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In this paper, we study the forcing of baroclinic critical levels, which arise in stratified
fluids with horizontal shear flow along the surfaces where the phase speed of a wave
relative to the mean flow matches a natural internal wavespeed. Linear theory predicts
the baroclinic critical layer dynamics is similar to that of a classical critical layer,
characterized by the secular growth of flow perturbations over a region of decreasing
width. By using matched asymptotic expansions, we construct a nonlinear baroclinic
critical layer theory to study how the flow perturbation evolves once they enter the
nonlinear regime. A key feature of the theory is that, because the location of the baroclinic
critical layer is determined by the streamwise wavenumber, the nonlinear dynamics filters
out harmonics and the modification to the mean flow controls the evolution. At late times,
we show that the vorticity begins to focus into yet smaller regions whose width decreases
exponentially with time, and that the addition of dissipative effects can arrest this
focussing to create a drifting coherent structure. Jet-like defects in the mean horizontal
velocity are the main outcome of the critical-layer dynamics.

1. Introduction

A centrepiece in the theory of inviscid shear flow is the classical critical level, where the
phase speed c of a steady wave matches the local mean flow speed U . In linear theory,
the levels where c = U become singular, demanding the inclusion of the weak effects
of unsteadyness, nonlinearity or viscosity (Maslowe 1986). Although these inclusions
can remove the singularity of the linear inviscid theory, perturbations to the flow can
still develop strongly in the neighbourhood of the critical levels, creating distinctive flow
structures and rearrangements within the so-called critical layers that may subsequently
break down to generate mixing and turbulence. In this vein, Stewartson (1978) and
Warn & Warn (1976, 1978) studied the nonlinear dynamics of the critical layers of
forced Rossby waves. They found that steady waves developed over the bulk of the
shear flow, but that the critical layer remained unsteady, exciting mean-flow corrections
and all the harmonics of the original wavenumber, and twisting up the background
vorticity into Kelvin cat’s eye pattern. A similar scenario exists for the critical layers of
internal gravity waves travelling vertically through stratified shear flow, with important
repercussions on wave breaking, momentum transport and mixing in the atmosphere
(Booker & Bretherton 1967; Brown & Stewartson 1980, 1982a,b).

If the flow is stratified vertically but sheared horizontally, then a new type of critical
level appears in the linear inviscid wave theory. The new critical levels arise along the
surfaces where the phase speed relative to the background shear flow matches a charac-
teristic velocity of gravity waves; i.e. c−U = ±N/k, where N is the buoyancy frequency

† Email address for correspondence: chenwang@math.ubc.ca



2 C. Wang and N. J. Balmforth

and k is the streamwise wave number. Existing literature on these ‘baroclinic critical
levels’, has mainly focused on the propagation of linear wave packets. Using ray-tracing
theory, Olbers (1981), Basovich & Tsimring (1984) and Badulin, Shrira & Tsimring
(1985) found that wave packets slow down as they approach the baroclinic critical level,
never reaching it. Simultaneously, the wave amplitude and cross-stream wavenumber grow
indefinitely, indicating that linear theory eventually fails in a wave-trapping process like
that found earlier for classical critical levels (Bretherton 1966). Staquet & Huerre (2002)
and Edwards & Staquet (2005) performed numerical simulations to study the nonlinear
evolution during trapping, concluding that the trapped waves may either break into small-
scale turbulence or be dissipated by dispersion, viscosity and diffusion. More related to
the current work is the study by Boulanger, Meunier & Le Dizès (2007), who explored
the analogues of baroclinic critical levels in stratified, titled vortices, and resolved the
resulting singularities by introducing viscosity.

Baroclinic critical layers have also featured heavily in recently reported computations
of three dimensional rotating stratified shear flows with self-replicating vortices (Marcus
et al. 2015, 2016; Barranco, Pei & Marcus 2018). The replication process involves the
forcing of baroclinic critical layers by internal waves excited by an initial vortex; large-
amplitude re-arrangments forced in these layers then roll up to create new votices, which
in turn shed more internal waves to repeat a cycle. The self-replication eventually filled
the computational domain with localized vortical structures, which was suggested to be
trigger for the angular momentum transport required to drive accretion in astrophysical
disks that are too cool to suffer the magneto-rotational instability.

The aim of the present paper is to theoretically study the evolution of forced baroclinic
critical layers, following the paradigm of Stewartson (1978) and Warn & Warn (1976,
1978) for Rossby waves, or Booker & Bretherton (1967) and Brown & Stewartson (1980,
1982a,b) for internal waves in stratified shear flow. The linear dynamics of a forced
baroclinic critical layer is expected to be similar to that of a classical critical layer, owing
to the similarity of the singularities in the linear wave equations. However, the subsequent
nonlinear evolution is likely to be very different because the location of the baroclinic
critical level itself is dictated by the streamwise wave number, which is different among
all the harmonics of the original wave. This suggests that they cannot feature in the
nonlinear dynamics within the baroclinic critical layer, unlike in classical critical layer
theory.

The layout of the paper is as follows: in §2, we give the model and governing equations
of the problem. In §3, we solve the linear problem explicitly and draw out structure
that first develops within the baroclinic critical level. In §4, we extend the analysis by
considering weakly nonlinear perturbations, which allows us to determine the time and
length scales that characterize the nonlinear critical layer. This leads us, in §5, to derive
a reduced model of nonlinear dynamics via a matched asymptotic expansion. We then
present numerical solutions of the reduced model and a further asymptotic analysis of
them. We explore the effects of dissipation in the baroclinic critical layer in §6, and then
discuss the implications of the results and the relation to previous and future work in §7.

2. Model and governing equations

We consider forced disturbances to an unbounded horizontal shear flow, orientated
in the x−direction with a constant shear rate Λ > 0 in the y−direction. The domain
rotates around the vertical axis at angular velocity Ω, and the fluid is stratified in z with
constant buoyancy frequency N . Waves are driven into the shear flow by a wavemaker
that we locate along y = 0. This forcing has the streamwise and vertical wavenumbers,
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Figure 1. Sketch of the model. A wavemaker with wavenumber kx and kz is imposed at
y = 0, and baroclinic critical levels are forced at y = ±N/(Λkx), corresponding to dimensionless
locations ±N , whereN = NΛ−1. The shading represents a rendering of the density perturbation
based on the linear theory of §3.

kx and kz, respectively. The baroclinic critical levels are located at y = ±N/(Λkx). The
sketch of the model is shown in figure 1.

We work with a dimensionless version of the governing fluid equations in which length,
time, velocity, pressure and density perturbations are scaled by k−1x , Λ−1, Λk−1x , ρ0Λ

2k−2x
and ρ0Λ

2/(kxg), respectively. Here, ρ0 is a reference density and g is gravity. We employ
the Boussinesq approximation and, for the most part of our study, neglect viscosity and
diffusion in view of the large spatial scales that characterize geophysical and astrophysical
flows. At the end of the work, we briefly explore the effect of diffusion. The perturbations
to the velocity (u, v, w), pressure p and perturbation density ρ then satisfy

ut + yux + (1− f)v + uux + vuy + wuz = −px, (2.1)

vt + yvx + fu+ uvx + vvy + wvz = −py, (2.2)

wt + ywx + uwx + vwy + wwz = −pz − ρ, (2.3)

ρt + yρx −N 2w + uρx + vρy + wρz = 0, (2.4)

ux + vy + wz = 0, (2.5)

where subscripts represent partial derivatives and we have introduced the dimensionless
Coriolis parameter f = 2Ω/Λ and buoyancy frequency N = NΛ−1. Because our interest
lies in the forcing of the baroclinic critical layers of an internal wave, we consider basic
flows that are linearly stable to prevent unstable modes from dominating the dynamics.
Centrifugal instabilities arise when 0 < f < 1 (Emanuel 1994), so we set f > 1 or f < 0
to eliminate them; strato-rotational instability is not present because it requires reflective
boundaries (Yavneh, McWilliams & Molemaker 2001; Wang & Balmforth 2018) which
are absent here.

Initially, there is no disturbance, implying u = v = w = ρ = p = 0 at t = 0.
The wavemaker is then switched on to excite waves with baroclinic critical levels. To
idealize the forcing and formulate a concise mathematical problem, we assume that the
wavemaker introduces a time-independent jump in the tangential horizontal velocity at
y = 0, but not in the normal velocity. That is, we impose the jump conditions,

u|x=0+ − u|x=0− = ε0 exp(ix+ imz) + c.c., v|x=0+ = v|x=0−, (2.6)

where ε0 represents the strength, m = kz/kx, c.c. represents the complex conjugate,
and the ± superscripts indicate the limits from either side. This forcing approximates
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a thin, spatially periodic vortex sheet. In the numerical simulation of Marcus et al.
(2013), waves were forced by a periodic array of localized Gaussian vortices. Our forcing
therefore represents an idealization of their model in that we consider the leading-
order Fourier component while neglecting the evolution and cross-stream thickness of
the forcing. The configuration is slightly different to that in the studies of Stewartson
(1978) and Booker & Bretherton (1967), where a wavy boundary forced the normal
velocity. The current configuration implies that waves are generated at y = 0 and develop
with baroclinic critical levels to either side (although simplifications are afforded by the
symmetry described presently). Had we placed the wavemaker along a boundary at y = 0,
only one critical level would have featured, but the wall may also make the basic flow
linearly unstable (Wang & Balmforth 2018). Other idealizations include wavemakers
that gradually switch on (Béland 1976), that generates disturbances with finite phase
speed (displacing the baroclinic critical levels), or that with finite thickness (as for the
vortices of Marcus et al.). Nevertheless, the precise form of forcing of the wave is not
expected to affect the qualitative dynamics of the baroclinic critical layers, a feature on
which we elaborate further later.

Note that the system in (2.1)-(2.6) is invariant under the transformation,

(u, v, w, ρ)→ −(u, v, w, ρ) and p→ p, for (x, y, z)→ −(x, y, z). (2.7)

This observation permits us to solve the problem only in y > 0, and therefore consider
only one baroclinic crtical layer, then generate the solution in y < 0 using the implied
symmetry conditions.

Also, combining (2.1)-(2.5), we may derive an equation for the vertical component of
vorticity:

D

Dt
(vx − uy)−N−2(f − 1 + vx − uy)

∂

∂z

Dρ

Dt
+ wxvz − wyuz = 0, (2.8)

where
D

Dt
=

∂

∂t
+ (y + u)

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
. (2.9)

3. Linear theory

The linearized governing equations are

ut + yux + (1− f)v = −px, (3.1)

vt + yvx + fu = −py, (3.2)

wt + ywx + ρ = −pz, (3.3)

ρt + yρx −N 2w = 0, (3.4)

ux + vy + wz = 0. (3.5)

The linearized equation of (2.8) reduces to a conservation law of potential vorticity,
qt + yqx = 0, or, given that q = 0 everywhere at t = 0,

q = (f − 1)ρz −N 2(vx − uy) = 0. (3.6)

In the absence of linear instability, the forcing (2.6) drives a steady wave response
throughout the bulk of the flow (as can be established by solving the initial-value
problem using Laplace transforms, and then performing a large-time asymptotic analysis,
following Warn & Warn (1976) and Booker & Bretherton (1967)). Near the baroclinic
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critical levels, however, the flow remains unsteady, requiring a finer analysis of those
regions similar to that used by Stewartson (1978).

3.1. The steady wave response outside the baroclinic critical layers

The steady wave solution outside the critical layers takes the form:

(u, v, w, p, ρ) = [û(y), v̂(y), ŵ(y), p̂(y), ρ̂(y)] exp (ix+ imz) + c.c. (3.7)

Substituting (3.7) into (3.1)-(3.5), one can derive an equation for p̂(y),

p̂′′ − 2y

y2 − f(f − 1)
p̂′ −

[
y2 − f(f + 1)

y2 − f(f − 1)
+m2 y

2 − f(f − 1)

y2 −N 2

]
p̂ = 0, (3.8)

with

û =
(f − 1)p̂′ − yp̂
y2 − f(f − 1)

, v̂ =
i(yp̂′ − fp̂)
y2 − f(f − 1)

, ŵ = − myp̂

y2 −N 2
, ρ̂ =

imN 2p̂

y2 −N 2
.

(3.9a, b, c, d)
(cf. Vanneste & Yavneh, 2007). Note that the singularities at y2 = f(f − 1) in (3.8) and
(3.9) are removable. The baroclinic critical levels y = ±N , however, are true singular
points. The Frobenius solutions near y = N are,

p̂A = 1− m2[N 2 − f(f − 1)]

2N
(N − y) log |N − y| − α(N − y) + ... (3.10)

p̂B = y −N + ... (3.11)

where α is determined by the condition that p̂A → 0 as y → ∞. In terms of these
Frobenius solutions, we express p̂ for y > 0 by

p̂ =

{
ALp̂A, y > N ,
ALp̂A +BLp̂B , 0 < y < N , (3.13)

where AL and BL are constants.
Although p̂ is bounded for y → N , the amplitudes of the velocity, (û, v̂, ŵ), and

density, ρ̂, all diverge, signifying that the steady wave solution fails at the critical levels.
In particular, we observe that

p̂→ AL, ρ̂→ imNAL
2(y −N )

(3.14)

and

û→
[
m2(f − 1)

2N
(log |N − y|+ 1) +

α(f − 1)−N
N 2 − f(f − 1)

]
AL +

{
0 y > N ,

f−1
N 2−f(f−1)BL y < N ,

(3.15)
for y → N .

3.2. The linear critical layers

We now focus on the baroclinic critical layer at y = N . Here, we search for an unsteady
solution depending on the long timescale T = δt and with the short spatial scale Y =
(y − N )/δ, where δ � 1 is a small parameter organizing an asymptotic expansion. We
then set

(u, v, w, p, ρ) =
[
ũ(Y, T ), ṽ(Y, T ), δ−1w̃(Y, T ), AL, δ

−1ρ̃(Y, T )
]

exp (ix+ imz) + c.c.,
(3.16)

in view of the limits in (3.14)-(3.15).
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Combining (3.3) and (3.4) to eliminate w, then substituting in (3.16) now gives, to
leading order in δ, (

∂

∂T
+ iY

)
ρ̃ = −1

2
mNAL. (3.17)

In the early stage of linear evolution, t ∼ O(1), ρ ∼ O(1), so we have the initial condition
ρ̃→ 0 as T → 0, which yields

ρ̃ = −1

2
imNAL

e−iY T − 1

Y
, (3.18)

Hence

ρ = −1

2
imNALt

[
e−i(y−N )t − 1

(y −N )t

]
eix+imz + c.c. (3.19)

This solution has a spatial structure dependent on the self-similar combination t(y−N ).
Hence, the amplitude grows linearly and the width of the critical layer shrinks with time.

Next, the main balance in (3.6) implies that ũY ∼ −im(f − 1)N−2ρ̃, or

ũY = −m
2(f − 1)AL

2N
e−iY T − 1

Y
. (3.20)

But the limits of the steady wave response in (3.15) imply that ũ jumps by an amount
(f − 1)BL/[N 2 − f(f − 1)] across the baroclinic critical layer. Hence,

BL = −m
2AL[f(f − 1)−N 2]

2N
lim
L→∞

ˆ L

−L
(e−iY T − 1)

dY

Y
= iπ

m2[f(f − 1)−N 2]

2N
AL.

(3.21)
(cf. Stewartson 1978).

3.3. Closure

We can now apply the forcing condition to close the problem. The symmetry property
(2.7) applied to the steady wave (3.7) indicates that

[û(y), v̂(y), ŵ(y), ρ̂(y)] = −[û(−y), v̂(−y), ŵ(−y), ρ̂(−y)]∗, p̂(y) = p̂(−y)∗, (3.22)

where the superscript ∗ represents the complex conjugate. Hence, substituting the steady
wave solution into the jump condition (2.6) representing the forcing, we arrive at

(AL −A∗L)p̂A(0) + (BL −B∗L)p̂B(0) = 0,

(AL +A∗L)p̂′A(0) + (BL +B∗L)p̂′B(0) = −fε0. (3.23a, b)

Exploiting (3.21), we obtain

AL = − fε0(p̂A − iβp̂B)

2(p̂Ap̂′A + β2p̂B p̂′B)

∣∣∣∣
y=0

, β =
πm2[f(f − 1)−N 2]

2N
. (3.24)

The amplitude of the pressure perturbation at the critical layer is therefore

ε = |AL| =
|fε0|

√
p̂2A + β2p̂2B

2 |p̂Ap̂′A + β2p̂B p̂′B |

∣∣∣∣∣
y=0

. (3.25)

A sample steady wave solution is plotted in figure 2.
Note that equations (3.23)-(3.25) appear to become trivial if f = 0, suggesting that

rotation is essential to the forcing of the baroclinic critical layer. In fact, a deeper analysis
of the Frobenius solutions demonstrates that this is not the case, because p̂′A(0) and
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Figure 2. Steady-wave solution p̂, with m = 0.5, N = 4/3, f = 4/3, ε0 = 0.05 (cf. Marcus et
al. 2013). The critical levels y = ±N are indicated.

p̂′B(0) become O(f) in this limit, and the closure relation in (3.23) remains non-trivial.
Consequently, in the model, we may take the limit f → 0, highlighting how rotation is
not an essential ingredient to the dynamics.

The same feature does not apply to the vertical wavenumber or stratification, which
control the secular growth inside the critical layer, as seen in (3.18) and (3.20); without
either a vertical dependence in the forcing or stratification, there is no baroclinic critical-
layer dynamics. Note that, despite appearances, the limit N → 0 in (3.20) is not
problematic: further analysis of p̂A and p̂B indicates that |AL| ∼ N/ logN for N → 0,
and so the secular growth in the critical layer is eliminated in this limit.

It is also noteworthy that, in the limit that any of the parameters m, f , or N are large,
the disturbance decays exponentially from the forcing to the baroclinic critical levels (cf.
Vanneste & Yavneh (2007) and Wang & Balmforth (2018)). The amplitude ratio ε/ε0
then becomes exponentially small, and the secular growth in the critical layer is much
weakened.

4. The weakly nonlinear critical layer

We now advance beyond linear theory and perform a weakly nonlinear expansion by
setting

(u, v, w, ρ, p) = ε
{

[u1(Y, T ), v1(Y, T ), δ−1w1(Y, T ), δ−1ρ1(Y, T ), p1(Y, T )]eix+imz + c.c.
}

+ε2[u0(Y, T ), v0(Y, T ), w0(Y, T ), ρ0(Y, T ), p0(Y, T )] (4.1)

+ε2
{

[u2(Y, T ), v2(Y, T ), w2(Y, T ), ρ2(Y, T ), p2(Y, T )]e2(ix+imz) + c.c.
}
,

focussing upon the critical layer with y = N + δY . The scaling of the fundamental
Fourier component follows the linear critical layer theory outlined above, and we have
ε[u1, v1, w1, ρ1, p1] → [ũ, ṽ, w̃, ρ̃, AL] at early times (T � 1). The goal of the current
section is to identify the timescale and width of the critical layer (as dictated by the
small parameter δ) for which the mean flow correction and first harmonic reach sufficient
strength to modify the evolution of fundamental mode. This connects δ to the amplitude
parameter ε, establishing the scalings of the nonlinear critical layer.

4.1. Mean-flow response

The mean-flow component of (2.5) gives v0Y = 0, which implies v0 = 0 since the mean
flow response decays outside the critical layer. The streamwise mean-flow velocity u0 is
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described by the j = 0 component of (2.1), which is

∂u0
∂T

= δ−2(imw1u
∗
1 − v∗1u1Y ) + c.c. (4.2)

To leading order in δ, the mean-flow components of (2.3) and (2.4) are,

ρ0 = −δ−2v∗1w1Y + c.c., (4.3)

−N 2w0 = −δ−2(v∗1ρ1Y + imw∗1ρ1) + c.c. (4.4)

Thus, u0, w0, and ρ0 are all O(δ−2).

4.2. First harmonic

The largest first harmonic components of (2.3), (2.4), (2.5) and (2.8) indicate that

2iNw2 + ρ2 + 2imp2 = −δ−2(v1w1Y + imw2
1), (4.5)

2iNρ2 −N 2w2 = −δ−2(v1ρ1Y − imw1ρ1). (4.6)

δ−1v2Y + 2imw2 = 0. (4.7)

u2Y
δ

+
2im(f − 1)

N 2
ρ2 =

iδ−2

2N

[
2im(f − 1)

N 2
(v1ρ1Y + imw1ρ1) + (v1u1Y + imw1u1)Y

]
.

(4.8)

However, (2.2) demands that p2 = O(δu2, δv2) and so p2 is much smaller than w2 or ρ2.
Hence,

w2 =
δ−2

3N 2
[2iN (v1w1Y + imw2

1)− v1ρ1Y − imw1ρ1], (4.9)

ρ2 =
δ−2

3N
[N (v1w1Y + imw2

1) + 2i(v1ρ1Y + imw1ρ1)], (4.10)

which are O(δ−2), whereas u2 and v2 are O(δ−1).

4.3. Weakly nonlinear feedback

On again combining (2.3) and (2.4), we find the fundamental components,(
∂

∂T
+ iY

)
ρ1 +

1

2
mNp1 = −ε2δ−1iu0ρ1, (4.11)

with the leading-order nonlinear terms included on the right, and after a considerable
number of cancellations stemming from the use of (4.3), (4.4), (4.9) and (4.10) and the
leading-order relations ρ1 = −iNw1 and v1Y = −imw1. Note that the nonlinear terms
generated by the first harmonic and mean-flow components w0 and ρ0 completely cancel
out at this stage, leaving only the effect of the modification to the streamwise mean flow
u0. But the scaling established for the mean flow correction implies that the right-hand
side of (4.11) is O(δ−3ε2). Thus, the mean flow feedbacks on the fundamental mode when
δ = ε2/3. That is, for

t = O(ε−
2
3 ), y = N +O(ε

2
3 ). (4.12)

These are the scalings for the nonlinear critical layer theory outlined in the next section.
Note that we may extend the analysis to consider the higher harmomics. One finds that

when δ = ε2/3, the Fourier component eij(x+mz) with j > 1 is O(εj/3), which signifies
that the higher-order harmonics j > 3 are still weak when the mean flow correction
begins to feedback on the fundamental. Thus, they play no role in the nonlinear theory.
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5. Nonlinear critical-layer theory

5.1. The reduction

Motivated by the weakly nonlinear analysis, we now introduce the rescalings,

T = ε
2
3 t, Y =

y −N
ε

2
3

. (5.1)

The outer solution for the pressure is

p = εp1e
i(x+mz) + c.c., p1 =

{
A(T )p̂A(y), y > N ,
A(T )p̂A(y) +B(T )p̂B(y), 0 < y < N , (5.2)

which is a single dominant Fourier mode characterized by the steady wave solution.
However, the amplitudes A and B now evolve with the slow time T , because the nonlinear
evolution of critical layer can affect the outer flow. Initially, A and B are given by the
linear analysis:

A(0) =
AL
ε
, B(0) =

BL
ε
. (5.3)

Inside the critical layers, we set

p = εA(T )ei(x+mz) + c.c.+ ..., [w, ρ] = ε
1
3 [w1(Y, T ), ρ1(Y, T )]ei(x+mz) + c.c.+ ...

[u, v] = ε[u1(Y, T ), v1(Y, T )]ei(x+mz) + c.c.+ ε
2
3 [U0(Y, T ), 0] + ... (5.4)

Equation (4.11) and the leading-order fundamental-mode components of (2.1), (2.3)-(2.5)
and (2.8) now become

∂ρ1
∂T

+ iY ρ1 +
mN

2
A = −iU0ρ1. (5.5)

iNu1 − (f − 1)v1 + iA = −v1U0Y , (5.6)

w1 =
i

N
ρ1, v1Y = −imw1, (5.7)

N 2u1Y + im(f − 1− U0Y )ρ1 = iN v1U0Y Y . (5.8)

The initial condition of ρ1 is given by the linear result

ρ1 → −
imNA(0)

2

e−iY T − 1

Y
, T → 0. (5.9)

Similar to (4.2), the mean-flow velocity U0 is governed by

∂U0

∂T
= −v∗1u1Y + imw1u

∗
1 + c.c. (5.10)

The initial condition is U0 → 0 as T → 0, as in early linear evolution the mean-flow
modification is minimal.

It is possible to algebraically manipulate (5.5)-(5.8) and then integrate in T to show
that

U0 = − 2

N 3
|ρ1|2, (5.11)

a result that can be traced back to the fact that the change to the mean flow is given by
the Eulerian pseudo-momentum (Bühler 2014), which is the right-hand side of (5.11) to
leading order. Hence

∂ρ1
∂T

+ iY ρ1 +
1

2
mNA = i

2

N 3
|ρ1|2ρ1. (5.12)

To match the inner and outer solutions, we first note, from (5.7), that v1Y = mN−1ρ1.
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Integrating this relation in Y over the critical layer then provides the jump of the outer
solution v1 = i(yp1,y − fp1)/[y2 − f(f − 1)] for the limit of y → N (cf. (3.9b)), which
yields

B = −im
f(f − 1)−N 2

N 2

ˆ ∞
−∞

ρ1dY, (5.13)

in a similar manner to §3.2 and (3.21).
Last, we again use the forcing condition at y = 0 to close the problem:

(A−A∗)p̂A(0) + (B −B∗)p̂B(0) = 0,

(A+A∗)p̂′A(0) + (B +B∗)p̂′B(0) = −f ε0
ε

(5.14)

(cf. §3.3 and (3.23)). Note that the form of the forcing impacts the reduced model only
through the closure relations in (5.14). Had we used a different idealization of the forcing
here, there would be a different algebraic relation between A, B and ε0/ε. However, this
relation still connects A with the forcing amplitude and the integral of ρ1 over the critical
layer, and in the scaled, canonical system presented below, all that would change would
be how the parameters of that system (denoted c0, c1 and c2 in §5.2) depend on the
original physical constants. In this sense, the reduced model is independent of the choice
of forcing.

5.2. Canonical system

The final rescalings

ρ1 =

(
mN 4

4

) 1
3

γ(η, τ), T =

(
2N
m2

) 1
3

τ, Y =

(
m2

2N

) 1
3

η, (5.15)

lead to the canonical form,

∂γ

∂τ
+ iηγ +A = i|γ|2γ, (5.16)

A(τ) = c0 +
ic1
π

ˆ ∞
−∞

γrdη −
c2
π

ˆ ∞
−∞

γidη, (5.17)

where γ = γr + iγi,

c0 = −sgn

(
f

p̂′A(0)

)
|1 + c1c2|√

1 + c21
, (5.18)

and {
c1
c2

}
=
πm2[f(f − 1)−N 2]

2N

{
p̂B(0)/p̂A(0)
p̂′B(0)/p̂′A(0)

}
. (5.19)

For τ � 1, we must match γ(η, τ) to the corresponding solution of the linear problem,
given by

γ = iA
1− e−iητ

η
, A =

c0(1− ic1)

1 + c1c2
, (5.20)

which provides the initial condition for (5.16).
The reduced model equations in (5.16)-(5.20) are solved numerically in the next section.

The system is integro-differential in the sense that (5.16) is an equation of motion in time,
solved at each level of η, with the integral constraint in (5.17). There is no dependence on
either x or z, because the leading-order dynamics involves only the fundamental mode
of the forcing wave pattern and the mean-flow response (which is then prescribed by
the pseudo-momentum). The only nonlinearity is the cubic term on the right of (5.16),
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Figure 3. Evolution of A and B with τ ; m = 1/2, f = 4/3, N = 4/3.

which is generic in weakly nonlinear theories of non-dissipative systems with few degrees
of freedom. The model is therefore rather different from those that emerge for classical
forced critical layers, which usually take the form of partial differential equations in all
the spatial variables. The reduced model has the two parameters, c1 and c2, and the
choice of sign for fp̂′A(0) in c0. In most situations p̂A and p̂B are characterized by a
similar exponential away from y = 0, implying c1 ≈ c2.

From (5.16)-(5.17), one can establish that the quantity,

H =

ˆ ∞
−∞

[
1

2
|γ|4 − η|γ|2 + 2Im(A∗γ)

]
dη +

c1
π

[ˆ ∞
−∞

γrdη

]2
+
c2
π

[ˆ ∞
−∞

γidη

]2
, (5.21)

must be conserved, and therefore equal to πc1(1 + c1c2)/(1 + c21) in view of the initial
conditions. This constraint implies that the linear-in-time growth of γ(η, τ) predicted
by linear theory must eventually become arrested, as otherwise the quartic first term in
(5.21) cannot be counter balanced by the remaining quadratic and constant terms. To
determine the manner in which the arrest takes place, we turn to a numerical solution
of the reduced model.

5.3. Numerical solutions

To solve the canonical system of equations numerically, we first select a grid in η
spanning a finite domain (we use 1501 equally spaced gridpoints over the interval 1.5 <
η < 3 where γ has large gradients, then 1544 gridpoints distributed evenly over −25 <
η < 1.5 and 3 < η < 25). We then integrate (5.16) forward in time numerically using
a 4th-order Runge-Kutta method at each of the grid points. To evaluate the integrals
in (5.17), we use an approach similar to Warn & Warn (1978) to extrapolate the limits
to infinity. We use parameter settings guided by the computations of of Marcus et al.
(2013): m = 1/2, f = 4/3, N = 4/3, which yield c1 = 0.238, c2 = 0.219.

Figure 3 displays the evolution in τ of the forced wave amplitudes, A and B, which
is relatively mild with Re(A) ≈ c0 ≈ −1 and Im(A), Re(B) and Im(B) all remaining
small. This mild behaviour results because, in (5.17), |c1| and |c2| are fairly small. Thus,
the forced wave evolves slowly over the bulk of the shear flow (i.e. the outer region),
maintaining a profile similar to the linear distribution in figure 2.

The density perturbation γ(η, τ), shown in figure 4, exhibits a richer behaviour:
for τ < 1, the numerical solution follows the linear prediction in (5.20), with its
characteristically developping undulations and linear growth near η = 0 (see figure
4(a,b)). Once |ζ| reaches order-one values there, however, the growth of the numerical
solution saturates, as demanded by the constraint in (5.21). Despite this, the solution
continues to undulate over increasingly shorter spatial scales. Moreover, nonlinear effects
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Figure 4. (a) Real and (b) imaginary parts of the critical-layer density perturbation γ(η, τ),
shown as surfaces above the (η, τ)−plane. To prevent the viewing perspective from obscuring
parts of the solution, we also show density maps of the solutions underneath. The insets show
corresponding plots of the linear solution in (5.20). Panels (c)–(f) plot snapshots of γ(η, τ) at
the times indicated; the linear result for |γ(η, τ)| is also included. (m = 1/2, f = 4/3, N = 4/3.)

distort the density profile further, shifting the maximum magnitude from η = 0 to a
small, positive level in η and generating pronounced fine structure over a narrow region
nearby.

The rapid spatial variation in γ(η, τ) significantly impacts the critical-layer vorticity,
which depends on the η−derivatives of γ(η, τ). In particular, the leading-order vertical
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Figure 5. Snapshots of vertical vorticity ζ within the baroclinic critical layer near y = N = 4/3,
plotted as a colormap on the (x, η)−plane for (a) τ = 0.3, (b) τ = 0.45, (c) τ = 0.6, (d) τ = 1,
(e) τ = 1.5, and (f) τ = 1.8. The domain plotted is |η| < 25, corresponding to |y −N| < 0.39,
at cross-section z = 0 and over one streamwise wavelengths of the forcing pattern. (ε0 = 0.05,
ε = 0.0062, m = 1/2, f = 4/3, N = 4/3.)

vorticity is given by the mean-flow vorticity ζ0:

ζ ∼ ζ0 ≡
∂

∂η
|γ|2. (5.22)

However, from the matched asymptotic expansion, we may reconstruct ζ(x, η, z, t) to
higher orders, incorporating the fundamental Fourier mode ζ1 and first harmonic ζ2, as
summarized in Appendix A. The evolution of the reconstructed vertical vorticity field is
plotted in figure 5. For early times, ζ0 � 1, and the vertical vorticity is actually given
by the higher-order linear solution (as in figure 5a, cf (3.20)). With the increase of τ ,
the vorticity distribution tilts over and ζ0 grows to dominate ζ, as seen in figure 5b,c.
This growth leads to the distinctive dipolar stripe seen in figure 5d. In the later stages of
evolution (figure 5e,f), the stripe becomes stronger and more focussed, shifting slightly
above η = 0, and corresponding to the sharpening oscillations in γ seen in figure 4.

The behaviour of the numerical solution seen in figures 3-5 is generic for most parameter
settings; for moderate m, f (either f > 1 or f < 0) andN , the parameters c1 and c2 of the
reduced model are relatively small in magnitude, prompting similar dynamics. Even when
|c1| and |c2| become order one, the evolution still bears qualitative similarities. However,
more complicated behaviour can occur in the reduced model when these parameters take
higher values. Such parameter settings can be achieved at special combinations of m, f
and N for which p̂A(0) becomes small, or perhaps for other types of forcing. We avoid
consideration of special situations of this sort, and instead turn to a deeper analysis of
the focussing dynamics observed in the reduced model.

5.4. Long-time focussing

In view of the result that A changes slowly, we now use the approximation of A =
constant to gain further analytical insights to the focussing phenomenon. This device was
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used previously by Stewartson (1978) to obtain an analytical solution to the nonlinear
evolution of Rossby wave critical layers. In our model, constant A in (5.17) requires
c1 = c2 = 0, hence A = −sgn(fp̂′A(0)), which is −1 for the current parameter setting. The
evolution equation (5.16) can then be written as the one-degree-of-freedom Hamiltonian
system,

∂γr
∂τ

=
∂H

∂γi
= 1 + ηγi − γ2rγi − γ3i ,

∂γi
∂τ

= −∂H
∂γr

= −ηγr + γ3r + γrγ
2
i , (5.23)

with Hamiltonian,

H = −1

4

(
γ2r + γ2i

)2
+

1

2
η
(
γ2r + γ2i

)
+ γi (5.24)

(the point-wise version of the conserved quantity H in (5.21) for c1 = c2 = 0). For the
specific initial condition of our critical-layer problem, H = 0 for all values of η.

Figure 6(a) illustrates the phase portrait of the system (5.23) for the special choice
η = ηc = 3/ 3

√
2. In this case, the orbit from (γr, γi) = (0, 0) lies along a separatrix that

converges to a saddle point at (γr, γi) = (0,−γe), for τ → ∞, with γe = 3
√

2 ≈ 1.26.
Trajectories from (γr, γi) = (0, 0) for a spread of values of η around ηc are illustrated
in figure 6(b); the presence of the separatrix at η = ηc implies that these trajectories
bifurcate in direction on the phase plane on passing through that special level. Thus, a
small variation in η about ηc can result in a large change of γ at later times, implying
high values of γη to feed into ζ.

For the numerical solutions of §5.3, although c1 and c2 do not vanish, the forced-wave
amplitude does remain slowly varying in τ , leading to a qualitatively similar dynamics:
figure 6(c) plots the phase portrait of γ for five values of η within the region where the
dipolar stripe is focussed. As η varies from 2.38 to 2.48, the trajectories for different
levels abruptly switch in direction near the point (γr, γi) = (0,−1.2). Although the slow
variation of A(τ) precludes any trajectory from reaching a steady value, the numerical
solution for η = 2.43 slows down, lingers and hesitates before selecting one of the two
possible directions, much like the orbits for c1 = c2 = 0 near the separatix in figure
6(a,b). The level of this trajectory is slightly shifted from 3/ 3

√
2 ≈ 2.38 because c1 and

c2 are non-zero and A(τ) 6= −1. Nevertheless, we conclude that the close passage to an
effective saddle point on the (γr, γi) phase plane is responsible for the focussing effect.
For the numerical solution, we therefore define η = ηc ≈ 2.43 to be the level for which
γ evolves slowest near the effective saddle, and refer to this location as the nonlinear
critical level.

Continuing the analysis for c1 = c2 = 0, we may linearize the system (5.23) about
γ = −iγe to find that

∂

∂τ

(
γr

γi + γe

)
=

(
0 η − 3γ2e

−η + γ2e 0

)(
γr

γi + γe

)
. (5.25)

The two eigenvalues of the matrix are ±σ, with corresponding eigenvectors v+ and v−,
where

σ =
√

[(γ2e − η)] [η − 3γ2e )] ≈ σc =

√
3

3
√

2
if η ≈ ηc. (5.26)

The solution of (5.25) is then(
γr

γi + γe

)
= r+v+e

σ(τ−τ0) + r−v−e
−σ(τ−τ0), (5.27)
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Figure 6. Phase portraits of (γr, γi) for (a) the Hamiltonian system (5.23) with η = 3/ 3
√

2 and
various H, with the thicker line indicating H = 0, (b) trajectories from the point (γr, γi) = (0, 0)
for a selection of values of η, and (c) the numerical solution of §5.3, at the five values of η
indicated. The black points in (b) and the (red and blue) pairs marked (A,B) and (C,D) in (c)
have the same values of |η − ηc|eστ .

for some constants r± and a time constant τ0 indicating when the orbit reaches the
neighbourhood of the saddle point.

Now, along the separatrix converging to γ = −iγe for η = ηc, the constant r+ must
vanish. But when η is close to, but not at ηc, this factor is small but finite, hence a local
linearization of r+(η) near η = ηc leads us to set r+ ≈ C(η − ηc), for some constant C.
Therefore, (

γr
γi + γe

)
∼ C(η − ηc)v+e

σc(τ−τ0), (5.28)

at large times. That is, for η near ηc, those pairs of (η, τ) with the same (η − ηc)eσcτ

should have the same γ. Although this property is derived from the local linearization
about the fixed point, it still holds when trajectories have progressed further along the
unstable manifolds of that saddle because the trajectories shadow that curve. This is
illustrated in figure 6 for both the Hamiltonian system and the numerical solution, where
the pairs of points plotted along sample orbits have the same values for (η−ηc)eσcτ , and
therefore similar γ, even though they correspond to different choices of (η, τ). We can
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Figure 7. (a) Evolution of ζ0 near ηc = 2.43 at the times indicated. (b) Scaled profiles,

ζ0e
−σc(τ−τ0) against ξ = (η − ηc)eσc(τ−τ0), choosing τ0 = 3; (m = 1/2, f = 4/3, N = 4/3).

express the property mathematically by writing the solutions in the self-similar form,

γ ≈ F (ξ) and ζ0 ≈ eσc(τ−τ0) d

dξ
|F (ξ)|2, with ξ = (η − ηc)eσc(τ−τ0), (5.29)

for some function F (ξ) related to the shape of the unstable manifolds of the saddle point.
Thus, the lengthscale of the nonlinear critical layer at η = ηc decreases exponentially in
time, accounting for the relatively rapid focussing of sharp spatial variations in γ at later
times in figure 4, and the amplitude of the vertical vorticity grows exponentially. Figure
7 presents four snapshots of ζ0(η, τ) for the numerical solution, then replots them against
ξ and scaled by eσc(τ−τ0), adopting τ0 = 3; while the profile of ζ0 keeps sharpening and
strengthening, the rescaled profile remains nearly unchanged, confirming the self-similar
structure in (5.29).

The exponential focussing towards the nonlinear critical level is problematic as it
implies that the higher-order harmonics of the forcing pattern, which are neglected in
our nonlinear critical layer model, grow faster than the re-arrangments of the mean flow.
In particular, one can deduce that the vertical vorticity of the jth Fourier component,
exp[j(ix+imz)], grows like e(j+1)σcτ . The model therefore fails once the solution becomes
overly focussed, heralding the onset of a further, more complicated, stage of evolution.

6. Effects of diffusion

The increasingly fine scales encountered in the critical layer due to the exponential
focussing suggest that dissipation may also become prominent over later times, even
if small initially. To explore this possibility in more detail, we return to the governing
equations and include the viscous terms ν∇2(u, v, w) in (2.1)–(2.3) and diffusive term
κ∇2ρ in (2.4). We then take the distinguished limit (ν, κ) = O(ε2), which corresponds to
when dissipation first becomes important. In particular, with this sacling of ν and κ, the
dissipative terms are too small to affect the quasi-steady wave in the bulk of the flow,
but enter the analysis of the baroclinic critical layers owing to the reduced spatial scale
in y. Equation (5.5) is now replaced with

∂ρ1
∂T

+ iY ρ1 +
mN

2
A = −iU0ρ1 +

(ν + κ)

2ε2
∂2ρ1
∂Y 2

. (6.1)
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The Eulerian pseudomomentum is no longer equal to the mean-flow response, as in (5.11),
and we have to return to the mean-flow evolution equation:

∂U0

∂T
=

m

N 2
(A∗ρ1 +Aρ∗1) +

ν

ε2
∂2U0

∂Y 2
. (6.2)

(following from the substitution of (5.6)-(5.8) into the modified version of (5.10)). The
initial condition is still given by (5.20), the dissipative terms being negligible at early
times when the spatial scales are larger. The closure relations given by the match to the
outer solution remain (5.13) and (5.14). Equations (6.1) and (6.2) can be combined to
furnish the integral relation,

d

dT

ˆ ∞
−∞

(
|ρ1|2 + 1

2N
3U0

)
dY = − (ν + κ)

ε2

ˆ ∞
−∞

∣∣∣∣∂ρ1∂Y

∣∣∣∣2 dY, (6.3)

provided that ρ1 and U0 decay sufficiently quickly for |Y | → ∞. We now briefly
discuss the dynamics captured by this dissipative version of the model, focussing on
the astrophysically relevant limit ν � κ.

6.1. Modified canonical system

A scaling similar to that in §5.2, now furnishes the modified canonical system,

∂γ

∂τ
+ iηγ +A = −iγU + λ

∂2γ

∂η2
,

∂U
∂τ

= A∗γ +Aγ∗ (6.4)

and (5.17), where

U(η, τ) =

(
2N
m2

) 1
3

U0 and λ =
κN
m2ε2

. (6.5)

This system may be solved numerically. For the task, we now use a Crank-Nicolson
method to evolve the system in time and centred finite differences method to evaluate
spatial derivatives, exploiting Newton iteration at each time step to solve the nonlinear
equations.

Before characterizing the features of the numerical solutions, we first pause to examine
the dynamics in the limit that diffusion is relatively strong, λ � 1. In this limit, the
large diffusive term λγηη in (6.4) must be balanced by introducing the rescalings, (γ, τ) =
O(λ−1/3), η = O(λ1/3) and U = O(λ−2/3). The advection of the density perturbation by
the mean-flow correction, iγU , is then small in the first equation in (6.4), and if we again
make the approximation that A is contant, we find

γ ≈ −A
ˆ τ

0

e−λq
3/3−iqηdq, (6.6)

which is plotted in figure 8. At τ � 1, (6.6) recovers the secular growth of the linear
non-dissipative critical layer (cf (5.20)), but over longer times, this solution approaches a
steady state, illustrating how diffusion is able to saturate that growth before nonlinearity
(and the advective term iγU) enters the fray. Figure 8 also illustrates how this dynamics
does indeed characterize the full modified model for larger values of the diffusivity,
demonstrating how the analytical solution in (6.6) agrees satisfyingly with numerical
results computed with λ = 5.3. The steady state prediction from (6.6) corresponds to
the result of viscous critical-layer theory presented by Boulanger, Meunier & Le Dizès
(2007) for stratified tilted vortices (in which case, τ → ∞ in (6.6) and the solution can
be related to the Scorer function).
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Figure 8. The analytical solution (6.6) for strong diffusion and A = −1, showing (a) λ1/3γr
and (b) λ1/3γi against the scaled space and time variables λ−1/3η and λ1/3τ . The (red) dots
show the final steady-state solution. The insets show corresponding numerical solutions to the
reduced model, computed for λ = 5.3.

Nevertheless, the establishment of a steady state with spatial structure in the density
perturbation is inconsistent with the integral relation in (6.3). Indeed, if γ approaches
a steady state, U continues to grow linearly with τ , and for times of order λ1/3, the
advective term iγU can no longer be neglected in (6.4), heralding the onset of a different,
more complicated phase of evolution. Figure 9 shows a suite of numerical solutions,
illustrating this later evolutionary stage for cases with stronger diffusion (right-hand
panels), and other examples with smaller λ (left-hand panels). For the latter, diffusion is
too weak to arrest the linear growth in the critical layer and nonlinear focussing begin to
occur; only when the spatial scale has reduced sufficiently does the dissipative effect take
hold to limit the exponential amplification found for λ = 0. At that stage, a new phase
of evolution again emerges, much like that found for stronger diffusion. In particular,
the oscillations of the non-dissipative dynamics begin to fade with time, and a localized
coherent structure emerges that drifts to larger η under the advective effect of the mean-
flow correction. The structure leaves in its wake an increasingly strong deficit in U , which
is permitted by the constraint in (6.3) because diffusion may continually lower U as long
as the gradients of γ remain finite.

6.2. Dissipative coherent structures

The drifting coherent structure can be analyzed further owing to its fine spatial scale
and the relatively slow timescale over which the system develops once the larger-scale
transients have subsided: assuming that λ� 1 and A is real and constant, we search for
a quasi-steady travelling wave solution in which

γ ≈ γ(ξ) and ξ =
η√
λ
−
ˆ
c dτ, (6.7)

which characterizes a coherent structure with a length scale of
√
λ � 1 and a drift

velocity given by c. Hence,

−cγ′ + iη∗γ +A ≈ −iγU + γ′′ and − cU ′ ≈ A∗γ +Aγ∗ ≈ 2Aγr, (6.8)

where ξ = 0, or η∗ =
√
λ
´
c dτ , prescribes the center of the coherent structure. This fifth-

order system may be solved subject to the far-field constraints that γ and U approach
constant values as |ξ| → ∞. In particular, since the coherent structure invades a region
to the right in which γr = U = 0, but U remains finite to the left (see figure 9), we
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Figure 9. Solutions of the modified canonical model, showing (a) γr, (b) γi and (c) U , for
m = 1/2, f = 4/3 and N = 4/3, c1 = 0.238, c2 = 0.219 with the values of λ indicated (and
corresponding to the three columns). The colormap is the same in the first three panels of (a)
and (b), but not the rightmost panel. The quasi-steady wave amplitude A = Ar + iAi for the
four computations is shown in (d).

demand the limits

(γr, γi,U)→
{

(0, G+, 0) for ξ →∞,
(0, G−, ∆U) for ξ → −∞, (6.9)

where G+ = Aη−1∗ , G− = A(η∗ + ∆U)−1 and ∆U is the jump in the mean flow across
the structure. (6.9) imposes six boundary conditions to (6.8). One must also remove



20 C. Wang and N. J. Balmforth

-6 -4 -2 0 2 4 6

-0.4

-0.2

0

0.2

0.4

-6 -4 -2 0 2 4 6

-10

-5

0

5 10 15 20

0

0.1

0.2

0.3

4 6 8 10

-20

-15

-10

Figure 10. A coherent structure computed from (6.8) with η∗ = 5.04 and A = −1.2, showing
(a) γr and γi, and then (c) U (solid lines). The dotted lines show the numerical solution of
the modified canonical model (6.4), computed for λ = 0.53 at τ = 17.8 (at which moment the
residual oscillations near η = 0 are less pronounced). In (b) and (d) we show G−, c and the jump
∆U = −[U ]∞−∞ against η∗ from the solutions to (6.8) for A = −1.2 (solid lines). The dashed
lines show the limiting behaviour for η∗ � 1 given in (6.10). The circles show data for c and
∆U measured from the numerical solution of (6.4) with λ = 0.53 from τ = 5 to τ = 15.4.

the translational invariance of the system by imposing an additional constraint. Thus,
given η∗, we solve (6.8) subject to those seven conditions, treating G− and c as unknown
parameters (eigenvalues). This furnishes localized structures taking the form of “pulses”
in γr and “fronts” in γi and U . Note that, as the coherent structure drifts to the right,
η∗ increases, corresponding to an evolution of the coherent structure, which is treated
parametrically in the quasi-steady approximation of (6.7) and (6.8).

Figure 10 shows a sample solution to (6.8) for (A, η∗) = (−1.2, 5.04), giving G+ =
−0.24. These choices for A and η∗ correspond to the numerical solution of the modified
canonical model for λ = 0.53 shown in figure 9 at τ ≈ 18, and they are also plotted in
figure 10. The solution to (6.8) compares satisfyingly with the snapshot of the simulations
near the core of the coherent structure, although there are discrepancies further away
arising from the influence of the far-field flow.

Figure 10 also includes data computed from (6.8) for G−, c and ∆U , as functions of
η∗. In the limit of large η∗, a simple rescaling of (6.8) and (6.9)) indicates the limiting
behaviour,

G− → G+ = O(η−1∗ ), c = O(η
−5/2
∗ ), ∆U = O(η∗). (6.10)

The solution of (6.8) is compared to (6.10) together with measurements from the nu-
merical simulation in the figure. Similarly, the characteristic strength and width of the

structure are γ = O(η−1∗ ), U = O(η∗) and ξ = O(η
−1/2
∗ ). Thus, as the coherent structure

drifts to the right, and η∗ slowly increases, the drift velocity declines, and the peak in γr
and jump in γi must decrease and narrow. However, the jump in ∆U continues to build
up, predicting that the deficit in the mean flow grows linearly with η for η < η∗.

This behaviour of the coherent structure rationalizes the dynamics of the modified
canonical model seen in figure 9: once the linear dynamics and nonlinear focussing
have subsided, the two features that remain are the decaying oscillations near η = 0
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and the drifting coherent structure. The structure leaves in its wake a slowly diffusing
density perturbation γ ≈ iG− (see the right-hand plots in figure 9(b)) and a gradually
strengthening mean flow correction ∆U , as seen on the right of figure 9(c). Thus, with
diffusion, all growth in the density perturbation becomes arrested, leaving a widening
and strengthening, jet-like defect in the mean flow.

One final concern is the impact of viscosity on the dynamics of the coherent structure:
it is clear from (6.2) that the growth of the mean flow correction may be halted when
ν = O(ε2). Indeed, in the limit of stronger diffusion, the viscous term may allow U to
also reach a steady state within the critical layer. However, as for the classical critical
layers of Rossby waves (Brown & Stewartson 1978) and clear from the constraint (6.3),
a genuine steady state is not possible with dissipation. Instead, the mean-flow correction
must inevitably spread viscously out of the critical layer, even if a quasi-steady state
is reached locally. Such considerations suggest that viscosity, if sufficiently strong, may
prevent the creation of the drifting coherent structure, although a widening jet-like defect
might still appear in the mean flow.

7. Discussion

In this paper, we have studied the non-dissipative, nonlinear dynamics of forced
baroclinic critical layers using matched asymptotic expansion. In the linear regime, the
forcing establishes a steady wave response outside the critical layers, but disturbances
grow secularly inside the critical layer, which thins with time. The behavior is very similar
to the forced critical layers of both Rossby and internal gravity waves (Stewartson 1978;
Warn & Warn 1976, 1978; Booker & Bretherton 1967; Brown & Stewartson 1980).
Continuing the analysis, we then studied the weakly nonlinear dynamics of the critical
layer, finding that the adjustment of the mean flow provides the most important feedback
on the growing disturbance there. Guided by the critical-layer scalings exposed by the
weakly nonlinear analysis, we then derived a reduced model for the nonlinear critical
layer. The numerical solution of the reduced model reveals a continued growth of the
vertical vorticity as the disturbance is focussed exponentially quickly into a finer region
within the critical layer. The focussing progresses uninterrupted until the reduced model
breaks down.

Such pathological behaviour is quite different to that of the forced critical layer of a
Rossby wave, where nonlinearity halts the secular linear growth and the mean vorticity
distribution overturns into a distinctive cat’s eye structure (Stewartson 1978; Warn &
Warn 1978; Killworth & Mclntyre 1985). In that process, all the harmonics of the
forcing pattern are excited to the same strength of the fundamental component. By
contrast, in our nonlinear theory of the forced baroclinic critical layer, the adjustment
to the mean flow arrests the linear growth and prompts the focussing of the vorticity
before any of the higher harmonics become important. It is only once the strength and
lengthscale of the focussed vorticity pass out of the asymptotic regime of our theory that
the harmonics will appear. One important contributor to this feature is that the position
of the baroclinic critical level itself is dictated the streamwise wavenumber. The critical
level of the forcing does not therefore coincide with those of the harmonics. This filtering
action weakens the impact of those harmonics within the baroclinic critical layer, leaving
the adjustment the mean flow as the main nonlinearity.

The nonlinear structures developed in our forced baroclinic critical layers (jet-like
defects in the mean velocity and dipolar stripes in the vorticity) may well be the analogues
of features seen in the simulations of Marcus et al. (2013) and Wang (2016). Unlike in
the reduced model, however, where these structures continue to focus, the mean flow
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structures spawned in the simulations roll up into new vortices, providing part of the chain
of events leading to self replication. Thus, our model likely misses important secondary
instabilities. Indeed, Killworth & Mclntyre (1985) and Haynes (1989) have shown that
the nonlinear evolution of a forced Rossby wave can be susceptible to shorter-wavelength
shear instabilities and generate “critical layer turbulence” along the filaments of vorticity
wrapped around the main cat’s eye (see also Balmforth & Korycansky (2001)). A roll
up of the jet-like defects into new vortices seems plausible in the present case, and may
arrest the uninterrupted focussing effect within the nonlinear critical layer. However, an
extension of the matched asymptotic analysis is required to capture such dynamics.

Marcus et al. (2016) further argued that self replication is a finite-amplitude instability,
requiring the amplitude of the initial disturbance to exceed a certain threshold. By
contrast, the secular growth and nonlinear focussing of the disturbance inside the critical
layer is triggered for an arbitrary small forcing amplitude in our analysis. Nevertheless,
we have idealized the driving as a steady wavemaker, and ignored any possible evolution
of that forcing. If the wavemaker cannot be sustained indefinitely, a threshold likely
emerges that demands that the forcing act for sufficient time and strength to drive the
baroclinic critical layers to the point where secondary instability can arise.

The continued focussing of the mean vorticity layer also indicates that dissipative
effects are likely to become important in the later stages of evolution inside the baroclinic
critical. Including the diffusion of density (i.e. heat or salt) in the theory leads to
a modification of the reduced model, which now takes a partial differential form. A
brief exploration of the modified model demonstrates that weak diffusion can arrest the
focussing to the nonlinear critical level. Interestingly, a drifting solitary-wave like object
then emerges, with a structure that can be analyzed analytically. The solitary wave leaves
in its wake another jet-like defect in the mean flow, but this time the defect gradually
widens and deepens as the object drifts.

In summary, when a steady forcing drives waves with baroclinic critical levels into a
horizontally sheared flow with vertical stratification, the growing density perturbations
predicted by linear theory become saturated by nonlinear effects. Although this satura-
tion is demanded by the conservation laws of the governing equations, those constraints
still permit the density perturbation to develop finer spatial structure over a region within
the baroclinic critical layer. This nonlinear focussing effect takes place exponentially
quicky, developing sharp jet-like defects in the mean flow, which can survive even in
the presence of weak dissipation. This dynamics of the baroclinic critical layers is more
destructuve than that for the classical critical layers of Rossby and internal waves, and
plausibly rationalizes part of the cycle of vortex self replication observed by Marcus et
al. in numerical simulations.

We thank Professors Philip Marcus, Richard Kerswell and Dr. Thomas Eaves for
important discussions, and the referees for helpful comments. We also thank Dr. Timm
Treskatis and Mr. Mingfeng Qiu for help on our numerical simulation. C.W. thanks the
University of British Columbia for a Four-Year Doctoral Fellowship.

Appendix A. The critical-layer vorticity distribution

The reconstruction of the critical-layer vorticity from the matched asymptotics is:

ζ = ζ0 +
[
ε

1
3 ζ1e

ix+imz + ε
2
3 ζ2e

2ix+2imz + c.c.
]
, (A 1)
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where ζ0 is given by (5.22),

ζ1 = i

(
m2

2N

) 2
3
[
(f − 1)γ + γ

∂|γ|2

∂η
+

2

m2
v1
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∂η2

]
, (A 2)
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(
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) 1
3

u1γ

]
, (A 3)

and the leading-order fundamental components of the critical-layer horizontal velocity
are

v1 =
im2A

2

[
log

∣∣∣∣∣
(
ε2m2

2N

) 1
3

η

∣∣∣∣∣+ 1

]
− m2

2

 ∞
η

(
γ − iA

η′

)
dη′ +

iA(αN − f)

N 2 − f(f − 1)
, (A 4)

u1 =
(f − 1)v1 − iA+ v1ζ0

iN
, (A 5)

where the decoration on the integral sign implies principal value.
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