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Abstract

We study boundary trace process of a reflected diffusion for uniform domains.
We obtain stable-like heat kernel estimates for the boundary trace process of a
reflected diffusion for uniform domains when the diffusion on the underlying ambient
space satisfies sub-Gaussian heat kernel estimates. Our arguments rely on new
results of independent interest such as sharp estimates and doubling properties
of the harmonic measure, continuous extension of Naim kernel to the topological
boundary, and the Doob-Naim formula for the Dirichlet energy of boundary trace
process.
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1 Introduction

A classical theorem of Spitzer implies that the trace process of the reflected Brownian
motion on the (n + 1)-dimensional upper half-space on its boundary is the n-dimensional
Cauchy process [Spi, Mol]. Molchanov and Ostrowski discovered that one can realize
all symmetric stable processes on R" as a trace process on the boundary of a reflected
diffusion on the (n + 1)-dimensional upper half-space [MO]. This was later revisited in
a celebrated work to analyze the fractional Laplace operator and is now known as the
Caferelli-Silvestre extension [CS]. Caferelli and Silvestre demonstrated that properties of
non-local operators could be understood using corresponding properties of the associated
local operators [CS, §5]. The local and non-local operators in [CS] are the generators of
the diffusion in the upper half-space and the boundary trace process respectively in [MO].
Our work aims to extend this idea to understand the behavior of boundary trace process
(a jump process) using that of the associated diffusion process.

In light of the work of Molchanov and Ostrowski mentioned above, the following
natural question arises: does the boundary trace process of a reflected diffusion behave
like a symmetric stable process in other settings? The goal of this work is to answer
the above question affirmatively by obtaining stable-like heat kernel estimates for the
boundary trace process of reflected diffusion in a broad class of examples. The generator
of the boundary trace process is typically a non-local (or integro-differential) operator.
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Therefore from an analytic viewpoint, our work shows that the fundamental solution of
the ‘heat equation’ corresponding to this non-local operator on the boundary behaves like
that of the fractional Laplacian on Euclidean spaces. We note that stable-like estimate
of the heat kernel for jump process has been extensively studied for the past two decades
[BL, BGK09, CK03, CK08, CKW, GHL14, GHH23, GHH23+, Mal, MS19].

Our setting is a metric measure space equipped with a m-symmetric diffusion process,
where m is a Radon measure with full support. Equivalently, we consider a metric space
(X, d) equipped with a strongly local, regular, Dirichlet form (£, F) on L*(X,m). We
call (X,d,m,&,F) the metric measure space with a strongly local, regular Dirichlet form
or MMD space for short. We refer to [FOT, CF] for the theory of Dirichlet forms.

We consider symmetric diffusion admitting sub-Gaussian heat kernel estimates.
Our setting includes examples with Gaussian heat kernel estimates [Gri, Sal, Stu] such
as Brownian motion in Euclidean space or manifolds with non-negative Ricci curvature,
diffusion generated by degenerate elliptic operators [F'KXS] and uniformly elliptic operators
in divergence-form in R™ [Mos], diffusion on connected nilpotent Lie groups associated
with a left invariant Riemannian metric or with sub-Laplacians of the form A = Zle X2,
where {X; : 1 < i < k} is a family of left-invariant vector fields satisfying the Hérmander’s
condition [VSC], weighted Euclidean spaces and manifolds [GrS]. Another significant class
of examples arise from diffusion on fractals such as the Sierpinski gasket, Sierpinski carpet,
and their variants [Bar98, BB89, BB92, BB99, BP, BH, FHK, Kum].

Given an MMD space as above, we consider uniform domains satisfying a capacity
density condition. Uniform domains were introduced independently by Martio and
Sarvas [MS] and Jones [Jon|. This class includes Lipschitz domains, and more generally
non-tangentially accesible (NTA) domains introduced by Jerison and Kenig [JI]. Due
to similar definition, we note that uniform domains are also referred as I-sided NTA
domains [AHMT1, HMM]. Uniform domains are relevant in various contexts such as
extension property [BS, Jon, HerK], Gromov hyperbolicity [BHK], boundary Harnack
principle [AikO1], geometric function theory [MS, GH, Geh], and heat kernel estimates
[GyS, CKKW, Mur23+]. One reason for the importance of uniform domains is its close
connection to Gromov hyperbolic spaces [BHIK]. Another reason is the abundance of
uniform domains. In fact, by [Raj, Theorem 1.1] every bounded domain is arbitrarily
close to a uniform domain in a large class of metric spaces.

The NTA domains introduced by Jerison and Kenig are examples of uniform domains
satisfying the capacity density condition. The capacity density condition guarantees that
every boundary point is regular for the associated diffusion and can be viewed as a stronger
version of Wiener’s test of regularity. Uniform domains satisfying the capacity density
condition provide a fruitful setting to study various aspects of the harmonic measure
[Anc86, AH, AHMT1, AHMT2, CDMT]. For Brownian motion on the Euclidean space,
the capacity density condition of a domain €2 is expressed by the estimate:

Cappe 2 (B(E,7)) < Capp o (B(E,1)\Q), forall § € 00,0 <r < diam(Q),

where Cappe o, (K) denotes the capacity between the sets K and B(¢,2r)°. The fact
that uniform domains satisfying the capacity density condition satisfy good properties



on harmonic measure was recognized by Aikawa and Hirata [AH]. As we will see later,
estimates on harmonic measure play an important role in our work.

Let us examine the results of Molchanov-Ostrowski, Cafferelli-Silvestre [MO, CS] in
further detail to provide context. For a € (0,2), we recall that the symmetric a-stable
operator is generated by the fractional Laplace operator (—A)~*/? on R”,

f(@) - f(y)

R |95 - 3/|n+a 7

(_A)a/2f('r) = Cn,a

where ¢, , € (0,00) is a normalizing constant. Writing R"™! = {(z,y) : z € R",y € R} as
R™ x R, we consider the Dirichlet form

E(uyu) = f j Vil (e, ) dy de
n JR

on L2(R™ |'"*dydz). The corresponding diffusion is generated by the degenerate

elliptic operator
1l -«
Lou:= Ayu+

Uy =+ Ugyy-

Gaussian heat kernel estimates for diffusion generated by such degenerate elliptic opera-
tors follow from results of [FIKS, Sal, Gri]. To compute the Dirichlet form corresponding
to the trace process on the boundary, we consider the Dirichlet boundary value problem

Lou=0onR" x (0,00), wu(z,0)= f(z), (1.1)

where f : R®™ — R is a prescribed boundary value on a suitable function space. Then by
[CS, §3.2], the Dirichlet energy of the solution u to (1.1) can be expressed in terms of the
boundary data f as

[ [ mteomr=a= | reesrrodw )

The equality (1.2) implies that the boundary trace process of the reflected diffusion gen-
erated by L, is the symmetric a-stable stable process. We refer to [KKwa] for new results
in this direction.

An earlier example of an expression such as (1.2) that relates a local operator on a
domain to a non-local operator on its boundary is due to J. Douglas [Dou]. The Douglas
formula states that the harmonic function « on the unit disk B(0, 1) in R? with boundary
value regarded as a function f : [0,27) — R has Dirichlet energy given by

2de = 2 [ Y0 = S©)?
Juon =52 ||, Sty a3

The right hand side above can be viewed as the Dirichlet form of the boundary trace
process corresponding to the reflected Brownian motion on the unit disk. This was later
extended to smooth domains in R? by Osborn [Osh]. More generally, if v is harmonic in

4



a smooth domain €2 < R"™ with boundary value f : €2 — R, then the Dirichlet energy is
given by

[ mi@ae=[ [ vw-ror B aean. 0

where o is the surface measure 0€, go(-,-) is the Green function on 2, %, % denote the
n

inward pointing normal derivatives at &, n respectively [CF, (5.8.4)].

J. Doob found a remarkable extension of (1.2), (1.3), (1.4) to domains that are not
necessarily smooth. Doob’s result is under an abstract potential theoretic setting of
(locally Euclidean) Green spaces in the sense of Brelot and Choquet [BC, Doo]. The
boundary conditions of the harmonic function are prescribed on the Martin boundary
On§2 of the domain €2. To describe Doob’s result, we recall the Naim kernel defined by

o9 ,n) = lim lim ’
0 (&) z—¢ y-1 go(Zo, ¥)ga(Zo, )

for gﬂneaMgvf;énv

where the limits are with respect to the fine topology, xo € €2 is an arbitrary base point,
and gq(-,-) is the Green function on € as before. The existence of the above limits in
the setting of Green spaces follows from the fundamental work of L. Naim [Nai]. The
Doob-Naim formula states that

| wir@a =] | g©-rmrelenat©atm. 09

if u is harmonic in a domain 2 with fine boundary value f : d)2 — R and wgo is the
harmonic measure of the corresponding diffusion started at xy [Doo, Theorem 9.2].
Fukushima gave an alternate proof of the Doob-Naim formula for Green spaces [Fuk].
There are versions of Doob-Naim formula for Markov chains on a countable state space
due to M. Silverstein [Sil, Theorem 3.5] and for random walks on transient trees in [BGPW,
Theorem 6.4].

Even though these earlier approaches in [Doo, Fuk, Sil, BGPW] do not apply to
our setting, we obtain a version of the Doob-Naim formula with the Martin boundary
On§) replaced with the topological boundary 02 (see Theorem 5.12). Using a variant of
Moser’s oscillation lemma [Mos| and the boundary Harnack principle, we show that the
Naim kernel on a uniform domain U given

U _ gU(xvy) on T % T T .
6 r.4) = — I on (U\{ao}) > (U\{zo) (oD

extends to a jointly continuous function on ((U\{zo}) x (U\{zo})) \(U\{Z0})diag up to the
topological boundary (see Proposition 3.15). Our proof of the Doob-Naim formula relies on
the boundary Harnack principle unlike earlier approaches. Other important ingredients in
our proof of the Doob-Naim formula is the vanishing of energy measure on the boundary
of a uniform domain recently shown in [Mur23+, Theorem 2.9] and estimates on the
harmonic measure discussed below in (1.7).



Our version of the Doob-Naim formula states that the Dirichlet form corresponding to
the boundary trace process for the reflected diffusion on a uniform domain U satisfying
the capacity density condition is given by the Doob—Naim energy

LU LU(f(g) = Jm)*O0, (&) dw (€) dect, (0)- (1.6)

Equivalently, the Doob-Naim energy of a function f above is the Dirichlet energy
gef(u, u), where £™I(-, ) is the Dirichlet energy corresponding to the reflected diffusion on
U, u is harmonic with respect to the generator of diffusion in U with boundary condition

fon aU.

The expression (1.6) suggests that the Doob—Naim energy should be viewed as a
quadratic form corresponding to a self-adjoint non-local operator with respect to a refer-
ence measure that is mutually absolutely continuous with respect to harmonic measure
wg?o. In other words, the Doob—Naim formula is an expression for the kernel of an integro-
differential (non-local) operator on the boundary associated to an elliptic (local) operator
in the domain. Due to (1.4), this reference measure on the boundary is usually taken to
be the surface measure on the boundary for reflected Brownian motion in smooth settings
[Hsu]. In the smooth case, this integro-differential operator can be identified with the
Dirichlet-to-Neumann (or voltage-to-current) map [Hsu]. However, in general, even on
smooth domains for uniformly elliptic operators, the harmonic measure might differ sig-
nificantly from the surface measure, possibly being singular [CFK]. It is worth mentioning
that our results on the stable-like heat kernel estimates for boundary trace process also
apply to situations when the harmonic measure is singular with respect to the surface
measure.

From a probabilistic viewpoint, the choice of this reference measure on the boundary
is equivalent to choosing a time parametrization for the trace process due to the Revuz
correspondence [FOT, Theoren 5.1.7(i)]. More precisely, a suitable reference measure
on the boundary determines a positive continuous additive functional supported on the
boundary which can be considered as the boundary local time of the reflected diffusion.
Heuristically, the boundary local time is a continuous, non-increasing process which ‘mea-
sures’ the time spent by a reflection diffusion on the boundary. If 7, denotes the right
continuous inverse of the boundary local time of the reflected diffusion X!, then the trace
process on the boundary is given by t — Xﬁff and is a Markov process on the boundary
that is symmetric with respect to the chosen reference measure on the boundary.

The above considerations naturally lead us to the study of harmonic measure and its
estimates. Aikawa and Hirata obtain doubling properties and estimates of the harmonic
measure for Brownian motion on uniform domains under the capacity density condition
[AH, Lemmas 3.5 and 3.6]. These estimates and doubling properties generalize similar
results obtained by Jerison and Kenig for NTA domains [JK, Lemma 4.8] and Dahlberg
for Lipschitz domains [Dah, Lemma 1]. The key estimate on the harmonic measure

wy (-) for the diffusion started at x, that generalize the estimates for Brownian motion in
[Dah, JK, AH] is given by
U(I(]a gr)

WU (B(€,7) N oU) = §<—5> = gu(wo, &) Capye o) (B(E, 7)) (1.7)



for all g € U, & € oU such that r < d(xg, )/ A for a suitably chosen constant A € (1, 0),
where &, £ € U are chosen so that dist(¢,, U¢) = r,dist(¢., U°) = r,d(§,&.) = r,d(&., &) =
r. We refer to Theorem 4.6 for a precise statement for our estimate on harmonic measure.
While our lower bound on the harmonic measure follows the same line of reasoning as [AH],
our argument for the upper bound provides a new proof avoiding the delicate iteration
argument (box argument) in [AH].

Next, we discuss our choice of the reference measure, denoted as i, on the boundary
oU. This measure corresponds either to the symmetric measure for the trace process or,
equivalently, to the Revuz measure corresponding to the boundary’s local time. As men-
tioned earlier, the Doob-Naim formula suggests that the reference measure to be chosen
mutually absolutely continuous with respect to the harmonic measure w (). Therefore
if U is bounded, we choose the reference measure p on the boundary dU as the harmonic
measure wgo where the base point is sufficiently far away from the boundary such that
dist(zo, U) 2 diam(U) which guarantees good doubling properties at many scales due to
(1.7). If U is bounded, then by the elliptic Harnack inequality the harmonic measure with
different base points sufficiently far away from the boundary are comparable in the sense
that they are mutually absolutely continuous with Radon-Nikodym derivative uniformly
bounded above and below.

In cases where U is unbounded, a canonical measure exists on the boundary, unique up
to a multiplicative constant. This measure is constructed from rescaled limits of harmonic
measures along a sequence of base points that tend toward infinity. The consideration of
such measures dates back to Kenig and Toro [K'T, Corollary 3.2], who first studied this
measure in the context of non-tangentially accessible (NTA) domains within Euclidean
spaces. In our setting, the existence of such a measure follows from the boundary Harnack
principle (Proposition 4.15). Following [BTZ, Lemma 3.5], we call such a measure on
unbounded uniform domains as the elliptic measure at infinity.

Next, we describe how our choice of the reference measure above leads to the boundary
trace process. We show that our choice of the reference measure above defines a positive
continuous additive functional in the strict sense whose support is the topological bound-
ary (Lemma 5.4 and Proposition 5.7) which can be thought of as the boundary local time.
This in turn defines the trace process )?fef as )?fef := X’ where 7 is the right continuous
inverse of the positive continuous additive functional mentioned above and X' denotes
the reflected diffusion on the uniform domain. We show that this boundary trace process
admits a continuous heat kernel and obtain matching upper and lower bounds.

Before describing the stable-like heat kernel bounds of the boundary trace process, we
recall a few properties of symmetric a-stable process on R™. For any a € (0,2),n € N,
the symmetric stable-process on R" generated by the fractional Laplace operator (—A)%/2
satisfies bounds on jump kernel J(-,-), expected exit time from ball E,[7p (], and the
heat kernel p,(-, ) that can be conveniently expressed in terms of the Lebesgue measure
m, Euclidean distance d(-, -) and the space-time scaling function ¢(r) = r*. There bounds
are given by

1
m(B(z, d(z,y)))o(d(x,y))’

7

J(x,y) =

Ez [TB(x,r)] - QS(T’) )



and
1 t

m(B(z, ¢ 1) " m(B(x,d(z,y))o(d(z, y))

pe(,y) =

for all x,y e R™,t,r > 0.

Unlike the symmetric stable process, the space-time scaling function of the boundary
trace process depends both on the starting point in 0U and distance; that is, ® : oU x
(0,00) — (0,00) instead of ¢ : (0,00) — (0,00) as above. Except for this change, the
bounds on the jump kernel, exit times and the heat kernel are exactly same as above.
Next, we describe the space-time scaling function ®(-,-) that governs the behavior the
boundary trace process. If U is bounded, then the scaling function satisfies the two-sided
bound

O, r) = gu(&, o), forall e dlU,0<r < diam(U)/A,

where A > 1, xg € U is the ‘central’ base point chosen as before for the reference measure,
& € U is chosen so that d(§,&.) = r, dist(§,,U°) = r and gy(-,-) denotes the Green
function of the diffusion process killed upon exiting U. In the case when U is unbounded,
the scaling function satisfies the two-sided bound,

(&, r) = h (&), forall&edl,r>0,

where &, 20 is as above and hY () is the unique positive harmonic function on U with
Dirichlet (zero) boundary condition on U normalized so that hY (z¢) = 1. The existence
and uniqueness of such a harmonic function is a well-known consequence of the boundary
Harnack principle.

In order to prove the stable-like heat kernel bounds, it suffices to obtain stable-like
bounds on the jump kernel and exit time. This follows from results of [CKW, GHH23,
GHH23+] as shown in Theorem 2.32. The desired jump kernel bound is an easy conse-
quence of the Doob-Naim formula while the proof of exit time bound requires the heat
kernel estimate on reflected diffusion obtained in [Mur23+, Theorem 2.8].

To illustrate the generality of our results, we list a few examples of diffusion and
domain that have stable-like behavior of the boundary trace process of the corresponding
reflected diffusion. Our results on stable-like heat kernel bounds for the boundary trace
process applies to Brownian motion on Lipschitz and more generally non-tangentially
accessible domains in R™. In particular, this class includes non-smooth domains such
as the von Koch snowflake domain. More generally, reflected Brownian motion could
be replaced a reflected diffusion generated by a uniformly elliptic operator or degenerate
elliptic operators corresponding to Ay weights [Mos, FICS]. Another class of examples
include NTA domains in Heisenberg group equipped with Carnot-Carthéodory distance
and the diffusion generated by the corresponding left-invariant sub-Laplacian satisfying
the Hormander condition as mentioned before [VSC]. Specific examples of NTA domains
in this setting are given in [CG, CGN, Gre]. Our results on the heat kernel of boundary
trace process also applies to the complement of the outer square boundary and the domain
formed by removing the bottom line of the Sierpinski carpet. They are uniform domains
(see [Lie22, Proposition 4.4] and[C(Q), Proposition 2.4]) satisfying the capacity density
condition for the Brownian motion on the Sierpiniski carpet constructed in [BB92].
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To summarize, the following are our main contributions:

(i) Two-sided estimates on the harmonic measure and the associated elliptic measure at
infinity that are sharp up to multiplicative constants (Theorem 4.6 and Proposition
4.15).

(ii) The calculation of the Dirichlet form for the boundary trace process given by Doob-
Naim formula. Equivalently, this is an expression for the non-local operator on the
boundary associated with a local (diffusion) operator on the domain. In particular,
we show that the boundary trace process is a pure jump process (Theorem 5.12).

(iii) Heat kernel estimate for the boundary trace process that are similar to that of the
symmetric stable process on Euclidean space (Theorem 5.19).

2 Preliminaries

2.1 Doubling metric space and doubling measures

Throughout this paper, we consider a metric space (X, d) in which B(x,r) := By(x,r) :=
{y € X | d(z,y) < r} is relatively compact (i.e., has compact closure) for any (z,7) €
X % (0,00), and a Radon measure m on X with full support, i.e., a Borel measure m on
X which is finite on any compact subset of X and strictly positive on any non-empty
open subset of X. Such a triple (X, d, m) is referred to as a metric measure space. We
set diam(A) := SUD, yea d(z,y) for Ac X (sup @ :=0).

In much of this work, we will be in the setting for a doubling metric space equipped
with a doubling measure.

Definition 2.1. A metric d on X is said to be a doubling metric (or equivalently, (X, d)
is a doubling metric space), if there exists N € N such that every ball B(x, R) can be
covered by N balls of radii R/2 for all z € X, R > 0.

Next, we recall the closely related notion of doubling measures on subsets of X.

Definition 2.2. Let (X,d) be a metric space and let V< X. We say that a Borel
measure m is doubling on V' if m(V') # 0 and there exists Dy = 1 such that

m(B(z,2r) n V) < Dom(B(z,r) n'V), forall z eV and all r > 0.
We say that a non-zero Borel measure m on X is doubling, if m is doubling on X.

The basic relationship between these notions is that if there is a (non-zero) doubing
measure on a metric space (X,d), then (X,d) is a doubling metric space. Conversely,
every complete doubling metric space admits a doubling measure [Hei, Chapter 13]. By
iterating the doubling condition, it is easy to see that for all m is a doubling measure on
(X, d), then there exist C € (1,0), 5 € (0,00) such that

m(B(y, R)) d(z,y) + R\" S )
m(B(w))“(—r ) forallz,ye X0 <r< R (2.1)
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We recall the closely related reverse volume doubling condition. To this end, we recall
the relevant definition.

Definition 2.3. We say that a metric space (X,d) is uniformly perfect if there exists
Ky € (1,00) such that for all x € X',r > 0 such that B(z,r) # X, we have

B(z,)\B(z, K, 'r) # &.
We record the following result for later use.

Lemma 2.4 ([Hei, Exercise 13.1]). Let m be a doubling measure on a uniformly perfect
metric space (X,d). Then the measure m satisfies the following reverse volume doubling
condition: there exist C € (1,0),a € (0,00) such that for all x € X,0 < r < R <

diam (X, d) such that
B, R) o <5> . (2.2)

2.2 Uniform domains

Let U ¢ X be an open set. A curve in U is a continuous function 7 : [a,b] — U such that
7(0) = z,v(b) = y. We sometimes identify ~ with it its image y([a, b]), so that v < U.
The length of a curve v : [a,b] — X is

n—1
((7y) := sup {Z d(y(t:),y(tis1)) ra<tg <ty...<t, < b} :
i=0

A metric space is a length space if d(x,y) is equal to the infimum of the length of curves
joining x and y. Let U X be a connected open subset. We define the intrinsic distance
dy by

dy(x,y) =inf {L(7) : v:[0,1] = U continuous, v(0) = z,vy(1) = y} .

Definition 2.5. Let ¢y € (0,1),Cy € (1,00). A connected, non-empty, proper open set
U < X is said to be a length (cy, Cy)-uniform domain if for every pair of points
x,y € U, there exists a curve v in U from z to y such that its length ¢(v) < Cyd(z,y)
and for all z € 7,

6v(z) = cymin (€(7,,2), E(szy)) )

where v, ., 7., are subcurves of 7 from x and z and from z to y respectively and dy(2) =
dist(z, U°). Such a curve v is called a length (cy, Cy)-uniform curve.

A connected, non-empty, proper open set U < X is said to be a (c¢y, Cy)-uniform
domain if for every pair of points x,y € U, there exists a curve v in U from x to y such
that its diameter diam(y) < Cyd(x,y) and for all z € 7,

oy (z) = ey min (d(z, 2),d(y, 2)) .

Such a curve v is called a (cy, Cy)-uniform curve.
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There are different definitions of uniform domains in the literature [Mar, Vii]. The
above definition of uniform domain was introduced in [Mur23+] because of the advantage
that this notion of uniform domain is preserved under a quasisymmetric change of metric
in the underlying space. Furthermore, this definition also allows us to consider metric
spaces that does not have non-constant rectifiable curves. We note that our definition of
length uniform domain is what is usually called a uniform domain.

The following is a variant of [GyS, Proposition 3.20].

Lemma 2.6. Let (X,d) be a complete, locally compact, length metric space and let U <
X be an open, (cy,Cy)-uniform domain for some cy € (0,1),Cy € (1,00). For any
e dU,re (0,diam(U)/4), there exists & € U such that

Cyr

A& &) =r, du(&)> - (2.3)

Proof. Since r < diam(U)/4, there exists a point y € U such that d(§,y) > 2r. By
considering a (cy, Cy)-uniform curve 7 from a point x € B({,7/2) n U to y and the
continuity of d(&, -) along ~, there exists &. € v such that d(&,&,) = r and

5U(€'f‘) = Cu min (dU(x’ Sr)v dU(y> gr)) = Cu min (d(ib, gr)a d(?J? 57“))
cyr

= Cu min (d(gy 57“) - d(ﬁ, (L’), d(gv y) - d(ga 57“)) > T

2.3 Dirichlet form and symmetric Hunt process

Let (£,F) be a symmetric Dirichlet form on L?(X,m); that is, F is a dense linear
subspace of L*(X,m), and £ : F x F — R is a non-negative definite symmetric bilinear
form which is closed (F is a Hilbert space under the inner product & := € + (-, -)r2(x,m))
and Markovian (f* Al e F and E(fT A1, fT A1) < E(f, f) for any f € F). Recall
that (£, F) is called regular if F n C.(X) is dense both in (F, &) and in (Ce(X), || - [sup)
and that (€, F) is called strongly local if £(f,g) = 0 for any f,g € F with supp,,[f],
supp,,lg] compact and supp,,[f — alx]| n supp,,[g] = & for some a € R. Here C.(X)
denotes the space of R-valued continuous functions on X with compact support, and
for a Borel measurable function f : X — [—o0, 0] or an m-equivalence class f of such
functions, supp,,[f] denotes the support of the measure |f|dm, i.e., the smallest closed
subset [’ of X with SX\F |f|dm = 0, which exists since X has a countable open base
for its topology; note that supp,,[f] coincides with the closure of X\ f~1(0) in X if f is
continuous. The pair (X, d,m, &, F) of a metric measure space (X,d,m) and a strongly
local, regular symmetric Dirichlet form (€, F) on L?*(X,m) is termed a metric measure
Dirichlet space, or an MMD space in abbreviation.

Associated with a Dirichlet form is a strongly continuous contraction semigroup (T)i>o;
that is, a family of symmetric bounded linear operators T} : L*(X,m) — L*(X,m) such
that

Tovsf = (LS, NTeflly < [1Flly, UmTef = fll, =0,
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for allt,s > 0, f € L?(X,m). In this case, we can express (£, F) in terms of the semigroup
as

Fo{fe P(X,m)lim o (f = RSy <o), €00 =lim = RL D, (24)

for all f € F, where (-, -) denotes the inner product in L*(X, m) [FOT, Theorem 1.3.1 and
Lemmas 1.3.3 and 1.3.4]. Tt is known that P, restricted to L*(X,m) n L®(X, m) extends
to a linear contraction on L®(X,m) [CF, pp. 5 and 6]. If P,1 =1 (m a.e.) for all t > 0,
we say that the corresponding Dirichlet form (£, F) is conservative.

According to a fundamental theorem of Fukushima, the MMD space corresponds to
a symmetric Markov processes on X with continuous sample paths [FOT, Theorem 7.2.1
and 7.2.2]. We refer to [FOT, CF] for details of the theory of symmetric Dirichlet forms.

Recall that a Hunt process X = {X;,t > 0;P*, z € X} on a locally compact separable
metric space X is a strong Markov process that is right continuous and quasi-left contin-
uous on the one-point compactification X, := X U {0} of X. A set C < Xj is said to be
nearly Borel measurable if for any probability measure p on X there are Borel sets Ay, Ay
such that A; « C < A, and

P#(there is some ¢ = 0 such that X; € A2\A;) = 0.

Let m be a Radon measure with full support on X. A Hunt process X is said to be
m-symmetric if the transition semigroup is symmetric on L?(X',m). For an m-symmetric
Hunt process X on X, a set N < X is said to be properly exceptional for X if N is nearly
Borel measurable, m(N) = 0 and

P*(X; € Xp\N and X;_ € X\N forallt >0) =1 for every z € X\N.

The transition semigroup of the process X is a version of the strongly continuous semi-
group {Ty;t = 0} on L*(X,m) corresponding to (€, F), see [FOT, Theorem 7.2.1]. Fur-
thermore, for any non-negative Borel measurable f € L?*(X,m) and t > 0,

Pif(z) = Ea[f(X0)]

is a quasi-continuous version of T;f on X'. The Hunt process X associated with a regular
Dirichlet form (£, F) on L?*(X,m) is unique in the following sense (see [FOT, Theorem
4.2.8]): if X’ is another Hunt process associated with the regular Dirichlet form (€, F) on
L?(X,m), then there is a common properly exceptional set outside which these two Hunt
processes have the same transition functions.

We recall the definition of energy measure. Note that fg € F for any f,g €
F n L*(X,m) by [FOT, Theorem 1.4.2-(ii)] and that {(—n) v (f A n)}>, < F and
lim, ,eo(—n) v (f An) = fin norm in (F, &) by [FOT, Theorem 1.4.2-(iii)].

Definition 2.7. Let (X, d,m,E,F) be an MMD space. The energy measure T'(f, f) of
f € F associated with (X, d, m, &, F) is defined, first for f € F n L®(X,m) as the unique
([0, co]-valued) Borel measure on X such that

| adr.p =0 t0 - 5EPe)  RralgeFaCr),  25)
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and then by I'(f, f)(A) := lim, oo T'((—=n) v (f A n),(=n) v (f A n))(A) for each Borel
subset A of X for general f e F.

Definition 2.8 (Local Dirichlet space and its energy measure). For an open set D ¢ X
of an MMD space (X, d, m,E, F), we define the local Dirichlet space Fio.(D) as

functions on D such that f1y = f#1y m-a.e. for some

f is an m-equivalence class of R-valued Borel measurable
} 26)
f# e F for each relatively compact open subset V of D

‘EOC(D) = {f

and the energy measure I'p(f, f) of f € Fioc(D) associated with (X, d, m,E, F) is defined
as the unique Borel measure on D such that I'p(f, f)(A) = T'(f#, f#)(A) for any relatively
compact Borel subset A of D and any V, f# asin (2.6) with A < V; note that ['(f#, f#)(A)
is independent of a particular choice of such V, f#.

For U c X, we define

FU) :={f € Foc(U) :JUdeerJUFU(f,f) < oo}, (2.7)
and the bilinear form (£™f, F(U)) as
e (f, f) = L Cu(f,f), forall fe F(U). (2.8)

The form (€™f, F(U)) need not be a regular Dirichlet form on L?(U,m) in general.
Nevertheless, Theorem 2.12 provides a sufficient condition for (£, F(U)) to be a regular
Dirichlet form on L*(U,m|).

We recall the definition of extended Dirichlet space.

Definition 2.9 (Extended Dirichlet space). Let (X,d,m,&, F) be an MMD space and
let F. denote its extended Dirichlet space. Recall that the extended Dirichlet space F.
of (X,d,m,&, F) is defined as the space of m-equivalence classes of functions f: X — R
such that lim, o f, = f m-a.e. on X for some E-Cauchy sequence (f,,)nen in F, that the
limit E(f, f) := lim,, e E(fn, fn) € R exists, is independent of a choice of such (f,,)nen for
each f € F, and defines an extension of £ to F, x F,, and that F = F, n L*(X,m); see
[CF, Definition 1.1.4 and Theorem 1.1.5].

Every function in the extended Dirichlet space admits a quasi continuous version
[FOT, Theorem 2.1.7]. The Dirichlet form (£, F) on L?*(X;m) is said to be transient if
there exists a bounded g € L*(X’;m) that is strictly positive on X so that

J hu(z)|g(z)m(dz) < E(u,u)/?  for every u e F.
x

If (£,F) is transient, then (F., &) is a Hilbert space [FOT, Theorem 1.5.3]. Denote by
{T};t > 0} the semigroup on L?(X;m) corresponding to the Dirichlet form (£, F). By
[CF, Lemma 2.1.4(ii)] or [FOT, p. 40], (£, F) is transient if and only if there is some
g € L'(X;m) that is strictly positive on X and satisfies

J gGgdm < oo, where Gg = Sgo T,g dt. (2.9)
X
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Definition 2.10 (Part process). Let D be an open subset of X'. The part process X2 of
X killed upon exiting D is a Hunt process on D; that is,

XtD:: Xt ift>7_D,
8 lftZTD,

where the life time of the part process is 7p := inf{t > 0: X; ¢ D}.

The associated Dirichlet form (£, F°(D)) on L*(D;m|p) of the part process X? is
regular. Here m|p is the measure m restricted to the open set D, and

FD)={feF I idmits a quasi—i:ontinuous modification f such that (2.10)
f=0¢&qe onD

and EP = &€ on F°(D) [CF, Exercise 3.3.7 and Theorem 3.3.9]. We denote the extended
Dirichlet space corresponding to part process by (F°(D)).. By [CF, Theorem 3.4.9]
(F°(D)). can be alternately described in terms of the extended Dirichlet space F, of
(E,F) as

(FUD))e ={feF.: f=0E&—q.c. on X\D}. (2.11)

2.4 Sub-Gaussian heat kernel estimates

Let ¥ : (0,00) — (0,00) be a continuous increasing bijection of (0,00) onto itself, such

that for all 0 < r < R,
LR\ _ v R\™
=) < <C|— :
o (7) <3 =) 212

for some constants 1 < f; < [y and C > 1. If necessary, we extend ¥ by setting
U(o0) = o0, Such a function V¥ is said to be a scale function. For ¥ satisfying (2.12),

we define .
~ s
U(s) = -——— . 2.1
0= (3 ) e

Definition 2.11 (HKE(¥)). Let (X, d, m, &, F) be an MMD space, and let { P,},., denote
its associated Markov semigroup. A family {p;},., of non-negative Borel measurable
functions on X' x X is called the heat kernel of (X, d,m,E,F), if p; is the integral kernel
of the operator P; for any ¢ > 0, that is, for any ¢ > 0 and for any f € L?(X,m),

P f(x) = JX pe(z,y) f(y) dm(y) for m-almost all x € X.

We say that (X, d, m, E, F) satisfies the heat kernel estimates HKE(V), if there exist
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Ch,c1,¢2,c3,0 € (0,00) and a heat kernel {p;},_, such that for any t > 0,

~ d
pe(z,y) < m(B(a:,C\;f—l(t))) exp (—clt\If (02 (xt, y))) for m-almost all z,y € X,
(2.14)
pe(z,y) = m(B(x,CfIf—l(t))) for m-almost all z,y € X with d(z,y) < U 1(¢),
(2.15)

where @ is as defined in (2.13).

We recall the following heat kernel estimate for reflected diffusions obtained in
[Mur23+-, Theorem 2.8].

Theorem 2.12 ([Mur23+, Theorem 2.8]). Let (X,d,m,E,F) be an MMD space that
satisfies the heat kernel estimate HKE(W) for some scale function W and let m be a
doubling measure. Then for any uniform domain U, the bi-linear form (€™, F(U)) is
a strongly-local reqular Dirichlet form on L*(U,m). Moreover, the corresponding MMD
space (U,d,m,E™ F(U)) satisfies the heat kernel estimate HKE(W).

Let Cy(&X') denote the space of all continuous functions vanishing at infinity. We
recall that the sub-Gaussian heat kernel estimates implies the strong Feller property. The
general theory of Dirichlet forms [FOT, Theorems 7.2.1 and 7.2.2] only guarantees the
existence of diffusion process starting outside a properly exceptional set as recalled in
§2.3. Nevertheless under sub-Gaussian heat kernel bounds, the Feller and strong Feller
property allows us to define the diffusion starting from every point x € X as we recall
below.

Proposition 2.13 ([Liel5, Proposition 3.2]). Let (X,d,m,E, F) be an MMD space that
satisfies the heat kernel estimate HKE(W) for some scale function U and let m be a
doubling measure. Then there exists a continuous heat kernel (t,z,y) — pi(x,y) corre-
sponding to (X,d,m,E,F). The Markovian transition function (P,)i=o on X, defined by
Py(z,dy) = pi(x,y) m(dy),t > 0,z € X, has the Feller property P,.Cy(X) < Co(X) for
allt = 0 and limy g || Pef — fl|, = 0 for any f € Co(X), and the strong Feller property,
i.e. Pf 1s continuous for any bounded Borel measurable function f : X — R. In partic-
ular, there ezists a diffusion process ((Xi)i=0, (Py)zex, (Fi)i=0) whose transition densities
are given by the continuous heat kernel.

Due to Theorem 2.12 and Proposition 2.13, we often impose the following assumption.

Assumption 2.14. Let (X,d,m,&, F) be an MMD space that satisfies the heat kernel
estimate HKE(W) for some scale function ¥ and let m be a doubling measure. We
assume that the corresponding diffusion X be defined from every starting point in X
with a continuous heat kernel, so that the transition function of X satisfies both the
Feller and strong Feller properties as given in Proposition 2.13. Furthermore, for any
uniform domain U in X', we assume that the reflected diffusion X" corresponding to the
MMD space (U, d, m o gt F(U)) is also defined from every starting point in U with a
continuous heat kernel, so that the transition function of X satisfies both the Feller and
strong Feller properties as given in Proposition 2.13.
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2.5 Harmonic functions and the elliptic Harnack inequality

We recall the definition of harmonic functions and the elliptic Harnack inequality.

Definition 2.15. Let D be an open subset of X. We say a function h € F,.(D) is
harmonic in D if

E(h,v) =0 forevery ve C.(D)n F. (2.16)

Here by the strong locality of (€, F), we can unambiguously define E(h,v) = E(h*,v)
where h# € F and h = h¥ m-a.e. in supp(v).

Definition 2.16. We say that an MMD space (X, d, m, £, F) satisfies the elliptic Harnack
inequality (abbreviated as EHI), if there exist C' > 1 and § € (0, 1) such that for all z € X,
r > 0 and for any h € F,.(B(x,r)) that is non-negative on B(x,r) and harmonic on
B(z,r), we have

esssup h < C'essinf h. EHI
B(z,dr) B(x,or)

There is a close relationship between the heat kernel bounds HKE(W) and the elliptic
Harnack inequality EHI as we recall below.

Remark 2.17. If (X, d,m, &, F) is an MMD space that satisfies HKE(W), then it satisfies
the elliptic Harnack inequality. Conversely, if an MMD space satisfies the elliptic Harnack
inequality, there is a suitable reparametrization of space and time by a quasisymmetric
change of metric d and a smooth measure with full quasi support m such that the time-
changed MMD space with respect to the new metric d satisfies HKE(V) for some scale
function U [BM18, BCM].

We are often interested in harmonic functions with zero (or Dirichlet) boundary con-
dition on some part of the boundary as defined below.

Definition 2.18 (Dirichlet boundary condition). Let V' < U be open subsets of X'. Set
FAU V) ={fe L} .(V,m):V open AV relatively compact in U with

loc loc

dist(A, U\V) > 0, 3f* € FO(U) : f* = fm-a.e. on A}.

We say that a function u : V' — R satisfies Dirichlet boundary condition on the boundary
oU NV ifue (U, V). Note that we always have FL (U, V) < Fioe(V).

loc loc

The following lemma shows that harmonicity and Dirichlet boundary condition are
preserved under uniform convergence.

Lemma 2.19. (a) Let U < X be open and let h,, € Fioc(U),n = 1 be a sequence of locally
bounded harmonic functions such that h,, converges to h uniformly on compact subsets
of U. Then h € Fioc(U) and h is harmonic in U.

(b) Let V. < U < X be such that U and V are open subsets of X and let h, €
FL (U, V),n =1 be a sequence of bounded harmonic functions in V such that for

loc

any A < V relatively compact in U with dist(A,U\V) > 0, h, converges to h uni-
formly on A. Then h e F2.(U,V) and is harmonic in V.

loc
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Proof. (a) Let V be relatively compact open subset of U. Since (X, d) is locally compact

there is a compact neighborhood of V, say W such that V < W < U. Since (&, F) is
a regular Dirichlet form, there exists a ¢ € C.(U) such that 0 < ¢ < 1 and qb‘v =1
and gb‘wa = (. Since h; is locally bounded and supp|¢] is compact, by [FOT, Theorem
1.4.2(i1)] we obtain h;¢ € F. Since h, — h uniformly on compact subsets of U, we
have that ¢h,, converges to ¢h in L*(m). We claim that ¢h,,n € N is an & -Cauchy
sequence that converges to ¢h € F. To see this note that

E(d(h; — hy), p(hi — hy)) = fw(hz‘ — h;)?dU (¢, ¢) + E(hi — hy, ¢°(hi — hy))

= Jw(hi — h;)?dl(¢,6) (since h; — h; is harmonic on U)
(2.17)

Since h; converges uniformly on W, we obtain that ¢h; is a £-Cauchy sequence whose
limit is ¢h;. By (2.17) and lim;_,o, ¢h; = h for m-almost everywhere on V', we conclude
that h € Fioc(U).

Let ¢ € C.(U) n F. Let V be a relatively compact open subset containing supp|v].
Then choosing ¢ as above, by strong locality and harmonicity of h; we obtain

E(h, ) = E(ph, ) = lim E(phy, ) = lim E(h;, 1) = 0.
Therefore A is harmonic in U.

Let A = V be open such that A is relatively compact in U with dist(A4, U\V) > 0.
Since X is locally compact, there exists a neighborhood W of A such that W is
compact and satisfies dist(W,U\V) > 0. Therefore, there exists ¢ € C.(X) n F
such that ¢ is [0, 1]-valued, qb‘w = 1 and supp|¢] n (U\V) = . Let h; € FO(U)
be such that h; = f; m-almost everywhere on A for all i € N. By replacing EZ with
(—M;v h;) AM;, where M; = sup 4 |k, we may assume that h; € L°nF°(U). Therefore
¢h; € FO(U) is such that it admits a quasi continuous modification which vanishes
quasi-everywhere on V° for all i € N. Therefore ¢h; € FO(V) for all i € N. Using the
harmonicity of h; in V' and the same argument as used in (2.17), we conclude that the
sequence Gh; € FO(V) is &-Cauchy and converges to ¢h € F°(V). Since ¢h = h for
m-almost every A, we conclude that h € F°(U, V). The assertion that h is harmonic
in V follows from (a). O

Remark 2.20. The argument used in the proof of Lemma 2.19 implies the following
facts.

()

If hy, € Floe(U),n = 1 is a sequence of locally bounded, harmonic functions such that
hy converges to h uniformly on compact subsets of U, then for any ¢ € C.(U) n F,
the sequence ¢h,, € F,n € N is £-Cauchy and converges to ¢h € F.
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(b) Let h, € F2.(U,V),n = 1 be a sequence of bounded harmonic functions in V' satis-
fying the assumption of Lemma 2.19(b) and let h € F2_(U,V) be the limit. Let us
extend hy,, h to by setting h, |, = h‘Uc = ( for all n € N. Then for any ¢ € C.(X)nF

such that supp(¢) < V u U¢, dist(supp(¢), U\V') > 0, we have h,¢ € F for all n e N

and converges in £ -norm to h¢ € F.

Harnack inequality is often used along a chain of balls. We recall the definition of
Harnack chain — see [JK, Section 3]. For a ball B = B(z,r), we use the notation M !B
to denote the ball B(xz, M ~'r).

Definition 2.21 (Harnack chain). Let D & X be a connected open set. For z,y € U, an
M-Harnack chain from z to y in U is a sequence of balls By, Bs, ..., B, each contained
inUsuchthatz e M 'B,,ye M 'B,,,and M 'B,nM 'B;;; # &, fori =1,2,... ,n—1.
The number n of balls in a Harnack chain is called the length of the Harnack chain. For
a domain D write Np(z,y; M) for the length of the shortest M-Harnack chain in D from
x to y.

Let K > 1. We say that (X,d) is K-relatively ball connected if for any ¢ > 0,
there exists N(g) € N such that for any xg € X, z,y € B(xo,r), we have

NB(IO,KT) (ZL’, Y; 6_1) < N(E) (2.18)

Remark 2.22. Suppose that (€, F) satisfies the elliptic Harnack inequality with constants
Cy and 9. If u is a positive continuous harmonic function on a domain D, then

P9 Dy (2) < () < O (). (2.19)
for all x1, xo € D.

The following lemma lists some useful estimates on length of Harnack chains.

Lemma 2.23. (a) ([BCM, Theorem 5.4]) Let (X,d,m,E, F) be a MMD space satisfy-
ing the elliptic Harnack inequality and such that (X, d) satisfies the metric doubling
property. Then there exists K > 1 such that (X,d) is K -relatively ball connected.

(b) Let (X,d) be a locally compact, separable space that satisfies the metric doubling prop-
erty. Let U & X be a (cy, Cy)-uniform domain in (X, d). Then for each M > 1 there
exists C' € (0,00), depending only on cy, Cy and M, such that for all x,y € U

d(z, y)
min(éU(x), (SU

Ny(z,y; M) < Clog ( ) + 1) + C. (2.20)

Proof. The conclusion in (a) is contained in [BCM, Theorem 5.4].

Let v be (¢y, Cy)-uniform curve between x,y € U. Without loss of generality, we may
assume dy(x) < oy (y). Since

du(z) = max (cy min(d(z, 2),d(y, 2)), ou () — d(z, 2), 6u(y) — d(y, z)) for any z € 7,
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we have
5U(Z) = CU5U(.T})/2. (221)

If d(x,y) < 46y(x), we choose a maximal M~'cydy(z)/2 subset of 7. Observing that
v < B(z,2Cyd(x,y)) < B(x,8Cydy(z)) and using the metric doubling property we obtain
the desired upper bound.

For i € N, choose z; € v such that d(x,2;) = 27%d(x,y) and such that z;;; lies on the
subcurve from x to z;. Note that

d(z;, zie1) < 27 d(z,y), Su(z) = cp27'd(x,y) for all i > 1.
First we show that
Ny(ziyziz1; M) <1 foralli > 1.

To see this, we choose a maximal M~'c}27"2d(x,y) subset N; of a (cy, Cpy)-uniform
curve 7; from 2; to z;,;. Since the balls {B(n, M~'c¢?27"2d(x,y)) : n € N;} cover v
and diam(y;) < Cy2~"!d(z,y), and are contained in U by (2.21), the metric doubling
property [Hei, Exercise 10.17] implies that

NU(Zi,Z/L'+1; M) < #Nz <1 for all 1 > 1. (222)

Let k € N be the smallest number such that z,,, € B(x, M '§y(x)), so that k =
1 + log (d(x’y) + 1). By joining M-Harnack chains of length Ny (z;, zio1; M) from z; to

ou ()
241 successively and using the ball B(x, M1 (x)), we obtain a M-Harnack chain from
x to z; they yields the estimate

k

d

NU(ZL‘,Zl;M) < 1+ ZNU(Z,',Zi+1;M) < log < 5(5'(’;/)) + 1) + 1. (223)
i=1

Similarly for i € N, choose w; € v such that d(y,w;) = 27%d(z,y) and such that w;,,
lies on the subcurve from w; to y. Similar to (2.23), we obtain

k

d

Ny (y, wi; M) < 1+ ) Ny(wi, wig; M) < log ( 5(5”(’5) + 1) + 1. (2.24)
=1

Since 0y (z1) A du(wy) = cpd(x,y)/2 and d(z;,wy) < 2d(x,y), by the same argument as
(2.22), we have

By (2.23), (2.24) and (2.25), we conclude (2.20). O
We record a few more consequences of Harnack chaining.

Lemma 2.24. Let (X,d,m,E,F) be a MMD space satisfying the elliptic Harnack in-
equality and let U < X be a uniform domain. There exist Ag, A1,C1 € (1,00) and
v € (0,00) such that for any £ € oU,0 < r < R < diam(U,d/)/A; and for any function

19



h:Un B(§, AoR) — (0,90) non-negative, continuous and harmonic on U n B(§, AgR)
then we have

R

gl
ol (%)Vh(é}) < h(&gr) < O <?> h(&.), where &g, & are as given in Lemma 2.0.

(2.26)

Furthermore if £g, £ are two points that satisfy the conclusion of Lemma 2.6, that is

cyr

d(§,€r) = d(§,€R) = R,  du(&r) A ou(&R) > 0

then
Cy'h(ER) < h(Er) < Cih(ER). (2.27)

Proof. Let 6 € (0,1) denote the constant in EHI. By Lemma 2.23(b), for any ¢ € oU,0 <
r < R, we have Ny(&,,&p;07 1) < C, where C; only depends on ¢ and the constants
associated to the uniformity of U. By Lemma 2.6 and the proof of Lemma 2.23(b), there

exist Ag, A; € (1,00) depending only on § and the constants associated to the uniformity
of U such that for all £ € 0U,0 < r < R < diam(U, d)

NU(fr; &R; 571) < NUmB(g,AOR) (fr,fR; 571) <Gy (1 + log(R/r)) . (2-28>
The estimate (2.26) now follows from (2.28) and Remark 2.22. The estimate (2.27) also
follows from the same argument. O]

2.6 Trace Dirichlet form
Given an MMD space (X,d,m,E, F) and A < X, we define its 1-capacity as
Cap,(4) := inf{é’l(f, f) ‘ feF, f>=1m-a.e. on aneighborhood of A}, (2.29)

where £, 1= £ 4+ (-, -)r2(x,m) as defined before.

Definition 2.25 (Smooth measures). Let (X, d,m,&, F) be an MMD space. A Radon
measure g on X, i.e., a Borel measure 1 on X which is finite on any compact subset of X,

is said to be smooth if 1 charges no set of zero capacity (that is, u(A) = 0 for any Borel
subset A of X with Cap,(A) = 0).

For example, the energy measure I'(f, f) of f € F. is smooth by [FOT, Lemma 3.2.4].
An essential feature of a smooth Radon measure g on X is that the p-equivalence class
of each f € F. is canonically determined by considering a quasi-continuous m-version of
f, which exists by [FOT, Theorem 2.1.7] and is unique g.e. (i.e., up to sets of capacity
zero) by [FOT, Lemma 2.1.4]; see [FOT, Section 2.1] and [CF, Sections 1.2, 1.3 and 2.3]
for the definition and basic properties of quasi-continuous functions with respect to a
regular symmetric Dirichlet form. In what follows, we always consider a quasi-continuous
m-version of f e F..
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An increasing sequence {Fy; k > 1} of closed subsets of an MMD space (X, d, m, &, F)
is said to be a nest if | -, Fr, is v/Ei-dense in F, where

Fr, ={f€F|f=0m-ae. on X\F}.

Recall that D < X is quasi-open if there exists a nest {F),} such that D n F,, is an open
subset of F), in the relative topology for each n € N. The complement in X of a quasi-open
set is called quasi-closed. We recall the definition of a quasi-support of a smooth measure
[CF, Definition 3.3.4].

Definition 2.26 (Quasi-support). Let (X, d, m,E, F) be an MMD space and let u be a
smooth Radon measure on X. A set F' < X is said to be the quasi-support of p if it
satisfies:

(a) F is quasi-closed and p(X\F') = 0.
(b) If F' is another set with property (a), then Cap, (F\F) = 0.

The quasi-support of a smooth measure is unique up to q.e. equivalence; that is, if Fj
and F, are two quasi-supports of a smooth Radon measure yu, then Cap, (F1AF;) = 0.

The quasi-support can be described more explicitly in terms of the corresponding
positive continuous additive functional (PCAF) which we recall below. Consider a m-
symmetric Hunt process X = {Q, M, X;,t = 0,P,}, where N is a properly exceptional set
for the corresponding Dirichlet form (£, F) on L?(X', m) and (2, M, P,). For any measure
v on X, we denote by P, the measure P, (A) = §, P,(A) dv(z). Any function f on M is
extended to X; = X u {A} by setting f(A) = 0, where A denotes the cemetery state.
The set X, as a topological space is the one point compactification of X'. Let (M, )o<i<wo
denote the minimum augmented admissible filtration on 2.

A collection of random variables A := {A; : @ — R |s € R}, is called a positive
continuous additive functional (for short, a PCAF), if it satisfies the following conditions:

(i) A.(-) is (M;)-measurable,

(ii) there exist a set A € My, and an exceptional set N' < M for X such that P,(A) =1
for all x € M\N and 6,A < A for all ¢ > 0, where 6; denotes the shift map on Q.

(iii) For any w € A, t — A;(w) is continuous, non-negative with Ag(w) = 0, As(w) =
Acwy(w) for t = ((w), and Ay s(w) = Ay(w) + Ag(w) for any s,t = 0. Here ((:)
denotes the life time of the process.

The sets A and N are referred to as a defining set and exceptional set of the PCAF A,
respectively. If A' can be taken to the empty set, then we say that A, is a PCAF in the
strict sense.

A measure v is called the Revuz measure of the PCAF A, if and only if for any
non-negative Borel functions h and f,

g ([ sonnan) = [ v rmas (2.30)
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where P, denotes the Markov semigroup corresponding to the Hunt process. By [FOT,
Theorem 5.1.4], the Revuz measure v is uniquely determined by A. Conversely, given
a smooth Radon measure p, there exists a PCAF A whose Revuz measure is p [FOT,
Theorem 5.1.4]. Let us consider a PCAF A whose Revuz measure is a smooth Radon
measure ;4 and let N denote the exceptional set of the PCAF A. Define the support of A
as

F:={ze X\N:P,(R=0)=1}, R(w):=inf{t >0: A (w) > 0}. (2.31)

Then F'is nearly Borel measurable, finely closed, quasi closed and is a quasi support of
the smooth measure p [CF, p.175, Theorem 5.2.1(i)]. The right continuous inverse of such
a PCAF A is defined by

inf{s > 0: Ay(w) >t} if limyyer) Ar(w) <t
T(w) 1= .
o0 otherwise.

By [CF, Theorem 5.2.1(ii)], the process

Xi(w) == Xy (W), t =0, ((w) = %igr(n)Ar(w) (2.32)

is a p-symmetric Markov process on the support F' of A as given in (2.31).
We recall the definition of 0-order hitting distribution.

Definition 2.27 (Harmonic measure; hitting distribution). Let F' be nearly Borel mea-
surable and quasi-closed subset of X. Let op := inf{t > 0 : X; € F'} be the first hitting
time of the set F. The hitting distribution Hp is defined as

Hp(z,A) :=P,|X,, € A,op <o, forallzeX.
For any function u € F., we define
Hii(w) 1= Buli(Xo )L oy}, (2.33)

where 7 is a quasi-continuous version of u. Finally, if U < X is an open set, we define the
harmonic measure wY (A) as

T

w! (A) := Hx\p(z, A). (2.34)
We recall some basic properties of the harmonic measure.

Lemma 2.28. Let the MMD space (X,d,m,E, F) and the corresponding diffusion satisfy
Assumption 2.14. Let D be a non-empty open set and let U < X be a uniform domain.

a L’Zfﬂ]{;, Lemma 3.2/) For any x € D, the measure w charges no set of zero CCLpCLCit
y €T y
and 1s supported on 0D.

(b) ([Liel5, Lemma 8.2]) For any bounded Borel function f: 0D — R, the map h: D —
R defined by

h(z) = " Fy) w? (dy)

belongs to Foc(D) and is continuous and E-harmonic in D.
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(c) For any x,y € D, we have w? « wzf).

(d) For any x € U, 0U is a quasi support of Y with respect to Dirichlet form (€', F(U))
on L*(U, m‘U).

Proof. (a,b) That w? is supported on ¢D follows from that property that (X;) has contin-
uous sample paths. The remaining properties are proved in [Liel5, Lemma 3.2]. Although
[Liel5, Lemma 3.2] assumes that D is a relatively compact open subset of X, the proofs
presented there work for an arbitrary open subset.

(c) Let A = 0D be a Borel subset such that w](A) = 0. By (b), the function
ha(z) == §,p La(§wP(dE) = wP(A) on D is continuous, non-negative, £-harmonic in
D and belongs to Fioo(D). Since ha(y) = w)’(A) = 0, by the elliptic Harnack inequal-
ity we conclude that h, is identically zero on D. In particular w?”(A) = 0 and hence
wh «wl.

(d) Let z € U. For y € U, we define the 1-order hitting distribution for the reflected
Dirichlet form (£, F(U)) as

H) (y, B) := ngf [e—"w]lB(X;*;g Wiooy<rt] s oov = inf{t > 0: X[ € oU}

for any Borel set B < dU. Then by (c), we conclude that the first order hitting measure
H};(y,) is absolutely continuous with respect to w? for all y € U. Since m(dU) = 0, by
[FOT, Exercise 4.6.1] we conclude that oU is a quasi support of w¥ for all z € U. O

Definition 2.29 (Time-changed Dirichlet form). Let (X, d, m,E, F) be an MMD space.
If 1 is a smooth Radon measure, it defines a time change of the process whose associated
Dirichlet form is called the trace Dirichlet form and denoted by (E#, F*) (see [FOT,
Section 6.2] and [CF, Section 5.2]). Let p is a smooth measure with quasi support F that
is finely closed and nearly Borel measurable. Let

FH = {f‘F : feFe, f‘F e L*(F,p), and f is quasi-continuous},

where we identify functions that coincide q.e. on F'. By [CF, Theorem 3.3.5], two functions
in F* agree q.e. on F'if and only if they agree p-a.e. We define a quadratic form by setting

EM(u

V| p) = E(Hpu, Hpv) (2.35)

for all quasi-continuous functions u, v € F,

In probabilistic terms, (£#, F*) is a regular Dirichlet form corresponding to the time-
changed process X; defined in (2.32) where the positive continuous additive functional
(Ay)i=0 of (X;) has Revuz measure y; see [FOT, Section 6.2] and [CF, Theorem 5.2.2] for
details.

2.7 Stable-like heat kernel bounds

We recall a generalization of scale function considered in §2.4 from [BCM, Defintion 7.2]
(see also [BM18, Definition 5.4]). Let (X, d) be a metric space.
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Definition 2.30. We say that a function ® : X x (0, 00) — (0, 20) on a metric space (X, d)
is a regular scale function if ®(x,-) : (0,00) — (0,00) is an increasing homeomorphism for
all x € X, and there exist C1, 81, B2 > 0 such that, forall z,y € X', 0 < s < r < diam(X, d)
we have, writing d(z,y) = R,

_ B2 r R v 1\ b1 CI)(ZET) r B/ R v ry\ B2

o) () gt <a(—) () 2.36

"\Rvr s d(y, s) "\Rvr s (2.36)

The definition in [BCM, Defintion 7.2] does not state that ®(z,-) : (0,00) — (0,00) is

a homeomorphism but this condition can be achieved by replacing ® with a comparable
function if necessary as we will see in the proof of Lemma 5.2.

Definition 2.31. Let (X, d) be a metric space with a Radon measure m equipped with
full support. Let ® : X x (0,00) — (0,00) be a regular scale function. Let (£,F) be a
Dirichlet form on L*(X,m).

(a) (Jump kernel bound) We say that the Dirichlet form (£, F) on L?(X, m) satisfies J(®)
if there exist a symmetric function J : (X X X)\Xgiag : (0,00) and C € (1, 0) such
that

¢ < J(z,y) < ¢
m(B(z, d(z,y)))®(z, d(z,y)) 0 m(B(x, d(z, y)))@(x, d(x, )’
for all (z,y) € (X x X)\Xiag, and for all u € F, we have

el = | | (o) = u(w)?Ie,) m(ds) ().

(b) (Exit time bound) We say that the Dirichlet form (£, F) on L*(X,m) satisfies the
exit time lower bound E(®)., if there exist C; A € (1,00) for all x € X,0 < r <
diam(X, d)/A the corresponding Hunt process satisfies

E.[T8@n] = C™o(z,7). (2.37)

We denote the corresponding upper bound and the two-sided bound by E(®)< and
E(®) respectively.

(c) (Stable-like heat kernel bound) We say that the Dirichlet form (£, F) on L*(X,m)
satisfies the stable-like heat kernel bound SHK(®) if there exists a heat kernel p;(z, y)
of the semigroup (F;) associated with (€, F), and C4, A; € (1,00) such that

1 t
pa:0) < (G T G A e D)

-1 1 A ¢
ply) = G <m(B(a:,<1>—1(x,t))) m(B(%d(x7y)>>‘1’<$ad(%y))>’

for all z,y € X and for all 0 < t < A7'®(z,diam(X)), where we use the convention
that @(z,diam(X)) = oo if diam(X) = o0 and ® !(z,-) denotes the inverse of the
homeomorphism ®(z, ) : (0,00) — (0, 00).
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The following result plays a key role in our proof of heat kernel estimates for the bound-
ary trace process. It characterizes stable-like heat kernel estimates using a combination
of the jump kernel bound and exit time lower bound stated above. If X is unbounded
then this characterization is essentially contained in [CKW]. It is a slight modification of
the equivalence between (1) and (2) in [CKW, Theorem 1.15]. If X is bounded, we argue
using results in [GHH23]. In Theorem 2.32, we assume that the Dirichlet form (£, F) on
L*(X,m) is of pure jump type. That is, there exist a Radon measure on (X x X)\Xiiag
such that

~ ~

E(f.g) = j (@) - Fu) @) — 5(v)) J (e, dy),

(XX X\ Xeding
for all f,g e F, where f, g denote quasi-continuous versions of f, g respectively.

Theorem 2.32. Let (X,d) be a uniformly perfect metric space and let m be a doubling
measure on (X,d). Let & : X x (0,00) — (0,00) be a regular scale function. Let (€,F)
be a Dirichlet form on L*(X,m) of pure jump type. Then the following properties of the
Dirichlet form (€, F) on L*(X,m) on the metric space (X,d) are equivalent:

(1) Stable-like heat kernel bound SHK(P).
(2) Jump kernel bound J(®) and exit time lower bound E(P)-.

Furthermore, one the above conditions implies that the strongly continuous semigroup
corresponding to the Dirichlet form (€, F) on L*(X,m) admits a continuous heat kernel.

Proof. We note that uniform perfectness implies the reverse volume doubling property by
Lemma 2.4. By a quasisymmetric change of metric as given in [BM18, Proposition 5.2]
and [BM18, (5.7), Proof of Lemma 5.7], it suffices to consider the case ®(z,r) = r? for
all z € X,r > 0, where 8 > 0 (see also [Kigl2] where this kind of metric change first
appeared). Therefore we will assume without loss of generality that ®(z,r) = r° for all
re X,r >0, for some 5 > 0.

The result (1) implies (2) follows from the same argument as the proof of (1) implies
(2) in [CKW, Theorem 1.15] regardless of whether or not X’ is bounded.

For the converse implication (2) implies (1), the proof splits into two cases depending
on whether or not X is bounded.
Case 1: X is unbounded. By [CKW, Theorem 1.15], it suffices to show the exit time
upper bound E(®).. The exit time upper bound E(®)< follows from the Faber-Krahn

=

inequality shown in [CKW, §4.1] along with [CKW, Lemma 4.14].
Case 2: X is bounded. The exit time upper bound E(®). stated in the unbounded
case also holds in the bounded case with almost the same proof. Since the proof of the
Faber-Krahn inequality relies on the reverse volume doubling estimate, the statement
of the Faber-Krahn inequality has to be modified so that it holds of all balls of radii
0 < r < cdiam(&X'), where ¢ > 0 as given in [GHH23, Definition 2.4].

Once the on-diagonal upper bound in the conclusion of [CKW, Theorem 4.25] is ob-
tained, then the two-sided bounds on Jump kernel J(®) and exit time E(®) implies the
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stable-like heat kernel bound SHK(®) by arguments in [CIKKW, Chapter 5| with minor
modifications to take into account that X is bounded. Therefore it is enough to prove
the on-diagonal upper bound.

In order to show the on-diagonal bound, by [GHH23, Theorems 2.10 and 2.12], it
suffices to show the condition (Geap) in [GHH23, Definition 2.3]. The condition (Gcap)
in turn follows from [GHH23+-, Proposition 13.4 and Lemma 13.5] or [GHH23+, Theorem
14.1] along with the two-sided exit time bound E(®).

The assertion on the continuity of heat kernel follows from [CKW, Lemma 5.6]. [

Remark 2.33. If X' is unbounded, the on-diagonal upper bound in the proof of (2) implies
(1) above follows from [CKW, Theorem 4.25]. However, the proof there doesn’t directly
generalize to the case when X is bounded. This is because [CKW, Proof of Theorem
4.25] relies on [CKW, Proposition 4.23] which in turn uses [CKW, Proposition 4.18] on
a sequence of radii going to infinity. However, the generalization of [CKW, Proposition
4.18] which relies on Faber-Krahn inequality requires the radii to satisfy r < cdiam(X)
for some ¢ > 0, which seems insufficient for the argument in [CK'W, Proof of Proposition
4.23].

3 Green function, Martin kernel, and Naim kernel

3.1 Properties of Green function

We recall the notion of transient Dirichlet forms. Let (X', d,m,&, F) be an MMD space
and let (7;);0 be the strongly continuous semigroup corresponding to the Dirichlet form
(€, F) on L*(X,m). The semigroup extends (T});>o uniquely to a contraction operator
on L'(X,m) from LY (X, m) n L*(X,m) [FOT, p. 33]. For any non-negative function in
LY(X,m), we define Green operator as

N
Gf:= lim T f ds. (3.1)

N—w 0

We say that the Dirichlet space (€, F) on L*(X,m) is transient if there exists a bounded
m-integrable function strictly positive m-a.e. on X such that . fulgdm < \/E(u,u) for
all ue F.

The elliptic Harnack inequality implies the existence of Green function as shown in
[BCM, Theorem 4.4] which we recall below.

Proposition 3.1. Let (X,d,m,E,F) be an MMD space satisfying the elliptic Harnack
inequality. Let (X;)i=0 be the associated diffusion process. Let D be a non-empty open
subset of X such that the associated Dirichlet form (EP, F°(D)) on L*(D;m|p) of the
part process XP is transient. There exists a non-negative B(D x D)-measurable function
gp(x,y) on D x D and a Borel properly exceptional set N of X such that

(i) (Symmetry) gp(x,y) = gp(y,x) for all (x,y) € D x D;
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(it) (Continuity) gp(x,y) is |0, 00)-valued and jointly continuous in (x,y) € D x D\Dgiag;

(111) (Occupation density formula) For any f € BL(D);

E, LTD f(Xs)ds = L) gp(x,y)fly)ym(dy) for every x € D\N; (3.2)

(i) (Harmonicity) For any fized y € D, the function x — gp(x,y) is in Foc(D\{y}) and
harmonic in D\{y}. For any open subset U of D with y ¢ U, E, Hg(Xf_?J, y)|] <o
and gp(z,y) = E.[g(XE ,y)] for E-q.e. x € D, where we adopt the convention that
gp(x,0) = gp(0,x) =0 for allz € D.

(v) (Maximum principles) If xo € V € D, then

_inf gp(xo,-) = inf gp (20, -), sup gp (o, -) = sup gp(o, -). (3.3)
V\{zo} ov D\V oV

We call gp(z,y) the Green function of (€, F) in D.

Proof. All parts except (iv) follows from [BCM, Theorem 4.4].
The claims that  — gp(x,y) belongs to Fio.(D\{y}) and is harmonic in D\{y} follows

from [BCM, Remark 2.7(ii), Proposition 2.9(iii), Theorem 4.4]. The remaining claims in
(iv) are contained in [BCM, Theorem 4.4]. O

Definition 3.2. Let (X, d, m, &, F) be an MMD space and D be a non-empty open subset
of X satisfying the assumption of Proposition 3.1. For a non-negative Borel measure
function f: D — [0, 00), we define

Gpf(z) = {E)D go(z,y) m(dy) i z Z gi

By [FOT, Theorem 4.2.6], for any non-negative measurable function f : U — [0, 0)
with SD fGpfdm < oo, then Gpf is a quasi-continuous version of the Green operator
defined in (3.1) for the Dirichlet form corresponding to the part process (€7, F°(D)) and
GDf € (FO(D))e

The existence of Green function is closely related to the following absolute continuity

condition (AC) whose definition we recall below [CI, Definition A.2.16].

Definition 3.3. Let X be a m-symmetric Markov process on X and let {P; : t = 0} be
the corresponding transition semigroup. We say that X satisfies the absolute continuity
(AC) any t > 0 the measure P;(z,-) is absolutely continuous with respect to m.

We obtain that the exceptional sets in Proposition 3.1 can be taken to be the empty
set if we the diffusion process in Proposition 2.13.

Lemma 3.4. Let (X,d,m,E,F) be an MMD space and X be the corresponding diffusion
process that satisfies Assumption 2.14.
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(a) For any open set D < X then the corresponding part process X defined from every
starting point on D satisfies the strong Feller property and has a continuous heat
kernel.

(b) Assume that the part Dirichlet form (EP, F°(D)) on D is transient. Let g%, : Dx D —
[0, 0], be defined as

Q0

gp(x,y) = J p.(x,y)dt, for all z,y € D, (3.4)

0

where pP(-,-) is the continuous heat kernel of X as given in (a). Then g%, is con-
tinuous on (D x D)\Dgiag. We have the occupation density formula

D
B, | f(X)ds= | ghlea)f@)mdy) foraloeD.feBUD).  (35)
0 D
If gp(-,-) denote the Green function in Proposition 3.1, then

9@, y) = gpl(w,y)  for all (x,y) € (D x D)\Dyiag- (3.6)

For any open subset U of D with y ¢ U, E, Hg(Xf_?J,y)H < o and gp(x,y) =
E.[g(XE ,y)] for all x € D, where we adopt the convention that gp(x,0) = gp(0,x) =
0 for all x € D. Furthermore for each x € D, the function g} (x,-) is X7 -excessive.

Proof. (a) For the process X whose transition function is both Feller and strong Feller,
[Chu, p. 69, Section 1, Proof of Theorem| shows that the part process X has the
semigroup strong Feller property (as a process on D).

Since X satisfies (AC) so does XP. Let PP denote the transition semigroup of
XD which satisfies (AC) and let QP denote the transition semigroup defined by the
continuous heat kernel of associated Dirichlet form (€7, F°(D)) on L?(D;m|p) which
exists due to [BGK12, Theorem 3.1].

Let f be a bounded continuous function on D. Then for any s,¢ > 0 and any x € D,
by PPf = QP f a.e. and (AC) of P, we obtain
PP(PPf)(x) = (PR.f)(x) = PP(P f)(z) = PP(Q7 f)(),
and letting s | 0 yields
(PP f)(@) = (@7 ()

by dominated convergence theorem, since (PP f)(y) — f(y) as s | 0 for any y € D by
the continuity of f, right continuity of sample paths, and P”(QP f)(z) — (QF f)(x)
as s | 0 by the continuity of QP f. The continuity of QP f can be easily verified using
HKE(WV). Thus

PP (x,dy) = QP (x,dy) forallt>0,2z€ D. (3.7)
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(b) The occupation density formula (3.5) follows from Fubini’s theorem as

- fo”’ J(Xds = f:’ fp Tp(e,9)f () midy) di = L FW)gp(@.y)f(y) m(dy).

By the transience of X ¥, we have

gh(z,y) < oo, for m x m-a.e. (z,y). (3.8)

By the heat kernel estimate HKE(W), the function

e | Py di

converges uniformly on compact subsets of (D x D)\Dgiae as 0 | 0. Therefore it
suffices to show that for each ¢ > 0, (zo,y0) € (D X D)\Déiag, the function (z,y) —
§5" pP (x,y) dt is continuous at (zg,yo). In order to establish to continuity of (z,y) —
§pP(z,y)dt is continuous at (zo,yo) € (D x D)\Ddiag,d > 0, by the parabolic
Harnack inequality [BGIK 12, Theorem 3.1], we can choose disjoint open neighborhoods
By and B; of xp, vy and constants C, Cy > 0 such that

D i D D roor
sup  py(z,y) <Cy  inf pro(zy) < Cipooa, (2, y') forallt =6,
(z,y)eB1x B2 ! ( ) (z,y)€B1x B2 Cy lt( ) G, 1t( )

where (2',y') € By x By is chosen using (3.8) such that ¢}, (2, y’) < c0. Combining the
above estimate with the transience of X, and the dominated convergence theorem,
we conclude that (z,y) — §; pP(z,y) dt is continuous at (o, o).

The equality (3.6) follows from the continuity of ¢}, gp along with (3.5) and (3.2).
The claim gp(z,y) = E.[g(X},y)] for all € D follows Proposition 3.1(iv), the
continuity of g%, gp along with the continuity in Lemma 2.28(b). The excessiveness
of ¢ (z,-) follows easily from the definition. O

Due to Lemma 3.4, if the MMD space (X, d, m, &, F) satisfies Assumption 2.14 and
D is a non-empty open subset of X such that the associated Dirichlet form (€7, F°(D))
on L*(D;m|p) of the part process X is transient, we adopt the convention to redefine
the gp(-,-) from Proposition 3.1 to be equal to ¢5(+,-) from Lemma 3.4. In particular,
gp(z,-) is XP-excessive for all x € D.

In the next lemma, we show that the Green function has Dirichlet boundary condition
in the sense of Definition 2.18.

Lemma 3.5 (Dirichlet boundary condition of Green function). Let (X,d,m,E,F) be
an MMD space and D be a non-empty open subset of X satisfying the assumption of
Proposition 3.1. For any fived yo € D, the function x — gp(z,y) is in F2.(D, D\{yo}),
and is harmonic in D\ {yo}.
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Proof. The following argument is a variant of [BM 19, Proof of Lemma 4.10].

Then by [FOT, Theorems 1.5.4(i) and 4.2.6], there exists a (0, c0)-valued integrable
function fo = fpo on D such that §, foGpfodm < oo and Gpfy € (F*(D)).. Let us
adopt the convention that fj is extended to the whole space by setting fy := 0 on D° and
similarly for Gp f for any non-negative Borel function f on D.)

Let yo € D, and let K be any compact subset of X such that yy ¢ K. Choose ¢ so
that ¢ € F n C.(X), ¢ is [0, 1]-valued, ¢ = 1 on K, and yo ¢ supp|[¢]. For each r > 0
with B(yo,2r) € D and r < dist(yo, supp[¢]), consider the function

-1
gr = ¢min{l/r,Gp(f.)}, where f, := (JB( )fodm) 1B(yo.r) o (3.9)
Yo,™

Then Gp(f,) is an element of (F°(D)). quasi-continuous on D by [FOT, Corollary
1.5.1 and Theorem 4.2.6], and hence is quasi-continuous on X by [CF, Theorem 3.4.9],
[FOT, Theorem 4.4.3] and our convention that g, = 0 on D¢. Since (F*(D)).nL*(X,m) =
FO(D), it follows that g, € FO(D). Also, Gp(f,) and g, are continuous on D\B(yo,r) by
the continuity of Green’s function gp on D and dominated convergence. Note that for any
ro > 0 such that B(yo,2ro) < D and ry < dist(yo, supp[¢]), the function (z,y) — gp(z,y)
stays bounded for x € D\B(yq, 2ro) and y € B(yo, ro), by the latter of maximum principles
(3.3) and the joint continuity of gp. Therefore, there exists § > 0 such that B(yo,20) < D

and ¢ < dist(yo, supp[¢]), and for any r < §, we have

gr 1= ¢omin{l/r,Gp(f.)} = ¢Gp(f,) € L™(X) 1 (E"(D))e.

Therefore for all 0 < r,s < §, by [FOT, Corollary 1.5.1] we have ¢?(g, — gs) € (E%(D)).
and hence by [FOT, (1.5.9)]

E(gr — 9s» ¢2(9r —gs) = JX(fT - f8)¢2(gr — gs)dm = 0. (3.10)

Now, as r — 0, g, converges pointwise on X to ¢gp(-,yo) (and uniformly on any
compact subset of D\{yo}), by the (joint) continuity of gp, and it thus remains to prove
that this convergence takes place also in (F,&;). The convergence in L?(X',m) is clear by
dominated convergence because these functions are uniformly bounded and supported on
supp[¢]. These functions form an £-Cauchy family as r — 0 since we can apply dominated
convergence to the right-hand side of the equality

S(gr —9Gs, 9r — gs) = J [¢](GD(fr) - GD(fs))ZdF(d))

The above equality follows from the chain rule, (3.10) and the same calculation as (2.17).
O

The following Dynkin-Hunt type formula is a basic ingredient in comparing the Green
function on two domains.

30



Lemma 3.6 (Dyknin-Hunt formula). Let (X,d, m,E, F) be an MMD space satisfying the
elliptic Harnack inequality. Let Dy < Dy be open subsets such that the associated Dirichlet
form (EP2 FO(Dy)) on L*(Da;m Do) of the part process XP? is transient. Then there is
a properly exception set Np, for XP? such that for all z € D\\Np,,y € Dy,

gD, (,I’, y) = Jdp, (l’, y) + Ez []I{XTD1 €D>}9Dy (XTD1 ) y)] (311)

In addition, if the MMD space (X,d,m,E,F) and the associated diffusion X satisfies
Assumption 2.14, then (3.11) holds for all (z,y) € (D1 x D1)\(D1)diag-

Proof. By the occupation density formula (Proposition 3.1(iii)) and [BCM, Lemma 4.5],
there exists a properly exceptional set Np, for X2 such that for all f € B, (D,), and for
all x € D;\Np, we have

EwJ:Dif(x;)ds::J;_ngx,y)f@nyn(dy% fori—1,2 (3.12)

Therefore for all f € B (Ds),z € D;\Np,, we have
| amute2) ) mia
Dy

(3.12) D2 D1 "Dy
:mf mm@:&f mm@+&f F(X.)ds
0 0 D,

(3.12) f gp, (z, 2) f(z) m(dz) + E, l]l{XTfh EDZ}EXTDI (JTDZ f(Xs) ds)]
Dy 0
v f gp, (. 2) f(2) m(dz) + j Ee | 1x,, e21902(Xrp,»2) | S(2)mld2), (3.13)

where we use strong Markov property and Fubini’s theorem in lines 3 and 4 above respec-
tively.

For y € Dy, set f(-) := (m(B(y,7))) ' Lpgn(-) and letting r | 0 in (3.13), we obtain
(3.11). This is justified using the dominated convergence theorem, the joint continuity
and maximum principles for the Green function (Proposition 3.1(ii),(v)).

If we assume that (X, d, m, &, F) satisfies the heat kernel estimate HKE(¥) and the
corresponding diffusion process is defined at every starting point as given in Proposition
2.13, then we can use (3.5) instead of (3.12) to obtain the above conclusion. O

For a MMD space (X, d, m, &, F) satisfying the elliptic Harnack inequality and for a
non-empty open subset D < X such that the associated Dirichlet form (€2, F°(D)) on
L?*(D;m|p) of the part process XP is transient, we define (by a slight abuse of notation)

gp(x,r) = gr(lf )gD(x,y) provided ép(z) <r, S(z,r):={ye X :d(x,y)=r},
yeS(x,r
(3.14)
Capp(A) = inf{E(f, f) : f € (F*(D)). such that f =1 E-qe. on A}, AED, (3.15)
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where (F°(D)). is as given in (2.11).

It is known that there is a unique function called the equilibrium potential esp €
(F°(D)). that attains the infimum above. We describe the corresponding equilibrium
measures. The equality (3.18) in following lemma was claimed without a proof in [Fit,
(2.7)]. Since it plays an important role in our work we provide a detailed proof.

Lemma 3.7. Let (X,d,m,E,F) be a MMD space and let D < X be an open set such
that the Dirichlet form (EP, F°(D)) of the part process on D is transient. Let A € D be
a relatively compact open subset of D.

(a) There ezists a unique ea,p € (F°(D))e and a Radon measure X} p, such that

Capp(A) = E(eap,eap), €ap=1E-ge. on A, E(u,eap)= Jﬁd)\hD (3.16)

for all we (F(D)).. Furthermore N} , is supported on 0A with

>‘114,D(X) = )‘il,D(ﬁA) = Capp(4). (3.17)

(b) Furthermore if D is compact, there exists a measure )\?4’,3 such that

Eean) = |

Ud\y p — J Ud\) p, (3.18)
0A

0B

for any u € F n L*(X,m), where @ is a quasicontinuous version of u and N}y p, is the
measure in part (a). Furthermore

Mip(0A) = X)) ,(0B) = Cap(A, B). (3.19)

Proof. (a) Note that ((F°(D)).,&) is a Hilbert space by [FOT, Theorem 1.5.3]. Since
A € D, the regularity of (£, F) along with [CF, Theorem 2.3.4] implies that the set

Lap:={fe(F(D).:f>1Eqe onA}

is non-empty, closed, convex subset of the Hilbert space ((F°(D)).,&). Hence there
exists a unique element €4 p € L4 p such that Cappy(A) = E(eap,eap). Since
IneapeLapand E(Laeap,1reap) <E(eap,eap), weconclude €4 p =1A€4p
q.e. and hence €4 p = 1 q.e. on A.

Let v € (F%(D)). such that v = 0 m-a.e. Then for any ¢t > 0, e4ap +tv € L4 p and
hence E(ea p+tv,eap+tv) = E(eap,eap) or equivalently E(ea p,v)+ (t/2)E(v,v) =
0. Letting ¢ | 0, we conclude

E(eap,v) =0, forallve (F°(D)). such that v = 0 m-a.e.

The existence of a Radon measure A} , on D satisfying the last equality in (3.16) now
follows from by applying [FOT, Theorem 2.2.5 and Lemma 2.2.10] to the Dirichlet
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form (EP, FO(D)). We also consider it as a Radon measure on X by setting \}; p(-) :=
Ay.p(- 0 D). This concludes the proof of all claims in (3.16).

By the strong locality and €4 p = 1 £-q.e. on A, we conclude that e4 p is harmonic in
A. By the energy minimizing property of e4 p, we have that e4 p is harmonic in D\A.
Therefore any u € F n (C.(A) U C.(D\A)), we have £(u, esp) = 0 which implies that
My p(A U (D\A)) = 0. This implies A} }, is supported on dA. The proof of (3.17) is
contained in [BCM, Proof of Proposition 5.21].

Let ¢ € F n C.(X),supp[o] n A = &, ¢ < 0. Choose 0 < ¢ < 1 and 1/1‘ =1,
where V' is a neighborhood of supp[¢]. Since e4 pt is E-harmonic on (DC\A) V
and €4 ptY — (€apy + @)+ = 0 q.e. on ((DN\A) N V)¢, we have E(esp,eapt)) =
E(eapt, (€apy + ¢);) and therefore
E((eapt + @)+ —eapV,(eapt + @)y — eapV)

= E((eap¥ + @)+, (eapV + ¢)1) — 2E((eapt + @)1, eapt) + E(eapt), eapV)

= E((eapt + @), (eapV + ¢)1) —E(eap, eapV)
E(eapV + ¢,eap + @) —E(eapy,eapy) (by Markov property).

= E(¢, ¢) + 2E(eapy, ) = E(¢, ¢) + 2E(eap,d). (by strong locality)
By replacing ¢ with t¢ and letting ¢ | 0, we obtain

Eleap,¢) =0, forall p <0,¢eC.(X)n F such that supp[¢] = A°. (3.20)

It follows that there exists a Radon measure X , on A° such that for all ¢ € FnCo(X)
with supp[¢] < A, we have

E(p,eap) = — . ¢ dX)) p. (3.21)

Furthermore by strong locality of (€, F) and £-harmonicity of e4 p on D\ A and the
compactness of 0D, we have

A p(A%) =X p(0D) < . (3.22)

We consider A j is a finite Borel measure on X' by setting A ,(-) := X)) p(- 0 A°).

As before, we can consider A ;, as a Borel measure on X" such that

Ayp(X) =Ny p(0A) < 0. (3.23)

Now let ¢ € F nC.(X) and let ¢ € F n C.(X) satisty w‘U = 1 for some neighborhood
Uof A 0<% <1on X and supp|y)]| € B. Then

g(¢7 6A,D) = g(¢ - QW% €A D) + 5(@[’7 €A D)
f (6— o) NS +f b AN, p

- — ¢dAAD+J ¢d\y p  (by (3.21),(3.22), (3.17),(3.23)). (3.24)
0A
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Also by [FOT, Theorem 4.4.3-(i),(ii) and Lemma 2.2.3], X} 5, A} p charge no set
of zero capacity. Finally, for any v € F, n L®(X,m), by [FOT, Theorem 2.1.7
and Corollary 1.6.3], there exists {u,}nen © F N Co(X) with supy fu, () < [Jul| 1,
Up — U q.e. on X and lim,, e E(u — uy, u — u,) = 0. This along with (3.24) applied
to the sequence {un}, A% (0B) < o0, A} p(0A) < o0 and the dominated convergence
theorem implies the desired equality (3.18). ]

We collect various useful estimates on the Green function from [BCM].

Lemma 3.8. Let (X,d,m,E,F) be a MMD space that satisfies the elliptic Harnack in-
equality. Let D < X be a non-empty open subset such that the Dirichlet form (EP, F°(D))
on L*(D;m|p) corresponding to the part process on D is transient.

(a) If D # X, there exist C1, Ag € (1,0) such that for all x € D,0 < R < dp(x)/Ay we

have

sup gD('r7y) < Cl inf gD(xa y)7 gD(xa 7”) < CapD(B(xv T))_l < ClgD(x’T)'
yeS(z,r) yeS(z,r)
(3.25)

Furthermore, there exist 6,Cy € (0,1) such that

R\’
gp(x, R) < gp(x,r) < Cy (?) gp(x,R), forallze D,0<r < R<dp(x)/A;.
(3.26)
b) There exist Ay, Cy e (1,00) such that for allye D,0 < R < Ay 'dp(y), we have
0

_190(7,y) gp(z,y) TP
" (s R) (0 ) for E-q.e. x € D\B(y, R). (3.27)

If (X,d,m,E, F) and the corresponding diffusion satisfy Assumption 2.14, then (3.27)

holds for all x € D\B(y, R).

Proof. (a) The estimate (3.25) follows from [BCM, Lemma 5.10 and Proposition 5.7]
and (3.26) follows from [BCM, Corollary 5.15] and maximum principle (Proposition
3.1(v)).

(b) By Lemma 2.23(a), we assume that (X, d) is K-relatively ball connected for some
K € (1,00). Let A; € (1,00) be as given in (a) By [BCM, Lemma 5.10] and (a), there
exist A; € (K,00),Cy € (1,00) such that

gp(y, R) < Capp(B(y, R))™ < Cugp(y. R).  9p(y: R) < gp(y.2) < Crgp(y, R)
(3.28)
for all y € D,0 < R < A '9p(y). Let y € D,0 < R < A;'p(y), v denote the
equilibrium measure on 0B(y, R) corresponding to Capp(B(y, R)).
Case 1, d(x,y) > KR: In this case, gp(x,-) is harmonic on B(y,d(z,y)) and hence
by (2.19) and (2.18), there exists Cy > 1 such that

C'Q_lgD(x, y) < gp(x,z) < Cagp(x,y) for all z € dB(y, R). (3.29)
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Therefore for q.e. x € D\B(y, KR),0 < R < A;'0p(y) and by [FOT, Theorem 4.3.3]

(3.29)
Pologgm <o) = | go(e.2)oldn) 'S Cagoli,y) Capp(B(y, B)
0B(y,R)
(.29, gp(z,y)
< Cy——%, 3.30
“9p(y, B =0
(3:29)
Polosgm <o) = | ol (dn) 2 €5 gn(w.0) Copp(Bly. B)
0B(y,R)
(3.28)
2 o1 90 Y). (3.31)

gD(ya R)

Case 2, R < d(z,y) < KR: For q.e. x € D such that R < d(x,y) < KR with
0 < R < A7'6p(y) and by [FOT, Theorem 4.3.3]

@30 o gp(x,y)
Pologgm < opel = Pulos.riery <ope] = Gy G 9n(y, R/(2K))

320) o 9p(z,Y)
> o0 ey (oK) I T 3.32
2 G al2K) gp(y, R) (3.32)
3260, ogp(z,y)
P loa—m <ope] <1 < KO 3.33
577 < 70 " gp(y.R) (3:3)

By (3.30), (3.31), (3.32), and (3.33), we obtain (3.27).

If if the MMD space (X, d, m,E, F) and the associated diffusion X satisfies Assump-
tion 2.14, then by Lemma 2.28(b) we obtain (3.27) for all x € D\B(y, R). O

3.2 Boundary Harnack principle

In this work, we need to understand the behavior of Green function near the boundary of
a uniform domain. The following scale-invariant boundary Harnack principle is useful to
describe the behavior of Green function near the boundary of a uniform domain. Boundary
Harnack principle has been obtained in increasing generality over a long period of time
[Kem, Anc78, Dah, Wu, JK, Aik01, Liel5, BM18].

Definition 3.9. Let (X, d, m, &, F) be an MMD space and let U < X be a proper domain.
Then we say that U satisfies the boundary Harnack principle there exist Ay, A1, Cy € (1, 00)
such that for all £ € U, for all 0 < r < diam(U,d)/A; and any two non-negative
functions w,v that are harmonic on U n B(§, Agr) with Dirichlet boundary condition
along oU n B(&, Agr), we have

(z) u(z)

< () essinf )
2eUnB(¢r) v(x)

I~

ess sup
zeUnB(E,r) U(@

A standard consequence of the boundary Harnack principle is the following oscilla-
tion lemma and follows from [AikO1, Proof of Theorem 2|. It is an analogue of Moser’s
oscillation lemma for the elliptic Harnack inequality [Mos, §5] and has a similar proof.
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Lemma 3.10. Let (X,d,m,E,F) be an MMD space and let U < X be a proper domain
that satisfies the boundary Harnack principle. Then there exist Ag, A1, Co € (1,0),7 > 0
such that for all £ € U, for all 0 < r < R < diam(U,d)/A; and any two non-negative
functions u, v that are harmonic on U B(€, AgR) with Dirichlet boundary condition along

oU n B(&, AgR), we have

u

r\7
—) OSCUnB({,R) ;

U
OSCU A B(¢,r) > < Gy <R

Another important consequence of the boundary Harnack principle is the Carleson
estimate. The proof is a variant of [Aik08, Proof of Theorem 2| where we use estimates
on Green function from [BM18, BCM] instead of known estimates of the Euclidean space.
The basic idea is that Carleson estimate for one harmonic function with Dirichlet bound-
ary condition (say, the Green function at a suitably chosen point) along with boundary
Harnack principle implies Carleson estimate in general. The Carleson estimate for Green
function can be obtained using the maximum principle and comparison estimates for the
Green function obtained in [BM18, BCM]. It follows from a modification of the argument
in [GyS, Proof of (4.28)].

Proposition 3.11 (Carleson estimate). Let (X,d,m,E,F) be an MMD space that sat-
isfies the elliptic Harnack inequality. Let U < X be a uniform domain that satisfies the
boundary Harnack principle. Then there exist Ao, A1, Co € (1,00) such that for all £ € U,
for all 0 <r < R < diam(U, d)/A; and any non-negative function u that is harmonic and
continuous on U n B(&, AgR) with Dirichlet boundary condition along oU n B(, AgR),
we have

sup  u(x) < Cu(&pp).
2eB(£,R)

Proof. Let u be a harmonic function as given in the statement of the proposition. Let us
choose Ay, A1, C as the constants in Definition 3.9.

First, we note that there exists Cy, A3 € (1,00), Ay > A; such that

SUDP  GunB(eAsr)(§2a0r: ) < Cogunbieasr)(§2a0r: ERy2), (3.34)
UnB(E,R)

for all ¢ € 0U,0 < R < A,'diam(U,d). This follows from the chaining using elliptic
Harnack inequality by a similar argument as given in the proof of Lemma 2.23(b), the

maximum principle (Proposition 3.1) and comparison of Green functions in [BCM, Corol-
lary 5.8].

Then by the boundary Harnack principle (Definition 3.9), we have
u(:) <C u(ry2)

~ 1 )
gUﬁB(.ﬁ,A3T) (£2AOR7 gR/Z)

sup

(3.35)
B(e.R) JUAB(e, Asr) (§240R: *)

for all ¢ € 0U,0 < R < A,'diam(U,d). Therefore by (3.34) and (3.35), we conclude
that for all £ € oU,0 < R < A, 'diam(U,d) and for any non-negative function u that
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is harmonic and continuous on U n B(&, AgR) with Dirichlet boundary condition along
oU n B(&, AgR), we have

u(&ry2
sup u(-) < Cy Crye) SUP gunB(e,Asr) (§240r, +) < C1C2u(€Rya).
B(¢,R) GunBe,Asr) (§240r: ER/2) BlER)

]

Theorem 3.12 (Boundary Harnack Principle). [BM19, Theorem 1.1] Let (X,d) be a
complete, separable, locally compact, length space, and let m be a non atomic Radon
measure on (X, d) with full support. Let (£, F) be a regular strongly local Dirichlet form
on L*(X,m). Assume that (X,d,m,E,F) satisfies the elliptic Harnack inequality. Let
U < X be a length uniform domain. Then there exist Ag, Ay, Cy € (1,0) such that for all
€€ U, for all 0 < r < diam(U, d)/A; and any two non-negative functions u,v that are
harmonic on U n B(&, Agr) with Dirichlet boundary condition along 0U n B(§, Agr), we

have
ess sup @ < (4 essinf _u(x)
zeUnB(E,r) U(JT) zeUnB(E,r) v(a:)

If diam(U,d) < oo, the condition 0 < r < diam(U,d)/A; is not explicitly stated in
[BM19] but it follows from the proof there.

It turns out that the assumption that (X, d) is a length space in Theorem 3.12 is unnec-
essary. In particular, elliptic Harnack inequality implies the boundary Harnack principle
for uniform domains on any doubling metric space as shown in a work in preparation by
Aobo Chen [Che] (instead of length uniform domains considered in Theorem 3.12). In
other words, Theorem 3.12 can be generalized to uniform domains to metric spaces that
need not contain any non-constant rectifiable curves.

3.3 Naim kernel

We introduce the Naim kernel and study some of its properties. For the remainder of the
section we make the following running assumption.

Assumption 3.13. Let (X,d,m,&, F) be an MMD space that satisfies the elliptic Har-
nack inequality such that (X, d) satisfies the metric doubling property. Let U < X be a
uniform domain that satisfies the boundary Harnack principle and such that the Dirichlet
form (EY, FO(U)) on L*(U;m)|,,) corresponding to the part process on U is transient.

By the result of A. Chen mentioned above, the assumption that U satisfies the bound-
ary Harnack principle is redundant but since [Che] is not yet available, we made this
additional assumption throughout this work. In the case of length uniform domains in a
length space, we can use Theorem 3.12 instead of the upcoming work [Che] to remove the
assumption concerning the boundary Harnack principle.

For g € U, we define O : (U\{zo}) x U\{zo})\(U\{x0})diag — [0, 20) as

U L gU(xv y)
Oy (7,y) = 900, 2)g0 (@08 (3.36)
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The function @xUO satisfies the following local Hélder reqularity and bounds. The proofs
are variants of Moser’s oscillation inequality [Mos, §5].

Lemma 3.14. Let (X,d,m,E, F) be an MMD space and let U be a uniform domain as
given in Assumption 3.15. There exist A,Cy,Cy € (1,00) and vy > 0 such that the following
estimates hold:

(a) For anyne oU,z € U\{xo},0 <1 < R < (2A) 7' (d(n,x0) A d(z,z0) A o (2))

ev <A(1

0sC o S 0sC v
(B(n,r)n(U\z0}))x (B(z,r)n(U\{zo})) x

”

o, .
R) (B(n,R)n(U\fzo}) x (B(z,R)n(U\{zo}))
(b) Forn,& e oU with & # n and for all0 <r < R < (2A) 7' (d(n, o) A d(n,&) A d(&, z0))

@U<<A(i

xg

U

0sc o

.
0SC )
(B(n,r)n(UNzo})) x (B(&r)n(U\{zo})) R/ (B(n,R)n(U\{wo}))x (B(&,R)n(U\{o}))

(c) For anyne oU,ze U\{x},0 < R < (2A)7! (d(n, x0) A d(z,30) A oy (2)),

Z?
sup @ijogcl gU( 771’%/2) '
(B(n,R)n(U\{z0})) x (B(z,R)n(U\{z0})) qu ($0, Z)QU ($07 77R/2)

(d) Forn,& e oU with & #n and for all 0 < R < (2A)7 (d(n, zo) A d(n, &) A d(&, x0))

sup 05, < Oy gu (12, Ey2) |
(B0 R) AUz ) (BER)A (U o)) gu (o, Mr/2)9u (%o, Ery2)

and
oU = ot 9U(77R/27 fR/z)

inf 2 = O .
(B(n,R)n(U\{zo})) x (B(&,R)~(U\fzo})) gu (x0, Mrs2)9u (%0, Er2)

(e) For any xg,x € U, & € 0U such that 0 <r < R < A7'd(&,z0) < A71d(¢, x), we have

Sup (—)IU() (l‘, y) < O@on (1’, SR/2)7 lnf @go (33'7 y) 2 C@on (l’, £R/2)’ (337)
yeUnB(¢,r) yeUnB(&,r)
and N
U < r U
oo Ol () < C () 0L np). (3.38)

Proof. Let A€ (1,00) be maximum of the constants 6! in EHI, Ay and A; in Definition
3.9. Let us denote the corresponding constants C' and C; by Cgyy and Cgyp respectively.
We will use EHI and the boundary Harnack principle several times in the proof with the
above constants A, Cgar, Ceap-
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(a) For any 0 < r < (2A)7! (d(n, xo) A d(z,x0) A 6y (2)), define

M(r) = sup @zUO,
(B(n,r)n(U\{z0}))x (B(z,r)n(U\{zo}))
m(r) : inf .

(BN (o)) x (Bzr)A(U\{o}))

For any (z1,v1), (z2,92) € (B(n, R/A) n (U\{z0})) x (B(z, R/A) n (U\{xo})), we have

M(R)gu (o, 21)gu (0, 1) — gu (1, Y1)
gu (o, 21)gu (o, Y1)
M(R)gu(zo, v2)gu (o, y1) — gu (T2, Y1)
gu (o, x2)gu (o, Y1)
M(R)gu (o, v2)gu (0, y2) — gu (1, ya)
gu (o, T2)gu (2o, Ya)

< Cppp

2
< CBHPOEHI

. (3.39)

In the first line above, we apply boundary Harnack principle to the functions

M(R)QU(ZZ'(], ')gU('r07y1) - gU('7y1)7gU(x07 ')gU(x()?yl) € ‘E%C(U7 B(?],AT) N U) that
are non-negative and harmonic on B({, Ar) n U. In the last line, we use the el-

liptic Harnack inequality to M(R)gu(zo, 22)gu (%o, *) — gu (22, ), gu (@0, 2)gu (20, ) €
Fioc(B(z, R)) that are non-negative and harmonic on B(z, R)

Taking supremum over (x,y;) and infimum over (z2,2) in (3.39), we obtain
M(R) — m(R/A) < ConrCiyy (M(R) — M(R/A)). (3.40)

gu (z,y) —m(R)gu (zo,z)gu (z0,y)
gu(zo,x)gu (zo,y)

By considering (z,y) — ©Y —m(r) = and using a similar

argument as the proof of (3.40), we obtain
M(R/A) = m(R) < CpupChyyy (m(R/A) —m(R)). (3.41)

Combining (3.40) and (3.41), we obtain

CoupCy — 1
M(R/A) —m(R/A) <« —>=—— (M(R) —m(R)).
(R/A) = m(F/A) < 0B (0 (R) — ()
CBHPC]%HI"'I
CpupCy—1

Iterating the above estimate, we obtain (a) with v = (log A) ! log
(b) For any 0 < r < (2A) " (d(n, xo) A d(&,x0) A d(n,§)), define

M(r) = sup @mUO,
(B(n:r)n(U\{z0})) x (B(&,r)n(U\{z0}))
: U

xo*

inf
(B(n,r)n(U\{z0})) x (B(&,r)n(U\{zo}))
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For any (z1,v1), (z2,92) € (B(n, R/A) n (U\{z0})) x (B(§, R/A) n (U\{xo})), we have

M(R)gy(wo, v1)gu (w0, y1) — gu (21, Y1)
gu (o, 21)g9u (o, Y1)
M(R)gu(wo, x2)gu (0, y1) — gu (22, Y1)
< Cgup
gu (o, T2)gu (o, Y1)
M(R)gu (w0, v2)gu (w0, y2) — gu (21, ¥2)
gu (0, T2) gu (o, Y2)
In the first line above, we apply boundary Harnack principle to the functions

M(R)gU(x(]? ')gU('r07y1) - gU('vyl)LgU(xOu ')gU(x()?yl) € ‘E%C(U7 B(?],AT) N U) that
are non-negative and harmonic on B(&, Ar) n U. In the last line, we use bound-
ary Harnack principle to M(R)gu(zo,z2)gu(2o,) — gu (2, ), gu(zo, T2)gu (o, ) €
F2 (U, U n B(&, R)) that are non-negative and harmonic on U n B(£, R)

loc

< Chyp (3.42)

Taking supremum over (x1,y;) and infimum over (x2, ;) in (3.39), we obtain
M(R) —m(R/A) < Ciyp (M(R) — M(R/A)). (3.43)

gu (z,y)—m(R)gu (zo,z)gu (zo,y

) and using a similar
gu (zo,z)gu (0,y)

By considering (z,y) — ©Y —m(r) =
argument as the proof of (3.40), we obtain

M(R/A) — m(R) < Chyp (m(R/A) — m(R)) . (3.44)
Combining (3.40) and (3.41), we obtain

2. —1
M(R/A) — m(R/A) < =BH>
(R/A) —m(R/A) c2 1

(M(R) —m(R)).

2
Cippt1
—1°

Iterating the above estimate, we obtain (a) with v = (log A)™! log

C]%HP
Let (x,y) € (B(n, R) n (U\{zo})) x (B(z, R) n (U\{z0})), where n, z, R are as given
in the statement of the lemma. Then by applying the boundary Harnack principle for
the harmonic functions gy (-, y) and gy(zo,-) on By(n, AR) and by elliptic Harnack
inequality for the harmonic functions gy (ng/2, -) and gy (o, -) on B(z, AR), we obtain

9U(77R/2, Z)
gu (o, ﬁR/z)gU(IOa 2) ‘

gU(UR/z, y)
QU(ﬂUo, 7}R/2)9U($0, y)

05, (z,y) < Cpup < CpupCiyyy
Let (z,y) € (B(n, R) n (U\{x0})) x (B(§, B) n (U\{zo})), where 1, §, R as given. Then
by using the boundary Harnack principle for the harmonic functions gy (-,y) and

gu(wo,-) on By(n, AR) and for the harmonic functions gy (ng/2,-) and gy (zo,-) on
By (¢, AR), we deduce

gu(Mrs2;y) < 2 gu(Mry2:ERy2)
gu (zo, 77R/2)9U(950> Y) BHP gu (o, 77R/2)9U(£E0, fR/2) ’

@xUO (x,y) < Cpup

and

gu(Mrs2,Y) S 2 gu(Nry2:ERy2)

0¥ (z,y) = Cgpy = '
o(2,9) BHPgU(IomR/Z)gU(xO,y) BHPQU(%,77R/2)9U(°T0v§R/2)
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(e) By the boundary Harnack principle applied to the harmonic functions gy (x,-) and
gu (o, x)gu (o, -) on B(&, AR) n U we obtain (3.37). By Lemma 3.10, we obtain

N\ N\
osc OV (z,y) < C (—) osc OV (z,y) < C (—) su oY (x,y).
yeUNB(¢,r) 0( y) 0 R/ yeUnBr) O( y) 0 R yEUme(f,T) 0( y)

The above estimate along with (3.37) implies (3.38).
[

Thanks to the Holder regularity estimates obtained in Lemma 3.14, we can extended
Y to (U\{zo}) x (U\{zo})\(U\{20})diag as shown below.

Proposition 3.15. Let (X,d,m,E,F) be an MMD space and let U be a uniform do-
main as given in Assumption 3.13. For any xo € U, the function @5{0(-,-) defined
in (3.36) admits a continuous extension, which is again denoted by ©Y : (U\{zo}) x
(U\{zoHD\(U\{x0})diag — [0,0). There exist Cy,Cy, Ay € (1,0),¢9 € (0,1/4),7 € (0, 00)
such that the following estimates hold:

-1 9U(77r, gr) U gU(n’m gr)
o 90 (@0, 1) 90 (@0, &) < 0,,(n,§) < Clgu(wo,nr)gu(xo,&)’ (3.45)

where r = co(d(zo,n) A d(xg,&) A d(n,E));
d(n, )"  d(& y)

ot (1) — 08, ) = Cadl ) (1L 4 I (3.46)
for all n,& € oU with n # & 0 < R < (2A)7'(d(n,z0) A d(n,&) Ad(&,x0)),x €
U n B(n,R),y € Un B(R). PFurthermore O (-,-) is symmetric in (U\{zo}) X

(O\fzo )\ {70} aiae-

Proof. The existence of a continuous extension to (U\{o}) x (U\{zo})\(U\{Z0})diag Of
the function defined in (3.36) follows from Lemma 3.14. More precisely, the existence
of continuous extension at all points in oU x (U\{zo}) and (U\{zo}) v oU follows from
Lemma 3.14(a,c) along with the symmetry of Green function. On the other hand, the
existence of continuous extension at all points in (U x 0U)\(OU )giae and follows from
Lemma 3.14(b,d).

The estimates (3.45) and (3.46) are direct consequences of Lemma 3.14(b,d). The
symmetry of ®on follows from the symmetry of the Green function and the continuity of
oY O
Definition 3.16. Let (X, d,m, &, F) be an MMD space and let U be a uniform domain as
given in Assumption 3.13. The function ©Y : (U\{zo}) x (U\{z0})\(U\{z0})diag — [0, 0)
defined as the continuous extension of (3.36) is called the Naim kernel of the domain U
with base point zqg € U.

This function is essentially same as the one introduced by L. Naim in [Nai] where she
extends to function considered in (3.36) to the Martin boundary instead of the topological
boundary as considered above. Another difference from [Nai] is the use of Martin topology
and fine topology of H. Cartan instead of the topology arising from the metric.
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3.4 Martin kernel

We recall the definition of the closely related Martin kernel introduced by R. S. Martin
[Mar].

Definition 3.17. Let (X, d,m, &, F) be an MMD space and let U be a uniform domain as
given in Assumption 3.13. We define the Martin kernel KU (-,-) : U x (U\{0})\Udiag —
[0, 00) as

gU(CE,ﬁ) 3
limy, ¢ yev o (xo”y) if £ € oU.

The above limit exists in the second case due to the boundary Harnack principle (by
Lemma 3.10).

The following oscillation lemma is an analogue of Lemma 3.10.

Lemma 3.18. Let (X,d,m,E, F) be an MMD space and let U be a uniform domain as
given in Assumption 3.13. There exist C; A € (1,0) and v > 0 such that the following
estimates hold:

(a) For any xoe U,ze€ U E€dU,0 <r < R < (2A)7(0p(2) A d(xo,£)), we have
r

Y
0sc_ KI(,)<A (—) 0sC_ K (") (3.48)
(UnB(z,r))x(UnB(&,r)) R (UnB(z,R))x(UnB(§,R))

(b) For any xge U,ze U, € 0U,0 <r < R < (2A)71(6y(2) A d(x0,£)), we have

Sllpi K:%(U ) < CKQ:UO (27 £R/2)'
(UnB(z,R))x(UnB(,R))

(¢c) For any (n,€) € (0U) x (OU)\(OU )diag, for all0 <1 < R < (2A)71(d(&, x0) Ad(n, o) A
d(&,n)), we have

\7
s ose KU (a,y) < C () K €re) (3.49)
zeUn B(n,R) yeUNB(,r) R

Proof. We will omit the proofs (a) and (b) as it similar to that Lemma 3.10. Both
estimates follow from applying the elliptic Harnack inequality and boundary Harnack
principle to the first and second arguments respectively of the Martin kernel.

(c¢) By Lemma 3.10

v v
_0sc Kg)(x,y) < (£> _0sC KIUO(x,y) < (%) Ka%(m,fR/g)
yeUNB(E,r) yeUNB({,R)

for all z € U n B(n, R). By the Carleson’s estimate (Proposition 3.11), we have

sup Ko[c]o (z, €R/2) < Kg[cjo (77R/27 fR/z)-
xeUnB(n,R)

Combining the above two estimates, we obtain the desired result. O
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Lemma 3.19. Let (X,d,m,E, F) be an MMD space and let U be a uniform domain as
given in Assumption 5.13. For all € € U, the function K, (-,&) : U — [0,00) belongs
to Froc(U), harmonic in U. Furthermore K, (-,&) has Dirichlet boundary condition on
OU\{&} in the following sense: for any open subset V of U such that € ¢ V, K, (-,€) €
FLUY).

Proof. Let y, € U be a sequence with lim,_,., y, = £. Define h,, : U\{y,} — [0,0) as
h, = Kgo(-,yn) for all n > 1.

If K < U is compact then K < U\{y,} for all but finitely many n. By Lemma
3.18(a)-(b), the sequence h,, converges uniformly on compact subsets of U and is bounded
on compact sets. Therefore by Proposition 3.1(iv) and Lemma 2.19, the function K (-, €) :
U — [0,0) belongs to Fio.(U) and is harmonic in U.

_ Let V be an open subset of U such that ¢ ¢ V and let A c V be relatively compact in
U with dist(A,U\V) > 0. Then by Lemma 3.18(c), h, converges uniformly to K (-, &)
on A. Therefore by Lemma 2.19(b), KJ (-,&) € F2.(U, V). O

loc

Next, we relate Martin and Naim kernels. Due to Lemma 3.19 and the continuity of

©Y , the Naim kernel can be expressed in terms of the Martin kernel as
KY (zy)
0 , rxeU,
@xUO (x,y) = gu(wo,x) KU (20) (3.50)
lim, ., e g;?ro’z)7 x € oU.

The above limit can be shown using to the Boundary Harnack principle using Lemmas 3.19
and Lemma 3.10. We chose the approach based on Lemma 3.14 because the symmetry
of @xUO and the joint continuity are immediate using our approach while these properties
need to be shown if we use (3.50). The equality (3.50) is closer to the original approach
to define Naiim kernel as the extension to boundary is done for one argument at a time
in [Nai].

It is well known that any unbounded domain satisfying the boundary Harnack principle
has a unique Martin kernel point at infinity. Following [GyS, Chapter 4], we call the
harmonic profile of U [Anc78, Théoreme 6.1, Lemme 6.2] as the Martin kernel point at
infinity. We recall the short argument to prove its uniqueness.

Lemma 3.20. Let (X,d,m,E,F) be an MMD space and let U be a unbounded domain
satisfying Assumption 3.13. Let hy,hy : U — (0,00) be two continuous functions such
that hy, hy € .7-"10 (U,U) and hy, hy are harmonic in U. Then there exists ¢ > 0 such that

ocC

hi(z) = che(zx) for all z € U.

Proof. Let A € (1,00) be the largest among constants Ay, A; in Definition 3.9 and Lemma
3.10. Let C be largest among the constants C,Cy in Definition 3.9 and Lemma 3.10
respectively. Let v be as given in Lemma 3.10.

Let € € 0U,zp € U. For all R > Ad(£, x), by Definition 3.9 we have

ha(°) hi(z)
su <C )
B(x,RI))mU h2() h2($o)
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Letting R — oo, we obtain
ha (o)
ha(zo)

osch <suph <C
u U

For any 0 < d(§,z9) <1 < R < oo, we have

hl( ) Y\ hl() \7 hl() 9o (T Y hl(l’o)
<C|5 <C|{— <C = :
BannU ha(") (R) B R U ha(-) (R) " ha() (R) ha (o)
Let R — o0, we obtain oscp(z)~u Zi = 0 for any r € (d(xg,&),00). Letting r — oo, we

obtain oscy 2;8 = 0. O

We recall a standard construction of the harmonic profile [GyS, Chapter 4].

Proposition 3.21 (Harmonic profile). Let (X,d,m,&E,F) be an MMD space and let U
be an unbounded domain satisfying Assumption 3.15. For any xo € U and a sequence
(Yn)n=1 in U such that limy, o d(2o, yp) = 00, Then the sequence KT (-, y5,) : U\{yn} — 0
converges to a continuous function hUO U — (0,00) uniformly on bounded subsets of U

such that hY e FL (U, U), hi?(xo) = 1,hY (-) is bounded on bounded subsets of U and
18 harmonic on U. Furthermore, the limit hUo(-) depends only on U,xq and not on the

sequence (Yn)n>1-

Proof. Let A € (1,00) be the largest among constants Ay, A; in Definition 3.9 and Lemma
3.10. Let C be largest among the constants C,Cy in Definition 3.9 and Lemma 3.10
respectively.

Let £ € U and let Ad(zg,§) < r < R. Then for any n,k € N such that AR <
d(&,yn) A d(&, yx), by Lemma 3.10 and Definition 3.9 we estimate

sup —KU(. ) - 1‘ = sup KU(. n) KU o (70, n) 0SC —Kg’(.’yn)
vnBer) K5 (5 Ur) vnsen [KG (o) K (w0, ye)|  vnBen KU (i)
"\ U( 7yn)
<C|= 0SC
(R) UnB(&r) g( , Uk)
T\7 U( yn)
<C (—) sup Zo2
R UnB(¢,r) K ( ayk)
< 02( )VK o(Z0:Yn) _ 2 (1)7
R KUO(:L‘CHyk) R

By letting R = (2A)~1(d(&, yn) A d(&,y1)), we obtain that for all n, m such that d(, y,) A
d(&, yx) > 2A%d(E, o), we have

Ko (5 Yn)
Kgo( ayk)

By Carelson’s estimate (Proposition 3.11) for any & € oU, r > 0, there exist C; > 0, N € N
such that

sup
UnB(Er)

- 1\ < C2RAVP (. yo) A (). (3.51)

. s;(lz )Kgo(-,yn) < KY (&2, yn) forallm> N, (3.52)
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By Harnack chaining ([BM19, p. 391]), there exist N € N, Cy = Cy(x0, &, r) such that
KJ (&2,yn) < Cy foralln= N. (3.53)
Combining (3.51), (3.52), and (3.53), we obtain

lim  sup |KJ(oyn) — KO (- un)| < llim CLO,C*(2A) 7 (d(€, yn) A d(E,yr)) 7 = 0.

n,k—co UﬁB(E,T)

Since r > 0 is arbitrary, by letting r — oo, we conclude that the sequence K go (,yn),neN
converges uniformly in bounded subsets of U, say hgo : U — (0,00). By the continuity
of KU (-, yn), we conclude that hY is continuous. The estimate (3.52) implies that hY is
bounded on bounded subsets of U. By Lemma 2.19, we obtain that A e Fp (U,U) and

loc
is harmonic in U.

The assertion that the limit A% (-) depends only on U,z follows from A (xo) = 1 and
Lemma 3.20. L

4 Estimates for harmonic and elliptic measures

To goal of this section is to estimate the harmonic measure of balls on the boundary of
a uniform domain using ratio of Green functions. We restrict to the class of uniform
domains that satisfy the following capacity density condition.

4.1 The Capacity density condition
This is a slight variant of similar conditions considered in [Anc&86, AH].

Definition 4.1. Let (X,d,m,&, F) be a MMD space satisfying the elliptic Harnack in-
equality. Let K € (1,00) be such that (X,d) is K-relatively ball connected. We say
that a uniform domain U satisfies the capacity density condition (CDC) if there exist
Ag € (8K, 0), Ay, C € (1,00) such that for all £ € 0U,0 < r < diam(U, d)/A; we have

CapB(&,AOR)(B(€7 R)) < OC&pB({,AOR)(B(Sv R)\U)7 (CDC)

We note that the capacity density condition implies transience.

Remark 4.2. Let D be a domain that satisfies the capacity density condition (CDC).
Then by [FOT, Theorem 4.4.3(ii)], D¢ is non-polar. Hence by [BCM, Proposition 2.1
and Theorem 4.8], the associated Dirichlet form (€7, F°(D)) on L*(D;m|p) of the part
process X is transient.

Due to remark 2.17, it would be convenient to assume the stronger sub-Gaussian heat
kernel estimate HKE(W) instead of the elliptic Harnack inequality EHI. Therefore, we
make the following assumption.
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Assumption 4.3. Let (X,d,m,E,F) be a MMD space such that the corresponding
diffusion satisfies Assumption 2.14. In particular by Remark 2.17 and Lemma 2.23(a),
(X,d) is K-relatively ball connected for some K € (1,00). Let U be a uniform domain
satisfying the capacity density condition (CDC) and the boundary Harnack principle. We
recall by Remark 4.2 that the Dirichlet form (€Y, F*(U)) on L*(U;m|,) corresponding
to the part process on U is transient.

Ancona shows that the capacity density condition in an Euclidean domain is equivalent
to an estimate on the harmonic measure called the uniform A-regularity [Anc86, Definition
2 and Lemma 3]. Such a result can be extended to an arbitrary domain on any MMD
space satisfying the elliptic Harnack inequality using the estimates on hitting probability
from [BM 18, BCM]. More precisely, we have the following relationships between hitting
probabilities and the capacity density condition. Part (b) of the lemma below is the
justification behind our requirement Ay € (8K, c0) in Definition 4.1.

Lemma 4.4. Let (X,d,m,E, F) be an MMD space that satisfies the elliptic Harnack
inequality.
(a) Suppose there exist Ay, A1 € (1,00) and v € (0,1) such that

WUNBEARN(TTAS(E, AgR)) < 1—y  for q.e. x € B(§,R) and 0 < R < diam(U, d)/A,.
(4.1)
Then for all 0 < R < diam(U,d)/A;, £ € 0U, we have

Cappe a,r) (B(E, R)) <772 Cappe oy (B(E, R)\U). (4.2)

(b) Let K € (1,00) be such that (X,d) is K-relatively ball connected. Suppose there exist
Ap € (8K, ), A,,C € (1,0) such that for all £ € 0U,0 < R < diam(U,d)/A;, we
have

CapB(g,AOR)(B(fv R)) < CC&PB(g,AOR)(B(éa R) nU). (4.3)

Then for any A, € (1,00), there exist A, Ce (1,00) such that for all { € 0U,0 < R <
diam(U, d)/A;, we have

Cappe am) (B(&, R)) < C Cappe 1 (B(E, R) n U"). (4.4)
(c) Let K € (1,0) be such that (X,d) is K-relatively ball connected. Suppose there exist
Ay € (8K,0),A;,C € (1,0) such that for all £ € oU,0 < R < diam(U,d)/A;, we

have

CaPB(g,AOR) (B¢, R)) < CC&PB(g,AOR)(B(fa RN\U), (4.5)
then there ezist Ag, A; € (1,00),7 € (0,1) such that

WUPBEAR) (1] A S(€, AgR)) < 1 (4.6)

for g.e. x € B(§,R) and 0 < R < diam(U,d)/;l\l. If in addition (X,d,m,&,F)
satisfies Assumption 2.1/, then (4.6) holds for all x € B(§, R).
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Proof. (a) Let e := ep( r\v,B(¢,4,r) denote the equilibrium potential for Cap e 4,r) (B(§, R)\U).
Then by [FOT, Theorem 4.3.3], for q.e. x € B(§, R) n U, we have

'é(x) = Pz (UB(f,R)\U < O-B(§7AOR)C)
(4.1)
= P, (0unseaor) > ove) =1 =Py (0unse.aor) < ove) = 7.

Therefore v '& = 1 q.e. on B(§, Ay'r) and Capp 4,5 (B(E, R)) < E(y e,y le) =
2 Cappe a,r) (B R\U).

(b) By [BCM, Lemma 5.22] and domain monotonicity of capacity, in order to show (4.4),
we may and will assume that Ay > Ap. By [BCM, Lemma 5.18] there exist Cy >
1, Ay = A; such that for all £ € 0U,0 < R < diam(U, d)/A;

gB(g,AoR) (y7 Z) < gB(g’ABR) (y> Z) < ClgB(ﬁ,AoR) (ya Z) for all Y,z € B(§7 R) (47)

Let e, v be the equilibrium potential and measure for Capp 7, (B(£, R)\D) such
that Capp 17,0 (B(§, R\D) = E(e,e1) and e1(+) = SgB(&AAIT)(-,,z)y(al,z)7 where &, R
satisfy the conditions associated with (4.7). Define

() = f 96 ) (- 2)(d2).

By (4.7), for q.e. y € B(§, R)\D, & € 0D, we have

) = [ gm0 > O [gpe i 2wtaz) = €
Therefore
Cabem(D\B(E ) < E(Cre, Cre) = CF [ ely(d:) < €2 [ ex(2)v(d)
= C3&(ey,e1) = C} Cappe 40 (B(E, R\D).
The above estimate along with (4.3) and [BCM, Lemma 5.22] implies (4.4).

(c) By [BCM, Lemma 5.9], there exist 1/4\0,1/4\1,6’1 € (1,00) such that for all £ € U,0 <
R < diam(U,d)/A;, and for all z,y € B({, R), we have

Inie i (@ Y) = O g 2 (67)- (4.8)

By (b) and increasing 1/4\0, A, if necessary, we may assume that (4.4) holds. By further
increasing Ag, A; if necessary and using [BCM, Lemma 5.10], we may assume that
there exists Cy > 1 such that for all £ € 0U,0 < R < diam(U, d)/A;, we have

9B(e, Aor) (&r) < Cap e aon) (B(&,r) ' < Codpe o (&7)- (4.9)
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Let £ € 0U,0 < R < diam(U,d)/;l\l and let e = ep pyy e dyp), v denote the
equilibrium potential and measure respectively for Cap ., 7= o (B(&, R)\U ). By [FOT,
Theorem 4.3.3], for q.e. x € B(§, R) n U, we have

e(x) =P, (o <o . :J Grre = ool y) v(dy
( ) ( B(&§,R)\U B(¢, AOR)) SERNT B(¢,AR) ( ) ( )
(
C 9B, Aor) (&, r) ( R\U
= C g 3 (& 7) Capp e 73 5y (B(E, R) N U)
(4.4) 49)

~ ( ~
= 07107193(57207”)(577”) CapB(&ABR)(B(&R)) > CTloTIey (4.10)

Setting v = C‘lé'_lC’Q_l € (0,1), we conclude

N . (4.10)
WUNBEAR (1] A S(€, AgR)) < P, <UB(§,R)\U > UB(g,;l\oR)C) s 1=

The final assertion under Assumption 2.14 follows from the continuity of harmonic
measure due to Lemma 2.28(b).

O

The estimate (4.11) in the above Lemma can be used repeatedly to obtain certain
polynomial type decay rates on the harmonic measure.

Lemma 4.5 (Uniform A-regularity). Let (X, d,m,E,F) be a MMD space and let U < X
be a uniform domain that satisfy Assumption 4.35.

(a) There exist C; > 1, A1 > 1,0 > 0 such that for all 0 < r < R < diam(U,d)/A; and
for all & € OU, we have

W MPER(U A S(E R)) < Gy (%)57 for allz e U n B(g, 7). (4.11)

(b) Assume in addition that U satisfies the boundary Harnack principle. Then there exist
Cy, Ag, Ay € (1,00),5 > 0 such that for all 0 < r < R < diam(U,d)/A;, for all
€ € dU, and for all continuous non-negative function h : B(&, Agr) n U — (0,00) that
is harmonic in B(&, Aor) with Dirichlet boundary condition on oU (U N B(¢, Agr)) ,
we have

M) (1" 1

Proof. (a) By Lemma 4.4(a), there exist Ay, A; € (1,00) and ~ € (0,1) such that

WIPPER(WU A S, R) <1 -7 (4.13)
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for all £ € oU,x € B(£,A,'R) and 0 < R < diam(U,d)/A;. By the strong Markov
property, for all i € N, € 0U,x € B(§, Ay"R) and 0 < R < diam(U, d)/A,

wlPBER (U A S(¢, R))

<WUMBEA (U A S(E,Ay'R))  sup WUPPER(U A S(¢, R))
yeUnS(E, Ay " R)

(4.13)
< (1—-7)  sup  W"PEMWUASER)).
yeUnS(E,ATTIR)

By repeatedly using the above estimate, we obtain

w, PER(WU A S, R)) < (1—7)
forallie N, &€ oU, x e B(¢,Ay"R) and 0 < R < diam(U, d)/A,. This implies (4.11).
By the boundary Harnack principle and Proposition 3.1, it suffices to consider the
case when h is a Green function. More precisely, it suffices to show that there exist

Cs, Ag, Ay € (1,00),0 > 0 such that for all 0 < r < R < diam(U, d)/A;, for all £ € U,
and for all zy € U such that d(§, xy) > Agr, we have

9u (& 7o) A%
gu (&, o) s 03< ) ' (4.14)

Let us choose Agp, A; € (1,00) such that the conclusion on (a) and the boundary
Harnack principle and Carleson’s inequality hold. For all £ € oU,0 < r < R,z € U
as above, we have

gu (&, o) = Ee, [gU (X%NB(&R),%)] (by Lemma 3.4(b))

< ( sup gU<-,xo>> wi PP (WU A S, R))
UnS(&,R)

< gu (&g, xo)wgmB(g’R)(U N S(&, R)) (by Carleson’s estimate)

< gu(€r, o) (%)6 (by (4.11)).

4.2 Two-sided bounds on harmonic measure

The following estimate of harmonic measure is the main result of this section. It is an
extension of [AH, Lemmas 3.5 and 3.6] obtained for the Brownian motion and uniform
domains satisfying the capacity density condition in Euclidean space which in turn gen-
eralize similar results obtained by Jerison and Kenig for NTA domains [JK, Lemma 4.8]
and Dahlberg for Lipschitz domains [Dah, Lemma 1]. While it is possible to follow the
‘box argument’ in [AH], our proof is new and avoids the use of a complicated iteration
argument (called the ‘box argument’) to obtain upper bound on harmonic measure [AH,
Proof of Lemma 3.6].
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Theorem 4.6. Let (X, d,m,E, F) be a MMD space and let U < X be a uniform domain
that satisfy Assumption 4.3. Then there exist C) A € (1,00),¢ € (0,1) such that

CilgU(‘ra 67’) CapB(f,Qr) (B(£7 7n)) < walvj(aU M B(£7 7’)) < CgU(xv 57') CapB(g,Q’r) (B(f,(?’)) )
4.15
for all £ € OU,x € U such that 0 < r < d(§,zg)/A.

While it is possible to prove Theorem 4.6 by adapting the techniques of Aikawa and
Hirata using the box argument and the notion of capacitary width, we follow a more
probabilistic approach. An easy consequence of Theorem 4.6, harmonicity of gy (z,-) on
U\{z}, Harnack chaining (Lemma 2.24), (2.12) and the doubling property of m is the
following doubling property of harmonic measure.

Corollary 4.7. Let (X,d,m,E, F) be a MMD space and let U < X be a uniform domain
that satisfy Assumption 4.3. There exist C; A € (1,00), ¢y € (0,1) such that

WV (U n B(&,7)) < CWY(0U n B(€,7/2)) (4.16)
for all £ € OU,x € U such that 0 < r < d(§,xo)/A.

Thanks to the capacity density condition, we can compare Green’s function on a the
domain U with that of a ball chosen at a suitable scale. The following is an analogue
of a lemma of Aikawa and Hirata for uniform domains in Euclidean space [AH, Lemma
3.2]. Our proof follows an argument in [BMI18, Proof of Lemma 3.12] to compare Green
functions in different domains.

Lemma 4.8. Let (X,d,m,E,F) be a MMD space and let U < X be a uniform domain
that satisfy Assumption 4.3. There exist A; € (1,00) and ¢y € (0,1) such that for any
0 < ¢ < ¢, there exists Cy such that the following estimate holds: € € oU,0 < r <
diam(U,d)/A;, we have

Crt Cappean (B, 7)) < gu(&, r) < Oy Cappe oy (B(E, 7)1 (4.17)

Proof. By Lemma 4.5(a), there exist Aj, Ay € (4,00) such that for all 0 < r <
diam (U, d)/A; for all £ € oU, we have

sup  wUNBEA([T A S(€, Agr)) <
zeUnB(€,2r)

(4.18)

DN | —

By [BCM, Lemmas 5.10, 5.20(a) and 5.24], there exist ¢y € (0,cy/2), A; € (4,0)
such that for all ¢ € (0,¢o] there exists Cy satisfying the following estimate: for all
e dlU,0 < r <diam(U,d)/A;,y € S, cr), we have

C12_1 CapB(g,Zr) (3(57 T))_l < gB(ér,cUr/Q) (57"7 y) < gB(Sr,AOT) (57“7 y) < C(2 CapB(g,Zr) (3(57 T))_l‘
(4.19)
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Using Lemma 3.8(a) and reducing ¢, further if necessary, there exists C3 € (1,00) such
that

sup gU(é-ra ) < C'3 inf gU(&m ) (420>
S(&r,cr) S(&rycr)

for all ¢ € (0, o], € € OU,0 < r < diam(U, d)/A; and &, satisfying the conclusion of Lemma
2.6.

Let n € S(&, coy (&) be such that

gU(Srvn) = sup gU(gﬁy)' (421>
yeS(&r,cou (&r)

Then by the maximum principle (the latter inequality of Proposition 3.1(v)) and Dynkin-
Hunt formula (Lemma 3.6), for all 0 < r < diam(U,d)/A;, for all £ € oU, by choosing
n e S(&, cou (&) satisfying (4.21), we obtain

gu(&r,m) = JunB(&,Aor) (&m) + Ey []1{TUnB(s,AoT)<°O’XTUmB(5,AOr)EU}gU(XTUnB(é,Aor) ’ é")]

< gUmB(f,Aor) (5’/‘7 77) + gU(gm n)]P)n I:TUmB(g,Aor) < 0, XTUmB({,AOT) € U:|

< gunstcan &) + 5o0(6n) (by (418))

and hence

9B cor/2) (& M) < GuaBe.Aor) (&) < gu(&e M) < 200AB(E 40r) (& M) < 29B(e,40r) &y )
(4.22)

Combining (4.19), (4.22) and (4.20), we obtain the desired estimate. O

Proof of Theorem j.6. We first show the lower bound on the harmonic measure which is
considerably easier than the upper bound.

Lower bound on harmonic measure: By Lemma 4.5, there exists ¢; € (0,1/2) such
that for all £ € 0U,0 < r < diam(U, d)/A1,y € U n B(§,2¢y7), then

1
wg(B(ﬁ,r) NnoU) =1— wgmB(f”)(U NS r)) = 7 (4.23)
By Lemmas 3.8(b) and 4.8 and increasing A; if necessary, there exist ¢; € (0, ¢1),Cy,Cs €
(1,00) such that

o1 gU(ﬂUo,fm) <P, (o <o) <C gU(x07€clr) 4,94
! gU(gclra C2T) 0 < B(Eclr,CQT) v ) 1gU(€clr7 CQT) ( )
and

Cy ' Capp(e 2 (B(€: 7)) < gu(Eerrs ar) < Co Cappe oy (B(E, 7)) (4.25)

for all £ € oU,0 < r < diam(U, d)/A; and x¢ € U\B(&, 2r).
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The lower bound on the harmonic measure is obtained by estimating the probability of
the event that diffusion first hits the set B(&.,,, car) before exiting U along oU n B(,r).
Setting By := B(&.,r, car), We estimate the harmonic measure as

wl (U N B(&,1)) = P, (05, < 0ve, Xop,. € 0U A B(E, 1))
=P,(0B, < ope)E, [w%UB (0U n B, 7’))] (strong Markov property)
0

(4.23) 1
> Py(0p, < oue) inf W) (0U A B(&,1)) = =Pu(op, < oue)
y€Bo 2
(4.24) B x, &) (4.25) B
> (204) 1—9(]( Saur) > (20,Cy) 1gU('r7£clr/2)CapB(g,Qr)(B(far))

gu (&eyr, CoT)
(4.26)

for all £ € oU,0 < r < diam(U, d)/A; and x € U\B(E, 2r).
By Lemma 2.24 there exist Ay, C3 € (1,00) such that

ngU(Jf, gr) = gU(fE, §c1r/2) = 03_19[](1” §7’) (427>

for all £ € oU,r > 0,z € U\B(&, Apr). Combining (4.37) and (4.27), we obtain the desired

lower bound.

Upper bound on harmonic measure: We consider two cases depending on whether
on not (B(&,4r)\B(&,2r)) n oU is empty.

Case 1: B(&,4r)\B(&,2r)) n 0U = . In this case, we use the estimate

wy (U, B(&,7)) < Py (0s(e3mm0 < oue) - (4.28)

By Lemma 3.8(b) and the same argument as the proof of Lemma 4.8 (using [BCM,
Lemmas 5.10, 5.20(a) and 5.24]), there exist ¢; € (0,1), A1, C3,Cy € (1,0) such that

gu(y,e17) = gaiyn (Y, 17) = O Cappe o) (B(E,7)) ' = Oy ' Cappeany(B(€: 7))

(4.29)

and

guly, To)

gu(y, cir)

for all £ € OU,0 < r < diam(U,d)/A1,y € U n S(&,3r),zo € U\B({,4r). By Lemma

2.23(b) and the proof of Lemma 2.24, there exist Ay, C5 € (1,00) such that for all £ €

oU,0 < r < diam(U,d)/Ay,y e U n S(&,3r),x0 € U\B(E, Aor), we have

IP)$ (O’W < O'Uc) < 03 (430)

9u (Y, zo) < Csgu(&r To). (4.31)
Using the metric doubling property and by choosing a maximal ¢;r separated subset {y; :

1<i<N}ofUnS(E3r), we have UnS(€,3r) € U, B(y;, cir), where y; € U nS(€, 3r)
foralli =1,..., N and N has an upper bound that depends only on the doubling property
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and ¢;. Therefore by (4.28), we obtain

N
CL);]O(B(g,T) M EU) < ]P:ro (JufilB(yi,Clr) < O'Uc> < Z]P)l“o (Um < OUC)
=1

(4.30) (4.31) - (4.29) "
2 203 9u (Y, o) p NC39U(§ o) 2 NC’3C’49U(§ o)
~ “gu(y, ar) gu(y, crr) gu(y, crr)
(4.32)

for all £ € 0U,0 < r < diam(U, d)/A;, 9 € U\B(&, Aor). The desired upper bound in this
case follows from (4.32) and (4.29).

Case 2: B(£,4r)\B(£,2r)) n oU # &. Let V := U\(OU\B(&,3r/2)) (note that V is
an open subset of UU). By Theorem 2.12 and Proposition 2.13, we may assume that the
reflected diffusion X™*f can be defined from every starting point 2 € U. We denote the
corresponding probability measures and expectations by Pt E*f respectively.

Let n € B(&,4r)\B(&,2r)) n oU. Since B(n,r/2) n oU < U\V, by Lemma 4.5(a),
irreducibility of X™f [CF, Theorem 3.5.6] and the part process (X™)" on V is transient.
' U, d,my, &, F(U))
denoted by ¢if(-, -) satisfying the properties in Proposition 3.1 and Lemma 3.4(b).

By Lemma 3.8 and arguing similarly as (4.29) and (4.30), there exist A;,C;,Cy €
(1,00),¢; € (0,cy/4) such that

sup g (6, y) < Cugi' (&, ar), (4.33)
yeS(&r,c1m)
ref ref
-1 9v (IE‘ 57") < ref( ) (ZE 57")
— = <P s < . <C 4.34
1 ref(gr’ 617“) z \7B(& cir) = TOU\B(&,37/2) Tovefre . ref(gr’ C1’I“) ( )

g (& arr) = gu(&r, er) = O3 Cappe o (B(E, 7)1 (4.35)

for all € € U,0 < r < diam(U, d)/A;,z € U\B(&,,c;r). By Harnack chaining in the do-
main V' and (4.33), there exist C3 > 1 such that for all £ € 0U,0 < r < diam(U,d)/A;, z €
B(&,r) n oU, we have

G (& 2) = O3 gy (&, ear). (4.36)
Set B := B(&,, cir) and by the strong Markov property, we have

IP"";f (UB < 06U\B(§,3r/2)) = Pf,;ef [)N(U;U € 0U N B(£,7),08 005, < 0ar\B(e,3r/2) © Qaw]

U : ref
oU ~ B f P .
w, (OU n B(&,7)) ZeBé%ﬁaU 2B < OoU\B(¢,3 /2))

> C e WY (0U n B(€,7))  (by (4.36) and (4.34))  (4.37)

for all £ € oU,0 < r < diam(U,d)/A,, x € U\B(&,, e17).

Next, we will obtain the estimate ¢if(x, &) < gu(wo, &) for all xg € U\B(&, Agr) for
suitably chosen Ag € (1,00). Recall the Dynkin-Hunt formula (Lemma 3.6) that

ref

9v (y7 Z) = gU(y7 ) Eref |:]]‘{TU<CD XrefeV}gref(X;(e]fv )] for all ye U7 Z€ U\{y} (438>

53



By Lemma 3.4(b) for any xz¢ € U\B(&,4r),z € V n B(§,d(£,n)), we have

g{ff(z, 330) _ ]Eief (g{}ef((Xref)ﬂ\_/va(&d(é’n» , xo)) < Ums?;l}l)(g ) g{;f(-, xo). (4.39)

Therefore, we obtain for all xy € U\B(&,4r),y € V n B(&, 2r)

ref (4.38) ref ref ref
v (Ys0) < gu(y,zo) +Py [TU <o, X7 € V] su1\3 gy (2, 70)
zeV\U
(4.39)

< guly,wo) + Py [y <0, XIe V] sup gF(z,m0). (440)
2eUnN0B(,d(¢,m))

Next, we show that there exists d € (0,1) such that for all y € S(§,d(&,n)) nU
Pt [y < 00, XX e V] <1—0. (4.41)

By Lemma 2.28(b), the function h(y) := Pi[7y < o0, X3¢ € V] is harmonic and contin-
uous on U. By Lemma 4.5, there exists co € (0,1/2) such that if y € U n B(£,d(&,n)) is

such that 6y (y) < cor, then
1
hy) < 5. (4.42)
If y e UnB(&,d(£,n)) is such that 6y (y) < ¢ir then by Harnack chaining for the harmonic
function 1 — h on U using Lemma 2.24(b), there exists 0 € (0,1) such that h(y) <1—-9¢

for all y € U n B(£,d(&,n)). This concludes the proof of (4.41).
In particular, taking supremum over y € 0B(§,d(&,n)) in (4.40) and using (4.41), we
obtain

sup ¥ (y.w0) < sup gu(yeme) + (1—6)  sup g (. wo)
yedB(E,d(€,m)) yedB(&,d(&,m)) ye0B(&,d(§,m))

which implies for all o € U\B(¢, 4r)

sup g (y,m0) <61 sup gu(y, wo). (4.43)
yeaB(g.d(E.m) yedB(¢.d(E.m)

By Carleson’s estimate (Proposition 3.11) and Harnack chaining using Lemma 2.23(b),
there exist Ay € (4,00), A1, Cy € (1,00) such that for all £ € 0U,0 < r < diam(U,d)/A;
and x¢ € U\B(§, Agr), we have

sup ¢y, 20) = C g (&, 1),  and sup  gu(y,zo) < Cagu(&r, o).
yedB(&,d(¢m)) yedB(&,d(¢,m))
(4.44)

Therefore we obtain the desired upper bound using

(4.37) (4.34) ref (4 &
Wi (@U A B(&,r)) < CiCsPy (08 < danBesr) < 01203—%( 0-br)
gV (ST?CIT)
(4.35) 2 ref
< C7CyC3gy (w0, &) Cappe o (B(E, 7))

< CICL,05C26 gy (o, &) Cappean(B(§,7)) (by (4.43) and (4.44)).00
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Under an additional assumption which for instance is satisfied for the Brownian motion
on R" with n > 2, the capacity density condition on a domain U implies the uniform
perfectness of its boundary dU. The uniform perfectness of boundary is relevant for the
stable-like heat kernel estimates for the trace process in Theorem 5.19.

Definition 4.9. Let (X, d,m,&, F) be an MMD space that satisfies the elliptic Harnack
inequality such that (X, d) such that (X, d) is a doubling metric space. Then we say that
(X,d,m, &, F) satisfies the capacity non-increasing condition if there exist C, A €
(1,00) such that

Capp(yary(B(z, R)) < C Capp, o (B(w,7)), forallze X,0<r < R < diam(X,d)/A.

(4.45)
We remark that the number 2 in (4.45) can be replaced with any constant larger than
1 due to [BCM, Lemma 5.22]. If (X,d,m,&, F) satisfies the stronger the heat kernel
estimate HKE(W) for some scale function ¥, then by [GHL15, Theorem 1.2], (4.45) is
equivalent to the following estimate: there exist C, A € (1,00) such that

U(R) <C U(r)
m(B(z,R)) = m(B(z,7r))’

forall z € X,0 <r < R < diam(X, d)/A. (4.46)

The condition (4.46) was called fast volume growth in [JM, Definition 1.5]. The fol-
lowing lemma follows from the estimates of harmonic measure in Theorem 4.6 along with
Lemma 4.5(a) and Carleson’s estimate (Proposition 3.11). We omit the proof as it follows
from a straightforward modification of the argument in [AHMT1, Remark 2.56].

Lemma 4.10 (Cf. [AHMT1, Remark 2.56]). Let (X,d,m,E,F) be a MMD space and
let U < X be a uniform domain that satisfy Assumption 4.3. Furthermore assume that
(X,d,m, &, F) satisfies the capacity non-increasing condition. Then oU is uniformly per-
fect.

We provide some sufficient conditions for the capacity density condition below.

Remark 4.11. (a) Let (X,d,m,&, F) be an MMD space that satisfies the elliptic Har-
nack inequality such that (X, d) is a doubling metric space. Let U satisfy the exterior
corkscrew condition (see [JI, (3.2)] for the definition). Then the capacity estimates
in [BCM, §5] imply the capacity density density condition for U. In particular, non-
tangentially accessible domains (see [p. 93]JK) satisfy the capacity density condition.

(b) Let (X,d,m,E, F) be an MMD space that satisfies the sub-Gaussian heat kernel
estimate HKE (W), where W(r) = rd for all 7 > 0, where d,, > 2. Assume that m is
a dg-Ahlfors regular measure; that is, there exist C' € (1, 00) such that

C % <m(B(z,r)) < Cr% forallze X,0 < r < diam(X,d).

If the boundary oU admits a p-Ahlfors regular measure for some p > d; — d,,, then
U satisfies the capacity density condition. The desired lower bound on the capacity
can be obtained by adapting the arguments in [Heil, Proof of Theorem 5.9]. In
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particular, this shows that the uniform domains obtained by removing the bottom
line or the outer square boundary of the Sierpinski carpet satisfy the capacity density
condition of the Brownian motion on the Sierpinski carpet,

We recall a simple consequence of Lebesgue differentiation theorem. We note that the
condition (4.47) is satisfied by harmonic measure on 0U due to Corollary 4.7.

Lemma 4.12 (Lebesgue differentiation theorem). Let (X, d, m) be a metric measure space
such that Blz.2
lim sup m(B(x, 2r))
rl0 m(B(I7 T))

Then for any locally integrable function f : X — R almost every point is a Lebesque point
of f; that 1s,

<o foralzelX. (4.47)

lim £ |f(y) - (@) dm(y). (4.48)

0 B(z,r)

for m-almost every x € X. In particular, for any point x € X satisfying (4.48) and if
Y, m >0 be a family of measurable functions such that 1p,) < ¥, < Lpor, then

oSS dm

i S¢r = f(z). (4.49)

Proof. The assertion given in (4.48) follows from [HIKST, (3.4.10) and Theorem 3.4.3].
The conclusion (4.49) follows from (4.48) as

< lim sup j () £ () — 6 (4) (&) m(dy) < limsup fB< | F) = @lmids) =0

rl0 rl0

]

The following proposition shows that the harmonic measure is the distributional Lapla-
cian of the Green function. In the proof, we use the following notation to denote the 0-th
order hitting distribution of a quasicontinuous function u € F(U),, where F(U), denotes
the extended Dirichlet space corresponding to (€™, F(U).) on L*(U, m‘ﬁ)

Higu(x) == EX [u(XE )V opy<o0y], forall z e U,ue F(U).. (4.50)

Proposition 4.13. Let (X,d,m,E,F) be a MMD space that satisfies Assumption 2.14
and let U < X be an open subset such that the Dirichlet form (EY, F*(U)) on L*(U;m|,)

corresponding to the part process on U is transient. For all x € U and for all u €
F(U) n L*®(U) such that x ¢ suppg|u], we have

£ (gur (i, ), ) = — j Wl
oU
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Proof. By the transience of (€Y, FO(U)) on L*(U;m|,), there exists f € L'(U, m) such
that f is a strictly positive function, §,, fGy fdm < oo and suppy[f] » suppylu] = &.
We note that Gy f € (FO(U)), by [FOT, Theorem 4.2.6]. Then

ENGuf,u) = ENGCuf,u) — EN(Guf, Hyj)
(since Gy f € (FO(U)). and HX'% is harmonic in U)
= &Gy f,u — HE)

= J flu— H%) dm  (by [FOT, Theorem 4.4.1(ii), (4.3.11)])
U
= —f FHES dm  (since suppy [f] » suppgu] = &). (4.51)
U

We choose a sequence f, = 0 such that § f,,dm = 1, supp,,[f,] | {z} as n — oo. The
existence of such a sequence follows by considering f, defined in (3.9). By quasi-continuity
of % and using (4.51) with f = f, and letting n — o0, we obtain the desired conclusion. [

The Martin kernel can be viewed as the Radon-Nikodym derivative of harmonic mea-
sures at different starting points. A similar statement on non-tangentially accessible
(NTA) domains in the Euclidean space was observed in [KT, Theorem 3.1] which is an
easy consequence of the results in [JK]. Jerison and Kenig define the Martin kernel as
such a Radon-Nikodym derivative [JI, Definition 1.3]. For NTA domains in the Euclidean
space the equivalence of our definition with [JI{, Definition 1.3] follows from the unique-
ness theorem in [JIK, Theorem 5.5]. Our next result is a generalization of [K'T, Theorem
3.1].

Proposition 4.14. Let (X,d,m,E,F) be a MMD space and let U < X be a uniform
domain that satisfy Assumption 4.5. For all x,xq € U, we have

dw?

() = Kgy(a,-). (4.52)

U
dwg,

Proof. Let A= B(£,7)noU, B = B(£,2r)°nU and e, 5 denote the equilibrium potential
for A with respect to the Dirichlet form (£, F(U)) for the reflected diffusion on U with
Dirichlet boundary condition on B. By Proposition 4.13 and Lemma 3.7 there exist
measures )\}47 B )\?47 5 supported on A and U n 0B(, 2r) respectively such that

0< J Capdwl = - (gy(x,-),ean)
ou

([ diam - ) a.w)

_ f g0 (@, ) AN 5 (y). (4.53)
UnoB(g,2r)
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Taking ratio of (4.53) for x and for z; in place of x, we obtain

SUmE?B(f,Qr) gu(x,y) ANy 5(y)
— Ky, 8)| = i ( 0 — K, (z,6)
TnoB(e,2r) JUL0s Y) A,B(y)
SUm&B(g,Zr) gU(x07 y) (Kﬂﬁo (SE, y) - Kxo (.T, 5)) d)‘(f]l,B (y)
SUmaB(g,zr) 9u (2o, ) d)‘%,B(y)
SUQ&B({,%) gu (1‘07 y) |K560 (:U7 y) - KCL‘O ($7 £)| d)‘OA,B(y)

SUm@B({,Qr) 9u (20, y) dA%,B(?/)

~ U
SaU eapdwt

~ U
SaU €A,B dwzo

N

(4.54)

N

By the boundary Holder regularity of the Martin kernel (Lemma 3.10), there exist Cy, A; €
(1,00),7 € (0,00) such that for all zg,z € U,& € 0U,0 < r < A (d(z0,€) A d(z,€)),y €

U n B(,r), we have

-
r
Koo (2,y) — Kyp(2,8) < C1 K (2, € ( ) . 4.55
| 0( ) 0( )| 1 0( ) (d(l’o,f)/\d(l‘,g)) ( )
By using (4.54), (4.55) and letting r | 0, and use the continuity of gy to take the limit
to obtain the desired conclusion (4.52) wY -a.e. using (4.49) in Lemma 4.12. The use of
Lemma 4.12 is justified by the mutually absolutely continuity in Lemma 2.28(c) and the
asymptotic doubling property in Corollary 4.7. O]

4.3 The elliptic measure at infinity on unbounded domains

On unbounded uniform domain the harmonic measure need not be doubling. For instance
if OU were unbounded and connected, due to [Hei, Exercise 13.1] every doubling measure
on oU must necessarily be an infinite measure. In particular, there are no doubling prob-
ability measures on 0U. Nevertheless, as we will see there is a canonical doubling measure
on 0U obtained as a limit of scaled harmonic measures wY as x — oco. Propositions
3.21 and 4.13 suggest to consider the limit of scaled harmonic measures gy (zo, r) 'wY as
x — oo. Following [BTZ, Lemma 3.5], we call this limit the elliptic measure at infin-
ity. Alternately, the distributional Laplacian of the harmonic profile defines the elliptic
measure at infinity on the boundary oU as shown below.

Proposition 4.15 (Elliptic measure at infinity). Let (X, d,m,E, F) be a MMD space and
let U € X be an unbounded uniform domain that satisfy Assumption 4.3. Let (T )nen, To €
U be a sequence such that x; € U for all i € N and lim,,_,o d(zo,z,) = . Let hif(-) =
limy, o0 Ky (zn, ) denote the Martin kernel at infinity. Then the sequence of measure
n () 1= gu(an, To) 'l () converge weakly to VY and

ENRY (),u) = — Jﬂdl/go for all uwe F(U). (4.56)

In particular, the measure I/chO does not depend on the choice of the sequence (T,)n>1-

The measure I/go satisfies the following properties:
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a) The measures v¥ and wY are mutually absolutely continuous. Furthermore, the
xo

xo

Z/U . .

Radon-Nikodym derivative Zw? : 0U — (0,00) can be chosen to be a strictly posi-
o

tie continuous function satisfying the following bound: there exist C, A € (1,00) such

that for all £ € 0U,0 < R < A~Yd(&, x0),n € 0U n B(E, R), we have

hY dvl
P Ll ) < O enlan (ans ) (4:57)

(b) The measure VY is smooth with quasi-support OU for the Dirichlet form (€%, F(U)).

Zo

(c) There ezists C' > 0 such that for all £ € OU, R > 0, we have

C_lthO (€r) CapB(g,QR)(B(fa R)) < VgO(B(ﬁﬂ")) < thUO (€r) CaPB(g,QR)(B(fa R()) )
4.58
In particular, the measure u;{) 15 doubling.

Proof. For any u € C.(U) n F(U), there exists ¢ € C.(X) n F, N € N such that x, ¢
supp[¢] for all n = N and supp,,|u] < supp[¢]. By Proposition 4.13 and strong locality,

we have ( ) ( )
Udy, = € (—gU T u) - (cb I EIm u) , 4.59
g0 (m, 70) O ot o) (4.59)

where we adapt the convention of extending gy (z,,-) by 0 on U¢. If we similarly extend
hY as 0 on U® by Proposition 3.21 and Remark 2.20(b), we obtain that

ou

lim & <¢(-)M ol () dulin) gbthO> 0. (4.60)

nz=N,n—w gu (Q?n, .CC()) o’ gu (xna iL’o)

Combining (4.59), (4.60) and by the strong locality of (™, F(U)), we obtain

lim | @dv, = =& (¢()nY,u) = =& (hY ,u).

xo? x0?
n—o0 ) 0 0

Therefore the measures v, = gy (y, o) 'wY (-) weakly converge to v . The claim that

v does not depend on the choice of the sequence (z,),>1 follows from (4.56) and the
similar claim in Proposition 3.21.

(a) By Proposition 4.14 and (3.50),

dv, 1 dw? 52) K (20,7) 35
() = Sy 2 Bnlim ) gy 0y (ag
dwmo gU(Inu xn) dwzo gU(xTLa 3:0)

By (3.37) and joint continuity of ©Y , the sequence ©Y (z,,-) is uniformly bounded
on every compact subset of dU. Similarly by (3.38) and joint continuity of ©Y
the sequence ©F (x,,-) is equicontinuous on every compact subset of 0U. By Arzela-

Ascoli theorem and passing to a subsequence, we may assume that @go (2, +) converges
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5

uniformly on compact subsets of oU to a continuous function, say @xUO(oo, ) oU —
[0, 00). Hence by (4.56) and (4.61)

U U

V., K w and

) o) dw_U() Zo (007 ) (462)

By (4.61), (3.37), joint continuity of ©Y , for all £ € 0U, R > 0,n € oU n B(¢, R), we

have

dvn , | (461) Np (3:37) gu(@n,Er) 1
=0 (x,, = @x T, =
ol (1) 20 (T, M) (0, ER) a0 (2 20) 70 (70 ER)

for all n sufficiently large. Letting n — oo and using Proposition 3.21, we obtain the

estimate (4.57). Since O (oo, ) is strictly positive in U, we conclude that v and

U

wy, are mutually absolutely continuous.

By the mutual absolute continuity of uf{o and w;{), the quasi-supports are equal. Hence

the desired conclusion follows from Lemma 2.28(d).

By Proposition 3.21 and (4.56), we have

thO(-) = thO(y)hyU(-), 1/5() = hUl(y) ygo(-), for all y e U. (4.63)

For £ € U, R > 0, we choose y € U\B({, AR) and estimate

5 Y 15
Bl R L (Ble ) 1 ) ey (BIE R (164)
The estimate (4.58) follows from (4.63) and (4.64).

The doubling property of I/go follows from (4.58) along with Proposition 3.21, Lemma
2.24, and [BCM, add. text]. O

The trace process on the boundary

In this section, we always assume that (X, d, m, &, F) is an MMD space and U is a uniform
domain satisfying Assumption 4.3.

5.1 The boundary measure and the corresponding PCAF

To define the boundary trace process, we choose a reference measure on the boundary oU
as given in the following definition.

Definition 5.1. If U is bounded, we choose zy = ET using Lemma 2.6, where ge oU is
chosen arbitrarily and r = diam(U, d)/5. If U is unbounded, let zyp € U be an arbitrary
point. We define the measure y supported on the boundary as

WY (+), if U is bounded,
() = { ") 6.1)

vY(-), if U is unbounded,
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where wf (-), V5 (-) are the harmonic measure (Definition 2.27) and elliptic measure at

infinity (Proposition 4.15) respectively.
In order to describe properties of u, we define @ : oU x (0, diam(U, d)/4) — (0, o),

~ _ ) gu(@o,§,), if diam(U,d) < oo,
2Er) = {hgo(gr), if diam(U, d) = oo, (5:2)

where &, is chosen using Lemma 2.6.

Note that by [GHL15, Theorem 1.2], and [BCM, Lemma 5.24], there exist C, A € (1, c0)
such that
U(R) U(R)

for all ¢ € U,0 < R < diam(U,d)/A. Let us recall that the function ®(-,-) is useful to
estimate the measure p. Indeed, by Theorem 4.6, Proposition 4.15(c), and (5.3), there
exist C, A € (1,00) such that

m(B(&R) _ p(B(GR) _ ,m(BE R))
U(R) T O R) U(R)

< CapB(g,QR)(B(f7 R))<C (5.3)

ct for all £ € 0U,0 < R < diam(U, d)/A.

(5.4)
We record some basic estimates on ®(-, -) and show that ®(-, -) is comparable to a function
®(-,-) that has better continuity properties.

Lemma 5.2. There exist a reqular scale function ® : 0U x (0,00) — (0,00) in the sense
of Definition 2.30 and Cy, A € (1,0) such that

CUIO(E, 1) < B(&, 1) < C1D(E,r),  for all € € U0 < r < diam(U)/A; . (5.5)

Proof. First, we show that there exist C, 81, B2 > 0, A € (4, ) such that, for all n,§ € oU,
0 <r < Rwith Rvd(,n) <diam(U,d)/A

. B2 rd(€,m) v R\A _ (&R R B d(€,n) v R\A2
¢ (W) (%) <<f)((n’r))<c<d(§,77)v]%> ( 777" ) '

(5.6)

By Lemmas 2.24 and 4.5 and by the harmonicity and Dirichlet boundary conditions

of gu(xo,-) and hY (-) in Propositions 3.1(iv), 3.21, Lemma 2.18, there exist Cy,Cs, A €
(1,00), 1, B2 € (0,00) such that

B1 T B2
crt <§> < qi(g’ k) <Oy (5) , forall £€0U,0 <r < R < diam(U,d)/A, (5.7)
r (¢, 7) r

and

(&, R v d(&,n))
(n, R v d(&,n))

o
o7t < 3 < Oy, (5.8)
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for all n,& € 0U,0 < r < R with R v d(&,n) < diam(U, d)/A.

The conclusion (5.6) follow from (5.7), (5.8) using the expression

DER) _ 0GR BERvdEm) B RvdEmn)
Per)  BERvAEm) S RvdEm)  dEr)

By (2.12), there exists Ay € (1,00) such that for all £ € oU, R < diam(U)/A, we have

B, A7 R) < 5P(E, R) (5.9)

N | —

Using (5.9), we define the function as follows: If U is unbounded, we define
(e, AR = B¢, AE) forall E€dU ke Z,

and extend ® (¢, -) by piecewise linear interpolation to (0, ) for each £ € oU. Using (5.6)
and (5.5), the estimate (2.36) in Definition 2.30. The fact that ®(¢,-) is an increasing
homeomorphism follows from (5.9). This concludes the proof if U is unbounded.

If U is bounded, we define
®(¢, AE(24) M diam(U)) = D(¢, AE(2A) 'diam(U)) for all £ € OU, k € Z,k > 0,

and extend ®(&, -) by piecewise linear interpolation to (0, c0). The conclusion follows from
the same reasoning as the bounded case. ]

It will be convenient to use ®(-,-) in Lemma 5.2 instead of ®(-, -) due to its better con-
tinuity property. So we set ®(-,-) to denote the function in Lemma 5.2 for the remainder
of the work.

The following lemma is an upper bound on the integral of heat kernel with respect to
w. This upper bound is later used to show that p is a smooth measure in the strict sense
(Lemma 5.4) and to identify the support of the corresponding PCAF with the topological
boundary (Proposition 5.7).

Lemma 5.3. There exists C' € (1,0) such that for all £ € 0U,t € (0,0), we have

ref 1 (B(&, V(1))
LUpt (z,y) pldy) < C m(BlE (1)

where &, € OU is any point such that dist(x,U¢) = d(z,&,).

(5.10)

Proof. By HKE(V), [GT12, Lemma 3.19] and (2.12), there exists Cy € (1,0),c2 €
(0,1),0 < a3 < ay < oo such that for all z,y € U, we have

) = 109) < e G e (e ((55) (i(z;)g)m
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If ¢, € OU satisfies dist(x,U¢) = d(z,&,), then
d(&,y) < d(z,y) + d(z, &) < 2d(z,y) forall ye U. (5.12)
By (5.11), (5.12) and (2.1), there exists Cy € (1,00),¢3 € (0, 1) such that

pi@f(x’y)gmw(y%l(t))) o (e ((555) - (+55) )
m(B(gz’;_l(t)))eXp(_% | (( @kt))) ((fx,(t))) )) 51

for all z € U,y € oU where &, € 0U satisfies dist(z, U¢) = d(x, &,).

For all z € U,&, € 0U such that dist(x, U¢) = d(z,,) and for all t > 0 using (5.13)
and (2.1), we estimate

LU i (2, y) p(dy)

0
= f pit () dply) + ) f pit(x, ) dp
B( 2 e e o) B 211 ()

(19 (B, ¥ (1) | < w(B(& 28V 1(1))) ark
s W) " A B ) P

)
) exp(—c2%1%)

L HBE V) | (B2 )
S n(BE (D) T A m(BE, (1)
%gtijg;; 1+Z2’“ﬁ eXp(—CQO‘Sk)] (by (2.1))
(B, U1 (1)))
m(B(&, U 1()) (5:14)
]

Next, we show that u is a smooth measure in the strict sense for the Dirichlet form
corresponding to the reflected diffusion on U.

Lemma 5.4. The measure {1 is a_smooth measure in the strict sense for the reflected
Dirichlet form (€, F(U)) on L*(U, ml|;) with quasi-support oU .

Proof. We only consider the case when U is unbounded (the bounded case is similar and
casier).

Fix £ € 0U. For any n € N, we consider the measure ji¢ () := p(- n B(§,n)). By the
same argument in (5.11) there exists Cy € (1,00),¢3 € (0,1),0 < a3 < ag < o0 such that
for all z,y, z € U with d(x,y) < d(x, z), we have

09 < ey (o ((755) - (75) ) o
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Note that for any = ¢ B(£,2n),z € B(£,n), we have d(x,z) = d(&, z). Hence by (5.15)
and the same argument as (5.14), we obtain

- B, Y1(s)))
LUpS (x,-) dpen < m(BET1(s)) for all x ¢ B(&,2n). (5.16)

If x € B(§,2n), then by Lemma 5.3
|| ptaeatan < [ e nuin < STEETEO )

where £, € B(§,3n) noU satisfies dist(x, U¢) = d(z,&,). For all n € 0U using the doubling
property of m and u, we have

b (B, o T (B, T7(s)))
Le m(B, ¥ d‘ZJ nw<m“
u(B <2»>%
% -ﬂﬂ
(42 O(n, (27

= ®(n, ¥ (1)) (by Lemmas 5.2 and [GT12, Lemma 3.19]),
(5.18)

and

F (B, ¥ )

© B, v1(s) qr ()

<me<wmygwl
m(B(n, U—1(2k)

f ~HEQE I,
W

NgER MS

A

k=1

72]671

®(n, U (2"))e

X
s

(by (5.4))

=
Il
o

O(n, UH(1))2"e 2" < O, TTH(1)). (5.19)

L

<

e
Il
o

In the last line above, we use Lemmas 5.2 and [GT12, Lemma 3.19]. Combining (5.16),
(5.17), (5.18), (5.19) and using Lemma 5.2, we obtain

fj‘e%ﬁxym%4@> sup  B(n, U(1)) < D(E,n) (5.20)
oUu neolUnB(&,3n)

for all z € U. Since e is a finite measure such that the corresponding 1-potential
x> §., 57 e it (. y) dt pen(dy) is bounded, we conclude that s, is of finite energy
integral for all n € N [FOT, Exercise 4.2.2]. Therefore u is a smooth measure in the strict
sense. The assertion that dU is a quasi-support of p follows from Lemma 2.28(d) and

Proposition 4.15(b). O
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We record another upper bound on an integral of heat kernel with respect to p similar
to Lemma 5.3.

Lemma 5.5. There exist C € (1,00),A € (4,0) such that for all £ € 0U,0 < r <
diam(U, d)/A

[0 0] _
j f pitUPEN) (4 y) di p(dy) < CO(E,7), (5.21)
oUNB(E,r)

where p** UnB(E, T)( Y (UnB(E, 1) x (UnB(&,7)) is the continuous heat kernel as given
in Lemma 3.4(d).

Proof. By Fubini’s theorem and Lemma 5.3, there exists A; € (1,00) such that for all
£edlU,0 <r <diam(U,d)/A;,z € U n B({,r) we have

w(r) T
J J' p;ef,UﬁB(f:T) (x7 y) dt /ub(dy)
oUNB(&,r)

J f Pyt (2, y) dt p(dy)  (since ptUnPEN () < pei(, )
5U

1 (B(E,, (1)) O (YT (BE,, U(#))
§L <<sz, ) = ZJH m(Bl&, w1y (2 (0-10)
< 2 BE2T0) g5 k) D S (e, 240 2 i) L aer), (522

k
B(&s,275r) k=0

where &, € 0U is chosen as given in Lemma 5.3.

By [HS, Proof of Theorem 2.5], there exist Cy, A; € (1, 00) such that for all x € U,0 <
r < diam(U, d)/A;, the first Dirichlet eigenvalue

gref(f’ f)
SB(z,r)mU f2 dm

M(B(x, 1) nU) := inf{ : feFU), f‘(B(x,r)mU)c =0 m—a.e.}

satisfies o c
L_ < \(B U) < —.
0 Xo(B(z,r) nU) 50

Hence by [IS, Proof of Lemma 3.9(3)] and (5.23), there exist Cy, A; € (1,0),¢; € (0, 0)
such that all z € U,0 < r < diam(U,d)/A1,y, 2 € U n B(x,7),t = ¥(r), we have

(5.23)

02 Clt
S B a0 (50 524)

ref,UnB(é,r
Py 7y, 2)
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Therefore for all ¢ € oU,0 < r < diam(U,d)/A;, 2 € U n B(£,r) we have

o8] _
J j pi PO @y dt (dy)
oUNB(&,r) JU(r)

< LUQB(&T) Ljr) % exp (—%) dt p(dy)  (by (5.24))

W(r) W(B(Er)TU(r) 6.4
- m(B(€.1) d = B @ b . .
s LUmB(s,r) m(B(Er) " () m(B(E, ) (&7) (5.25)
By (5.22) and (5.25), we obtain the desired upper bound (5.21). =

Since p is a smooth measure in the strict sense, it defines a PCAF in the strict sense
due to the Revuz correspondence.

Definition 5.6. Let A denote the positive continuous additive functional (PCAF) in
the strict sense for the reflected Dirichlet form (£, F(U)) on L?(U, m‘ﬁ) whose Revuz
measure is g. Note that by Lemma 5.4 and [FOT, Theorem 5.1.7], there exists a PCAF
in the strict sense (A;);=0 whose Revuz measure in p.

The state space of the trace process corresponding to the PCAF (A;) is the support of
the PCAF. To this end, we show that the support of A is dU in the following proposition.

Proposition 5.7. The support of the positive continuous additive functional in the strict
sense A corresponding to p is OU; that is,

oU = {ze U :P[A, > 0 for any t > 0] = 1}. (5.26)
Proof. Set
R:=inf{t > 0|4, >0}, S(u):={xeU:P[R=0]=1}

First we show that
P (R> o) =1 forallweU. (5.27)

Let pY(-,-) denote the continuous heat kernel for the associated part Dirichlet form of
(&, F(U)) on U given by Lemma 3.4(a) and Theorem 2.12. Then for all x € U, we
obtain

TU
E [A,.,] = 13%1 et [f dAs] (by monotone convergence theorem)
t

TU
— lim]EreUf(x ym [J dAS] =0 (by [CF, (4.1.25), Proposition 4.1.10]).

p
tio P 0

Therefore P (A,,, = 0) = 1 and hence we obtain (5.27). By the right continuity of
sample paths, P* (o5 > 0) = 1 for all z € U and hence by (5.27), we conclude

oU 2{xeU:P*[A, > 0 for any t > 0] = 1}. (5.28)
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Note that by [CF, (A.3.12) in Proposition A.3.6], we have

PR =054y =1 forany zeU. (5.29)
Therefore in order to obtain (5.26), by (5.28) and (5.29) it suffices to prove that

P o5y =0l =1 for any z € OU. (5.30)

We adapt [BCM, Proof of Proposition 6.16] to obtain (5.30). We collect a few pre-
liminary estimates on Green function. By Lemma 5.5, there exist C7, A; € (1,00) such
that,

J o 7g§(fw)mﬁ(y, 2)u(dz) < C19(&,r) for all y e B(E,r). (5.31)
B(,r

nU

By increasing A, if necessary and by [GHL15, Theorem 1.2] and Theorem 2.12, there
exist Cy, Ag € (1,00) such that for all x € U,0 < r < diam(U, d)/A;, we have

L U(n) _ W(r)
ol <t (A< Oyl 5.32
> (Bl S IBtaner(® Ao ) < Cop gty (5:52)
Next we show
Pe'[re = 0] =1 forall { € oU. (5.33)

Indeed, for any = € U and any ¢ > 0, we have
PR = o) = [ 1y (o, ) = 0
U

by the existence of heat kernel of the reflected diffusion X! and the fact that m({z}) = 0
thanks to the reverse volume doubling property, and hence P*f[7, < ¢] = 1 for any z € U.
Now letting ¢ | 0 yields (5.33). Fix any £ € 0U and let ¢t > 0 and € > 0 be arbitrary. By
(5.33), we have

]pzef(T <t)>1—¢, foralléeU, whereT = TB(E) AT (5.34)

for some r = r(£,t,¢) > 0. By decreasing r = r(&, t, ) if necessary, we may assume that
0 < r < diam(U,d)/A;, where A; € (1,00) is as above. Fixing r = r({, 1, €) as above, we
define

K, = B(é,Aalr) N S(w).

We show that there exists a constant ¢y € (0,1) that depends only on the constants
involved in the assumption such that

P! (ox, <T) = co. (5.35)

Let e denote the equilibrium measure for K such that e(K;) = Capg(K,), where B =
B(x,7) nU and Capp(K;) denotes the capacity as defined in (3.15) corresponding to the
reflected diffusion (£™f, F(U)) on L*(U, m‘ﬁ). To prove (5.35), we observe that

P ok, <7p) = j g5 (,y) e(dy) for all z€ B. (5.36)
Ky
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To obtain (5.36), we use [FOT, Theorem 4.3.3 and the 0-order version of Exercise 4.2.2] to
conclude that both sides of (5.36) are quasi-continuous versions of the 0-order equilibrium
potential for K; with respect to the part Dirichlet form on B. Furthermore, both sides of
(5.36) are (X')B-excessive from [CF, Lemma A.2.4(ii)] and Lemma 3.4(b) respectively.
By the absolute continuity property from Lemma 3.4(a) and [CF, Theorem A.2.17(iii)],
we obtain (5.36). By (5.36) and the maximum principle (3.3),

P (0w, <T) = | g€ eldy) > g6 4, ') Comp(K0). (537

Ky

Since S(u) is a quasi-support of the Revuz measure p of (A;);=0 by [FOT, Theorem
5.1.5], we have p(S(p)¢) = 0 and hence

WK = (B Ay 7). (5.38)

We recall the following inequality for capacity ([FOT, p.441, Solution to Exercise 2.2.2]):
for any Radon measure v on B with §, ¢i5'(+, 2) v(dz) <1 £™-q.e. on B and v(B\K)) = 0,

V(K1) < Capp(Kh).

By considering the measure v(-) = u(K; n-)/(C1®(€, 7)), (5.31) and the above inequality,
we obtain

(&, 1)

C K1 -1 IV K1 1= Clq) , T K1 (5;8) Cl—.
app (K1) < v(K)) (€))L O s

(5.39)

To establish (5.35), we estimate P (ox, < T') as

62 o195 (& A T)n(B(E Ay'r))
' (¢, 7)

W(r)u(B(E Ag'r)) G p(B(S Ag'r))

m(B(&,r)®E,r) ~ B 7))

> 1 (by Corollary 4.7 and Proposition 4.15(c)).

ref (5.37) ref -1
P (ox, <T) = gg (§, Ay 1) Capp(Kh)

(5.

5.32)
=

(C1Cy) !

By choosing € = ¢y/2 and using {ox, < T} < {og(,) <t} U{T =t} e = ¢y/2, we obtain
Pt (osgy <t) =2 Pl (og, <T) —PY(T = t)
>cog—e =3¢ (by (5.34) and (5.35)).
Since t > 0 is arbitrary, the Blumenthal 0-1 law [CF, Lemma A.2.5] gives (5.30). O

Remark 5.8. By the estimate in (5.39) along with [CF, Theorem 3.3.8(iii)] or [FOT,
Theorem 4.4.3(ii)], for the MMD space (U, d, m|y, £, F(U)) we have

Cap,(B(&,r)noU) >0 forall £ € oU,r > 0.
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5.2 The Doob-Naim formula

We describe trace process on the boundary and the associated trace Dirichlet form corre-
sponding to the PCAF defined in Definition 5.6.

Definition 5.9 (The boundary trace process). Let {X ', (P*f) &} denote the reflected
diffusion process on U that satisfies the Feller and strong Feller property defined at every
starting point corresponding to the MMD space (U, d, m 7 &t F(U)) (see Theorem 2.12
and Proposition 2.13). Let p and A be the smooth measure in strict sense and the corre-
sponding positive continuous additive functional in strict sense as defined in Definitions
5.1 and 5.6 respectively. We recall that the associated trace process is defined as

Xrefo= X' 7= inf{s > 0: A, > t}. (5.40)

By Proposition 5.7 and [FOT, Theorem A.2.12] or [CF, Theorem A.3.9], X! defines a
strong Markov process with right continuous sample paths on oU such that the corre-
sponding law (P™f),cop satisfies Prf(Xif = z) = 1 for all x € oU. By [FOT, Theorem
6.2.1(i)] and Proposition 5.7, the corresponding transition semigroup (iref)t>0 is a strongly
continuous semigroup on L?(0U, p).

To describe the Dirichlet form (™, F(U)) on L2(dU, 1) associated to the semigroup
(T ref),~0 we adopt the convention that every function in the extended Dirichlet space
F(U), of (&L, F(U)) is denoted by its £*-quasicontinuous version. By [FOT, Theorem
6.2.1(ii)] or [CF, Theorem 5.2.2] and Proposition 5.7, the associated trace Dirichlet form
is given by

FU):={peL*0U,p): ¢ =u p-ae. onoU and ue F(U).,}
ENp, ) = EN(HS u, Hit'u),  where ¢ = u prace. on U and ue F(U),, (5.41)

where Hu is the 0-order hitting distribution corresponding to X™f given in (4.50). By
[FOT, Lemma 6.2.1] the form in (5.41) is well-defined.

The Dirichlet form (£, F(U)) on L2(0U, ) associated to the trace process is regular
by [FOT, Theorem 6.2.1(iii)]. By the Beurling-Deny decomposition ([FOT, Theorem
3.2.1] or [CF, Theorem 4.3.3]) every regular Dirichlet form can be uniquely decomposed
into a strongly local (or diffusion) part, a jump part and a killing part. To describe this
decomposition, let us denote by the extended Dirichlet space associated with (£, F(U7))
as F(U).. Then by [CF, Theorem 4.3.3], there exist symmetric strongly local bi-linear
form M) : F(U), x F(U)., a symmetric Radon measure .J on (U x OUN(OU ) diag, and

a Radon measure x on 0U such that

- - 1
gref(u’ U) _ gref,(c)(u7 ’U) + =

2 J((?UX(?U)\(aU)diag
+ | @) stdo) (5.42)
oU

(i) = u(y))(0(z) = 0(y)) J (dz dy)
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for all u,v € F (U)., where @, v denote Svref—quasicontinuous versions of u,v respectively.
The measure k and J are called the killing measure and jumping measure respectively.

The following lemma is the main ingredient to show that the killing measure x is zero
as is an easy consequence of the A-regularity estimate shown in Lemma 4.5(a).

Lemma 5.10. Under the capacity density condition, we have
P ooy = 0] =0, forallzel.
Proof. First, since the reflected diffusion has the property that
PX e U] =1 for any v € U and any t > 0

by (AC) for X™f and m(oU) = 0, it suffices to show the claim for x € U. Then by the
Markov property at any time ¢ > 0, X* hits oU after time t P**-a.s. for any x € oU.
In particular, we can work with the original diffusion X on the ambient space X rather
than the reflected diffusion X™ on U.

We claim that any relatively compact open subset D < X with D¢ non-&-polar,
P.[rp <] =1 forany z € D. (5.43)

This follows by [BCM, Proposition 3.2], and (AC) for the part process X on D. In
particular, if U is bounded, then the desired claim follows by U + X', (CDC) and Remark
4.2.

Thus we may and will assume that U is unbounded. Let z € U and choose & €
oU, R > 0 such that R > d(x,&). By Lemma 4.5(a) there exist C7,d > 0 such that for all
K € (1,00)

(5.43)
P, (v <o) = P, (10 < 7pexr) =1—Po (Toexr < )

> 1 —w/"PER(U A S(E, KR))
>1-C,K° (by Lemma 4.5(a)).
Letting K — o0, we obtain the desired conclusion. O]

Our next result shows that the only non-vanishing term in the Beurling-Deny decom-
position (5.42) is the jump part. Our main tool is [CF, Corollary 5.6.1] that identifies
the Beurling-Deny decomposition in terms of the energy measure and the supplementary
Feller measures and Feller measures.

Proposition 5.11. The trace Dirichlet form (Svref,]t"(U)) on L*(0U, 1) is of pure jump
type; that is k and £ in (5.42) are identically zero.

Proof. By [CF, Corollary 5.6.1] the killing measure is the supplementary Feller measure
as defined in [CF, (5.5.7)] which in turn vanishes due to Lemma 5.10.
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By [CF, Corollary 5.6.1] and [Mur23+, Theorem 2.9], the strongly local part of
(Erf, F(U)) vanishes. More precisely, we view U as a uniform domain in U and ap-
ply [Mur23+, Theorem 2.9] on the MMD space (U, d, m o &t F(U)) to conclude that
the energy measure of any function f € F(U) on the boundary oU is zero. This concludes
the proof that the trace form is of pure jump type. O

The goal of this section is the Doob-Naim formula stated in Theorem 5.12. We discuss
relevant previous works and approaches of proving the Doob-Naim formula. As mentioned
in the introduction, this was first shown by Doob in the setting of Green spaces [Doo].
Green spaces are locally Fuclidean and hence the result does not apply to diffusion on
fractals [BC]. Doob’s work relies on existence of fine limits to define the Naim kernel and
existence of ‘fine normal derivatives’ [Doo, §8] shown by Naim [Nai]. It is unclear to the
authors whether these results of Naim can be extended to our setting and we leave it as
an interesting direction for future work. M. Silverstein showed Doob-Naim formula for
Markov chains on countable spaces using an excursion measure [Sil, Theorem 1.3]. While
it is possible to construct similar excursions in our setting [CF, §5.7], we choose a direct
approach starting from the definition of the trace Dirichlet form in (5.41) and performing
a fairly simple computation. The joint continuity of the Naim kernel established using
the boundary Harnack principle in Proposition 3.15 and the description of Martin kernel
as the Radon-Nikodym derivative of harmonic measure in Proposition 4.14 are important
ingredients in our proof.

For random walks on certain trees, the trace Dirichlet form on the boundary is
amenable to explicit computations. This was first done by Kigami [Kigl0, Theorem
5.6] and was later shown to coincide with the Doob-Naim formula in [BGPW, Theorem
6.4]. Kigami also obtained stable-like heat kernel estimates [[Kig10, Theorem 7.6] for the
trace process on boundary.

By extending the results of [Doo, Fuk, Sil], we show that @xUO(-, -) is the jump kernel

of the trace process with respect to wl x wl .

Theorem 5.12 (Doob-Naim formula). Let (X, d,m,E, F) be an MMD space and let U be
a uniform domain satisfying Assumption 4.3. Then the jump measure J of the Beurling-
Deny decomposition of the trace Dirichlet form (£, F(U)) on L*(0U, ) as given in
(5.42) is

4J(E, 1) = O (€, n) dl (€) dul (1)

FEquivalently,

! (u,v) = (@) — U(y) (¥(x) — V() Og, (€,1) duwg, (€) dwg, (n)

DO | —

f(aU x0U)\(OU ) diag

for all u,v e F(U), where U,V denote E* -quasicontinuous versions of u,v respectively.

Proof. Let £, n € oU be distinct and r < d(€,7)/4. Let A = B(&,7)noU, B = B(&,2r)°nU
and eq g € F(U) denote the equilibrium potential for Capg(A) for the Dirichlet form
(&t F(U)) as given in Lemma 3.7 such that

Capg(A) = & (ean,ean), eéap=1&qe.on A, €15 =0&""qe. on U\B,
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where €4 p is a E*-quasicontinuous version of e4 p. Let A} 5, A% 5 denote the associated

measures as given in Lemma 3.7 supported in A and U ndB(&, 2r) respectively. By (4.53),
we have

0< [ Zamdel, = | guleo, ) dNp(0) (5.44)
oU UnoB

Let u e C,(U) n F(U) be such that 1@ < u < 1pgor. Since HEy is harmonic in
U and Hy (€4 p) —€ap = 0 E™-q.e. on OU, we have

EN(HEw, HEXHE A 5)) = E(HE (1), 845) (by [FOT, (4.3.11), (4.3.12)])

= —f Hijud)\) ;  (by Lemma (3.18))

UnoB(g,2r)

T fUmaB(mr) (LUU(Z) dwﬁ(z)) s ()
(152) _ f - < L UK (0:2) d (z)> D%, (y). (5.45)

UnoB

Note that by [FOT, Lemma 6.2.4] and [CF, Theorem 5.2.8],
5,473‘6(] e F(U) and 5,473‘6[] is £f_quasicontinuous. (5.46)

Therefore by, the Beurling-Deny decomposition (5.42), (5.46), and Proposition 5.11, we
obtain

& (Higu, Hy (€a )
= Sref(u‘aU,gA,B‘aU), (by (5.41))

1 (u(x) —u(y))(Can(x) —any)) J(dz,dy) (by (5.42), (5.46))

2 J;@UxaU)\(aU)diag

J(GU xOUN\(OU ) diag

where in the last line above we use that u, €4 p have disjoint supports (note that r <
d(&,m)/4) and J is symmetric (see [CF, Proposition 4.3.2]). Therefore, we obtain

S(aUxaU)\(aU)diag u(r)eap(y) J(dz,dy)
Sov wdwl, §o € dw,
—EN(Hygu, Hf (Ea,p))

= . by (5.47
SaUwa:[E]o SaU €a,p dwl) (b { )

SU(V?B &,2r (S@U U(Z)Kxo (y’ Z) dwgo (2)) d)\OA’B (y)
_ (€2r) (by (5.44) and (5.45))
Sou wdwi SUm@B({,Qr) gu (0, y) d\a 5 (y)
u(z) gu (20, y)

(3.50) f J o ( v
= 20Uy 2) T~ duw (2)
UnoB(e2r) Jou Sop wdwiy " SUmaB(gzr) gu(o,-) dX)) g

d)‘?a\,B(y)-

(5.48)
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Let p be the metric on oU x dU defined by p((z1,v1), (x2,y2)) = max(d(x1, x2), d(y1,y2)).
For (x1,x9) € 0U x U, let B,((z1,22),7) denote the open ball of radius r in the metric
p centered at (zy,73). By [FOT, Lemma 4.5.4(i)] and using €45 = 1 £*-q.e. on A, we
have

u(x)eap(y) =1 for J-almost every (z,y) € (B(n,r) x B(&,r)) n (U x U).

Hence

LU LU uw(@)ea p(y) J(dz,dy) = J(B,((n,&),r)). (5.49)

By Corollary 4.7, there exist C; € (1,0), A; € (6, 00) such that for all ({,n) € U x U, 0 <
r < A7 (d(wo, &) A d(z,m)), we have

(Wi X W) (Bo((11.€),2r)) < Ca(wy, x W) ((B,((n,€),7)) - (5.50)

U is smooth, €4 5 < Lp(e2r) E-q.c. implies €45 < L 2 wl -a.e. and hence

Since wy,

J udwgoj €AB dwgo < J L (m,2n) dwgof Lo dwgo = (wgo X wgo) (By((n,€),2r)).
oU ou oU oU

(5.51)
Combining (5.51), (5.49) and (5.50), we obtain

J(B,((n,€),7)) S(ﬁUx&U)\(aU)diag u(z)eap(y) J(dz,dy)

(Wi, x wiy) (Bu((n,€),7))

for all (&,1) € (OU x OU)\(OU )ding, 0 < 1 < A7 (d(0,€) A d(x0,m) A d(E,7)).

By using (3.46) in Proposition 3.15 and increasing A; if necessary, there exist Cy €
(1,00),v € (0,00) such that

<O

(5.52)

Ul ¢ U
Sou wdw S €ap duwl)

S(&Ux&U)\(@U)diag u(x)eap(y) J(dz,dy)

- @mUo (777 §)‘

Ul ¢ U
S wdw $orr €am dul)

.
< C,0Y

o(1,€) <d($0,g) A d(xo,m) A al(fﬂ?))7

for all (n,€) € (AU x OU)\(OU ) giag, 0 < 1 < A7 (d(0,&) A d(x0,n) A d(€,n)). By (5.52)
and (5.53), there exist ¢y € (0, A7) such that for all (n,) € (OU x OU)\(OU )giag, 0 < 7 <

co(d(wo, ) A d(xg.m) A d(€,m)), we have

J(B,((n,€),7))
(wiy X wiy) (By((1,€),7))

Using (5.54), we will show the absolute continuity of J with respect to waO X waO ; that is

(5.53)

<20,0Y (n,¢). (5.54)

0

J < wl xwl. (5.55)

zo
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By the inner regularity of .J it suffices to to that if K < (0U x dU)\(OU)giag is compact
and (WY x wl )(K) = 0, then

J(K) = 0. (5.56)
If K c ((9U X OU)\(OU )giag is compact and (wS xwy )(K) = 0, then by the outer regularity
of wl x wl . for any e > 0, there exists an open set K. c (5U x OU)\(OU ) giag such that
(WY x wY)(K.) < e. By the 5B-covering lemma [Hei, Theorem 1.2], there exists balls
B,((yi, zi),ri) < Kﬁi € I such that (y;,2;) € K,0 < r; < co(d(zo, yi) A d(o, 2i) A d(y;, 2))
for all i € I, J,e; Bo((yi,2i),ri) © K and B,((yi, z:),7:)/5),1 € I are pairwise disjoint.
Hence, we have

(5. 54
ZJ ywzz z 2201 yzyzz ( x (Ugo) (BP((y’MZZ))TZ))
i€l el
<20} sup Ol - ->Z<w;z < W2} (By((yis 5),m3/5)) (b (5.50))
1€l

< ZC’f sup @go(-, -)(wU x wY )(Ke)

zo zo

el

(since UZE[ o (i, 2i), i) © Ke and B,((vi, 2i),7:)/5),% € I are pairwise disjoint)
< 2C{supOF (-, )e
K

By letting € | 0, we obtain (5.56) since supy 65{0(-, ) < o due to continuity of @zUO
(Proposition 3.15) and compactness of K. This concludes the proof of (5.55).

By letting r | 0 in the Holder continuity estimate (5.53) and using the asymptotic
doubling property of harmonic measures in (5.51), absolute continuity in (5.55) along
with Lebesgue differentiation theorem ((4.49) in Lemma 4.12), we obtain the desired
conclusion. O

Remark 5.13. The absolute continuity (5.55) can alternately be obtained using the iden-
tification of the Feller measure with jumping measure in [CF, Theorem 5.6.3] along with
[FHY, p. 3143, equation before Example 2.1]. However, we choose the more elemen-
tary approach using (5.48) because the identification of Feller measure with the jumping
measure in [CF, Theorem 5.6.3] is quite involved.

The following corollary of Doob-Naim formula relates the jump density to the bound-
ary reference measure p and the function ®(-, ).

Corollary 5.14. Let (X,d,m,&, F) be an MMD space and let U be a uniform domain sat-
isfying Assumption 4.3. The jumping measure is given by J(d§, dn) = J,(§,n) p(d€) p(dn),
where

(5,77) if U is bounded,

dv¥

—1
Y (¢,n) ( (f)ﬁ(n)) if U is unbounded.

and there exists C, A € (1,00) such that for all (§,m) € (OU x OU)\(OU )giag such that
d(§,m) < diam(U, d)/A, we have

1 1
W BEAE ) SEdE ) & < CBE aE ) & dEm)

Ju(&,m) = (5.57)

C«fl

(5.58)
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Proof. The jump kernel formula (5.57) is a direct consequence of the Doob-Naim formula
(Theorem 5.12) along with the mutual absolute continuity in Proposition 4.15(a).

By Theorem 4.6 and Proposition 4.15(c), there exist Cy, A; € (1,00) such that

(¢, R)
V(R)

(¢, )

o 0

m(B(§, k) < p(B(&, 7)) < Gy

m(B(&, R)) (5.59)

for all £ € 0U,0 < R < diam(U)/A;.

If U is unbounded, the estimate (5.58) follows from (4.57), Lemma 5.2 and (5.59)
provided d(&,n) < d(xg,&)/A for some large enough A € (1,00). If d(&,n) < d(xo,§)/A
is not satisfied, then by changing the base point from xg to y as given in the argument
using (4.63) in the proof of Theorem 4.15(c) and using (4.57), we obtain (5.58) in the case
when U is unbounded.

If U is bounded, then (3.45) in Proposition 3.15 along with Lemma 5.2, there exist
co € (0,1),Cq € (1,00) such that

02_1 qu (ncod(fﬂi)a fcod(fﬁi)) < Ju(n’ S) < Cg gU(ncod(Em)u &:gd(&,n)) , (560)
90 (0, Negd(en)) 9U (05 Ecpde.m)) 90 (Z0, Neod(e,n) 9U (o5 Eeod(en))

for all (&,n) € (U x 0U)\(OU )giag. By covering U with balls of radii ¢;diam(U) for
c1 € (0, 1) sufficiently and using Lemma 5.2 and increasing C} if necessary, we can improve
(5.59) as

_1 26, R) (¢, R)
! < <
for all £ € 0U,0 < R < diam(U). Combining (5.61), (5.60) and Lemma 5.2, we obtain
(5.58) in the bounded case as well. O

Remark 5.15. The estimates (5.61) and (5.59) along with the doubling property of m,
Lemma 5.2 and (2.12) shows that p is a doubling measure on oU.

5.3 Heat kernel bounds for the trace process

The following occupation density formula for the boundary trace process shows that the
Green function for the trace process is same as that of the reflected diffusion.

Lemma 5.16. Let I < 0U be a closed subset such that the part process (XN of the
reflected diffusion on U\F is transient. Then we have the following occupation density
formula:

Eieff ey s - J 95\ (& W) (W) pldy)  for all § € OU\F, f € B, (OU\F).
: NF (5.62)

Proof. Let D = U\F and piP(.,) denote the continuous heat kernel corresponding
to the part process (X™)UM" with respect to m‘ﬁ which exists due to Lemma 3.4 and
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Theorem 2.12. Let Ptref’D denote the corresponding semigroup.
- of ToU\F < rof ; ToU\F ;
B e s =g g as

S/\TD

_E f P (by [CF, Lemma A.3.7(i)])

= lim Eref J f Xref

6l0 S/\TD

ref ref
= hmE D )dmj f(X5,,)d

““fﬁww MDfD@mmwww<me@mw>

410

1 refD s
= 1551[ LU\F y)f(y) u(dy) d

JJ%F”D y) () pldy) ds
e (U, € ts) sntan = [ afyiconson uan

]

Remark 5.17. A weaker version of (5.62) with every £ replaced with quasi-every & can
be obtained following [FOT, Proof of Lemma 6.2.2] (see in particular [FOT, (6.2.10) and
(6.2.11)]).

The following exit time lower bound is a key ingredient in heat kernel estimates for
the trace process. The proof uses sub-Gaussian heat kernel estimates for the reflected
diffusion obtained in [Mur23+] (see Theorem 2.12).

Proposition 5.18. There exist Cy,A; € (1,00) such that all £ € U0 < r <
diam(0U, d)/2, we have
B [Toen] = CTHO(E, 7). (5.63)

Proof. By Remark 5.8 for any £ € dU,0 < r < diam(dU)/2, then the part process
(XTeh)UNQUNBEN ) of the reflected diffusion is transient.

By Theorem 2.12 and [GHL15, Theorem 1.2], there exist Ay, A1, C2 € (1,00) such that
for all z € U,0 < r < diam(U)/2, we have

gfge(fx r)mU(y; 2) = Cyt for all y, z € B(z, Aalr), (5.64)

By domain monotonicity of Green function, we have
ref ref
In@uasens () Z T () (5.65)
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for all £ € oU,r < diam(0U) /2.
Therefore by applying (5.62) with f =1, for all £ € 0U,0 < r < diam(dU)/2, we have

Tre re (5.65) ‘e
B froen] = | oo & = | gt ol€y) uldy)
OUN(B(&:7)°) OUN(B(&:7)°)
4 Y(r)
> Cyl————u(0U n B(&,r)  (by (5.64)). 5.66
The exit time lower bound (5.63) follows from (5.66) and (5.61). O

Given the exit time bound (Proposition 5.18) and jump kernel bound (Corollary 5.14)
for the trace process on the boundary, we obtain stable-like heat kernel bound for the
trace process using Theorem 2.32.

Theorem 5.19. Let (X,d,m,E, F) be an MMD space and let U be a uniform domain
satisfying Assumption 4.3 such that (OU, d) is a uniformly perfect metric space. Let ()Z'tref)
denote the p-symmetric_boundary trace process of the reflected diffusion X ref as given in
Definition 5.9. Then (XI*') admits a continuous heat kernel and satisfies the stable-like
heat kernel bound SHK(®), where ® is as given in Lemma 5.2 and (5.2).

Proof. Let (£, F(U)) on L*(0U, ;1) denote the corresponding Dirichlet form as given
in Definition 5.9. We recall from Proposition 5.11 that (gref,f (U)) is of pure-jump
type. By Theorem 2.32; the doubling property of u in Remark 5.15, the exit time lower
in Proposition 5.18 and the jump kernel bound in Corollary 5.14, we obtain that the
stronlgy continuous contraction semigroup (Q;)~o corresponding to the trace Dirichlet
form (£, F(U)) on L*(U, 1) admits a continuous heat kernel satisfying the stable-like
estimate SHEK(®).

Next, we identify this continuous heat kernel with the heat kernel of the transition
semigroup (P;);~o corresponding to the trace process X using an argument similar to
Lemma 3.4(a). By the same argument as the proof of (5.62) using [CF, Lemma A.3.7(i)
and (4.1.26)] we obtain that the resolvent is absolutely continuous with respect to f.
Hence by [FOT, Theorem 4.2.4.] the transition semigroup (F;) satisfies the absolute

continuity condition (AC) with respect to p. Due to [FOT, Theorem 6.2.1], we can use
[FOT, Proof of Theorem 4.2.8] to obtain

P(z,dy) = Q(z,dy) for any t € (0,00) and for q.e. x € oU.

Let f be a bounded continuous function on oU. Then for any s,¢ > 0 and any x € oU,
by Pif = Q.f q.e. and (AC) of P, we obtain

Fi(Pof)(x) = (Prasf) () = Po(Pof)(2) = Po(Qef) (),

and letting s | 0 yields
(Fef) (@) = (Quf)(x)

by dominated convergence theorem, since (Psf)(y) — f(y) as s | 0 for any y € dU by the
continuity of f, right continuity of sample paths, and P,(Q.f)(z) — (Q:f)(x) as s | 0 by
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the continuity of Q,f. The continuity of QP f can be easily verified using HK(®). Thus
Pi(z,dy) = Q(z,dy) for any t > 0 and any z € oU. O

Remark 5.20. Let (X,d,m,&, F) be an MMD space and let U be a uniform domain
satisfying the assumptions of Theorem 5.19. Let Cap, Cap™, Cap™ denote the capacities
for the spaces (X,d,m, &, F), (U, 5 &L F(U)), and (0U, d, p, £, F(U)) as defined
in (3.15) respectively. Using the Pomcare inequality in [CKW, Definition 7.5] for lower
bound on capacity across annuli and [CKW, Proposition 2.3(5)] for a matching upper
bound we obtain the following estimate: there exist C; A € (1,00) such that for all £ €
oU,0 < r < diam(dU, d)/A, we obtain

D) < g Blen) nev) < HEEDL ey

On the other hand, by [GHL15, Theorem 1.2], Theorem 2.12 and [BCM, Lemma 5.24],
there exist C, A € (1,00) such that

o) < o, Bl 0T <UD o)
for all z € U,0 < r < diam(U,d)/A, and
C‘l—m(B(x r) < Capp(yon (B, 7)) < Cm(gii;m) (5.69)

w(r)
for all z € X,0 < r < diam(&X,d)/A. Combining (5.67), (5.68) (5.69), and (5.4), there
exist A € (1,00) such that

CapB(g,Qr)(B(fﬂ")) Capr.ffg 2r) mU( & r)n ) CaptBr(g,Qr)maU(B(faT) N oU)
for all £ € oU,0 < r < diam(0U, d)/A.

By Lemma 4.10 and Remark 4.11(a), Theorem 5.19 applies to the reflected Brownian
motion on any non-tangentially accessible domain on R",n > 2. Theorem 5.19 also applies
to the reflected Brownian motion on the Sierpinski carpet domain formed by removing
either the bottom line or the outer square boundary (by [Lie22, Proposition 4.4] and[CQ),
Proposition 2.4] and Remark 4.11(b)).

Another related direction of research is the Calderén’s inverse problem. In our set-
ting, we can phrase it as follows: Does the Dirichlet form of the boundary trace process
determine the Dirichlet form of the underlying reflected diffusion? We refer to [SU] for
further context, background, and a solution to this problem for a class of Dirichlet forms
in R™.
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