
MATH 101 V01 – ASSIGNMENT 6
Solutions

1. Use the Integral Test to determine if the series is convergent or divergent.

(a) 1 + 1√
3

+ 1√
5

+ 1√
7

+ . . .

(b)
∑∞
n=2

1
n(log(n))3

(c)
∑∞
n=2

log(n2)
n

Solution:

(a)

1 +
1√
3

+
1√
5

+
1√
7

+ · · · =
∞∑
n=1

1√
2n− 1

.

The function f(x) = 1√
2x−1 = (2x− 1)−1/2 is continuous for x > 1

2 , positive for x > 1
2 , and

f ′(x) = − 1

(2x− 1)3/2
< 0,

so f(x) is decreasing for x > 1
2 . Therefore f is continuous, positive and decreasing on [1,∞).

The improper integral∫ ∞
1

1√
2x− 1

dx = lim
t→∞

∫ t

1

(2x− 1)−1/2 dx (substitution: u = 2x− 1, du = 2 dx)

= lim
t→∞

1

2

∫ 2t−1

1

u−1/2 du

= lim
t→∞

u1/2
∣∣∣2t−1
1

= lim
t→∞

(
√

2t− 1− 1) =∞

is divergent. By the Integral Test,
∑∞
n=1

1√
2n−1 also is divergent.

(b) The function f(x) = 1
x(log(x))3 is continuous for x > 0, positive for x > 1, and

f ′(x) = − 3 + lnx

x2(log(x))4
< 0 for x > e−3,

so f(x) is decreasing for x > e−3 ≈ 0.05. Therefore f is continuous, positive and decreasing on [2,∞).

The improper integral∫ ∞
2

1

x(log(x))3
dx = lim

t→∞

∫ t

2

(log(x))−3
1

x
dx (substitution: u = log(x), du = 1

x dx)

= lim
t→∞

∫ log(t)

log(2)

u−3 du

= lim
t→∞

(
−1

2
u−2

)∣∣∣∣log(t)
log(2)

= lim
t→∞

(
− 1

2(log(t))2
+

1

2(log(2))2

)
=

1

2(log(2))2



is convergent. By the Integral Test,
∑∞
n=2

1
n(log(n))3 also is convergent.

(c) The function f(x) = log(x2)
x = 2 log(x)

x is continuous for x > 0, positive for x > 1, and

f ′(x) =
2(1− log(x))

x2
< 0 for x > e,

so f(x) is decreasing for x ≥ e ≈ 2.7. Therefore f is continuous, positive and decreasing on [3,∞) (it is
decreasing on [e,∞)).

The improper integral∫ ∞
3

log(x2)

x
dx = lim

t→∞

∫ t

3

2(log(x))
1

x
dx (substitution: u = log(x), du = 1

x dx)

= lim
t→∞

∫ log(t)

log(3)

2u du

= lim
t→∞

u2
]log(t)
log(3)

= lim
t→∞

(log(t))2 − (log(3))2 =∞

is divergent. By the Integral Test,
∑∞
n=3

log(n2)
n also is divergent, and so is

∞∑
n=2

log(n2)

n
=

log(22)

2
+

∞∑
n=3

log(n2)

n
.

2. Find a power series representation for the function and determine the interval of convergence.

(a) f(x) = x3

4x2+3

(b) f(x) = x+2
2x2−x−1

(c) f(x) = ln(3 + x)

(d) f(x) = arctan(3x)

(e) f(x) = 2x
(1+x2)2

Solution:

(a) Use some algebra to express the given function in terms of a geometric series:

x3

4x2 + 3
=

x3

3

1

1−
(
− 4x2

3

)
= x3

3

[
1 +

(
− 4x2

3

)
+
(
− 4x2

3

)2
+
(
− 4x2

3

)3
+ . . .

]
if
∣∣∣− 4x2

3

∣∣∣ < 1 i.e. if |x| <
√
3
2

= 1
3x

3 − 4
32x

5 + 42

33x
7 − 43

34x
9 + . . .

=

∞∑
n=0

(−1)n 4n

3n+1x
2n+3 if |x| <

√
3
2

The interval of convergence is
(
−
√
3
2 ,
√
3
2

)
(geometric series are always divergent at the endpoints of their

interval of convergence), or

−
√
3
2 < x <

√
3
2 .



(b) First we use a partial fraction decomposition. Factor the denominator as 2x2−x−1 = (2x+1)(x−1)

x+ 2

(2x+ 1)(x− 1)
=

A

2x+ 1
+

B

x− 1

gives x+ 2 = A(x− 1) +B(2x+ 1), then A = −1, B = 1.

x+ 2

2x2 − x− 1
=

−1

2x+ 1
+

1

x− 1

= − 1

1− (−2x)
− 1

1− x

= −
[
1 + (−2x) + (−2x)

2
+ (−2x)

3
+ . . .

]
− [1 + x+ x2 + x3 + . . . ]

if |−2x| < 1 and |x| < 1, i.e. if |x| < 1
2

= −1 + 2x− 22x2 + 23x3 − · · · − 1− x− x2 − x3 − . . .
= −2 + (2− 1)x+ (−22 − 1)x2 + (23 − 1)x3 + . . .

=
∞∑
n=0

[(−1)n+12n − 1]xn if |x| < 1
2

The interval of convergence is
(
− 1

2 ,
1
2

)
(geometric series are always divergent at the endpoints of their

interval of convergence), or
− 1

2 < x < 1
2 .

(Alternatively, since the centre of the series was not specified, one could complete the square

2x2 − x− 1 = 2(x2 − 1
2x−

1
2 ) = 2

[(
x− 1

4

)2 − 9
16

]
= − 9

8

[
1−

(
4x−1

3

)2]
,

write
x+ 2

2x2 − x− 1
=

x− 1
4 + 9

4

2x2 − x− 1
= − 8

9

[
9
4 + 3

4

(
4x−1

3

)] 1

1−
(
4x−1

3

)2 ,
and expand the term on the right in a geometric series that converges for

∣∣∣( 4x−13

)2∣∣∣ < 1 or

− 1
2 < x < 1

with centre 1
4 , radius of convergence 3

4 ).

(c) Note that f ′(x) = 1
3+x , so we have

log(3 + x) =
∫

1
3+x dx

=

∫
1

3

1

1−
(
−x3
) dx

= 1
3

∫ [
1 +

(
−x3
)

+
(
−x3
)2

+
(
−x3
)3

+ . . .
]
dx if

∣∣−x3 ∣∣ < 1 i.e. if |x| < 3

= 1
3

∫ [
1− 1

3x+ 1
32x

2 − 1
33x

3 + . . .
]
dx

= 1
3

[
x− 1

2·3x
2 + 1

3·32x
3 − 1

4·33x
4 + · · ·+ c

]
substitute x = 0 to get c = 3 log(3), or 1

3 c = log(3)

= log(3) + 1
3x−

1
2·32x

2 + 1
3·33x

3 − 1
4·34x

4 + . . .

= log(3) +

∞∑
n=1

(−1)n−1

n·3n xn if |x| < 3



The radius of convergence is R = 3, the same as for 1/(1 − (−x/3)), but since we have integrated or
differentiated, convergence at the endpoints of the interval of convergence must be investigated separately.

x = 3 gives log(3) + 1− 1
2 + 1

3 −
1
4 . . . which is convergent (alternating series test).

x = −3 gives log(3)− 1− 1
2 −

1
3 −

1
4 . . . which is divergent (harmonic series).

The interval of convergence is (−3, 3], or
−3 < x ≤ 3.

(d) From the February 26 lecture we have

arctan(x) = x− x3

3
+
x5

5
− x7

7
+ . . .

with radius of convergence 1, and interval of convergence

−1 ≤ x ≤ 1.

Now replace x with 3x:

tan−1(3x) = 3x− (3x)3

3
+

(3x)5

5
− (3x)7

7
+ . . .

= 3x− 33

3 x
3 + 35

5 x
5 − 37

7 x
7 + . . .

=

∞∑
n=0

(−1)n 32n+1

2n+1 x
2n+1

which is convergent for −1 ≤ 3x ≤ 1, i.e. in the interval of convergence
[
− 1

3 ,
1
3

]
, or

− 1
3 ≤ x ≤

1
3 .

(e) We observe that the given function is the derivative of a function that can be expressed in terms of
the geometric series:

2x

(1 + x2)2
= − d

dx

[
1

1 + x2

]
= − d

dx

[
1

1− (−x2)

]
= − d

dx

[
1 + (−x2) + (−x2)2 + (−x2)3 + . . .

]
if | − x2| < 1, i.e. if |x| < 1

= − d
dx

[
1− x2 + x4 − x6 + . . .

]
= −

[
−2x+ 4x3 − 6x5 + . . .

]
= 2x− 4x3 + 6x5 − . . .

=

∞∑
n=1

(−1)n−12nx2n−1

The radius of convergence is R = 1, the same as for 1/(1 + x2), but since we have integrated or differen-
tiated, convergence at the endpoints of the interval of convergence must be investigated separately.

x = 1 gives 2− 4 + 6− . . . which is a divergent alternating series (Divergence Test).

x = −1 gives −2 + 4− 6 + . . . which which is also a divergent alternating series (Divergence Test).

The interval of convergence is (−1, 1), or
−1 < x < 1.



3. Let D1 be the closed disk (circle together with its interior region) of radius R centred at the origin and
let D2 be the closed disk of radius R centred at the point (0,

√
3R). Determine the area of the region of

the intersection (or overlap) of D1 and D2 (the shaded region in the figure below).

√
3R

R

R

x

y

Solution:

The closed disk D1 is x2 + y2 ≤ R2, its boundary is the circle x2 + y2 = R2, and the top half of this circle
is

y =
√
R2 − x2 (−R ≤ x ≤ R).

The closed disk D2 is x2 + (y −
√

3R)2 ≤ R2, its boundary is the circle x2 + (y −
√

3R)2 = R2, and the
bottom half of this circle is

y =
√

3R−
√
R2 − x2 (−R ≤ x ≤ R).

We find the intersections of the two curves by solving√
R2 − x2 =

√
3R−

√
R2 − x2

2
√
R2 − x2 =

√
3R

4(R2 − x2) = 3R2

R2 = 4x2

so the intersection points are at

x = −R
2
,

R

2
,

and the area of the region of the intersection of D1 and D2 is (noting that the integrand is an even
function of x)∫ R/2

−R/2

[√
R2 − x2 −

(√
3R−

√
R2 − x2

)]
dx = 2

∫ R/2

0

[√
R2 − x2 −

(√
3R−

√
R2 − x2

)]
dx

= 4

∫ R/2

0

√
R2 − x2 dx− 2

√
3R

∫ R/2

0

dx

= 4

∫ R/2

0

√
R2 − x2 dx−

√
3R2.

In the last integral make a trigonometric substitution

x = R sin(θ), dx = R cos(θ) dθ,
√
R2 − x2 = R cos(θ),



to get ∫ R/2

0

√
R2 − x2 dx =

∫ π/6

0

R cos(θ)(R cos(θ) dθ)

= R2

∫ π/6

0

cos2(θ) dθ

= R2

∫ π/6

0

1
2 [1 + cos(2θ)] dθ

= R2 1
2

[
θ + 1

2 sin(2θ)
]∣∣π/6

0

= R2 1
2

[
π
6 + 1

2 sin
(
π
3

)]
= R2 1

2

(
π
6 +

√
3
4

)
and therefore the area is

4

∫ R/2

0

√
R2 − x2 dx−

√
3R2 = R2

(
π
3 +

√
3
2

)
−
√

3R2

=
(
π
3 −

√
3
2

)
R2

(which is positive).


