paper we have reported an experimental survey of the dynamics of episodic

avalanching and continuous flow in a granular drum. This device is a classical arrange-

ment to study granular dynamics, yet a detailed investigation of the two regimes and the

transition between them has not previously been presented. We have tried to go some
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way in this direction here, considering a variety of different granular media (glass spheres

with a range of diameters and a sand) and drums with different diameters and widths.

Our main advance has been to catalogue the granular dynamics over lengthy sweeps in

rotation rate, afforded by an efficient data acquisition system. Sweeps could be conducted

for days or even weeks on end, allowing us to collect relatively clean statistics of episodic

avalanching or the vagaries of continuous flow.

For most of our spheres and drums, the transition from episodic avalanching to con-

tinuous flow takes the form of a gradual switch in dynamical behaviour wherein the

two phases are blended in varying degrees. As the particle radius becomes small, the

blend becomes refined into an alternation between phases of continuous flow or episodic

avalanching in the manner outlined by Fischer et al. (2009). For sand, the transition is

again intermittent in either the biggest or smallest drums, but in all others a hysteretic

transition takes place (Rajchenbach 1990). Overall, the different forms of the transition

are suggestive of a system in which there are two possible states and which is perturbed

by differing degrees of noise. The transition is a smooth blend in behaviour for higher

noise levels, hysteretic for weak noise, and intermittent in between. There is little sign

that the continuous flow state disappears in some kind of a deterministic bifurcation

at low rotation rates, or that episodic avalanching terminates at higher rotation rates

in another bifurcation. The situation is quite different from most fluid systems in which

transitions are deterministic in the absence of external stochastic perturbations, the noise

here arising from intrinsic noise in the dynamics.

The results for glass spheres suggest that the transition is largely independent of drum

width and arises roughly for 0.3 < Fr(D/d) < 0.5, in terms of the Froude number,

Fr = Ω
√
D/g. This criterion is consistent with previously reported results for spheres

(Brucks et al. 2007; Fischer et al. 2009), but does not work for sand which displays

a more complicated dependence on the drum geometry. The criterion is different to a

number of existing predictors of transition based mostly on heuristic arguments, although

it is similar to one proposed by Liu et al. (2005) for angular particles such as sand, but

not glass spheres. In any event it is hard to see how to reconcile the heuristic arguments

underlying these other predictors with the nature of the transition as they take no explicit

account of effect of dynamical noise. We also find little support for a suggestion by Jop

et al. (2005) that the transition is connected to the flow-depth-surface-angle relation for

sheet flow to cease on an inclined plane (see Appendix B).

Although we have resisted providing any detailed theoretical models to complement

our experiments, these are certainly possible. Indeed, we conducted simulations with the

Discrete Element Method in tandem with the experiments, and which helped guide some

of our scalings and fits of the data. A brief discussion of a model for a relatively narrow

drum based on the mu(I) law is provided in Appendix B. One can also build cruder

ODE models along the lines followed by Caponeri et al. (1995) and others. To capture

the experimental observations, stochastic forcing is essential in these models. Moreover,

two types of noise are needed: stochastic fluctuations in packing are required to furnish

a random starting angle for an avalanche. Then dynamical noise must be added during

flow to simulate fluctuations and a random stopping angle. With both types of noise

suitably incorporated, models can be designed that show some qualitative agreement

with the observations. However, many of the finer details (such as the distributions and



30 N. J. Balmforth & J. N. McElwaine

correlations of the starting and stopping angles) are likely to be awry without substantial

empirical input, calling into the question the usefulness of such models.

A persistent ageing effect plagued our efforts to generate reproduceable results. We

were largely successful in eliminating this feature by suitably maturing particles in high-

speed burn-in experiments, and by restricting our use of glass spheres with smaller diam-

eters. Polydispersivity may constitute another intrinsic problem, with segregation poten-

tially also leading to long-time evolution. Overall, the surface angle during both episodic

avalanching or continuous flow is sensitive to ageing effects and drum or particle geome-

try, and is likely to be significantly affected by external noise in less controlled situations.

One should exercise caution in using such a statistic to characterise granular dynamics

(cf. Kleinhans et al. 2011); other, more robust measures offer greater diagnostic value.

Beyond the rotating drum, one may wonder what kinds of intermittent motions occur

in different flow configurations. Episodic avalanches also arise in heap flows and sandpiles

fed at low flux (e.g. Lemieux & Durian 2000; Jop et al. 2005; Börzsönyi et al. 2008). In

sheet flow down an incline (e.g. Forterre & Pouliquen 2008) or for bulldozed sandpiles

(Sauret et al. 2014), however, episodic avalanching does not occur at low flow rates. For

the inclined plane, fluctuations during continuous flow trigger the arrest of flow, but once

the grains stop noise cannot drive the system back into motion, precluding any recurring

slumping state. For the bulldozer, there is again a continuous flow state, but the driving

appears to preclude any locked-up arrangement like rigid rotation. Stochastic fluctuations

can then only agitate the system about the continuous flow state. The rotating drum has

the relatively unique feature that a truly rigid phase can emerge over long intervals, but

not persist indefinitely.

We thank Greg Wagner and Quentin Debray for assistance and discussions.

REFERENCES
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Figure 27. An image taken of the 2mm spheres in the 137mm diameter drum (W = 17 mm),
together with the extraction of the surface profile and its linear fit.

Appendix A. Experimental details

A.1. The motor for the bigger drum

The larger cylinder was driven by a high performance stepper motor (a Parker Com-

pumotor iBE342H), which could rotate stably very low speeds. Given that the dynamics

of episodic avalanching could potentially be sensitive to variations in motor speed we

estimated the precision of this device by monitoring time series of the angular position of

the shaft. In its velocity-controlled mode, the motor has settings to improve speed stabil-

ity; using suitable choices for these (in the Parker nomenclature, we used KI= 0, KP= 10

and KD= 1000, for the integral, proportionality and damping constants, respectively),

the angular position error was always less than 0.06 degrees over the duration of each ex-

periment. However, velocity fluctuations do occur during each run as the motor adjusts

to maintain the angular position. The inertia and compliance of the drum apparatus

likely lessen these variations, but our best estimates suggested that rotation rate errors

of order 5× 10−5 rad/sec could occur over intervals of several seconds. These errors are

somewhat lower than the smallest rotation rates used, but the associated accelerations

may contribute to the ambient agitation of the apparatus and trigger avalanches.

A.2. Image processing

Image processing was performed in real time, mostly at 20 Hz, for the central section of

the drum, excluding the first and last two centimetres of the surface. The surface was

identified by finding the highest pixel in each vertical raster that was above a threshold

intensity set to be halfway between the raster’s minimum and maximum. The best fit

straight line to the identified pixels was then found and all points lying at least ten pixels

from the fit were then marked as outliers; discarding those outliers, the line was fit a

second time and any new outliers again discarded. Repeating the procedure one more

time furnished the slope angle (the dynamic friction angle, θ(t)) and well as its vertical

offset. An example is shown in figure 27. The procedure does not therefore fit the entire

surface profile, and is misleading when the drum is rotating relatively quickly and the

characteristic S-shape develops. As diagnostics of the goodness of fit, we recorded the

mean squared error and the fraction of discarded points (which was typically less than

5%). We also constructed average images and the differences between successive images

in order to furnish mean surface profiles and examine the apparent flowing layer depth.

Although the surface is relatively flat for most of our experiments, the profile becomes
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Figure 28. (a) Surface profiles for the drum with D = 289 mm and varying width, filled with
2 mm (red, vertically offset) and 3 mm (blue) spheres. The insets show the same data, but for
the drum with D = 137 mm. (b) Surface profiles for particles with diameter d = 1, 2 and 3 mm,
in the drum with (D,W ) = (287, 110) mm, for Ω = 0.44, 0.66 and 0.88 rad/sec.

nonlinear as the drum is rotated more quickly and its width is reduced. Figure 28 displays

mean surface profiles for the fastest drums. The characteristic S-shape develops at these

speeds, becoming most prominent for the biggest diameter, narrowest drums and the

smallest particles. Note that the surface profiles in the two widest drums (W = 110 and

205 mm) are practically identical, indicating that the dynamics is insensitive to the width

for these cases, yet the S-shape still develops.

For each time series of θ(t), the initial 10 seconds or longer were clipped to remove

transients. A median filter over a width of 5 samples was then applied to reduce noise.

The starting and stopping angles, θstart and θstop, were identified by first calculating

the standard deviation σ of θ(t). For a time series with a periodic triangular waveform

of peak-to-peak amplitude ∆θ, the distribution of θ is uniform and σ = ∆θ/
√

12. We

therefore chose an angle threshold δθ = 1
5Θ/
√

12 designed to detect avalanches of am-

plitude down to about 1/5 of the average. If the avalanche time is much less that the

time for solid-body rotation, this corresponds to a time interval between avalanches of

δt = δθ/ω. The moving maximum over θ corresponding to this time interval is then found

and the start of each avalanche identified as the times where θ equals this maximum. We

then find all the minimum values between each pair of maxima to locate the end of each

avalanche. Finally the candidate list of avalanches is searched and any that are smaller

than δθ are removed. The procedure is robust and copes well with noisy signals, but clips

the smallest avalanches.

Given the time series θ(ti) = θi (ti being the ith sampling time), we may define the

distance skewness of the rate of change θ̇i = (θi+k − θi)/(ti+k − ti), by

Dskew(tk) = 1−
∑
i,j |θ̇i − θ̇j |∑
i,j |θ̇i + θ̇j |

,

for a prescribed delay time tk. For each time series we optimised the choice for the delay
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Figure 29. (a) Mean angle data in continuous flow (Dskew < 0.01) for 3mm glass spheres in
the narrower drums, 3W < D, plotting tan〈θ〉 − tan θ1 against FrJFP = dΩD2/

√
gW 5, where

tan θ1 is the intercept determined from a linear fit of tan〈θ〉 to Fr
2/7
JFP , (dotted lines). (b) Mean

angles for glass spheres, plotting (tan〈θ〉− tan θ1)/C against FrJFP , where C is the slope of the
linear fits. The symbol convention follows the legend of figure 6. The inset plots C against d/D.

time tk by increasing k until Dskew reached a maximum, and then adopted the maximal

value.

Appendix B. A mu(I) interlude

A different representation of the continuous flow data for the narrower drums (3W <

D) is shown in figure 29, which plots mean surface slopes against the scaled Froude num-

ber FrJFP = ΩdD2/W 5/2√g. This unobvious scaling of the mean slope data is suggested

by a simple model based on the mu(I) law, much as Jop et al. (2005) rationalized data

for heap-flow experiments. The essential idea is to consider a shallow flowing layer of

depth δ � R inclined at angle 〈θ〉 with respect to gravity and confined within a narrow

slot. As shown by Jop et al., one can compute the flow depth and flux if the mu(I)−law

is expressed as

µ(I) =
I0µ1 + Iµ2

I0 + I
(B 1)

where µ1, µ2 and I0 are material parameters. The flowing layer depth is

δ =
W

µw
(tan〈θ〉 − µ1), (B 2)

where µw is the coefficient of sliding friction over the walls, and the net flux is

q = 2I0

√
g cos〈θ〉

5d

[
W

(µ2 − µ1)

µw

]5/2
F

(
µw

δW−1

µ2
− µ1

)
, (B 3)

where

F (X) = 5(1−X)
[√

1−X sin−1
√
X −

√
X
]

+
5

3
X3/2 −X5/2. (B 4)

For the drum, the flux through the flowing layer at drum centre must match the influx

by rotation: q = 1
8ΩD2. Hence (B 3) boils down an algebraic equation for θ given the

rotation rate (and other parameters). The full algebraic form of (B 4) is a little unwieldy

and its value is not so different over the simpler, small X approximation, F ≈ 2
7X

7/2.
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We therefore adopt the latter as a more useful approximation, in which case we find

tan θ = µ1 +
(µw
W

)5/7
[

35dR2Ω(µ2 − µ1)

8I0
√
g cos〈θ〉

]2/7
. (B 5)

This relates tan〈θ〉−µ1 to FrJFP , as plotted in figure 29, and is equivalent to the scaling of

heap-flow data by Jop, Forterre & Pouliquen (2005; their fig 11). For the lower rotation

rates, the data bend away from the prediction, reflecting the impending transition to

episodic avalanching. At the higher rotation speeds, the data again bend away from the

data, possibly due to inertia (the approximation of F (X) is not responsible). The limiting

friction µ1 and the factor µ
5/7
w [35(µ2−µ1)/8I0

√
cos〈θ〉]2/7 provide interpretations of the

intercept tan θ1 and slope C of the fits in figure 29.

Jop et al. suggest that episodic avalanching begins when the flow-depth-flux relation

intersects the hstop(〈θ〉) curve for sheet flow down an inclined plane (i.e. the depth-angle

relation holding when flow ceases on reducing the incline). Because we have not mea-

sured hstop-curves for our spheres, we cannot directly examine this supposition. However,

near the onset of flow, one expects that hstop ∝ d(tan〈θ〉 − µ1)−m, with m ≈ 1, from

empirical determinations of this curve (e.g. Pouliquen & Forterre 2002). Thus, setting

δ ∼ d(tan〈θ〉−µ1)−m, or δ ∼W (d/W )1/(m+1), suggests that the critical Froude number

for transition scales as Fr ∼ W (5m−2)/2(m+1)d(5−2m)/2(m+1)/D3/2. This is only consis-

tent with the relatively weak dependence of Frupper in (3.2) on W if m = 2/5. However,

the transitional Froude number then scales as Fr ∼ (d/D)3/2, in poor agreement with

(3.2).

For the wider drum, no equivalent theory exists to predict the depth of the flowing

layer or flux from mu(I). Nevertheless, assuming that the inertia number plays a key

role, we may dimensionally estimate an average,

I ∼ qd

δ2
√
gδ
≡ dD2Ω

8δ2
√
gδ

, or
δ

d
∼
(

Fr

I

)2/5(
D

d

)3/5

. (B 6)

If the average I is roughly constant, the estimate for δ/d is not far from the scaling

(δ/d) ∼
√

Fr(D/d)3/4 reported in GDR-MiDi (2004). Our fit of the mean angle data in

(3.4) suggests that C depends weakly on particle radius in relatvely wide drums. In this

case, Jop et al.’s strategy for locating transition furnishes a scaling, Fr ∼ (d/D)3/(2+5m).

If m = 1 or 2/5, the Froude number scales as either (d/D)3/7 or (d/D)3/4, neither of

which compares particularly well with (3.2) for α ≈ 1.1 and βd/W → 0.

We conclude that the mean angle scalings suggested by the thin-slot mu(I) model are

consistent with the drum data to a similar degree that Jop et al. account for their heap

flow experiments. Our observed transition, however, does not appear to coincide with a

criterion based on hstop(〈θ〉).

Appendix C. Synthetic avalanche spectra

We construct synthetic time series of the surface angle as illustrated in figure 30(a):

we randomly choose a sequence of values for the starting and stopping angles and the

avalanche durations from Gaussian distributions. The signal is then built by adopting a

linear rise at the rotation rate between a given stopping angle and the following starting
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Figure 30. (a) Synthetic time series of the surface angle constructed from random variables rep-
resenting the starting and stopping angles, θstart and θstop, and the duration of the avalanches,
tA. (b) average power spectrum from ten realizations of the synthetic time series, based on
N = 2000 avalanches. θstart and θstop are chosen from Gaussian distributions with means sepa-
rated by 〈∆θ〉 = 4 and standard deviations of 0.5, and ΩtA selected from a Gaussian distribution
with mean 0.05 and standard deviation 0.0125.

angle, then inserting a linear collapse of duration tA to the next stopping angle. The time

series for a realization of N avalanches can be used to compute spectra, as illustrated in

figure 30(b), either by exploiting a fast Fourier transform or by explicitly evaluating the

coefficients of its Fourier series.

The mean and standard deviation of the signal of θ(t) can be computed analytically

in terms of the statistics of the random variables, after evaluating the time integrals and

replacing the sum over avalanches by expectations. One finds

〈θ(t)〉 =
1

2
〈θstart + θstop〉

[
1 +

σ2
start − σ2

stop

〈θstart + θstop〉〈θstart − θstop + ΩtA〉

]
(C 1)

and

σ2 =
1

12
〈θstart−θstop〉2+

1

2
(σ2

start+σ
2
stop)

〈θstart − θstop + 2
3ΩtA〉

〈θstart − θstop + ΩtA〉
− (σ2

start − σ2
stop)2

4〈θstart − θstop + ΩtA〉2
.

(C 2)

Appendix D. Additional results
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Figure 31. Repeated sweeps conducted with a fresh sample of 1 mm spheres in a drum with
(D,W ) = (287, 110)mm, showing (a) the secular decrease of the mean surface angle 〈θ(t)〉, (b)
the standard deviation σ, and (c) the distance skewness Dskew. The repeated sweeps are shown
by lines (in the up/down repeated sequence dots/solid, solid, dots/dashed, dashed, dots/dotted,
dotted); the angle change is over twice that for d = 3mm shown in figure 1 of the main text.
The circles and crosses show two up-down sweeps for spheres that were matured as follows: the
spheres were aged in a first burn-in run, then removed from the drum and washed, and finally
aged in a burn-in run (see figure 32). The slumping-to-rolling transition then becomes more
robust but the results are still not especially reproducible, with significant discrepancies arising
between the two batches of similarly prepared particles.

Figure 32. Burn-in runs, showing the drift of the surface angle at fixed speed (0.4 rad/sec) for
the glass spheres indicated in the (D,W ) = (287, 110)mm drum. The upward shift of the mean
angle is evident for the spheres with diameter d > 2 mm. For d = 2 mm, there is barely any drift;
the 1.5 and 1 mm particles both drift downward. For 1.5 mm and 1mm spheres, the material
is washed after the first burn, and then aged a second time. For the 1.5 mm, the washing of
the particles reverses the sense of the drift during the second burn-in, with the mean angle
then increasing. To display the data without any overlap, some of the time traces are shifted
horizontally.
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Figure 33. Histograms of the relative starting and stopping positions of avalanches down the
granular surface (defined so that 0 refers to the top of the inclined surface and 1 to the bottom
in the image taken by the video camera) for d = 2 mm glass spheres and sand in the drum with
D = 137 mm and the widths indicated. The position is determined by locating the pixels of the
first or last coherent motions away from rigid rotation (discarding individual grain motion), or
by taking the average of such positions if multiple locations are indistinguishable.
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Figure 34. Dskew plotted against Ω/Ωc for (a) d = 3 mm and (b) d = 2 mm spheres from the
larger drum (D = 289 mm), with the different symbols corresponding to the widths indicated. As
in figure 6, Ωc is the interpolated rotation rate for which Dskew = Dcrit = 0.02 (this threshold
is also indicated). The diagnostic increases more sharply in the narrower drums than the wider
ones as episodic avalanching commences; the dashed lines show the fits, Dskew ∝ (1 − Ω/Ωc)
and Dskew ∝ (1− Ω/Ωc)

3/2. Note that the observed Dskew do not abruptly reduce to zero but
trail off gradually as one passes through Ω = Ωc, much as in an imperfect bifurcation.
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and the widths and rotation rates indicated. The final panel compares the distributions for
(D,W ) = (287, 110)mm; the dots show the average over the slumping regime.
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Figure 36. (a) Avalanche amplitude distributions for (d,D) = (3, 287)mm and W = 17, 31, 56,
110 amd 205mm (as shown in figure 10). (b) The mean and standard deviation of the distribution
as a function of d/D; grey points show the raw data, the darker (red and blue) points after the
drum width dependence is removed using a linear fit with d/W . (c)–(d) The standard deviation
of the θstart and θstop distributions. Std(θstop) shows no significant dependence on drum width;
the drum width dependence of Std(∆θ) therefore originates purely from that of θstart.
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Figure 37. Correlation coefficients between θstart and the following θstop (blue) and the previous
θstop (red) plotted against Ω for (a) 3 mm spheres and (b) sand in the big drum. Each data
point is averaged over all experiments at the same rotation rate; for the hysteretic sand data,
the averages are taken only over experiments with the same phase. The symbols refer to drum
width, as indicated. The panels on the left show averages for Ω < 0.01, plotted against W , In
(a), the vertical dotted and dashed lines indicate the upper and lower edges of the transition
region, ignoring the weak width-dependence.
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Figure 38. (a) Dskew and (d) σ for sand, scaled as indicated and plotted against Fr(D/d), which
collapses the data close to a common curve. Each data point is an average over all experiments
with the same (Ω, D,W ) and phase (episodic avalanching or continuous flow), and the points
are colour coded according to drum diameter (red for D = 100mm and blue for D = 287mm).
The plot conveys the impression that statistics of episodic avalanching are largely independent
of W , but the transition to continuous flow takes place at a width-dependent Froude number.
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Figure 39. (a) Avalanche amplitude distributions for sand in the drum with varying D and
W = 110mm. The mean and standard deviation of these distributions are plotted in (b) and (c),
respectively. The distributions, means and standard deviations show no clear trend with drum
width, unlike the glass spheres (cf. figure 36).
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Figure 40. Median avalanche times, scaled by
√
g/D, against Froude number for sand. The

dashed line is the linear fit to the (D,W ) = (287, 110) mm data used in figure 26.


