Errata for Math Club Math 100/180 Package

December 13, 2010

Dec. 2003, 1(b): Can be solved by factoring the denominator; l'Hôpital's rule is not in the syllabus.
Dec. 2003, 1(c): Solution without l'Hôpital's rule: We have $\tan (2 \theta)=\frac{\sin (2 \theta)}{\cos (2 \theta)}=\frac{2 \sin (\theta) \cos (\theta)}{\cos (2 \theta)}$ so $\frac{\sin (\theta)}{\tan (2 \theta)}=$ $\frac{\cos (2 \theta)}{2 \cos (\theta)}$. Now both the numerator and denominator are continuous function and the denominator is non-zero at $\theta=0$, so the limit is $\frac{\cos (0)}{2 \cos (0)}=\frac{1}{2}$.

Dec. 2003, 5: "Maxima" is properly only the plural of "maximum". What the solution is trying to say is that $f(x)$ achieves its maximum when $x=\frac{1}{k}$.

Dec. 2005, 1(k): Can be solved exactly so no need to make linear approximation: $v(t)=\frac{d s}{d t}$ so $s(t)=$ $\frac{2}{3} t^{3 / 2}+C$. At $t=9$ we have $20=\frac{2}{3} 9^{3 / 2}+C$ so $C=20-\frac{2}{3} 27=2$ and $s(10)=\frac{2}{3} 10^{3 / 2}+2$.

Dec. 2005, 2: Solve using related rates; height of the passenger relative to the center of the wheel is $y=10 \sin \theta$, so rate of change of the height is $\frac{d y}{d t}=10 \cos \theta \cdot \frac{d \theta}{d t}=100 \cos \theta \frac{\mathrm{rad}}{\min }$. At the given moment we have $\sin \theta=\frac{6}{10}$ so $\cos \theta= \pm \sqrt{1-\frac{36}{100}}= \pm \sqrt{\frac{64}{100}}= \pm 0.8$. It follows that at the given moment we have

$$
\frac{d y}{d t}=100 \cdot 0.8 \frac{\mathrm{rad}}{\mathrm{~min}}=80 \frac{\mathrm{rad}}{\mathrm{~min}}
$$

where we took the positive root since we are given that the passenger is rising.

Dec. 2007, 1(f): "Noting that" has a spurious exponent.
Dec. 2008, 1(1): The derivative of $\arcsin u$ is $\frac{1}{\sqrt{1-u^{2}}}$ and not as written.
Dec. 2008, 7: We were actually told that $f(x)=2$ at $x=0$.
Dec. 2009, 1(c): l'Hôpital's rule is not in the syllabus. Two alternative solutions:

$$
\lim _{x \rightarrow 0} \frac{\sin (4 x)}{x}=\lim _{x \rightarrow 0} \frac{\sin (4 x)-\sin (0)}{x-0} \stackrel{\text { def }}{=}\left[\frac{d}{d x}(\sin (4 x))\right]_{x=0}=[4 \cos (4 x)]_{x=0}=4
$$

and

$$
\lim _{x \rightarrow 0} \frac{\sin (4 x)}{x}=4 \lim _{x \rightarrow 0} \frac{\sin (4 x)}{4 x}=4 \lim _{u \rightarrow 0} \frac{\sin u}{u}=4 \cdot 1=4 .
$$

(The last limit was postulated in class in section 105).

