Annu. Rev. Fluid Mech. 2014.46:121-146. Downloaded from www.annualreviews.org
by ${individual User.displayName} on 01/08/14. For personal use only.

ANNUAL
avews Further
Click here for quick links to

Annual Reviews content online,
including:

« Other articles in this volume
- Top cited articles

- Top downloaded articles

« Our comprehensive search

Annu. Rev. Fluid Mech. 2014. 46:121-46

First published online as a Review in Advance on
August 14, 2013

The Annual Review of Fluid Mechanics is online at
fluid.annualreviews.org

This article’s doi:
10.1146/annurev-fluid-010313-141424

Copyright (© 2014 by Annual Reviews.
All rights reserved

Yielding to Stress: Recent
Developments in Viscoplastic

Fluid Mechanics

Neil J. Balmforth,! Tan A. Frigaard,!?
and Guillaume Ovarlez’

' Department of Mathematics and > Department of Mechanical Engineering, University of
British Columbia, Vancouver V6T 172, Canada; email: njp@math.ubc.ca

3 Laboratoire Navier (UMR 8205), CNRS, ENPC, IFSTTAR, Université Paris-Est
F-77420 Marne-la-Vallée, France

Keywords

viscoplastic fluids, yield stress

Abstract

The archetypal feature of a viscoplastic fluid is its yield stress: If the ma-
terial is not sufficiently stressed, it behaves like a solid, but once the yield
stress is exceeded, the material flows like a fluid. Such behavior characterizes
materials common in industries such as petroleum and chemical processing,
cosmetics, and food processing and in geophysical fluid dynamics. The most
common idealization of a viscoplastic fluid is the Bingham model, which
has been widely used to rationalize experimental data, even though it is a
crude oversimplification of true rheological behavior. The popularity of the
model is in its apparent simplicity. Despite this, the sudden transition be-
tween solid-like behavior and flow introduces significant complications into
the dynamics, which, as a result, has resisted much analysis. Over recent
decades, theoretical developments, both analytical and computational, have
provided a better understanding of the effect of the yield stress. Simulta-
neously, greater insight into the material behavior of real fluids has been
afforded by advances in rheometry. These developments have primed us for
a better understanding of the various applications in the natural and engi-
neering sciences.



Annu. Rev. Fluid Mech. 2014.46:121-146. Downloaded from www.annualreviews.org

by ${individualUser.displayName} on 01/08/14. For personal use only.

1. INTRODUCTION

Every day we deal with many materials that can be described as viscoplastic fluids: We squeeze
toothpaste from tubes, spread butter and jam over toast, apply cosmetic creams to skin, clean mud
from boots, and dispose of unpleasant waste products and bodily secretions. A great many industrial
processes involve viscoplastic fluids, ranging from the creation of chocolate confections to the pulp
suspensions of paper making and the concrete used for construction. So too do environmental
hazards such as mud and lava flows, landslides, and avalanches. Biological materials such as mucus
can be viscoplastic, making relevant problems in physiology, biolocomotion, and beyond. The
common feature of all these materials is that they flow when pushed sufficiently strongly; when
left alone, they either simply sit there or maneuver on a much longer timescale. In other words,
they combine solid-like behavior at low stresses with a fluid-like response at high stress.

A convenient way to describe the switch from fluid to solid behavior is in terms of the yield
stress required to trigger the transition, which is, perhaps surprisingly, taken to be a sharply defined
value rather than some mean measure of a characteristic range. The fluid dynamicist seems most
comfortable with the description of these materials as viscoplastic fluids. The experimentalist
more frequently prefers the terminology yield-stress fluids. The jamming or glassy materials of
the physicist are closely related, and the engineer has several looser descriptions, including pastes,
muds, and slurries. In any event, such materials are the focus of this review; some examples are
shown in Figure 1.

A simple cartoon of non-Newtonian fluid behavior is often afforded by plotting the flow curve
of a material, in which one records a measure of stress against a measure of the rate of deforma-
tion. The resulting curve reflects the assumption that the instantaneous stress of the material is
determined purely by the local deformation rate or, equivalently, that one can define an effective
viscosity. This model of constitutive behavior is usually referred to as the generalized Newtonian
fluid and, in view of its simplicity and ease of construction by rheometers, has received much
attention in engineering settings.

A simple extension of the generalized Newtonian model is to allow the flow curve to have
jumps in gradient, implying switches in viscosity. A switch at a zero deformation rate furnishes
the simplest type of yield-stress fluid models, of which the Bingham model is the most extreme.
For this model, the deformation rates vanish until the yield stress is reached, whereafter the fluid
flows with a constant plastic viscosity. In simple, unidirectional shear, one expresses this law by
relating the stress, 7, to the shear rate, y, by

y=0 if <1y, and 7 =1y +uy otherwise,

where 7y and p are the yield stress and plastic viscosity, respectively. More generally, one poses
the three-dimensional (3D), tensorial formulation

;=0 if t<ty, and 7; = ‘L’yﬁ + uy;; otherwise, (1)
Y

where 7 is the deviatoric stress tensor, y;; = 0u; /dx; + du; /dx; represents the strain-rate tensor,
and 7 and y are now the second invariants,

@)

In technical detail, the Bingham model assumes that the fluid’s material structure is isotropic,
there are no normal stress differences, and there is no account of either elasticity or temporal
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Figure 1

Some traditional viscoplastic materials in nontraditional flow configurations, and some nontraditional viscoplastic fluid flows (plus
pertinent references). (#) Pinch-off and drips of Carbopol (German & Bertola 2010a,b). (#) A collapsed extrusion of toothpaste (Kamrin
& Mahadevan 2012). () A mudskipper moving over mud (Pegler & Balmforth 2013). Photograph courtesy of Nick Baker. (4) A mud
mound composed from a collapsed helical tube extruded by a sandworm via peristaltic action (Rahmani et al. 2011) amid ripples on the
beach. (¢) A dambreak of blue-colored Carbopol on an incline (Cochard & Ancey 2008). Photograph courtesy of C. Ancey. (f) The
underside of a snail’s foot; the mucus layer plays a key role in its adhesive locomotion (Denny 1981). (g) A mud volcano. Photograph
courtesy of the USGS. (b) Particle fractionization in Carbopol (Madani et al. 2010). (i) A mud washboard (Hewitt & Balmforth 2012).

(7) Viscoplastic Saffman-Taylor fingers (Barral et al. 2010). (k) Ketchup splatter (Luu & Forterre 2009).

relaxation. The yield criterion, T — 7y, is based on a single invariant of the stress tensor and is
the von Mises criterion of plasticity theory (see Section 3.6) (Prager & Hodge 1951).

The simplicity of the Bingham law has given this model a special status in viscoplastic fluid
mechanics, yet there is no doubt that it fails to quantitatively describe any real material (except,
perhaps, over a limited range of stresses). A popular variant is the Herschel-Bulkley model, which
includes a rate-dependent viscosity in the form of a power law, replacing the second part of
Equation 1 with

T =Ty % + Ky yy, if T =1y 3)

the consistency is K, and the index 7 allows for a viscosity that decreases with the shear rate if
n < 1 (shear thinning) or increases with y if # > 1 (shear thickening). The Herschel-Bulkley
law is more realistic because the material structure that resists deformation and leads to the yield
stress is typically not completely destroyed at © = ty. Instead, the structure persists postyield
and renders the viscosity shear-rate dependent. In other words, viscoplastic fluids usually exhibit
both a yield stress and a nonlinear viscosity. Efforts to establish firmer connections of constitutive
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laws such as the Herschel-Bulkley model with microscopic dynamics are reviewed in Section 3.4.
The stress—strain rate relation for a real viscoplastic fluid is illustrated in Figure 24. This fluid, a
Carbopol gel, is described relatively well by the Herschel-Bulkley model (at least in steady shear),
as illustrated by the fit also included in the plot and discussed in more detail in Section 3.2.

The most dramatic feature of a viscoplastic fluid is the yield stress: From both a physical and
mathematical perspective, this threshold effects a fundamental change to the fluid mechanics of the
problem. However, a rate-dependent viscosity effects little qualitative change to the mathematical
and physical structure. For this reason, we do not review the literature that generalizes Newtonian
fluid problems by making the viscosity nonlinear but focus on yield-stress effects. In Section 2, we
review the main recent theoretical developments, both analytical and computational, which have
allowed for a better understanding of such effects. We provide a counterpoint in Section 3 by dis-
cussing the new insights into the behavior of real viscoplastic fluids that have been provided by re-
cent advances in rheometry. Finally, Section 4 summarizes examples in which these developments
have primed us for a better understanding of applications in the natural and engineering sciences.

2. MODELING WITH IDEALIZED YIELD-STRESS FLUIDS

2.1. Computing Flows of Viscoplastic Fluids

The key computational challenge with viscoplastic fluid flows is to correctly reproduce the rigid
structure of the plug regions, where the stress is below the yield stress, and to track the yield surfaces
that separate plugs from yielded regions (see Figure 24 for an example of a plug in a Couette cell).
Yield surfaces are not material surfaces, and we must pose a free boundary problem in which the
stress dictates the position of the free boundary. Computational approaches were proposed in the
1980s (e.g., Glowinski et al. 1981) and have since been used to compute increasingly complicated
flows (e.g., Dimakopoulos et al. 2013, Hormozi et al. 2011, Vinay et al. 2006, Vola et al. 2004, Yu
& Wachs 2007).

Two main methods have developed. Augmented Lagrangian methods are based on the vari-
ational formulation of the Navier-Stokes equations and determine the flow solution via an op-
timization algorithm. Because of the form of yield-stress constitutive laws, the optimization is
complicated by the nondifferentiability of the dissipation-rate functional at the yield surface. This
technical difficulty is avoided by introducing a related saddle-point problem, which is solved iter-
atively (see Glowinski & Wachs 2011 for a detailed review).

The second methodology retains the classical formulation and regularizes the constitutive
law: For an idealized yield-stress fluid, the effective viscosity becomes infinite at the yield surface
and within a plug. Regularization replaces this singularity by a large, but finite viscosity, thereby
eliminating any yield surfaces and replacing the plugs with very viscous fluid. Frigaard & Nouar
(2005) provide a recent review of popular regularization schemes.

Both augmented Lagrangian and regularization methods have been implemented in finite-
element and finite-volume discretizations. Augmented Lagrangian schemes are generally slower
than codes with viscosity regularizations and are more complex to implement. Regularization
typically furnishes smoother solutions for the velocity field, parameterized by a regularization
parameter € < 1 such that the velocity solution of the exact yield-stress model is recovered when
€ — 0. This smoothness allows the application of more sophisticated flow solvers and leads to
faster computations. Regularization can be implemented within many commercial computational
fluid dynamics codes via a user-defined viscosity function, exploiting built-in functions for mesh-
ing, numerical integration, and so forth, which is a practical advantage. However, as € — 0, the
regularized solution becomes progressively more difficult to compute. In practice, one chooses

Balmforth o Frigaard o Ovarlez



Annu. Rev. Fluid Mech. 2014.46:121-146. Downloaded from www.annualreviews.org

by ${individualUser.displayName} on 01/08/14. For personal use only.

100 T T T
a Carbopol rheometry

90+ B

80} - Serrated plates; stress increased .
O Serrated plates; stress decreased

70+ x Smooth plates; stress increased E

+ Smooth plates; stress decreased

60 — Herschel-Bulkley fit

= Slump test
& 50 E
=

40 T S T

r 7 3" Carbopol P on |
- 7o) . O Extrusion
slumps o) /62550 P\ao\ Q  Slump
30 | - Q- -,

201

h(r) (cm)

Jd .8

0 Yy sl soa sl soa o aaanl soa sl PR 0
1073 102 107! 100 10! -5 0 5
p(s™) Radius (cm)
L | — T T — -.----|§T/Ty T T T T
2.50 N ' ' '
ﬁ 2.00 o X Data
1.70 o0 § 200F — Herschel-Bulkley fit b
1.48 T\ < T
w
_ 127 .‘\ . S i
T 1.14 ; \e& o a
G s i
) 102 @ e\ 8
] — \ < 100 b
> P v
2 .‘5 e ¢ o
- A o
H k-] * 50 L L L
9 o [ ® e P, 702 100 100 100 b
5 0.98 > e o o Shear rate (s~")
\. ’ DD
9 0.83 L . . %o, 4
¥l 0.68 Increasing® . ’0’
| 0.48 d rotation e . Oog
speed ° * Oo
| L “:‘.-..:23Q§§AAEEQQEIE
102 Radial position (a.u.)

Time (s)

Figure 2

Carbopol flow curves and slumps. (#) Flow curves from a plate-plate rheometer. The red symbols show the curve for a test with serrated
plates in which the stress was increased (at 0.5 Pa/s; dozs) and then decreased (squares). The light blue line is a Herschel-Bulkley fit with
7y =30Pa,n = 0.34,and K = 19 Pa/s. Below the yield stress on the up curve, data correspond to the elastic straining of the material
in its solid-like regime. The blue crosses show a flow curve for the same material, but using smooth plates, to indicate the effect of slip.
(b) Photographs of the final domes resulting from a fixed-flux extrusion from a tube (/eft) and a slump test (right) on a horizontal
plexiglass plate with a roughened surface. Roughly the same volume of Carbopol was poured out from a beaker in the slump test. The
plots show depth profiles (blue circles show the extrusion, and green dots show the slump). The dark yellow solid (dashed) curve shows the
thin-film prediction given in Equations 4 and 5, assuming a yield stress of 30 Pa (50 Pa). (c) Shear rate against time during creep tests
performed in a Couette geometry at the scaled applied stresses, 7/ty , indicated. The gray dashed line shows the trend #~!. For

7 = 1.027y, we note the solid-like creep flow at short times, followed by the eventual onset of steady flow. (4) Dimensionless velocity
profiles measured locally in the gap of a 1.9-cm-wide gap Couette cell with magnetic resonance imaging techniques (see Section 3.3).
Profiles from left to right correspond to increasing rotation speed of the inner cylinder (data from Coussot et al. 2009). At the lower
velocity, flow is localized near the inner cylinder, and there is a plug near the outer cylinder. As the rotation increases in speed, the plug
becomes thinner; all the material flows at the highest rotation speed. (Inser) The flow curve reconstructed from the velocity profiles (see
Section 3.3). The dark yellow crosses are data measured with standard rheometry, in a cone-and-plate geometry, and the light blue line
shows a Herschel-Bulkley fit. The rheometry and slumps in panels # and & use the same Carbopol solution; different samples are used in
panels ¢ and d.
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Figure 3

Numerical solution for flow down a wavy-walled channel, computed with an augmented Lagrangian scheme [using the code Rheolef
(Roquet & Saramito 2003), performed by A. Roustaei]. (#) The mesh of the finite-element discretization used (9,460 elements, with a
high density surrounding the yield surfaces). (b) Speed as a density on the (x, y) plane, with the plugs shaded gray. One-quarter of the
periodic channel is shown, with the solution symmetrical abouty = 0 and x = 0. The Bingham number, B = 7, H/uU =5, is based
on the mean velocity U and the half width of the narrowest part of the channel H.
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a small fixed €, and it is essential to check that this value is sufficiently small to ensure adequate
convergence of the velocity field. Less satisfactorily, no theory exists to guarantee that the stress
field also converges to the correct solution. Thus, one cannot conclude that the regularized plug
regions (identified using a contour of constant stress or strain rate) converge to the true ones.
Nevertheless, numerical solutions have converged correctly in a few nontrivial flows with known
yield surfaces (e.g., Burgos et al. 1999).

Pragmatically, the choice between augmented Lagrangian and regularization is related to
whether one needs to determine the position of the yield surface, or whether a reasonable ap-
proximation to the velocity field is sufficient. Explorations of the plastic limit (see Section 2.2)
provide an important class of problems in which the accurate determination of the yield surface is
required. Some form of mesh adaptivity in combination with an augmented Lagrangian scheme
is then usually desired, as implemented, for example, in the free software Rheolef (Roquet &
Saramito 2003) (see Figure 3, which shows a numerical solution for flow down a wavy-walled
channel computed using this scheme).

A potentially more elegant approach is to compute only the yielded flow solution while tracking
the yield surfaces explicitly (e.g., Beris et al. 1985, Szabo & Hassager 1992). Unfortunately, the
existing implementations are restrictive because they take advantage of known plug geometry,
and it is unclear how to generalize these schemes to make them more flexible. Other recent
developments include the use of meshless schemes, such as lattice Boltzmann (Derksen 2013,
Vikansky 2008).

2.2. Variational Methods and the Plastic Limit

The variational formulation of viscoplastic flow problems has applications beyond numerical al-
gorithms (Section 2.1). Slow, steady flows of viscoplastic fluids satisfy two variational principles
(Duvaut & Lions 1976, Prager 1954): a rate of strain minimization and a stress maximization
principle. These variational principles can provide bounds on the drag on rigid objects moving
through viscoplastic fluid (e.g., Adachi & Yoshioka 1973) and identify how quantities such as the
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dissipation and flow rates vary with problem parameters (e.g., rheological constants, imposed pres-
sure gradient) (Duvaut & Lions 1976). They are particularly useful in exploring the plastic limit
(e.g., Duvaut & Lions 1976, Mossolov & Miasnikov 1965). Recent applications include the arrest
of motion of suspended bubbles and particles (see Section 4.3) (Dubash & Frigaard 2004, Putz &
Frigaard 2010, Tokpavi et al. 2008).

When the critical limit required for sustained flow is not exceeded, only transient motion can
be triggered by an initial disturbance. In contrast to viscous fluids, the yield stress brings flow in
fixed domains to rest in finite time. This has been recently illustrated by Muravleva et al. (2010)
for 1D duct flows and by Zhang et al. (2006) for thermal convection. The ideas have even been
applied in image processing (Frigaard et al. 2003), in which there are mathematical analogies with
nonlinear filtering. Curiously, theory for viscoplastic films with a free surface (see Sections 2.3
and 4.2) suggests infinite stopping times (Matson & Hogg 2007); this may be an artifact of the
thin-film approximation.

Plastic limit analysis for a yield-stress fluid is closely connected to classical plasticity theory
(Prager & Hodge 1951). Despite this, plasticity solutions have rarely been used in viscoplastic
fluid mechanics. Examples include plastic flow around sedimenting objects (Beris et al. 1985, Putz
& Frigaard 2010, Tokpavi et al. 2008) and in slumps on inclined planes (see Section 4.2) (Dubash
et al. 2008). More curious is the dearth of viscoplastic flow solutions corresponding to some
of the classical problems of solid mechanics. The bending and buckling of beams have recently
been studied for viscoplastic fluids (Balmforth & Hewitt 2013, Kamrin & Mahadevan 2012).
However, the indentation of a punch into a plastic half space has never received any viscoplastic
consideration, despite the classical solutions of Prandtl and Hill (see Prager & Hodge 1951) and
a number of applications, including locomotion and imprinting patterns on mud (see Section 4.4
and Figure 1) (Hewitt & Balmforth 2012).

2.3. Thin-Film and Lubrication Theories

The asymptotic analysis of thin viscoplastic films, or viscoplastic lubrication theory, dates back to
the 1950s and even appears in classical texts (Pinkus & Sternlicht 1964). Objections to this theory
emerged in the 1980s with the observation that lubrication analyses were apparently inconsistent:
The “lubrication paradox” of Lipscomb & Denn (1984) highlighted how the theory predicted plug
regions that were apparently below the yield stress, even though the velocity field there was not fully
rigid. This inconsistency caused many workers to consider regularized viscoplastic constitutive
models and explore unphysical distinguished limits. Such diversions ultimately prove unnecessary
because the paradox can be resolved by recognizing that the lubrication theory is the leading-
order term of an asymptotic expansion; an exploration of higher-order terms demonstrates that
the problematic plugs are actually slightly above the yield stress, allowing for their deformation
(Putz et al. 2009, Walton & Bittleston 1991). The regions have been termed pseudoplugs to
emphasize their nature, with their borders referred to as fake yield surfaces. There is therefore no
lubrication paradox.

The occurrence of pseudoplugs in slowly varying geometries leads to two secondary questions.
First, can truly rigid plugs be embedded within them? True plugs potentially surround points of
symmetry at which the strain-rate invariant must vanish; this can be verified, and the extent of
the plugs determined, by considering the force balance on these regions. In this fashion, Walton
& Bittleston (1991), Szabo & Hassager (1992), and Putz et al. (2009) built true plugs at the cores
of pseudoplugs in flow between eccentric cylinders and down a wavy-walled channel. The second
question is whether the pseudoplugs develop into true plugs when their weak spatial variations
become sufficiently small. This has been confirmed by Szabo & Hassager (1992) and Frigaard &
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Ryan (2004) in two particular geometries. Both questions demand a more elaborate asymptotic
analysis than leading-order lubrication theory.

Other recent work has explored viscoplastic film dynamics in a wider range of configurations
and applications. The squeeze flow problem, which originally motivated Lipscomb & Denn’s
lubrication paradox, is well studied (Engmann et al. 2005, Sherwood & Durban 1998), although
the true plugs that must lie at the core of this flow have been constructed only numerically
(Karapetsas & Tsamopoulos 2006); a detailed asymptotic analysis has not been tried, nor have
the connections with classical plasticity solutions been fully exploited (Prager & Hodge 1951).
Shallow viscoplastic flow over an inclined plane, the analog of the classical viscous gravity current
problem, is discussed further in Section 4.2; other free-surface problems with popular viscous
counterparts include surface-tension-driven viscoplastic fingering (de Bruyn et al. 2002) and the
pinch-off, bending, and buckling of free viscoplastic sheets and filaments (Balmforth et al. 2010;
Balmforth & Hewitt 2013; German & Bertola 2010a,b; Kamrin & Mahadevan 2012; Rahmani
etal. 2011).

2.4. Hydrodynamic Stability of Viscoplastic Fluids

Advances in viscoplastic stability theory are mostly relatively recent, providing parallel treatments
of some of the classical hydrodynamic instabilities (the earlier literature is reviewed in Georgievskii
2011). For nearly all flows studied to date, the effect of the yield stress is to enhance stability.

A critical facet of viscoplastic stability problems is the role played by the rigid plugs of the
base state. Fully yielded base flows present no particular mathematical difficulty to conventional
stability analysis, and the critical conditions for instability usually vary smoothly with yield stress
upon proceeding away from the Newtonian limit, even if plugs subsequently appear in the base
state. Taylor-Couette flow provides such an example (Landry et al. 2006, Peng & Zhu 2004).

By contrast, fully unyielded base states are significantly different, becoming unconditionally
linearly stable because an infinitesimal perturbation cannot raise the equilibrium stress above the
yield value. The viscoplastic Rayleigh-Bénard problem is a classical example (Zhang et al. 2006):
the critical Rayleigh number for the onset of convection becomes infinite with the addition of
any yield stress. This striking result is in clear conflict with the classical threshold, which cannot
be recovered by taking the Newtonian limit; in other words, the combined limit of vanishing
amplitude and yield stress must be treated with care. Physically, the fluid simply cannot remain
rigid when the amplitude of the stress perturbation is of the order of the yield stress.

Despite the dramatic change in the linear stability of the conducting state, one does not expect
vigorous convection to be much affected by a relatively small yield stress. Thus, convective solu-
tions with sufficient finite amplitude ought to survive the introduction of the yield stress. However,
these solutions appear in the Newtonian problem when the conducting state loses stability at the
classical threshold; how can they therefore be created when the yield stress shifts the point of
linear instability to infinite Rayleigh number? As outlined by Zhang et al. (2006) and Balmforth
& Rust (2009), the supercritical onset of Newtonian convection is replaced by a rather different
bifurcation structure: Unstable convective modes with weak amplitude appear first by bifurcating
subcritically from infinite Rayleigh number; as one traces these solutions back to lower tempera-
ture gradients, their amplitude strengthens until, closer to the Newtonian threshold, the solution
branch turns back to higher Rayleigh numbers, becoming stable and creating the more vigorous
convecting states. Thus, convection is delayed to higher Rayleigh numbers by the yield stress
and requires a finite-amplitude disturbance to be initiated. As the yield stress becomes small, so
too do the shift in onset and the magnitude of the kick needed to convect, rationalizing how the
viscoplastic problem converges to its Newtonian counterpart.
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For partially yielded base flows, the linear stability equations are posed only over the yielded
flow domain, with boundary conditions imposed at the perturbed yield surfaces (Frigaard et al.
1994). How dramatically the yield stress affects the linear stability then depends on whether the
plug immobilizes fluid over a region that is critical to the instability mechanism or whether the
plug effects a fundamental change to the form of the imposed boundary conditions. For example,
linear Newtonian instabilities associated with free-surface or interfacial motion are completely
eliminated if there is an adjacent plug (see Section 4.1) (Balmforth & Liu 2004, Frigaard 2001);
the surface or interface can no longer be perturbed to trigger linear instability, and finite-amplitude
instability is instead needed for instability, as for convection. In Poiseuille flows, the central plug
acts like a solid wall, dividing the yielded flow into two sections, each with a velocity profile that
is equivalent to a mixed Poiseuille-Couette flow; the Couette component stabilizes the viscous
modes (Métivier etal. 2005, Nouar etal. 2007). Here the plug is responsible for imposing boundary
conditions on the perturbation that are quite different from the usual conditions in an unyielded
shear flow; these conditions directly affect the linear stability problem by stabilizing the viscous
modes. Again, the Newtonian limit conflicts with classical stability results because the central plug,
no matter how thin, cannot be broken.

In situations in which finite-amplitude instability may arise, one must advance beyond
linear theory with, for example, energy stability methods or weakly nonlinear theory. Energy
methods have been used to place bounds on instability in viscoplastic shear flows (see Nouar
& Frigaard 2001) and convection (Zhang et al. 2006), and weakly nonlinear theory applied to
Rayleigh-Bénard-Poiseuille flow (i.e., thermal convection in a channel flow) (Métivier et al.
2010). However, the application of these methods remains limited. In particular, in energy
stability theory, the role of the yield stress is relatively unexplored: Because the unyielded state
is assumed rigid, the stress over a plug is formally indeterminate in the base flow (Prager &
Hodge 1951). It is equally admissible to assume that the plug is held close to the yield stress, or
at stresses significantly below that critical value. Any prestress built into the base flow renders
that state significantly less stable, with the plugs breaking up with relatively weak perturbations
[the rationalization of viscoplastic roll waves proposed by Balmforth & Liu (2004)]. In general,
to address such issues, one must pose the stability analysis as a variational problem and build in a
measure of the prestress. Alternatively, one can abandon the idealized yield-stress model in favor
of a constitutive law that accounts for subyield deformation and uniquely determines the stress
state (Saramito 2009, Thompson & de Souza Mendes 2012).

3. REAL CONSTITUTIVE BEHAVIOR
3.1. De-Mythifying the Yield-Stress Myth

Approximately 30 years ago, Barnes & Walters (1985) published their controversial article on
the “yield-stress myth,” questioning whether a yield stress truly existed, or if there was always
highly viscous flow at low shear rates; the measured yield stresses were claimed to be merely the
thresholds at which the viscosity fell abruptly (Barnes 1999). Recent advances in rheometry offer
new insight into this issue. Important results are that (2) flows observed at low stresses are not
always steady, and (b) flow complexity (shear bands, wall slip) can lead to erroneous interpretation
of macroscopic data.

The simplest experiment to see whether a material flows or not consists of applying a constant
homogeneous stress and then measuring the resulting shear-rate variation in time. Careful exam-
ination of this response shows that, for durations as long as days, only unsteady flows occur at the
lower stresses, characterized by very low shear rates that keep decreasing in time (see Figure 2c¢)

www.annualyeviews.org o Yield-Stress Fluid Mechanics

129



Annu. Rev. Fluid Mech. 2014.46:121-146. Downloaded from www.annualreviews.org

by ${individualUser.displayName} on 01/08/14. For personal use only.

Static yield stress

().¢): the stress above
which unyielded fluid

begins to flow

Dynamic yield stress
(7y.4): the stress below

which yielded fluid
stops flowing

130

and an apparent viscosity that continually increases with time (Caton & Baravian 2008, Coussot
etal. 2002a, Moller et al. 2009). This has been observed with materials similar to those analyzed by
Barnes (1999), such as Carbopol gels (Coussot et al. 2006, Divoux et al. 2011, Moller et al. 2009),
muds (Coussot et al. 2002a, 2006), and mayonnaise (Caton & Baravian 2008, Da Cruz et al. 2002).
The phenomenon is particularly spectacular in thixotropic fluids (see Section 3.5). It thus seems
that the Barnes & Walters viscosity data at low stresses were not steady state (Moller et al. 2009),
which was probably hard to detect at the time. In the creep regime, the shear rate for simple yield-
stress fluids follows the trend y o #”, with 7z varying between 0.6 and 1 (see Figure 2¢), which is
reminiscent of the primary creep observed in solids (Caton & Baravian 2008, Divoux et al. 2011).

Nevertheless, a true yield stress remains hard to determine: There exists a range of stresses
in which this creep regime is followed by a series of complex events (wall slip even with rough
boundaries, transient shear banding) during which the flow accelerates macroscopically and ulti-
mately becomes steady and homogeneous (see Section 3.3) (Caton & Baravian 2008, Divoux et al.
2011). The time to reach steady flow can be as long as days and seems to diverge at a critical stress.
This divergence would rigorously define a yield stress (Caton & Baravian 2008, Divoux et al.
2011), but its characterization relies on the patience of the experimentalist. More pragmatically,
the relevant yield stress to consider in a problem may be dictated by the timescale of the problem
itself. Note that these complicating features mostly characterize start-up flows (Divoux etal. 2011)
and are not apparently observed when decreasing the shear stress on a steady flow (Ovarlez et al.
2013). Consistently, the critical stress above which flows can be initiated may be slightly higher
than the critical stress for which steady flows are allowed in most materials (i.e., the static yield
stress exceeds the dynamic yield stress) (Chaudhuri et al. 2012, Divoux et al. 2011, Ovarlez et al.
2013).

3.2. Prototypical Viscoplastic Fluids

In steady-state shear flow, several materials have behavior close to the paradigm of the Herschel-
Bulkley model: microgel suspensions (Coussot et al. 2009) (Figure 24), colloidal glasses (Besseling
etal. 2007), and foams and concentrated emulsions (Ovarlez et al. 2013) (see also Section 3.3). Mi-
crogels are deformable particles made from polymeric gel, with a notable example being Carbopol
(Piau 2007). Other microgels can be produced with a better-characterized structure (Seth et al.
2011). Colloidal glasses are dense suspensions of Brownian particles that form a glassy structure
above a critical volume fraction (Besseling et al. 2007, Mewis & Wagner 2012). They benefit
from a solid theoretical framework, making them strong candidates for understanding the link be-
tween Herschel-Bulkley behavior and microscale dynamics, but they cannot be produced in large
amounts and are thus limited to small-scale studies (rheometry, microfluidics). Aqueous foams
are dense assemblies of bubbles in aqueous solution. Their drawback is the rapid evolution in
time due to drainage and bubble coarsening (Cohen-Addad et al. 2013). Nevertheless, they can be
usefully arranged into quasi-2D flows, in which individual bubbles can be tracked (Katgert et al.
2010) and the local stress field extracted from the bubble shape (Dollet & Graner 2007). Concen-
trated emulsions are assemblies of liquid droplets in an immiscible liquid. They pose less stability
problems than do foams and can be made transparent, which makes them a possible alternative to
Carbopol gels. Importantly, these emulsions may be less elastic and feature lower normal stress
differences than Carbopol gels.

Many of these prototypical fluids have been used for the viscoplastic counterparts of classical
viscous flow experiments, as described elsewhere in this review. Most experiments have been
performed with Carbopol gels because of their low cost, ease of preparation and disposal,

Balmforth o Frigaard o Ovarlez



Annu. Rev. Fluid Mech. 2014.46:121-146. Downloaded from www.annualreviews.org

by ${individualUser.displayName} on 01/08/14. For personal use only.

reproducibility, and transparency. Their transparency allows the use of seeding and optical
techniques to track flow fields and determine yield surfaces (e.g., Ancey et al. 2012, Putz et al.
2008, Tokpavi et al. 2009b). Nevertheless, these materials also deviate from the behavior of an
idealized yield-stress fluid: They display normal stress differences (Piau 2007), which can play a
role, for example, in flows around obstacles (Dollet & Graner 2007, Putz et al. 2008, Tokpavi
et al. 2009b) and in the determination of the yield surface (Cheddadi et al. 2012). They can be
significantly elastic above the yield stress (Benmouffok-Benbelkacem et al. 2010, Piau 2007),
which has to be accounted for in flows such as impacts on surfaces (Luu & Forterre 2009). Such
features have motivated the development of elastoviscoplastic models and other generalizations
of the Herschel-Bulkley law (Saramito 2009).

3.3. Macroscopic Versus Local Behavior

An important recent experimental development has been the combination of flow visualization
with standard rheometry. The velocity field can be obtained optically in 2D systems (Katgert
etal. 2010), transparent fluids (Besseling et al. 2010), or weakly scattering materials (Salmon et al.
2003) and by ultrasonic Doppler velocimetry (Manneville 2008) and magnetic resonance imaging
techniques (Bonn et al. 2008) in many other systems (see Figure 24 ). Information on local material
composition (Fall et al. 2010, Ovarlez et al. 2013) or structure (Besseling et al. 2007, Masschaele
etal. 2009, Oppong & de Bruyn 2011, Pignon et al. 1998) can also be obtained.

The combination of macroscopic and local information has given better insight into the true
material behavior in cases in which the assumptions underlying rheometry (no-slip, flow and
material homogeneity) are violated. Much new behavior (Bonn et al. 2008, Manneville 2008,
Mansard & Colin 2012, Ovarlez et al. 2009, Schall & van Hecke 2010) has been discovered, most
of which could not have been found with blind rheometry alone. For example, start-up flows of
Carbopol gels have been found to be quite complex at the local scale: Divoux et al. (2011) have
observed full slip, even with rough boundaries, followed by long-lived, transient, shear-banded
flows that eventually become steady and homogeneous; this is yet to be explained. In suspensions of
rigid particles, stationary shear bands have been observed for stresses close to the yield stress; they
are attributed either to flow-induced concentration inhomogeneities (Besseling et al. 2010, Fall
et al. 2010) or to competition between sedimentation and shear-induced resuspension (Fall et al.
2009). Steady-state shear bands have also been observed in thixotropic materials (Coussot et al.
2002b, Moller et al. 2008, Ovarlez et al. 2009; Section 3.5), reflecting the competition between
aging and shear-induced rejuvenation (Coussot et al. 2002b, Moller et al. 2006).

In geometries in which the shear stress is fully determined by a force balance, the flow curve
can be extracted directly from the observed shear-rate profile (Figure 2d) (Mansard & Colin
2012, Ovarlez et al. 2013). Unexpectedly, in some cases, different local flow curves are needed
for different boundary conditions (Goyon et al. 2008, Katgert et al. 2010). These observations
have been rationalized using nonlocal constitutive equations (Goyon et al. 2008, Mansard & Colin
2012). Such nonlocal effects seem to be restricted to systems of small size (as compared with the
size of the material mesoscopic elements). Indeed, in wide-enough geometries, if the complexities
of start-up flow are carefully avoided, the Herschel-Bulkley law accounts for the flows of many
yield-stress fluids, such as Carbopol gels, foams, and concentrated emulsions (see Section 3.2)
(Goyon et al. 2008, Ovarlez et al. 2013). Furthermore, the law is consistent with the observed
macroscopic behavior, thus validating standard rheometry under these conditions (Figure 2d).
Thus, simple rheometry can certainly be used to establish flow curves and characterize material
behavior in many practical situations.
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3.4. The Microscopic Connection

For years, viscoplastic fluid mechanics has largely rested on an empirical foundation: The Bingham
and Herschel-Bulkley models, and all their modifications, were essentially fits to rheometric flow
curves in simple shear. However, the link between microscopic structure and macroscopic flow
properties has now begun to emerge.

The existence of a yield stress is well understood for suspensions of attractive colloids (Mewis
& Wagner 2012), foams, and concentrated emulsions (Cohen-Addad et al. 2013). The case of
dense suspensions of repulsive colloids is more complex: Their yield stress emerges when their
structure cannot relax anymore (Besseling et al. 2007, Mewis & Wagner 2012); modeling then
involves concepts from glass theory (Brader et al. 2009) and jamming (Liu & Nagel 2001). Col-
loidal suspensions with attractive interactions have a yield stress when a percolated network of
stuck particles forms, and flow requires the breakage of some links; the yield stress can be com-
puted using the interaction forces and microstructure (Mewis & Wagner 2012). At rest, foams
are in a metastable state, which minimizes the total surface area of air/liquid interfaces; when
sheared, interfaces are progressively deformed and store elastic interfacial energy. Ata critical de-
formation, the configuration loses stability, and plastic rearrangements take place (Cohen-Addad
etal. 2013); the equivalent yield stress is a function of surface tension, bubble size, liquid fraction,
and microstructure. Interestingly, in real foams, there is also gas exchange between neighboring
bubbles, leading to coarsening and internal rearrangements; any small applied stress introduces a
distortion in the spatial distribution of these rearrangements, leading to irreversible deformation
in the direction of shear (Cohen-Addad et al. 2004), which explains the existence of slow viscous
flow below the yield stress in foams. No generic description of the subyield regime exists for other
materials (see Section 3.1).

The origin of the nonlinear plastic viscosity is still under debate. A basic explanation can
be given for foams and concentrated emulsions: Dissipation in the interstitial Newtonian fluid
between undeformed bubbles and droplets would suggest a constant viscosity at the macroscopic
scale. However, the interfaces are deformed under shear, and the average thickness of the films in
which dissipation occurs then depends on the viscous stress acting on the interfaces (i.e., on y).
The interplay between the local viscous flow and the material microstructure suggests a power-law
(y™) plastic viscosity, where the value of » depends on whether the interfaces are no slip or stress-
free (Cohen-Addad et al. 2013). The interplay between shear and deformability is also key to the
elastohydrodynamic model of Seth et al. (2011). This model considers soft elastic particles closely
packed in a Newtonian fluid. Interparticle lubrication forces induce deformations that depend on
y, which then leads to a y!/? viscous term. In addition to foams and concentrated emulsions, this
model may be relevant for microgels, in agreement with experimental data (Seth et al. 2011). A
different theory envisions zones in the material trapped in the minima of an energy landscape;
when the material is sheared, these zones deform elastically until jumps to a new minimum become
possible, thus relaxing their stress in a plastic event (e.g., Barrat & Lemaitre 2011, Mansard &
Colin 2012). In this framework, local viscous dissipation is omitted, although it must play a role
in the kinetics of stress relaxation. The stress is purely elastic, and a finite shear rate prevents full
stress relaxation between plastic events, leading to the rate dependence of stress. Recent work
also shows that, because plastic events are elastically coupled, a single event can trigger entire
avalanches (Barrat & Lemaitre 2011). Such dynamics requires detailed visualization at the particle
scale in experiments and simulations before it can be incorporated into theories.

3.5. Thixotropy

Although several yield-stress fluids behave similarly to the Herschel-Bulkley paradigm (see
Section 3.2), a great many others deviate from this ideal rheology. Thixotropy, in particular,
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Rheometry of a bentonite suspension. (#) A controlled stress ramp showing a thixotropic loop. The red squares represent the data for
increasing stress, and the blue line represents decreasing stress. (b) A test with an imposed shear rate of y = 1072 s=1. (Inser) The static

yield stress versus resting time. Data taken from Ovarlez & Chateau (2008).

characterizes many yield-stress fluids, including muds, paints, and food products such as ketchup
and mayonnaise (Coussot 2005, Mewis & Wagner 2012). Thixotropy leads to history-dependent
rheology, as illustrated in Figure 4a.

Thixotropy implies that the static yield stress 7, increases with the resting time and is potentially
much higher than the dynamic yield stress z,, (Figure 4b) (Coussot 2005, Mewis & Wagner
2012, Ovarlez & Chateau 2008). The termination of flow at 7,, is also very abrupt, with the
destructuration suddenly unable to keep pace with the healing of the microstructure. Thus, steady
flows quickly brake to rest when the stress falls below the dynamic yield stress 7,,, with the shear
rate jumping discontinuously from finite values y > y, to zero. The sudden flow switches at the
critical stresses, 7,, and 7,,, have been termed viscosity bifurcations (Coussot et al. 2002a, Moller
et al. 2006). Importantly, these bifurcations imply that there is a range of shear rates 0 < y < y,
for which steady flows are unattainable; if a rheological test sets a macroscopic shear rate within
this range, 0 < y < y., the spatially homogeneous flow unstably breaks up into shear bands (see
Section 3.3) (Ovarlez et al. 2009).

The hysteretic behavior of thixotropic fluids plays a major role in fresh concrete casting (Roussel
2011) and the pumping of drilling mud. In the pipelining of waxy crude oils, thixotropy can be
problematic after an unanticipated shutdown, requiring enhanced pressure gradients to restart
flow. The sudden failure and surprisingly long runout of quick-clay avalanches have also been
attributed to thixotropy (Khaldoun et al. 2009).

Thixotropic behavior is typically modeled by making the material parameters of a standard
constitutive model depend on an additional variable representing the microstructure (Coussot
2007, Mewis & Wagner 2012). That variable is then usually taken to satisfy an evolution equation
containing terms representing structuration and destructuration. When the evolution equation
predicts that the material does not stop aging if the shear rate or stress is too low, and if the viscosity
diverges for fully structured fluid, an effective yield stress then emerges, even if the constitutive
law is taken to be purely viscous. Moreover, flow terminates at a critical shear rate.
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This is a drastic change of perspective in comparison with the Bingham model and its variants,
for which the yield stress is a material parameter of the constitutive behavior. Consistent with
the alternative perspective, thixotropic suspensions have been shown to display a purely viscous
behavior (with nonmeasurable elasticity) during flow: Solid-like elastic behavior emerges only
when flow halts (Ovarlez & Chateau 2008). By contrast, various simple yield-stress fluids have
been found to have the same elastic properties in both their solid-like and liquid-like regimes
(Benmouffok-Benbelkacem et al. 2010).

3.6. The Shape of the Yield Surface in Stress Space

A rather different consideration for a yield-stress fluid relates to the way in which the material yields
under different types of stresses. For example, does the material yield in extension or compression
in the same way as that in shear? If so, the force required to pull a coin up from the surface of a
layer of mud would be the same as that required to push it into the layer or make the coin rotate.
In granular media, yielding is quite different under compression and extension because of the
short-range elastic forces that prevent grains from squeezing together at the microscopic level yet
present no barrier to pulling them apart.

From the perspective of plasticity theory, any dependence of the yield condition on the stress
configuration can be taken into account using the three invariants of the stress tensor (Prager &
Hodge 1951). Most generally, the yield criterion can be expressed as a functional relation between
these invariants. The von Mises condition used in the Bingham model is just one special case. By
contrast, soil mechanicians often use the Mohr-Coulomb condition for granular media. A question
that is typically unasked is whether rheological data are more consistent with a yield criterion that
is different from the von Mises condition, or if the flow dynamics predicted by a model depends
on the yield condition.

Squeeze flow testers are popular devices for compressional rheometry (e.g., Engmann et al.
2005), and measurements of yield stress do seem to correspond to equivalent measurements under
shear for some materials in accord with the von Mises condition, once one removes the con-
founding effect of slip and other problems (Rabideau et al. 2009). Ovarlez et al. (2010) developed
a rheometer combining both shear and compression and also found the von Mises criterion to
adequately describe yielding in various materials (see Figure 5). Similar agreement is found for
the tensile failure of pendant drops (Figure 5) (German & Bertola 2010a). Any flow involving the
displacement of an object in a yield-stress fluid in fact can be seen as a test of the yield criterion, and
practical conditions for sedimentation are consistent with the von Mises criterion (see Section 4.3).
Finally, theoretical models of glassy materials predict a yield criterion close to von Mises’s (Brader
et al. 2009). Thus, the von Mises criterion does appear to be appropriate for yield-stress fluids,
although the wide range of types of viscoplastic materials undoubtedly will present exceptions to
this rule. Interestingly, the same cannot be said of the nonlinear viscous term: The thinning of
the viscosity found in shear is not observed in pinching viscoplastic filaments (Aytouna et al. 2013,
German & Bertola 2010a).

4. APPLICATIONS IN NATURAL AND ENGINEERING SCIENCES

Given the vast array of different materials that could be considered viscoplastic, it is hardly surpris-
ing that applications span several fields. Ancey (2007) reviewed notable geophysical applications,
and Mitsoulis (2007) summarized many industrial applications and simulation studies. Here we
describe a few application areas that are either topical or unusual, focusing on how a yield stress
imposes a key control on the problem or how its manipulation is critical.
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Figure 5

Squeeze (1) versus rotational (7,9) shear stress at yield for two concentrated emulsions (blue and red squares)
and a Carbopol gel (dark yellow squares), each scaled by the yield stress 7, measured in simple shear. The gray
dashed line is the von Mises criterion. Data taken from Ovarlez et al. (2010). (Inset) The tensile stress for
failure in extension against 7, along with the von Mises criterion (v/37,), for pendant drops of Carbopol.
Data taken from German & Bertola (2010a).

4.1. Control and Actuation by Yield Stresses

Multilayer flows of viscous fluids suffer interfacial instabilities even at low Reynolds numbers,
leading to phenomena that plague efforts to lubricate pipelines or produce layered coextrusions.
For multilayer viscoplastic flows, interfacial instabilities occur in much the same way when fluids
are yielded at the interface (Pinarbasi & Liakopoulos 1995). In contrast, if plugs are maintained
at the interface, this surface cannot deform, and the interfacial instability can be suppressed en-
tirely (see Section 2.4) (Frigaard 2001; Hormozi & Frigaard 2012; Moyers-Gonzalez et al. 2004,
2010). The resulting enhancement of flow stability suggests potentially important applications
of viscoplastic lubrication, as well as robust methods of droplet encapsulation or control of fluid
morphology.

A different category of flows involves smart fluids, meaning in the current context that the yield
stress can be controlled in a useful way on the timescale of the flow. Electro- and magnetorhe-
ological fluids are one example, often simplistically modeled as viscoplastic fluids with the yield
stress dependent on the strength of the applied field. Although fascinating fluids, the detailed flow
dynamics is not often studied because the majority of applications exploit the rapid development
of large yield stresses in an on/off mode. Interesting recent applications include the control of
adhesion of an object to a surface with an intervening magnetorheological fluid (Ewoldt et al.
2011, Lira & Miranda 2009).

Yield stresses can also be manipulated thermally or chemically, suggesting the intriguing possi-
bility of exploiting viscoplastic rheology to activate or terminate flow in a wide variety of ways. For
example, Burghelea et al. (2007) used chemical reactions to activate a yield stress near an interface
in order to improve the efficiency of fluid displacement. Thermal actuation may be possible with
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suspensions of particles grafted with PNIPAM (Crassous et al. 2008), within which the particulate
phase swells, depending on temperature, so the material can be above or below the critical volume
fraction for a glass transition.

4.2. Free-Surface Flows and Slumps

In free-surface flows, the yield stress ensures that motion eventually grinds to a halt. The shape of
the final deposit therefore reflects the yield stress, a notion that underscores two simple rheometers:
the slump test (used to gauge the quality of concrete) and the Bostwick consistometer (from the
food processing industry).

In the slump test, a fixed volume of fluid is poured from a container and then left to flow to rest;
the final height or diameter of the deposit is used to estimate the yield stress (e.g., Roussel 2011).
For the Bostwick consistometer, which essentially conducts a viscoplastic dambreak experiment,
the sudden removal of a gate in a channel allows the fluid to slump down that conduit; the Bj
measurement is the distance traveled after 30 s. No direct inference of the yield stress from Bs
in principle is feasible unless the fluid has slumped close to its final state, as otherwise one cannot
disentangle the nonlinear viscous behavior. However, little effort is usually made to relate Bsg
to the material constants of a rheological model; according to the US FDA, the classification of
tomato puree as ketchup is dictated purely by its B3y measurement.

Viscoplastic gravity currents can be explored using thin-film asymptotics (e.g., Ancey et al.
2012, Balmforth et al. 2006), numerical simulation (Vola et al. 2004), and laboratory experiments
(Ancey etal. 2012, Chambon etal. 2008, Cochard & Ancey 2008). Thin-film asymptotics furnishes
analytical predictions for the final shape in the shallow limit: For an axisymmetrical deposit on a
horizontal plane, the depth is given by

h(r) = 2l(R—r) “)
\ rg

at radius 7, where R is the maximum radius, and g and p denote gravity and the fluid density,
respectively (e.g., Balmforth et al. 2006). If /7is the fluid volume, the yield stress follows as

pgV’

7T 18R ©)
Figure 25 shows a slump test conducted with Carbopol, together with a more controlled experi-
ment in which the fluid is slowly pumped through a tube onto a plexiglass plate with a roughened
surface (to remove the effects of slip; see Section 5). For both deposits, the estimate given in
Equation 5 implies a yield stress of approximately 50 Pa. This is somewhat higher than that in-
ferred from rheometry, which is approximately 30 Pa (see Figure 24), suggesting a problem with
the shallow approximation.

Constructions of the final state for planar slumps on inclined planes that avoid the shallow
approximation have been worked out based on plasticity theory (Dubash et al. 2008). However,
the plasticity solution may not provide the correct final state for an initial-value problem, and the
results still do not compare particularly favorably with experiments. Most theory is also confined
to Stokes flow. Faster flows demand the inclusion of inertia, which is problematic in shallow-flow
theories, viscous and non-Newtonian fluids alike, because the vertical flow structure no longer
factors out of the problem. The first steps have been taken toward shallow viscoplastic flow
theories with inertia (Fernandez-Nieto et al. 2010, Tonescu 2013), but further work is required
to demonstrate their reliability and usefulness. Analysis of the viscoplastic version of the classical
dambreak problem therefore remains incomplete.

Balmforth o Frigaard o Ovarlez



Annu. Rev. Fluid Mech. 2014.46:121-146. Downloaded from www.annualreviews.org

by ${individualUser.displayName} on 01/08/14. For personal use only.

Other applications include geophysical hazards such as mudslides, lava flows, avalanches, and
debris flows (e.g., Ancey 2007, Griffiths 2000) and the damping of water waves by a muddy bottom
(Chan & Liu2009). In engineering, tailing deposits in the mining industry are sometimes emplaced
as gravity currents and have the awkward feature of flowing further than expected (Simms et al.
2011). This could result from a poor measurement of the material’s yield stress, rather than any
fluid mechanical effect, or thixotropy (see Section 3.5). However, the material is also a sedimenting
multiphase suspension.

4.3. Sedimentation and Suspensions

A key feature of sedimentation in viscoplastic fluids is that the yield stress can prevent settling.
As shown theoretically (Beris et al. 1985) and confirmed experimentally (Tabuteau et al. 2007), a
single sphere of diameter 4 in an infinite yield-stress fluid does not settle if

T 1

) 7
Apgd = 21° ©

where Ap is the density difference between the fluid and the particles. The critical ratio of 7, to
the driving buoyancy stress Apgd in Equation 6 corresponds to the plastic limit (see Section 2.2).
Similar limits have been determined for circular and elliptical cylinders (Deglo de Besses et al.
2003, Mitsoulis 2004, Putz & Frigaard 2010, Tokpavi et al. 2008) and bubbles (T'samopoulos
et al. 2008). The driving force in Equation 6 need not be buoyancy. Madani et al. (2010) used
this principle as the basis of a novel particle fractionation technique, with the driving acceleration
coming from the rotation of a centrifuge (see Figure 1). The control of the rotation rate and yield
stress allows for the sensitive fractionation of particles based on size or density.

Once Equation 6 is violated, the sphere begins to move, and various computational and ex-
perimental studies have sought to determine the resulting drag coefficient (Beaulne & Mitsoulis
1997, Blackery & Mitsoulis 1997, Deglo de Besses et al. 2004, Liu et al. 2002, Sikorski et al. 2009,
Tabuteau et al. 2007). Unlike viscous sedimentation, the flow becomes localized to the vicinity of
the sphere because the stress exerted by the sphere on the fluid decays with distance (Beris et al.
1985). Crucially, this eliminates any Stokes paradox and limits the effect of boundaries (features
that carry over to other viscoplastic flows). Nevertheless, recent experiments of particles falling in
Carbopol reveal discrepancies with theory, highlighting nonideal properties of this material (Putz
et al. 2008, Tokpavi et al. 2009b).

Proceeding beyond a single sphere, our understanding of the dynamics of multiple particles
suspended in yield-stress fluids is still in its infancy, despite an increasing interest driven by
many industrial applications. For example, for fresh concrete, one wants the material to remain
homogeneous atrest, but the heavier constituent particles may settle, a problem that can be avoided
by employing a cement paste with sufficient static yield stress (Roussel 2011), which may imply
tailoring its thixotropy. Likewise, the continued conveyance of relatively large particles suspended
in slurries and drilling mud is important in disposing of mine tailings and clearing oil wells. In
hydraulic fracturing, particles transported into fractures by yield-stress fluid help to prop up and
maintain the conduit once fracturing ends and withdrawal begins. In other industries, bubbles take
the place of particles and may be desirable (hair gel and shampoo manufacturers sell by volume,
bubbles included).

Although recent computations have used increasingly exotic combinations of particles (e.g.,
Liu et al. 2003, Tokpavi et al. 2009a, Yu & Wachs 2007), we have yet to arrive at a scale-able
mechanical understanding. Unlike Newtonian fluids, the viscoplastic Stokes equations are not
linear, so superposition principles fail. Thus, the foundations of microhydrodynamics (resistance
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tensors and so forth) have not developed for viscoplastic fluids, and it is unclear whether the
viscoplastic version of Stokesian dynamics computations will ever be feasible.

Alternatively, there have been recent advances in incorporating local dynamics into continuum-
level closures for viscoplastic suspensions. Newtonian suspensions are often characterized by
making the viscosity increase with the volume fraction (as in the Krieger-Dougherty or Einstein-
Roscoe relations). In viscoplastic suspensions, a similar viscosification occurs, but one must also
include shear-thinning effects on the local scale because particle crowding tends to locally mag-
nify shear rates, leading to a compensating decrease in viscosity. The overall effect of suspended
particles or bubbles on bulk viscosity and yield stress has been evaluated both theoretically and
experimentally (Chateau et al. 2008, Kogan et al. 2013, Mahaut et al. 2008), and we now have a
characterization of rheological properties according to the volume fraction and properties of the
interstitial fluid.

An often underappreciated feature of suspensions of this kind is that particle settling may
be critically influenced by macroscopic flow. For example, settling occurs in flow even when
Equation 6 is not violated because the macroscopic stress has already exceeded the yield stress,
so there is no further resistance to prevent sedimentation (Ovarlez et al. 2012). Even in the
macroscopic plugs, the combination of ambient stress and buoyancy may lead to local breaches of
the yield stress and sedimentation. Thus, when viscoplastic suspensions are pipelined (e.g., mined
tailings or drilled cuttings), the simple notion that rigid plugs magically carry the particulate is
conceptually wrong.

4.4. Biological Problems

A number of common biological materials can be considered to be viscoplastic, including mucus,
which plays an important role in many biological processes. For snails and slugs, mucus is suggested
to be pivotal in allowing both adhesion and locomotion (Denny 1981, Pegler & Balmforth 2013);
these locomotors create displacement waves that propagate forward along the underside of their
feet (see Figure 1). The waves, which translate the organism forward, are interspersed with
immobile regions thatare stuck to the underlying surface by the mucus yield stress. The waves exert
sufficient force to overcome that stress and transport the locomotor forward wave by wave. Snail
and slug mucus is also thixotropic (Ewoldt et al. 2007); the ramifications for adhesive locomotion
have not yet been quantified, although mucus rheology may have been optimized for this strategy
by evolution.

Limpets and other marine organisms use mucus to anchor themselves against ambient wa-
ter flow. Importantly, the mucus must occasionally release its adhesion to allow the creature to
move, and there is evidence suggesting that chemical secretions are used to manipulate the mucus
properties (Smith 2002). In other words, limpets may chemically actuate a yield stress to control
adhesion.

For other locomotion problems, a yield stress may be the problem rather than the solution:
Worms must burrow through mud and peristaltically pump soil through their bodies; microor-
ganisms swim through complex biological fluids. In this situation, the yield stress likely impedes
motion (Pegler & Balmforth 2013), leading one to wonder what strategies the organism has devel-
oped to move most effectively through or above viscoplastic fluid [optimal strategies for moving
over granular layers are currently fashionable (e.g., Ding etal. 2010)]. Such problems have received
little attention, and even the simplest models of a swimming microorganism, Taylor’s classical
waving sheet and corkscrew, currently have no viscoplastic counterpart.

Mucus is used in very different settings in humans. This material lines our lungs and is exploited
to remove foreign particles and waste (e.g., Grotberg 2001). The role of viscoplastic rheology in
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TURBULENCE AND MIXING IN VISCOPLASTIC FLUIDS

For sufficiently fast flows, the yield stress cannot prevent the transition to turbulence. Phenomenological rules
predicting transition have been compared with energy stability theory (Nouar & Frigaard 2001), and there is a
broad notion that yield stresses retard transition until the Reynolds stresses are sufficient to yield the fluid (Guzel
et al. 2009). Thereafter, only shear thinning remains important (Esmael et al. 2010) and has been identified as
the origin of some interesting coherent structures in turbulent viscoplastic shear flows (Esmael & Nouar 2008,
Lépez-Carranza et al. 2012). When Reynolds stresses are not sufficient to yield the fluid everywhere, plug zones
can provide barriers to mixing and transport. This is also true of many industrial mixers, in which dead zones
surround yielded flows, or caverns as they have been called, although an increase in power consumption is needed
to limit their extent (Arratia et al. 2006, Savreux et al. 2007).

pulmonary transport, sneezing, and coughing is not often considered (Basser et al. 1989), counter
to one’s everyday experience (especially after a cold). Are the solid stresses of the mucus exploited
in key ways? Is mucus rheology important to removing phlegm, snot, and the like? The critical
effect of a yield stress has been studied in other physiological problems such as drug delivery with
gels (Tasoglu et al. 2011) and in related cleaning or fouling problems in very different contexts
(e.g., Taghavi et al. 2012).

5. TO YIELD OR NOT TO YIELD, AND OTHER POINTS
OF CONCLUSION

A key thread through the preceding discussion is the relevance of a yield stress to the application.
However, most real fluids are far from idealized, and one may question whether it is worthwhile
to face the additional complications introduced by an idealized yield-stress model or if it is better
to change the rheology at the outset. In many applications, the purist’s approach may not be
the most cost-effective. Nevertheless, the improving characterization of real fluids demands the
improvement of a model’s sophistication.

A related issue regards timescales and the degree of subyield deformation. Other non-
Newtonian fluid models are available to represent material behavior in different physical regimes.
When the characteristic timescale of the dynamics is relatively short, for example, viscoelasticity
can be more important than idealized yield-stress behavior. Mucus, for instance, is often repre-
sented as a viscoelastic solid in the biological literature rather than as a yield-stress fluid. One
should be sensitively aware of the prevailing physical conditions before selecting a rheological
model. Nevertheless, elaborate models with a multitude of material constants are available to
bridge the gap between various constitutive laws (e.g., Saramito 2009, Thompson & de Souza
Mendes 2012).

Finally, itwould be remiss not to summarize some of the other importantadvances, connections,
and open questions that are not mentioned in detail above. Viscoplastic constitutive laws are closely
related to recently proposed friction laws for dense granular flow (Forterre & Pouliquen 2008),
and less fluid-like geophysical hazards are closely related to shallow granular flows. Turbulence
and mixing in viscoplastic fluids are critically important in many applications (see the sidebar).
Surface tension drives many viscous flows on smaller spatial scales; the viscoplastic analogs have
received only superficial attention, despite the potentially interesting and rich competition between
capillarity and the yield stress (e.g., de Bruyn et al. 2002; German & Bertola 2010a,b; Lavrenteva
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& Nir 2010). Recently, it has been fashionable to study the sculpting action of capillary forces and
fluid flow on elastic surfaces, or elastocapillarity; can one replace the elastic surface by a yield-stress
fluid in viscoplastocapillarity?

Another important practical problem only touched upon above is slip: Yield stresses are under-
estimated (or even fail to be measured) when there is slip (see Figure 24). This unsavory feature
of viscoplastic fluid dynamics arises from the appearance of a lubricating layer of relatively dilute
fluid adjacent to a moving boundary. The dilution of the wall layer could have several origins,
ranging from electrostatic forces to shear-induced particle migration; often the origin is subtle
and rarely fully understood.

FUTURE ISSUES
1. Future progress in viscoplastic flow computations must combine the continued improve-
ment of core numerical methods with increasingly challenging simulations.

2. To address the deficiencies of idealized yield-stress models, researchers must adapt nu-
merical schemes to use more sophisticated rheological models.

3. A standardization of model constitutive laws is needed to take into account thixotropy,
subyield elasticity, and other microscale effects, while avoiding a multitude of fitting
parameters.

4. We need a better understanding of the nature of the creep flow below the yield stress.

5. The nonlinear viscous behavior (shear thinning) under different stress conditions (shear
versus extension or compression) should be examined.

6. Interfacial and multilayer viscoplastic flows should be explored experimentally and the-
oretically, and the interplay between yield stress and surface tension should be studied.

7. Turbulent flow in viscoplastic fluids should be explored more deeply, including direct
numerical simulation and related tools.

8. Energy stability methods and weakly nonlinear theory for viscoplastic fluids should be
developed, along with linear stability analysis of further viscoplastic counterparts to clas-
sical hydrodynamic instabilities, perhaps all embedded within a variational framework.
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RELATED RESOURCES

Many other applications and recent contributions are included in four special journal issues
(Fournal of Non-Newtonian Fluid Mechanics, volumes 142, 158, and 193, and Rheologica Acta,
volume 50), each drawn from an ongoing series of workshops on viscoplastic fluids.
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