MATH 101 V01 - ASSIGNMENT 2

Solutions

1. (a) Let $f(x)$ be continuous on an open interval that contains $x=1$. Find an antiderivative $G(x)$ with $G(1)=1$.
(b) Solve the integral equation

$$
f(x)=1+2 \int_{x}^{3} f(t) d t
$$

for $f(x)$; that is, find an expression for $f(x)$ in terms of elementary functions. After you have found $f(x)$, verify that it is indeed a solution, by substituting your expression for $f(x)$ into the integral equation and evaluating the integral.

Solution:

(a) The function

$$
F(x)=\int_{1}^{x} f(t) d t
$$

is an antiderivative of $f(x)$: by the Fundamental Theorem of Calculus, $F^{\prime}(x)=f(x)$ for x belonging to the open interval stated in the question.
If $G(x)$ is an antiderivative of $f(x)$, then $G^{\prime}(x)=f(x)$ by definition. Therefore

$$
G^{\prime}(x)=F^{\prime}(x)
$$

and so

$$
G(x)=F(x)+c,
$$

for some constant c. Choose the constant c by evaluating G at $x=1$:

$$
G(1)=F(1)+c=\int_{1}^{1} f(t) d t+c=0+c=c
$$

Since this is required to be 1 , we take $c=1$ and then

$$
G(x)=\int_{1}^{x} f(t) d t+1
$$

(b) Use the property of integrals

$$
\int_{r}^{l} f(t) d t=-\int_{l}^{r} f(t) d t
$$

to write the integral equation as

$$
f(x)=1-2 \int_{3}^{x} f(t) d t
$$

then differentiate to obtain

$$
\begin{aligned}
f^{\prime}(x) & =-2 f(x) \\
\frac{1}{f(x)} f^{\prime}(x) & =-2 \\
(\log |f(x)|)^{\prime} & =-2 \\
\log |f(x)| & =-2 x+k \\
|f(x)| & =e^{-2 x+k}=e^{k} e-2 x \\
f(x) & = \pm e^{k} e^{-2 x}
\end{aligned}
$$

for some constant k. But from the integral equation, for $x=3$ we must have

$$
f(3)=1,
$$

therefore

$$
1= \pm e^{k} e^{-6}
$$

so we should take the + sign and $k=6$, so

$$
f(x)=e^{6} e^{-2 x}=e^{6-2 x}
$$

Verify that $f(x)=e^{6-2 x}$ is a solution of the integral equation:

$$
\begin{aligned}
1+2 \int_{x}^{3} f(t) d t & =1+2 \int_{x}^{3} e^{6-2 t} d t \\
& =1+\left.2\left(-\frac{1}{2} e^{6-2 t}\right)\right|_{t=x} ^{t=3} \\
& =1+2\left[\left(-\frac{1}{2} e^{0}\right)-\left(-\frac{1}{2} e^{6-2 x}\right)\right] \\
& =1+2\left[-\frac{1}{2}+\frac{1}{2} e^{6-2 x}\right] \\
& =e^{6-2 x} \\
& =f(x)
\end{aligned}
$$

as is required to be a solution.
2. There is a line $y=m x$ through the origin that divides the finite region, bounded by the curve $y=x-x^{2}$ and the x-axis $y=0$, into two regions with equal area. Find the slope m of the line.

Solution:

The finite region, referred to in the question, is

$$
\left\{(x, y): 0 \leq y \leq x-x^{2}, 0 \leq x \leq 1\right\},
$$

and its area is

$$
\begin{aligned}
A & =\int_{0}^{1}\left(x-x^{2}\right) d x \\
& =\left.\left(\frac{1}{2} x^{2}-\frac{1}{3} x^{3}\right)\right|_{0} ^{1} \\
& =\frac{1}{6} .
\end{aligned}
$$

For the curve (line) $y=m x$ to divide this region into two regions with equal areas, we need

$$
m>0
$$

Find the intersections of $y=x-x^{2}$ and $y=m x$:

$$
\begin{aligned}
& x-x^{2}=m x \\
& x^{2}+(m-1) x=0 \\
& x(x+m-1)=0 \\
& x=0 \quad \text { or } \quad x=1-m
\end{aligned}
$$

with

$$
m<1
$$

The area of the upper region is easier to find:

$$
\begin{aligned}
A_{\text {upper }} & =\int_{0}^{1-m}\left[\left(x-x^{2}\right)-m x\right] d x \\
& =\int_{0}^{m}\left[(1-m) x-x^{2}\right] d x \\
& =\left.\left[\frac{1}{2}(1-m) x^{2}-\frac{1}{3} x^{3}\right]\right|_{0} ^{1-m} \\
& =\frac{1}{6}(1-m)^{3}
\end{aligned}
$$

Now we should choose $m \in(0,1)$ so that

$$
\begin{aligned}
A_{\text {upper }} & =\frac{1}{2} A \\
\frac{1}{6}(1-m)^{3} & =\frac{1}{12} \\
(1-m)^{3} & =\frac{1}{2} \\
1-m & =\frac{1}{2^{1 / 3}} \\
m & =1-\frac{1}{2^{1 / 3}} .
\end{aligned}
$$

The slope of the line is $m=1-\frac{1}{2^{1 / 3}} \approx 0.206 \in(0,1)$.

