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AB S TRACT

The excitation of spiral waves by an external perturbation in a disc deposits angular

momentum in the vicinity of the corotation resonance (the radius where the speed of a

rotating pattern matches the local rotation rate). We use matched asymptotic expansions to

derive a reduced model that captures non-linear dynamics of the resulting torque and fluid

motions. The model is similar to that derived for forced Rossby wave critical layers in

geophysical fluid dynamics. Using the model we explore the saturation of the corotation

torque, which occurs when the background potential (specific) vorticity is redistributed by the

disturbance. We also consider the effects of dissipation. If there is a radial transport of

potential vorticity, the corotation torque does not saturate. The main application is to the

creation, growth and migration of protoplanets within discs like the primordial solar nebula.

The disturbance also nucleates vortices in the vicinity of corotation, which may spark further

epochs of planet formation.
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1 THE ASTROPHYSICAL PROBLEM

External perturbations generate disturbances in discs that take the form of spiral waves. These waves can transfer angular momentum and

may therefore play an important role in shaping the disc itself. Moreover, the angular momentum transfer exerts a torque on the perturber that

can cause the orbital migration of this object. As a result, it has been suggested that the dynamics of disturbed discs are relevant to how

satellite galaxies might drive spiral structure (Goldreich & Tremaine 1979), to how planetary rings may be sculpted by moons (Goldreich &

Tremaine 1980) and to accretion flow in circumstellar discs with binary companions (Lin & Papaloizou 1979). More recent applications

extend beyond discs: the interaction of binary stars can be mediated by wave generation, leading to orbital circularization and

synchronization (Goldreich & Nicholson 1989). However, the original theory has lately been brought back into prominence as a result of

recent observations of extrasolar planets (Mayor & Queloz 1995), which has raised questions over the evolution of protoplanets inside discs,

such as how Jupiter-sized objects could occur in relatively tight orbits.

In a fluid disc, angular momentum is deposited where the excited spiral waves are dissipated or at the ‘corotation resonance’, the radius

for which the speed of a rigidly rotating spiral pattern matches the local fluid rotation rate. In the inviscid fluid equations, this radius appears

as a singular point in linear theory (that is, for disturbances of infinitesimal amplitude); it is the analogue of the ‘disturbing singularity’ noted

by Kelvin and now known as the ‘critical level’ in fluid mechanics. Though the singularity is an artefact of linear theory, the apparent

divergence reflects how the region surrounding the critical level (the ‘critical layer’) is the site of enhanced fluid dynamical activity. By

analogy, we should therefore expect that, in the slender annulus surrounding corotation, the fluid motions generated by external perturbations

are especially strong and non-linear effects cannot be neglected there.

The theory of the torques exerted by evolving disturbances of infinitesimal amplitude and short radial wavelength was originally

sketched out by Goldreich & Tremaine (1979) and Lin & Papaloizou (1979), and was subsequently elaborated upon by other authors

(Papaloizou & Lin 1984; Ward 1989; Artymowicz 1993; Korycansky & Pollack 1993). More recently, numerical simulations have gone some

way to extend the results into the non-linear regime (Lin & Papaloizou 1986; Korycansky & Papaloizou 1995; Papaloizou, Korycansky &

Terquem 1995; Bryden et al. 1999; Miyoshi et al. 1999). Our aim in the current work is to explore the non-linear problem in more detail.

Specifically, we provide some analytical and numerical results that complement and extend existing theory.
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Mathematically, there is a close relation of the current problem to that formulated in geophysical fluid mechanics to study the critical

layers of forced Rossby waves, a problem of notable importance to mixing in the atmosphere (Stewartson 1978; Warn & Warn 1978;

Killworth &McIntyre 1985). In that subject, modelling has advanced beyond linear theory and has explored the non-linear dynamics in some

detail. Notably, inside the critical layer of the Rossby wave, vortices form that modify the momentum balance and ultimately halt the

absorption of momentum. In the astrophysical context, a parallel result would suggest that the angular momentum deposition predicted by

linear theory is purely a transient. In other words, the corotation torque saturates through non-linear effects. Here we derive such a result using

a similar theoretical analysis to the developments of the geophysical problem.

2 A REDUCED MODEL

2.1 Governing equations

The disc has an equilibrium, axisymmetrical surface density and angular velocity profile, S(r) and V(r), that are maintained by a central

gravitational potential, 2GM*/ r, where G is the gravitational constant and M* is the mass of a central star (r is radius). To generate a

disturbance in the disc, we further include a perturbing object that lies on a circular orbit of radius rc, and has gravitational potential,Fg(r,u),

stemming from a point mass, Mp. The perturber is relatively small, Mp ! M*, and is assumed not to influence the central star.

We begin the mathematical discussion with the non-linear equations for disturbances of a two-dimensional disc of inviscid,

compressible fluid without self-gravity [we ignore three-dimensional effects, which might be important (Lubow&Ogilvie 1998)]. To prepare

the way for our exploration of the problem, we quote these fluid equations in a dimensionless form in which lengths are measured by the unit

rc, speed by Vc ¼ rcVðrcÞ, time by 1=VðrcÞ, gravitational potential by V2
c and surface density by S(rc). Then, in polar coordinates, the

disturbance velocity ðuðr; u; tÞ; vðr; u; tÞÞ and surface density s(r,u,t) satisfy the equations
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where w ¼ wðsÞ is the enthalpy disturbance (expressed in units of V2
cÞ. By the non-dimensionalization, the perturbing potential can be written

in the form

Fg ¼
X

1

m¼21

Fm eimu; ð4Þ

where

Fm ¼ 2ð12 dm;0/2Þ½bm1=2ðrÞ2 rdm;1�; bm1=2ðrÞ ¼
2
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and becomes multiplied by a factor e 2 ;Mp/M*. In this paper we exploit the mismatch in the masses of the central star and the perturber:

e ! 1. Hence e is a small parameter which we use momentarily to organize an asymptotic expansion.

It is convenient to derive an equation for the potential vorticity (also called vortensity in astrophysics) of the disturbance:

›

›t
1V

›

›u

� �

q1 u
›q

›r
1

v

r

›q

›u
1 u

dQ

dr
¼ 0; ð6Þ

where the total potential vorticity Q1 q is
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We must impose radial boundary conditions on these governing equations. In disc theory, it is customary to imagine that the disturbance

decays once it propagates into the central or peripheral regions of the disc either through non-linear shock formation, or because the disc’s

edges are non-reflective. Thus one applies an outgoing wave condition at some inner and outer radius (Korycansky & Pollack 1993;

Korycansky & Papaloizou 1995). Alternatively, one can impose perfectly reflecting conditions at these radii, such as might arise at a free

boundary where the surface density vanishes. We entertain both possibilities here.

2.2 The regular expansion

The perturbing potential rotates with angular velocity Vc ¼ Vð1Þ ¼ 1. In addition to being weak, we also assume that the strength of the
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perturber, if it develops, does so only slowly, at least on a time-scale of order e 21 or longer: Fg ;Fgðr; u2 t; etÞ. This means that, in the

frame of the perturber, the fluid will also develop slowly. Hence we transform into a corotating frame and introduce a slow time-scale, T ¼ et.

Then, ›=›t !2 ›=›u1 e›=›T .

To solve the equations, we use a matched asymptotic expansion. This begins with a regular perturbation expansion in powers of e. We

introduce the sequences

u ¼ e 2ðu0 1 eu1 1…Þ; v ¼ e 2ðv0 1 ev1 1…Þ; w ¼ e 2ðw0 1 ew1 1…Þ; ð8Þ

and so on. To lowest order,

ðV2 1Þu0u 2 2Vv0 1 ðw0 1FgÞr ¼ 0; ðV2 1Þv0u 1 2Bu0 1
1

r
ðw0 1FgÞu ¼ 0; ð9Þ

rðV2 1Þs0u 1 ðrSu0Þr 1 Sv0u ¼ 0; ðV2 1Þq0u 1 u0Qr ¼ 0: ð10Þ

The potential vorticity is
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where s0 ¼ Sw0/ c
2 and c is the dimensionless sound speed (an inverse Mach number). These are the well-known linearized disc equations

that have been studied many times in the past. By decomposing each variable into Fourier series in u, the system may be solved for each

Fourier mode separately. We quote the resulting ordinary differential equation for the variable c, defined by

rSu0 ¼ cu ;
m
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where Y ¼ c 2 2 r 2ðV2 1Þ2 and k 2 ¼ 4VB.

Despite the reduction to a linear, ordinary differential equation, there is a problem lurking in the leading-order solution: The equation

has a singular point at corotation where Frobenius analysis indicates that there is a regular and a singular solution. The former is of the form

cm , ðr 2 1Þ as r ! 1. However, this regular solution does not, in general, satisfy the boundary conditions. Thus our leading-order solution

must contain the second Frobenius solution and therefore be irregular at corotation; this problematic feature is the analogue of Kelvin’s

disturbing singularity.

The singular Frobenius solution has the form

cm , 11
Q 0

c

V 0
c

ðr 2 1Þ logjr 2 1j; ð14Þ

which signifies that q0 , ðr 2 1Þ21. Worse still, the situation is aggravated at higher order where a continuation of the expansion shows that

q1 , ðr 2 1Þ22. Thus, near corotation the asymptotic expansion seriously breaks down. In particular, for r 2 1 , OðeÞ, the asymptotic

sequence of terms becomes disordered. This signifies an inner region, a slender annulus surrounding corotation, in which we must search for

another solution. This inner solution accounts explicitly for the detailed dynamics of corotation.

Because the gravitational potential of a point mass is logarithmically singular, there can be a further source of irregularity in the outer

equations. It is, however, straightforward to show that this singularity is weaker. More specifically, we may take the particular solution

stemming from this singular inhomogeneous term to have the form c , ðr 2 1Þ2 logjr 2 1j. Though this is important for the detailed outer

solution, given next, it does not affect the structure of the asymptotic expansion.

2.3 Construction of the outer solution

Although there is a critical, annular region around corotation, we must still solve the leading-order equations in the remainder of the disc.

Motivated by the form of the Frobenius solution, we take cm to be continuous across r ¼ 1. However, because the radial derivative is singular,

it is not possible to enforce continuity on dcm/dr. Thus, we must allow a jump in dcm/d r, or equivalently v0 across corotation. This jump is

actually determined by what happens inside the critical region; in effect, the perturber generates what appears to be a ring-like source of

potential vorticity at r ¼ 1, which sheds spiral waves into the outer regions.

Practically, we solve the outer equations numerically using the shooting method described by Korycansky & Pollack (1993). In this

method, the integration of the equations for each value of m begins from a position close to corotation; we integrate three distinct

(dimensionless) solutions for cm, two homogeneous solutions, uam and ubm, and a particular solution, upm, using the initial conditions

uam !csðrÞ; uamð1Þ ¼ 1; ubm ¼ 0;
dubm
dr

¼ 1; and upm ¼ dupm
dr

¼ 0: ð15Þ
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Thus uam matches on to the singular Frobenius solution at corotation and is scaled to unit amplitude there, ubm limits to the regular solution, and

the particular solution has the leading-order behaviour upm , ðr 2 1Þ2 logjr2 1j. A typical set of solutions for u is shown in Fig. 1.

Given uam, u
b
m and upm, we construct a general solution

cmðrÞ ¼ Cmu
a
mðrÞ1 J^mu

b
mðrÞ1 upmðrÞ; ð16Þ

where the ^ refer to inside and outside corotation. With this construction, cm(r) contains a jump in the regular part of its derivative of

ðJ1m 2 J2m Þ, and cmð1Þ ¼ Cm.

The boundary conditions at the inner and outer radii, ri and ro respectively, can be written in the form

d
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d

dr
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mcmðroÞ ¼ 0; ð17Þ

where Ci;o
m are constants depending on the equilibrium disc structure. The coefficients are derived from a match to a second-order WKB

solution as used by Korycansky & Papaloizou (1995).
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We rearrange these expressions into the formula
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with

U
i;o
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U
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Thus, the outer solutions yield the Rm and Fm coefficients for use in the inner solution as described below.

2.4 The critical region

To resolve the inner region we introduce a stretched inner coordinate Y ¼ ðr 2 1Þ/e and time variable T : ›=›t ! 2 ›=›u1 e›=›T . We

further set

u ¼ e 2UðY ; u;TÞ; v ¼ e 2VðY ; u; TÞ; s ¼ e 2SðY ; u; TÞ; w1Fg ¼ e 2WðY ; u; TÞ; q ¼ ezðY ; u; TÞ: ð24Þ

Figure 1. The dimensionless outer solutions uam, u
b
m and upm for m ¼ 10 and sound speed c ¼ 1021:5. The potential is softened with a length rp ¼ 1024 to ease

calculation; the softening is not essential. The inner boundary is ri ¼ 0:5 and the outer boundary is ro ¼ 1:5.
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Equations (1–3) and (6) are now
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in which V2 1 ¼ Vð11 eYÞ2 1 < eYV0ð1Þ, Q ¼ Qð11 eYÞ and S ¼ Sð11 eYÞ. Therefore, to leading order,
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where the subscript ‘c’ indicates the value of the equilibrium variable at corotation ðr ¼ 1Þ. These relations imply that U and W are

independent of Y (and so they can be taken to be the leading terms of the Taylor expansion of the outer solutions, u0 and w0, at r ¼ 1Þ.
Also to leading order, the potential vorticity equation becomes

zT 1V0
cYzu 1 UzY 1 UQ0

c ¼ 0: ð30Þ

Finally, from the definition of q in equation (7), we have

z ¼ ›V

›Y
ð31Þ

to e 2. The critical region potential vorticity equation (30) is fully non-linear; the only simplification in the equation is the replacement of the

non-linear advection term by one stemming from a streamfunction variable that does not depend on the coordinate Y. As in the Rossby wave

critical layer problem this is one of the few simplifications that one can make in order to incorporate fully the physics of the critical region.

2.5 Matching

The outer and inner expansions provide the asymptotic solutions in the bulk of the disc and inside the critical region. These solutions must be

matched to determine the complete solution, which amounts to equating the two asymptotic sequences over an intermediate matching region.

This matching region is defined by 1 @ r 2 1 ¼ d @ e and e21
@ D ¼ ðr 2 1Þ/e @ 1 (so that d ¼ eDÞ.

In the matching region, the outer solution is given by the Frobenius solutions:

c ,
X

1

m¼0

Cm 11
Q0

c

V0
c

d logjdj
� �

1 J^md

� �

eimu: ð32Þ

Hence,

u , e 2
X

1

m¼1

imCm eimu; w1Fg , 2e 2Qc

X

1

m¼1

Cm eimu; ð33Þ

v , e 2
X

1

m¼1

J^m 2
Q0

c

V0
c

Cmð11 logjdjÞ
� �

eimu ð34Þ

and

q , 2
e 2

d

X

1

m¼1

Q0
c

V0
c

Cm eimu: ð35Þ

The inner solution, on the other hand, becomes

u , e 2U; w1Fg , e 2W ; v ,
1
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z dY ; ð36Þ

and (by taking the leading-order balance in the critical region potential vorticity equation for large Y)
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Non-linear dynamics of corotation torque 837

q 2001 RAS, MNRAS 326, 833–851



The matching of u, W and q is straightforward and implies that

U ¼
X

1

m¼1

imCm eimu ;Cu: ð38Þ

Next we must match v. However, the logarithmic terms in the outer solution uncover a technical point that we have until now ignored: In

principle, to match the inner and outer forms for v, we should include log e terms in the inner asymptotic sequences. In fact, this technicality

merely complicates the expansion without adding any important details, and may be avoided by matching the jump in v symmetrically across

the critical region – that is, by equating ½v�11d
12d with ½V�D

2D. The logarithmic terms of the outer solution then cancel, leaving
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2p
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Lastly, in the asymptotic scheme, e ! 0 and so we may take D !1. Hence,

J1m 2 J2m ¼ ke2 imuzl where kxl ¼ 1

2p

ð2p

0
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1

21

xðY ; uÞ dY du; ð41Þ

in which we must be careful to interpret the logarithmic divergence of the integral at the upper and lower limits (where z , Y 21Þ in terms of a

principal value. Together with the critical region potential vorticity equation, this relation is all we need to close the system of equations

because the outer solution provides the relation between J1m 2 J2m and Cm, giving:

Cm ¼ Fm 1 Rmke
2 imuzl: ð42Þ

2.6 Canonical system

We now scale the equations to place them in a convenient form. Let

Y ¼ 1
ffiffiffiffiffiffiffiffiffi

jV0
cj

p

~Y; z ¼ ~z
ffiffiffiffiffiffiffiffiffi

jV0
cj

q

and T ¼ 1
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Then, after various algebraic manipulations (and dropping the tilde decoration), we arrive at the reduced model:

zT 1 Yzu 2CuzY 1 bCu ¼ 0 and Cm ¼ Fm 1 Rm

ð

1

21

zmðY ;TÞ dY ; ð44Þ

where

b ¼ Q0
c

jV0
cj

ð45Þ

is a measure of the potential vorticity gradient; for an undisturbed disc with constant surface density in a state of Keplerian rotation, b ¼ 1=3.

This model system describes how a global wave pattern is excited by the perturber, how the waves then advect and twist up the potential

vorticity near corotation, and how this in turn affects the wave generation. The model system is similar to those derived for the forced Rossby

wave critical layer problem (Stewartson 1978; Warn & Warn 1978).

Note that the magnitude of the perturbing potential does not appear in the final model equations; the only parameters are b, Fm and Rm,

which depend on the disc structure. The mass of the perturber enters the problem through the small parameter e, and once we are done with

the formal expansion, this quantity is needed only to reconstruct the original field variables. Moreover, the reduced model has the property

that the transformation, T ! T/a, Y ! aY andCm ! a 2Cm, leaves the equations invariant, but for the replacement Fm !Fm/ a
2. Thus, we can

always rescale the coefficients Fm for any disc model or, equivalently, fix the size of the domain in Ywe require for computations with the model.

For practical purposes, we select disc models with constant surface density, Keplerian rotation and absorbing edges. The only remaining

disc parameters are then the disc’s inner and outer radii, and the sound speed c. Table 1 and Fig. 2 review some specific values and properties

of the coefficients Fm (assumed constant in time) and Rm, for disc models of this kind. The inner disc radius is at 0.5, and the outer radius is

1.5, but changes in the locations of these edges lead to insignificant differences in Rm and Fm, indicating that these variables are not important.

The effect of the sound speed, however, is more significant. From the table and figure we observe that the real parts of the coefficients

Rmr , 21=ð2mÞ and Fmr , logðmÞ=ðm 2c 2Þ for m @ 1, and that (approximately) Rmr ! 2 2c and Fmr ! constant for m ! 1. These properties

are expected from the short-wavelength arguments given in Appendix A. The imaginary parts of the coefficients have a more complicated

dependence onm, but they are also much smaller. As indicated below, the quantities Rmi and Fmimeasure the amount of wave leakage through

the boundaries; for discs with reflective boundaries, Rmi ¼ Fmi ¼ 0.
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It is also informative to consider the shape of the function FðuÞ;
m

P

Fm eimu, which is illustrated in Fig. 3 for the three disc models. This

function describes how the perturber forces the global streamfunction in the absence of any feedback from the critical region. As shown by

Fig. 3, this ‘perturbing potential’ has a flat well and peaks at the position of the perturber. The sharpness of the peaks is controlled by the

sound speed, which is the key effect of this variable.

3 INVISCID LINEAR THEORY

We begin our discussion of the reduced model by looking into the linear dynamics. After dropping the non-linear term and decomposing into

Fourier modes, we find

zmT 1 imzm ¼ 2 imbCm: ð46Þ

Table 1. The coefficients Rm and Fm for two discs with constant surface density and
sound speed c ¼ 1021. The outer solutions are also computed using a standard,
softened potential for the perturber; the potential softening length is rp ¼ 1024. The
softening of the potential makes the computation simpler but is not essential; the final
results are insensitive to the softening length. The inner boundary is ri ¼ 0:5 and the
outer boundary is ro ¼ 1:5.

m Rmr Rmi Fmr Fmi

1 22.2255� 1021 0 4.1736 0
2 21.9541� 1021 2.7213� 1024 2.7416 21.5176� 1022

3 21.6211� 1021 3.0553� 1024 1.7622 22.4319� 1022

4 21.3247� 1021
21.4563� 1023 1.1400 4.1117� 1022

5 21.0952� 1021
21.8579� 1023 7.6471� 1021 4.2458� 1022

10 25.2750� 1022
21.5454� 1023 1.3523� 1021 2.5187� 1022

15 23.3277� 1022
26.7317� 1024 2.5768� 1022 9.5377� 1023

20 22.4342� 1022
22.8121� 1024 1.3725� 1023 3.6876� 1023

30 21.6134� 1022
25.0620� 1025

24.0720� 1023 6.0625� 1024

40 21.2206� 1022
29.0206� 1026

22.4548� 1023 9.9890� 1025

50 29.8418� 1023
21.3146� 1026

21.2739� 1023 1.2222� 1025

100 24.9834� 1023 1.2609� 1028
21.1265� 1024

21.6665� 1027

150 23.3287� 1023 8.4701� 10211
24.2283� 1025

21.0624� 1029

200 22.4981� 1023 4.9936� 10213
22.6022� 1025

26.1473� 10212

300 21.6661� 1023 1.4678� 10217
21.5044� 1025

21.8919� 10216

Figure 2. Plots of the coefficients Rm and Fm for discs with constant surface density and three values of the sound speed. The potential is softened with a length

rp ¼ 1024. The inner boundary is ri ¼ 0:5 and the outer boundary is ro ¼ 1:5.
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With the initial condition, zmðY ; T ¼ 0Þ ¼ 0, this equation has the integral

zm ¼ 2 imb

ðT

0

e2 imYðT2sÞCmðsÞ ds: ð47Þ

Thence,

ð

1

21

zmðY ; TÞ dY ¼ 2 ipbCm sgnðmÞ; ð48Þ

and finally

Cm ¼ Fm

11 ipbRm sgnðmÞ : ð49Þ

Given this solution, from the following equation we may estimate directly the angular momentum deposited over the critical region according

to linear theory:

r 2S

ð

2p

0

uv du

2

4

3

5

11

12

;

ð2p

0

½UV�Y !1

Y !21
du ¼ 22pkCzul ¼

m.0

X 4p2mQ0
c

jV0
cj

jCmj2; ð50Þ

which is equivalent to a formula given by Korycansky & Pollack (1993) and, on using the tight-winding approximation, can be reduced to

Goldreich & Tremaine’s celebrated formula.

4 CONSERVATION LAWS

The reduced model has a number of conservation laws, obtained by taking ‘moments’ of the vorticity equation with respect to Y, C and z:

kzlT ¼ 0; kYzlT ¼ kCzul; ð51Þ

1
2
Y 2

1C
ÿ �

z

 �

T
2 kCTzl ¼ 0 and 1

2
kz 2lT ¼ bkCzul: ð52Þ

These correspond to conservation of potential vorticity, angular momentum, energy and enstrophy within the critical layer. There is also an

infinite number of Casimir invariants, kF ðz1 bYÞl, given by any function F of the total vorticity z1 bY.

The angular momentum (and enstrophy) balance contains the integral kCzul, which is related to the change in the angular momentum

flux across corotation, as in equation (50). We may also use the relation between the vorticity and streamfunction to write:

kCzul ¼
m

X

imFmke
imuzl2 2

m.0

X

mRmijkeimuzlj2 ¼
m

X

im
C*

mFm

Rm

2 2
m.0

X

mRmi

jCmj2

jRmj2
: ð53Þ

Because there are no time derivatives appearing in the outer equations at leading order, over the time-scale on which the vorticity is

rearranged inside the critical region, the outer region is in a quasi-steady balance. Thus, if spiral waves are generated in the main body of the

disc, they propagate to the edge and are absorbed immediately if the edges are non-reflective. This leads to an instantaneous transfer of

angular momentum, which is given by the second term on the right-hand side of equation (53). (Hence, the angular momentum transfer by

free waves is determined by the imaginary part of Rm.)

In linear theory, the angular momentum transfer becomes

kCzul ¼
m.0

X

2pmbjCmj2; ð54Þ

Figure 3. The ‘forcing potential’ for the three discs with constant surface density.
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which is of definite sign (the sign of b). Thus, linear theory predicts that angular momentum is continually absorbed at corotation, and the

total absorption,

M ¼
ðT

0

kCuzl dT ; ð55Þ

increases without bound. By contrast, from equation (51),

M; ½kYzl�T0 : ð56Þ

Hence, provided kYzl does not diverge, and the potential vorticity remains localized to the critical region, kCuzl ! 0 over long times and

angular momentum cannot continue to be absorbed. In this circumstance, the total absorption is finite as T ! 0, and so inviscid linear theory

cannot remain valid indefinitely. In other words, the corotation torque must saturate. [This argument is adapted from a general theorem by

Killworth & McIntyre (1985).]

5 NON-L INEAR DYNAMICS

5.1 The numerical scheme

To explore the non-linear dynamics of excited disturbances, we solve the equations of the reduced model numerically. The scheme is based

on an operator-splitting algorithm proposed by Cheng & Knorr (1976), and is similar to that described by Balmforth, Llewellyn Smith &

Young (2001) and Balmforth & Piccolo (2001). Briefly, the system is evolved using two steps, advection in u followed by advection in Y. The

equations are solved on a finite domain with boundary conditions given by the far-field form of the vorticity [which is also used to provide the

far-field contribution to the integral ke2 imuzl (Haynes 1985)]. For convenience, we rescale the coefficients Fm by a factor of 10 (as described

in Section 2.6), so that the associated potential has order unity values, and use domain sizes in Y of 10 or 20. The code has a resolution of

512 � 1025, and a time-step of 1023 (we checked that the spatial and temporal resolution was adequate).

To introduce the perturbing potential smoothly, we gradually turn on the forcing potential:

Fm ¼ ~Fmð12 e25T 2 Þ; ð57Þ

where F̃m denotes the time-independent disc constants computed from the outer solution of the matched asymptotics. This functional form for

Fm smoothly turns on the perturber over the interval [0,1], and is selected arbitrarily because we do not account for the origin of the perturber.

A further crucial ingredient in the numerical scheme is the addition of explicit dissipation via the terms lzYY and n›8xz. This addition

is not strictly necessary and the inviscid code runs without problems. However, due to the creation of increasingly sharp spatial scales, the

code quickly runs out of resolution whereupon an intrinsic dissipation operates that is difficult to quantify and control. Very roughly, the

intrinsic dissipation is equivalent to explicit viscosities of l , 1027 and n , 10215. The effect of large dissipative terms is explored in

the next section.

5.2 An example

By way of illustration of the non-linear dynamics, we select the constant surface density disc with c ¼ 0:1. Of the three displayed in Fig. 2,

this disc has the least sharp forcing potential (Fig. 3) and is therefore the simplest to deal with from a numerical perspective. We also fix

l ¼ 1026 and n ¼ 3 � 10214. The results are shown pictorially in the sequence of Figs 4–6. We comment later on how the dynamics changes

with sound speed.

Fig. 4 shows the initial development of structure within the critical region as the forcing is turned on. The relatively sharp form of the

potential near the perturber ðu ¼ Y ¼ 0Þ quickly generates a response in the potential vorticity distribution much like the shock structures

seen in other computations (Korycansky & Papaloizou 1996; Bryden et al. 1999). From this response, an extended, elongated vortex rolls up

and begins to circulate around the critical region. This vortex generates a significant feedback on the streamfunctionC(u), and the dynamics

then develops unsteadily.

Shortly after the nucleation of the elongated vortex, narrow filaments form as fluid is drawn past the perturber, which strains and

intensifies them. The filaments subsequently lose stability and begin to roll up into secondary vortices in a process much like the classical

Kelvin–Helmholtz instability (Fig. 5). The secondary vortices then interact with one another and merge. Occasionally, the secondary vortices

undergo a close encounter with the main vortex and are sheared out and cannibalized. This epoch of vortex formation and interaction is very

reminiscent of numerical experiments with two-dimensional turbulence (McWilliams 1990). Overall, the filamentation and twisting up of the

vorticity distribution vigorously stirs the fluid over the critical region.

The roll-up of the filaments is the correspondence in the current problem of the secondary instabilities studied in the forced Rossby wave

critical layer problem (Killworth & McIntyre 1985; Haynes 1985, 1989). In either case, the forced disturbance winds up the vorticity into a

distribution that has the reversals in vorticity gradient required to produce Rayleigh’s classical shear instability. The instabilities typically

take the form of shorter-wavelength perturbations that mix up the vorticity distribution yet further. The complicated fluid dynamics that

results was dubbed ‘critical layer turbulence’ by Haynes (1989).
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Figure 4. Snapshots of the total vorticity, q ¼ z1 by, drawn as densities on the (u,Y ) plane. The snapshots are taken at T ¼ 0:5, 1, 2, 3, 4, 6, 8, 10 and 12. The

shading is given by the key in Fig. 6.

0 2 4 6

2

0

2

Figure 5. A continuation of Fig. 4, showing an epoch of secondary instability and vortex formation. The snapshots are taken at T ¼ 16, 17, 18, 19, 20, 22, 24,

26 and 30. The shading is given by the key in Fig. 6.

0 2 4 6

2

0

2
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Evolution over longer time-scales is displayed in Fig. 6. The filamentation of the vorticity continues, and vortices are again generated

and interact. However, the sharpness of the filaments gradually degrades as the scales in the critical region decrease to the viscous scales. In

other words, after a period, the simulation enters a regime of significant dissipation wherein further filamentation and vortex formation is

impeded. The distribution then evolves to a smoother state, although the primary vortex maintains its identity over the entire simulation.

Given higher resolution (and reduced values for the viscous coefficients), the unsteady complicated dynamics would presumably continue for

longer.

Further details of the solution are shown in Fig. 7. Panel (a) displays regularly spaced snapshots of the streamfunction, C(u). As the

primary vortex circulates around the critical region, the wide, flat ‘floor’ of the streamfunction tilts back and forth. The titling is at least

Figure 6. A longer-time continuation of Figs 4 and 5. The snapshots are taken at T ¼ 40, 50, 60, 70, 80 and 100. The shading is given by the key.

0 2 4 6

2

0

2

1.5 1 0.5 0 0.5 1

Figure 7. Further details of the solution. (a) Snapshots of the streamfunction C(u ) at times T ¼ 10j for j ¼ 1; 2;…; 10. Each curve is offset by 0.5 for clarity.

(b) The total streamfunction, CðuÞ1 Y 2/2, at T ¼ 100.
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partially responsible for drawing the filaments of fluid past the perturber. Also shown in Fig. 7(b) is the final, total streamfunction

CðuÞ1 Y 2/2. In a steady situation, the shape of this function shows the phase portrait of the motion of fluid elements. Although the fluid here

is not steady, the contours of constant CðuÞ1 Y 2/2 provide some rationalization for the structure that develops inside the critical region.

The history of the angular momentum flux into the critical region, kCuzl, and the absorption, M(T), during the simulation are shown in

Fig. 8. As anticipated by the arguments of Section 4, there is initially a flux into the region approximately given by the linear theory, but this

flux does not continue indefinitely. Instead, the flux declines and oscillates erratically about zero, signifying an alternating sequence of

angular momentum absorption and emission. As a result, the absorption, M(T), remains bounded as T !1.

The oscillations in the angular momentum flux are closely connected to the circulation of the primary vortex within the critical region,

and, like that vortical structure, show little sign of decay. It seems entirely possible that the vortex and oscillations persist indefinitely, and so

the critical region never settles down to a steady state. Dissipation, however, may eventually take its toll.

The net effect of the rearrangement of the potential vorticity on the mean profile within the critical region is shown in Fig. 9. This

illustrates how the disturbance mixes and flattens the total potential vorticity over this region. It is partly as a result of this effect that the

angular momentum flux into the critical region declines: the fluid can only absorb angular momentum at corotation provided there is an

effective potential vorticity gradient there. Some further properties of the asymptotic, quasi-steady state are described in Appendix B.

Figure 8. (a) The history of the angular momentum flux into the critical region, as measured by kCuzl. (b) The absorption, M(T ). Also plotted are the results

predicted by the exact linear theory (dotted curves), and by a ‘pseudo-linear theory’ in which we evaluate the integral kz eimul according to linear theory, giving

m

P

4p2mQ 0
cjCmj2/ jV 0

cj, but then use the non-linearly evolved streamfunction components, Cm(T ) (dashed curves).

Figure 9. The azimuthally averaged potential vorticity distribution. (a) Snapshots at intervals of 10 time units. (b) The final mean distribution along with cuts

through q(Y,u,100) at u ¼ 0 and p.
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5.3 Variations

We have also experimented with other choices for the parameters. Several of the features described above appear generic for the disc

response: a large-scale vortex appears and circulates around the critical region; the potential vorticity distribution is stirred and mixed; the

momentum flux declines and then oscillates in tandem with the circulation of the vortex; and the absorption of angular momentum saturates.

Secondary instabilities are also common, although they do not appear in every simulation (see below).

For example, if we artificially set Rmi ¼ Fmi ¼ 0, the results are essentially unchanged. This simulation mimics a disc with reflective

inner and outer edges, and the lack of any change shows how the angular momentum flux through the boundaries has a negligible effect on the

critical layer dynamics [actual solutions of equation (13) with reflective boundary conditions yield real Rm and Fm that are basically the same,

but for sharp peaks in the coefficients related to quantization conditions for resonance with normal modes]. This is not to say that effects of

wave reflection are completely unimportant. In fact, without non-reflective edges, the disc can support unstable normal modes due to the

mechanism of over-reflection (Papaloizou & Pringle 1987; Narayan, Goodman & Goldreich 1987). Such self-amplified waves could, in

principle, grow to sufficient amplitude to dominate the disc’s dynamics and control the redistribution of material and angular momentum. The

main effect of the boundary conditions at the disc’s edges is therefore to eliminate these modes.

Another potentially important variable is the time-scale over which the perturber is turned on. To gauge its effect, we ran several

computations with turn-on times as low as 1/2 and as large as 20. In none of the cases was there a qualitative change in the dynamics, although

there appeared to be a greater degree of secondary instability when the perturber was turned on more slowly. The insensitivity to the turn-on

time can be understood on referring back to the scaling transformation mentioned earlier ðT ! T/a, Y ! aY , Cm ! a 2Cm, Fm !Fm/a
2Þ.

This scaling indicates that, provided the disc response remains unimportant, a given instantaneous perturber amplitude corresponds to a

certain disc time-scale (and critical region thickness). This intrinsic time-scale is infinite when the perturber’s mass is zero, but decreases as

the perturber is turned on (for the final amplitude of the perturber used in the simulations, the corresponding disc time-scale is about 6, so the

range of simulations span cases with relatively short and long turn-on times). Thus there is an initial period over which the strength of the

perturber grows more quickly than the disc can respond, however the perturber is introduced. Thereafter, if the perturber grows relatively

rapidly, the disc response is always relatively slow, and so the turn-on is effectively instantaneous. If the turn-on time is slower, however, there

is a later stage in which the perturber grows more slowly than the disc responds. In this instance, the disc can evolve into a quasi-steady state

whilst the perturber continues to grow, but the flow structure formed in the early stages will not change dramatically from then on. (The latter

situation is perhaps more analogous to planet formation because the accretion time-scales of planetary cores are extremely long compared to

Keplerian circulation periods.) Nevertheless, in both cases, the evolution begins with a growing perturber and ineffectual disc response, a

phase that continues until either the perturber is fully turned on, or the disc begins to respond more quickly. At that stage, the disc responds as

though the perturber was suddenly turned on with a certain size, and the history of the perturber is unimportant. Thus, we expect (in the

absence of other factors such as dissipation) that the flow characteristics should be relatively insensitive to the perturber’s growth time once

we factor out any change in scale.

The most significant variable appears to be the sound speed of the undisturbed disc, which controls the sharpness of the forcing potential

(see Fig. 3). As a result, in discs with lower sound speed, the primary vortex has a much more elongated appearance, and spiral filaments of

vorticity form that become tightly wound as time proceeds – see Fig. 10. These filaments are strongly strained by passage near the perturber,

and presumably as a result do not suffer any secondary instability as in the disc with higher sound speed. It is not clear that the filaments

would remain stable if the dissipation were less; further experimentation suggested that secondary instability might eventually occur.

However, secondary instability does not always occur in the forced Rossby wave critical layer problem either (Haynes 1985).

6 D ISS IPATIVE EFFECTS

To regularize the computations described above, we have added dissipation into the reduced model. In principle, such terms ought to result

from the introduction of suitable dissipative terms into the governing equations. For example, if we include viscous stresses in the momentum

equations with a viscosity n ¼ e 3n3, the regularizing radial diffusion, lzYY, is the leading-order descendant in the reduced model. In this

section, we explore the effect of varying the coefficient, l. The hyperdiffusion in u is harder to justify from first principles, and so we keep it

chiefly as a numerical device to ensure that the vorticity does not develop too sharp an azimuthal gradient and remains resolved.

The angular momentum flux and absorption for computational runs with different values for l are shown in Fig. 11. The increased

dissipation acts to remove the persistent oscillations observed in the flux for smaller l. This is connected to the smoothing of the vortical

structures that generate those oscillations. As a result, the vorticity distribution inside the critical region becomes featureless, as shown in

Fig. 12 for l ¼ 1023. At this stage, asymptotic arguments (Appendix B.1) indicate that the total vorticity q should become a function of the

total streamfunction, F ¼ C1 Y 2/2, which is, indeed, observable in Fig. 12.

The viscous runs also do not show a saturation of the absorbed flux. This is somewhat surprising because, when we add radial viscosity

to the reduced model, the momentum conservation laws are not altered (the angular momentum balance remains kYzlT ¼ kCuzlÞ. Therefore,
the arguments of Section 4 remain valid even in the dissipative problem, and so the corotation torque should again saturate when l – 0, in

contrast to the numerical results. In fact, the larger the viscosity, the greater the absorption, M(T). The apparent contradiction arises because

the viscosity induces a radial diffusion of vorticity out of the critical region (Brown & Stewartson 1978). As a result, kYzl no longer remains

bounded, even though the total potential vorticity is fixed. We see this effect especially transparently in the limit of large l, which we explore
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in Appendix B.2. In fact, the arguments indicate that the critical layer vorticity always spreads whenever l is non-zero, and so the angular

momentum flux into the critical region is always finite in the dissipative problem (though small when l ! 1, see Appendix B.1).

7 F INAL COMMENTS

A major question we have addressed in this paper is how non-linear effects influence the torque exerted at corotation by a perturbing

potential. In this regard, we have been guided by a related problem in geophysical fluid dynamics pertaining to the critical layers of forced

Rossby waves. In the related geophysical problem, it is found that wave action is initially absorbed in the critical region, but, as the vorticity

distribution locally turns over there in response, the absorption declines and saturates, in contrast to linear theory. Here, we have verified that

one can paint a similar picture for the astrophysical problem.

The possibility that the corotation torque can saturate has been discussed previously in astrophysics (Goldreich & Tremaine 1981; Ward

1989), in terms of the idea that the absorption of angular momentum creates librating particles near corotation. No torque can be exerted on

such librating particles, which are analogous to fluid elements circulating on closed streamlines within the critical region in the image

proposed here. In fact, using the conservation laws of the governing equations, it is possible to establish rigorously that the corotation torque

must saturate in inviscid discs.

We have further explored dissipative effects on the non-linear dynamics. Provided such effects produce a radial transport of vorticity out

Figure 10.A time sequence showing the twist-up of the potential vorticity distribution in a disc with c ¼ 1023=2. The times of the snapshots are 10 to 80 in steps

of 10, and then finally 100. The colour scheme is given by the key of Fig. 6. The lowest panel shows the history of the angular momentum flux, kCuzl.
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Figure 11. Angular momentum flux into the critical region for runs with different radial viscosities, l.
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Figure 12. (a) The azimuthally averaged potential vorticity distribution for the run with l ¼ 1023. (b) The final mean distribution along with cuts through

q(Y,u, 100) at u ¼ 0 and p. (c) The vorticity distribution as a whole. (d) The values of (F, q) from points taken over the domain, which collapse closely on to a

multi-branched curve.
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of the critical region, the dissipation halts the saturation of the corotation torque and permits a continued absorption of angular momentum.

Ward (1997) has also suggested that saturation can be avoided if there is significant dissipation in the disc.

A significant limitation of the current study is that we have imposed a perturbation without allowing any feedback of the disc response

on the perturber. In the astrophysical application, the transfer of angular momentum to the disc exacts an equal and opposite reaction on the

perturber, which drifts radially as a result. This effect is missing from our current computations; the perturber’s orbit is fixed. Hence, whilst

our results may still be indicative, we cannot truly address the important astrophysical issues. A future, and more self-consistent, calculation

will include the interaction between the disc and the perturber, and will also model the growth of the planet on a realistic time-scale.

Finally, although the main application of the theory presented here is to planet–disc interactions, it has also been proposed that disc

turbulence generates persistent, large-scale vortices. Moreover, as a result of their ability to concentrate heavy particles suspended in the flow,

these structures may play an important role in planet formation (Barge & Sommeria 1995; Bracco et al. 1999a,b). This idea has been

criticized because it is not clear whether discs can spontaneously generate vortices (Hawley, Balbus & Winters 1999) or whether they can

survive for long periods if formed. However, the current problem highlights the emergence of persistent vortices as a natural fluid mechanical

phenomenon in the vicinity of corotation (at least when dissipation is small). Should these vortices be the setting of the birth of further

protoplanets, the stage is set for interesting orbital dynamics once these objects grow large enough to interact with the parent body.

In conclusion, we stress that the analysis presented here has several advantages over simulations of the full equations for the disc. For

example, the matched asymptotics filters the relatively fast propagation of spiral waves in the bulk of the disc and naturally focuses attention

on the location where most action occurs – the critical region. As a result, we are able to evolve the fluid motions over relatively long time-

scales. Moreover, we place a substantial number of grid points over the special region and resolve the fluid motions in great detail, which

further allows us to access the inviscid limit. Full numerical simulations, on the other hand, are far more dissipative and technically

complicated because of the need to resolve faster time-scales and the entire disc (including the inner and outer edges). Of course, any

asymptotic analysis has limited validity; here, our theory is only applicable to fairly weak external perturbations. Nevertheless, we view the

type of approach taken here to be useful and complementary to the more common approach of full numerical simulation.
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APPENDIX A: ASYMPTOTIC VALUES OF THE TRANSFER FUNCTION

In certain limits of the problem we can analytically construct the transfer function, Rm, and the forcing, Fm. The essential detail that facilitates

the construction is that in these limits the particular solution becomes a slowly decaying function with radius, but the homogeneous solutions

vary exponentially quickly. As a result, inside the evanescent region surrounding corotation, the homogeneous solutions take the form

cm ¼ exp½^Kmðr 2 1Þ�, and the corotation singularity only appears at higher order. Consequently, the relevant homogeneous solution that

satisfies the boundary conditions is

cm , expð2Kmjr 2 1jÞ; ðA1Þ

the exponential decay away from corotation is sufficient to match the boundary conditions to leading order, independently of the detailed

propagation characteristics in the regions beyond the evanescent zone. Hence, for d ! 0,

½cmr�11d
12d , 22Kmcmð1Þ: ðA2Þ

For simplicity, we sketch out the details of two special limits for a disc with constant surface density.

A1 Large m

When m @ 1, the equation for cm becomes

1

r

d

dr

rc 2

Y

dcm

dr

� �

2
m 2

r 2
cm ,

S2
QFm

Y
1

S

r

d

dr

r 2ðV2 1ÞFm

Y

� �

: ðA3Þ

Now, Fm < pm logjr 2 1j1 qm near r ¼ 1, where pm ¼ 22=p and qm ¼ ð2=pÞ½g2 lnðm/2Þ�, and g is Euler’s constant (Goldreich &

Tremaine 1980). For a disc with constant surface density in Keplerian rotation the (scaled or dimensionless) asymptotic solution near r ¼ 1 is

cm ¼ Cm e2mjr21j
1

3qm

2m 2c 2
ð12 e2mjr21jÞ: ðA4Þ

Hence

J1m 2 J2m ¼ 22m Cm 2
3qm

2m 2c 2

� �

; ðA5Þ

or

Cm ¼ 3qm

2m 2c 2
2

1

2m
ðJ1m 2 J2m Þ: ðA6Þ

A2 Tight-winding approximation

When c ! 0, we use an alternative equation for the variable, wm ¼ wm 1Fm :

d2wm

dr 2
1

d

dr
ln

rS

D

� �� �

dwm

dr
1

2V

rðV2 1Þ
d

dr
ln

SV

D

� �

2
m 2

r 2
1

D

c 2

� �

wm ¼ D

c 2
Fm; ðA7Þ

where D ¼ m 2ðV2VcÞ2 2 k 2. Near corotation,

d2wm

dr 2
2

k 2

c 2
wm ¼ 2

k 2

c 2
Fm: ðA8Þ

Hence,

wm , Pm e2jr21j/ c
1 ðqm 2

3
2
pmÞð12 e2jr21Þj/cÞ; ðA9Þ

and so, for r ! 1,

Pm ¼ qm 2
3
2
pm 2

1
2
c½wmr�11d

12d: ðA10Þ

Finally, since cm ¼ 22wm and cmr ¼ 2wmr/2 near corotation [from SðQcm 1 wmÞ < ðV2 1Þcmr�,

Cm ¼ 3pm 2 2qm 2 2cðJ1m 2 J2m Þ: ðA11Þ
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APPENDIX B : L IMITS OF THE DISS IPATIVE PROBLEM

In this Appendix we consider the reduced model with a radial viscous stress:

zT 1 Yzu 2FuzY 1 bCu ¼ lzYY : ðB1Þ

B1 The quasi-steady critical region

The numerical solutions presented in the main text illustrate how the vorticity distribution approaches a steady state over long times. If the

viscosity is relatively weak, we can construct this state analytically by perturbation theory. After discarding the time derivative, switching to

the total vorticity, q ¼ z2 bY , and introducing the coordinate transformation, ðY ; uÞ ! ðF; uÞ, where F ¼ C1 Y 2/2 denotes the total

streamfunction, we arrive at another version of the vorticity equation:

qu ¼ lðYqFÞF: ðB2Þ

The left-hand term of this equation is small to leading order, and so q < QðFÞ, where Q(F) is to be determined. In other words, the action of

the advection of the flow is to mix the vorticity distribution along streamlines; the viscous diffusion across these streamlines is slower and

captured by the next-order terms. The streamline pattern shown in Fig. 7 is typical.

To find the function Q(F), we average (B2) over each streamline. Equivalently, we integrate equation (B2) with respect to u; if the

streamline is open, we integrate over [0,2p], and if it is one of the closed streamlines, we integrate around the contour (see Fig. 7). The right-

hand side then vanishes, leaving

d

dF
IðFÞ dq

dF

� �

¼ 0; IðFÞ ¼
ð

C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðF2CÞ
p

du; ðB3Þ

where C denotes the relevant integration range.

To leading order, we may therefore write

Q ¼ Ka
1

ðF

FS

dF0

IðF0Þ1 Ka
2 ; ðB4Þ

where we fix the lower limit of integration, FS, to be the value of the total streamfunction on the separatrices that divide the regions of open

streamlines from the closed streamline region ðFS ;CmaxÞ. The integration constants, Ka
1 and K

a
2 , need not have the same values in these two

regions (hence we add the superscript a to distinguish them). However, the vorticity is continuous across the separatrices (Brown &

Stewartson 1978) and must be antisymmetrical in Y (F is even in Y). Hence Ka
1 ¼ Ka

2 ¼ 0 inside the closed streamline region, and Ka
2 ¼ 0

outside, giving

Q ¼
Ka

1

ÐF

FS
dF0/ IðF0Þ for F . FS;

0 for F # FS:

8

<

:

ðB5Þ

Finally, the boundary conditions require that q ! 2 bY for Y ! ^1. This determines the remaining constants: Ka
1 ¼ 22pb sgnðYÞ.

Although we apply the boundary condition to determine Ka
1 in the open streamline region, the resulting solution does not actually satisfy

the true boundary condition, z ! 0 as Y ! ^1. In fact,

z ! ^ b
ffiffiffiffiffiffiffiffiffi

2FS

p

2

ð

1

FS

2p

IðFÞ2
1
ffiffiffiffiffiffiffi

2F
p

� �

dF

8

>

<

>

:

9

>

=

>

;

; ðB6Þ

which is certainly not zero. This feature of the solution arises because the radial viscosity causes the vorticity inside the critical region to

spread outwards (Brown & Stewartson 1978). This creates an expanding diffusion layer of the kind considered in the second half of this

Appendix. In the outer diffusion layer, the vorticity is brought back to zero, but the solution develops a vorticity jump across the inner parts of

the critical region.

There is a notable consequence of the development of the vorticity jump: In a quasi-steady state, the angular momentum balance within

the critical region is now replaced by

kCuzl ¼ 2l½z�1
21

; 2lb

ð

1

FS

2p

IðFÞ2
1
ffiffiffiffiffiffiffi

2F
p

� �

dF2

ffiffiffiffiffiffiffiffiffi

2FS

p

8

>

<

>

:

9

>

=

>

;

: ðB7Þ

Thus, the angular momentum flux into the critical region is finite in the quasi-steady situation, a circumstance that arises because of the

viscous spread of the vorticity. Importantly, this means that the corotation torque will not saturate whenever there is radial diffusion. However,

the torque is O(l) for l ! 1.
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To complete the leading-order solution, we finally need to compute the integral kz e2 imul using the vorticity–streamfunction relation,

z ¼ bY 1 QðFÞ. This leads to a functional equation forC(u) that must be solved to specify the solution. Here we will not explicitly complete

this step.

B2 The limit of large dissipation

When l @ 1, in order to balance the large dissipative term on the right-hand side of the vorticity equation, we rescale the coordinates:

T ! l21=3t; Y ! l 1=3z and zðY ; u; TÞ ! l21=3 ~zðz; u; tÞ: ðB8Þ

Then, on dropping a tilde,

zt 1 zzu 2 zzz ¼ 2bCu 1 l22=3FuzY : ðB9Þ

Following Brown & Stewartson (1978), we introduce the asymptotic sequences

z ¼ z0 1 l22=3z1 1… and C ¼ C0 1 l22=3C1 1…: ðB10Þ

At leading order, we recover the viscous version of the linear vorticity equation:

z0t 1 zz0u 2 z0zz ¼ 2bC0u: ðB11Þ

We solve this equation by decomposing into the azimuthal Fourier modes and then Fourier transforming in z. The first result we obtain is that

C0m ¼ Fm

11 ipbRm

; ðB12Þ

which repeats the inviscid linear theory, and illustrates how the linear dynamics are insensitive to the details of the dissipative mechanism. In

the problem we consider, the perturber is also turned on over a short interval [0,To] (with To ¼ 1 for our example of Section 5). To simplify

matters, we replace the smooth turn-on by a sudden one:

FmðTÞ ! ~FmHðtÞ and C0m ! ~C0mHðtÞ: ðB13Þ

Our second result is then

z0 ¼ 2 ibC0m

ðmt

0

e2q 3/3m2 iqz dq: ðB14Þ

The important term in the asymptotic solution that reveals the viscous spread of the critical region vorticity is the azimuthal mean of the next-

order correction, z̄1(z,t) (where the bar refers to the azimuthal average). This quantity satisfies the relation

�z1t 2 �z1zz ¼ ðC0uz0Þz: ðB15Þ

More algebraic manipulations then furnish the result,

�z1 ¼ 2b
m.0

X

mjC0mj2
ðmt

0

sin qz

q
½e2q 3/3m

2 e2q
3/3m2q 2t� dq < pb 12 Erf

jzj
2
ffiffiffi

t
p

� �� �

sgnðzÞ
m.0

X

mjC0mj2; ðB16Þ

for large jzj and t with z 2/T ¼ Oð1Þ (Brown & Stewartson 1978). Therefore, for any finite time, �z1 ! 0 as z ! 0, in line with the statement of

the original boundary conditions. However, for t !1, �z1 !pb sgnðzÞPm.0mjC0mj2 as we move out of the critical region. In other words,

there is an expanding diffusion layer that carries vorticity out into the bulk of the disc, and eventually creates a jump in vorticity across the

critical region.
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