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We show that, for a strongly local, regular symmetric Dirichlet form over
a complete, locally compact geodesic metric space, full off-diagonal heat ker-
nel estimates with walk dimension strictly larger than two (sub-Gaussian
estimates) imply the singularity of the energy measures with respect to the
symmetric measure, verifying a conjecture by M. T. Barlow in (Contemp.
Math. 338 (2003) 11–40). We also prove that in the contrary case of walk di-
mension two, that is, where full off-diagonal Gaussian estimates of the heat
kernel hold, the symmetric measure and the energy measures are mutually
absolutely continuous in the sense that a Borel subset of the state space has
measure zero for the symmetric measure if and only if it has measure zero for
the energy measures of all functions in the domain of the Dirichlet form.

1. Introduction. It is an established result in the field of analysis on fractals that, on
a large class of typical fractal spaces, there exists a nice diffusion process {Xt }t≥0 which
is symmetric with respect to some canonical measure m and exhibits strong subdiffusive
behavior in the sense that its transition density (heat kernel) pt(x, y) satisfies the following
sub-Gaussian estimates:
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for all points x, y and all t > 0, where c1, c2, c3, c4 > 0 are some constants, d is a natural
geodesic metric on the space, B(x, r) denotes the open ball of radius r centered at x and β ≥ 2
is a characteristic of the diffusion called the walk dimension. This result was obtained first for
the Sierpiński gasket in [14], then for nested fractals in [38], for affine nested fractals in [18]
and for Sierpiński carpets in [6–8] (see also [10, 11, 41]), and in most of (essentially all) the
known examples it turned out that β > 2; see, for example, Proposition 5.3 below and [32]
for an elementary proof of β > 2 for Sierpiński gaskets and carpets, respectively. Therefore,
(1.1) implies, in particular, that a typical distance the diffusion travels by time t is of order
t1/β , which is in sharp contrast with the order t1/2 of such a distance for the Brownian motion
and uniformly elliptic diffusions on Euclidean spaces and Riemannian manifolds, where (1.1)
with β = 2, the usual Gaussian estimates, are known to hold widely; see, for example, [20,
46, 47, 49] and references therein.

The main concern of this paper is singularity and absolute continuity of the energy mea-
sures associated with a general m-symmetric diffusion {Xt }t≥0 satisfying (1.1) for some
β ≥ 2, on a locally compact separable metric measure space (X,d,m). Under the standard
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assumption of the regularity of the Dirichlet form (E,F) of {Xt }t≥0, the energy measure of a
function f ∈F ∩ L∞(X,m) is defined as the unique Borel measure �(f,f ) on X such that∫

X
g d�(f,f ) = E(f, fg) − 1

2
E
(
f 2, g

)

= lim
t↓0

1

2t

∫
X

g(x)Ex

[∣∣f (Xt) − f (X0)
∣∣2]dm(x)

(1.2)

for any g ∈ F ∩ Cc(X), where a quasicontinuous m-version of f is used for defining
{f (Xt)}t≥0 and Cc(X) denotes the set of R-valued continuous functions on X with com-
pact supports. Then, the approximation of f by {(−n)∨ (f ∧n)}∞n=1 defines �(f,f ) also for
general f ∈ F . In probabilistic terms, let

(1.3) f (Xt) − f (X0) = M
[f ]
t + N

[f ]
t , t ≥ 0

be the Fukushima decomposition, an extension of Itô’s formula and the semimartingale de-
composition in the framework of regular symmetric Dirichlet forms, of {f (Xt) − f (X0)}t≥0

into the sum of the martingale part M [f ] = {M [f ]
t }t≥0 and the zero-energy part N [f ] =

{N [f ]
t }t≥0 (see [19], Theorem 5.2.2). Then, �(f,f ) arises as the Revuz measure of the

quadratic variation process 〈M [f ]〉 = {〈M [f ]〉t }t≥0 of M [f ] (see [19], Theorems 5.1.3
and 5.2.3). Therefore, the question of whether �(f,f ) is singular with respect to m could
be considered as an analytical counterpart of that of whether 〈M [f ]〉 = {〈M [f ]〉t }t≥0 is sin-
gular as a function in t ∈ [0,∞), although the actual relation between these two questions is
unclear. A better-founded probabilistic implication, due to [31], Proposition 12, of the sin-
gularity of �(f,f ) with respect to m for all f ∈ F , is that there is no representation, in a
certain stochastic sense, of the diffusion {Xt }t≥0 in terms of a Brownian motion on Rk for
any k ∈ N; see [31], Section 4, for details.

When (E,F) is given, on the basis of some differential structure on X, by E(f, g) =∫
X〈∇f,∇g〉x dm(x) for some first-order differential operator ∇ satisfying the usual Leibniz

rule and some (measurable) Riemannian metric 〈·, ·〉x , the right-hand side of (1.2) is easily
seen to be equal to

∫
X g(x)〈∇f,∇f 〉x dm(x) and, hence, d�(f,f )(x) = 〈∇f,∇f 〉x dm(x).

In particular, �(f,f ) is absolutely continuous with respect to the symmetric measure m.
On the other hand, diffusions on self-similar fractals are known to exhibit completely dif-

ferent behavior. For a class of self-similar fractals, including the Sierpiński gasket, Kusuoka
showed in [39] that the energy measures are singular with respect to the symmetric measure,
which in the case of the Sierpiński gasket is the standard log2 3-dimensional Hausdorff mea-
sure. Later in [40], he extended this result to the case of the Brownian motion on a class of
nested fractals, and Ben-Bassat, Strichartz and Teplyaev [15] obtained similar results for a
class of self-similar Dirichlet forms on post-critically finite self-similar fractals under simpler
assumptions and with a shorter proof.

The best result known so far in this direction is due to Hino [29]. There, he proved that, for
a general self-similar Dirichlet form on a self-similar set, including the case of the Brownian
motion on Sierpiński carpets, the following dichotomy holds for each self-similar (Bernoulli)
measure μ (including the symmetric measure m):

either (i) μ = �(h,h) for some h ∈ F that is harmonic on the complement of the canoni-
cal “boundary” of the self-similar set,

or (ii) �(f,f ) is singular with respect to μ for any f ∈ F .

It was also proved in [29] that the lower inequality in (1.1) for the heat kernel pt(x, y) with
β > 2, which is known to hold in particular for Sierpiński carpets by the results in [7, 8, 32]
(see also [10, 11, 41]), excludes the possibility of case (i) for μ = m and thus implies the
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singularity of �(f,f ) with respect to the symmetric measure m for any f ∈ F . This is the
only existing result proving the singularity of the energy measures for diffusions on infinitely
ramified self-similar fractals like Sierpiński carpets. The reader is also referred to [31] for
simple geometric conditions which exclude case (i) of the above dichotomy in the setting of
post-critically finite self-similar sets.

All of these results on the singularity of the energy measures heavily relied on the exact
self-similarity of the state space and the Dirichlet form. In reality, however, even without
the self-similarity the anomalous space-time scaling relation exhibited by the terms t1/β and
d(x, y)β/t in (1.1) should still imply singular behavior of the sample paths of the quadratic
variation 〈M [f ]〉 of the martingale part M [f ] in (1.3). Therefore, it is natural to conjecture,
as Barlow did in [4], Section 5, Remarks, 5.1, that the heat kernel estimates (1.1) with β > 2
should imply the singularity of the energy measures with respect to the symmetric mea-
sure m. The first half of our main result (Theorem 2.13(a)) verifies this conjecture in the
completely general framework of a strongly local, regular symmetric Dirichlet form (E,F)

over a complete, locally compact separable metric measure space (X,d,m) satisfying a cer-
tain geodesic-like property called the chain condition (see Definition 2.10(a)) and the volume
doubling property

(1.4) m
(
B(x,2r)

)≤ CDm
(
B(x, r)

)
, (x, r) ∈ X × (0,∞).

Note here that the chain condition is necessary for making the strict inequality β > 2 for
the exponent β in (1.1) meaningful. Indeed, by [44], Corollary 1.8 (or Theorem 2.11), and
[24], Proof of Theorem 6.5, under the general framework mentioned above, (1.1) is equivalent
to the conjunction of the chain condition, (1.4), the upper inequality in (1.1) and the so-called
near-diagonal lower estimate

(1.5) pt(x, y) ≥ c1

m(B(x, t1/β))
for all x, y ∈ X with d(x, y) ≤ δt1/β

for some constants c1, δ > 0. Then, by [24], Theorem 7.4, this latter set of conditions with
the chain condition dropped is characterized, under the additional assumption that X is non-
compact, by the conjunction of (1.4), the scale-invariant elliptic Harnack inequality and the
mean exit time estimate

(1.6) c5r
β ≤ Ex[τB(x,r)] ≤ c6r

β, (x, r) ∈ X × (0,∞),

where τB(x,r) := inf{t ∈ [0,∞) | Xt /∈ B(x, r)} (inf∅ := ∞). Since the last characterization
is preserved under the change of the metric from d to dα for any α ∈ (0,1) with the price of
replacing β by β/α, it follows that we would be able to realize an arbitrarily large value of
β ≥ 2 by suitable changes of metrics if we did not assume the chain condition.

To complement the above result for the case of β > 2, as the second half of our main
result (Theorem 2.13(b)) we also prove that (1.1) with β = 2 implies the “mutual absolute
continuity” between the symmetric measure m and the energy measures �(f,f ), that is, that
for each Borel subset A of the state space X, m(A) = 0 if and only if �(f,f )(A) = 0 for any
f ∈ F . In the context of studying (1.1) with β = 2 (Gaussian estimates), it is customary to
assume from the beginning of the analysis that �(f,f ) is absolutely continuous with respect
to m for a large class of f ∈ F , whereas we deduce from (1.1) with β = 2 this absolute
continuity for all f ∈ F as part of Theorem 2.13(b); see Remark 4.6 for some related results.

In fact, we state and prove our result in a slightly wider framework allowing a general
space-time scaling function � instead of considering just �(r) = rβ . This generalization
enables us to conclude the singularity of the energy measures for the canonical Dirichlet
forms on (spatially homogeneous) scale irregular Sierpiński gaskets studied in [13, 25, 26],
which are not exactly self-similar and, hence, are outside of the frameworks of the preceding
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works [15, 29, 31, 39, 40]. See also [36], Chapter 24, for a discussion of these examples and
Section 5 below for the proof that Theorem 2.13(a) applies to (at least some of) them.

This paper is organized as follows. In Section 2 we introduce the framework in detail
and give the precise statement of our main result (Theorem 2.13). Then, its first half on the
singularity of the energy measures (Theorem 2.13(a)) is proved in Section 3, and its second
half on the absolute continuity (Theorem 2.13(b)) is proved in Section 4. An application
of Theorem 2.13(a) to some scale irregular Sierpiński gaskets is presented in Section 5. In
Appendix, for the reader’s convenience, we give complete proofs of a couple of miscellaneous
facts utilized in the proof of Theorem 2.13(a).

NOTATION. Throughout this paper we use the following notation and conventions:

(a) The symbols ⊂ and ⊃ for set inclusion allow the case of the equality.
(b) N := {n ∈ Z | n > 0}, that is, 0 /∈ N.
(c) The cardinality (the number of elements) of a set A is denoted by #A.
(d) We set ∞−1 := 0. We write a ∨ b := max{a, b}, a ∧ b := min{a, b}, a+ := a ∨ 0 and

a− := −(a ∧ 0) for a, b ∈ [−∞,∞], and we use the same notation also for [−∞,∞]-valued
functions and equivalence classes of them. All numerical functions in this paper are assumed
to be [−∞,∞]-valued.

(e) Let X be a non-empty set. We define 1A = 1X
A ∈ RX for A ⊂ X by

1A(x) := 1X
A(x) :=

{
1 if x ∈ A,

0 if x /∈ A,

and set ‖f ‖sup := ‖f ‖sup,X := supx∈X |f (x)| for f : X → [−∞,∞].
(f) Let X be a topological space. We set C(X) := {f | f : X →R, f is continuous} and

Cc(X) := {f ∈ C(X) | X \ f −1(0) has compact closure in X}.
(g) Let (X,B) be a measurable space, and let μ,ν be σ -finite measures on (X,B). We

write ν � μ and ν ⊥ μ to mean that ν is absolutely continuous and singular, respectively,
with respect to μ. We set μ|A := μ|B|A for A ∈ B, where B|A := {B ∩ A | B ∈ B}.

2. Framework and the main result. In this section we introduce the framework of this
paper and state our main result. After introducing the framework of a strongly local regular
Dirichlet space and the associated energy measures in Section 2.1, we give in Section 2.2 the
precise formulation of the off-diagonal heat kernel estimates and an equivalent condition for
the estimates which is convenient for the proof of the main result. Then, we give the statement
of our main theorem (Theorem 2.13) in Section 2.3 and outline its proof in Section 2.4.

2.1. Metric measure Dirichlet space and energy measure. Throughout this paper we con-
sider a complete, locally compact separable metric space (X,d), equipped with a Radon
measure m with full support, that is, a Borel measure m on X which is finite on any com-
pact subset of X and strictly positive on any non-empty open subset of X, and we always
assume #X ≥ 2 to exclude the trivial case of #X = 1. Such a triple (X,d,m) is referred to as
a metric measure space. We set B(x, r) := {y ∈ X | d(x, y) < r} for (x, r) ∈ X × (0,∞) and
diam(X,d) := supx,y∈X d(x, y); note that #X ≥ 2 is equivalent to diam(X,d) ∈ (0,∞].

Furthermore, let (E,F) be a symmetric Dirichlet form on L2(X,m); by definition, F
is a dense linear subspace of L2(X,m), and E : F × F → R is a non-negative definite
symmetric bilinear form which is closed (F is a Hilbert space under the inner product
E1 := E + 〈·, ·〉L2(X,m)) and Markovian (f + ∧ 1 ∈ F and E(f + ∧ 1, f + ∧ 1) ≤ E(f, f ) for
any f ∈F ). Recall that (E,F) is called regular, if F ∩ Cc(X) is dense both in (F,E1) and in
(Cc(X),‖ · ‖sup), and that (E,F) is called strongly local, if E(f, g) = 0 for any f,g ∈F with
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suppm[f ], suppm[g] compact and suppm[f − a1X] ∩ suppm[g] = ∅ for some a ∈ R. Here,
for a Borel measurable function f : X → [−∞,∞] or an m-equivalence class f of such
functions, suppm[f ] denotes the support of the measure |f |dm, that is, the smallest closed
subset F of X with

∫
X\F |f |dm = 0, which exists since X has a countable open base for

its topology; note that suppm[f ] coincides with the closure of X \ f −1(0) in X if f is con-
tinuous. The pair (X,d,m,E,F) of a metric measure space (X,d,m) and a strongly local,
regular symmetric Dirichlet form (E,F) on L2(X,m) is termed a metric measure Dirich-
let space, or a MMD space in abbreviation. We refer to [17, 19] for details of the theory of
symmetric Dirichlet forms.

The central object of the study of this paper is the energy measures associated with a MMD
space, which are defined as follows. Note that fg ∈ F for any f,g ∈ F ∩ L∞(X,m) by [19],
Theorem 1.4.2(ii), and that {(−n) ∨ (f ∧ n)}∞n=1 ⊂ F and limn→∞(−n) ∨ (f ∧ n) = f in
norm in (F,E1) by [19], Theorem 1.4.2(iii).

DEFINITION 2.1 ([19], (3.2.13), (3.2.14) and (3.2.15)). Let (X,d,m,E,F) be a MMD
space. The energy measure �(f,f ) of f ∈F associated with (X,d,m,E,F) is defined, first
for f ∈ F ∩ L∞(X,m) as the unique ([0,∞]-valued) Borel measure on X such that

(2.1)
∫
X

g d�(f,f ) = E(f, fg) − 1

2
E
(
f 2, g

)
for all g ∈ F ∩ Cc(X),

and then by �(f,f )(A) := limn→∞ �((−n) ∨ (f ∧ n), (−n) ∨ (f ∧ n))(A) for each Borel
subset A of X for general f ∈ F . We also define the mutual energy measure �(f,g) of
f,g ∈ F as the Borel signed measure on X given by �(f,g) := 1

2(�(f + g,f + g) −
�(f,f )−�(g,g)), so that �(·, ·) is bilinear and symmetric and satisfies the Cauchy–Schwarz
inequality:

�(af + bg, af + bg) = a2�(f,f ) + 2ab�(f,g) + b2�(g,g), a, b ∈ R,(2.2) ∣∣�(f,g)(B)
∣∣2 ≤ �(f,f )(B)�(g, g)(B) for all Borel subsets B of X.(2.3)

Note that by [19], Lemma 3.2.3, and the strong locality of (E,F),

(2.4) �(f,g)(X) = E(f, g) for all f,g ∈ F .

2.2. Off-diagonal heat kernel estimates and equivalent condition. The most general form
of the off-diagonal heat kernel estimates, which we are introducing in Definition 2.4 below,
involves a homeomorphism � : [0,∞) → [0,∞) representing the scaling relation between
time and space variables:

ASSUMPTION 2.2. Throughout this paper we fix a homeomorphism � : [0,∞) →
[0,∞) such that

(2.5) C−1
�

(
R

r

)β0 ≤ �(R)

�(r)
≤ C�

(
R

r

)β1

for all 0 < r ≤ R for some constants 1 < β0 ≤ β1 and C� ≥ 1.

The following condition is standard and often treated as part of the standing assumptions
in the context of heat kernel estimates on general MMD spaces.

DEFINITION 2.3 (VD). Let (X,d,m) be a metric measure space. We say that (X,d,m)

satisfies the volume doubling property VD, if there exists a constant CD > 1 such that for all
x ∈ X and all r > 0,

VD m
(
B(x,2r)

)≤ CDm
(
B(x, r)

)
.
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Note that, if (X,d,m) satisfies VD, then B(x, r) is relatively compact (i.e., has compact
closure) in X for all (x, r) ∈ X × (0,∞) by virtue of the completeness of (X,d).

DEFINITION 2.4 (HKE(�)). Let (X,d,m,E,F) be a MMD space, and let {Pt }t>0 de-
note its associated Markov semigroup. A family {pt }t>0 of [0,∞]-valued Borel measurable
functions on X × X is called the heat kernel of (X,d,m,E,F), if pt is the integral kernel of
the operator Pt for any t > 0, that is, for any t > 0 and for any f ∈ L2(X,m),

Ptf (x) =
∫
X

pt(x, y)f (y) dm(y) for m-a.e. x ∈ X.

We say that (X,d,m,E,F) satisfies the heat kernel estimates HKE(�), if its heat kernel
{pt }t>0 exists and there exist C1, c1, c2, c3, δ ∈ (0,∞) such that, for each t > 0,

pt(x, y) ≤ C1

m(B(x,�−1(t)))
exp

(−c1

(
c2d(x, y), t

))
for m-a.e. x, y ∈ X,(2.6)

pt(x, y) ≥ c3

m(B(x,�−1(t)))
for m-a.e. x, y ∈ X with d(x, y) ≤ δ�−1(t),(2.7)

where

(2.8) 
(R, t) := 
�(R, t) := sup
r>0

(
R

r
− t

�(r)

)
, (R, t) ∈ [0,∞) × (0,∞).

REMARK 2.5.

(a) It easily follows from (2.5) that (2.8) defines a lower semi-continuous function 
 =

� : [0,∞) × (0,∞) → [0,∞) such that, for any R, t ∈ (0,∞), 
(0, t) = 0, 
(·, t) is
strictly increasing and 
(R, ·) is strictly decreasing.

(b) If β > 1 and � is given by �(r) = rβ , then an elementary differential calculus shows

that 
(R, t) = (β − 1)β
− β

β−1 (Rβ/t)
β

β−1 for any (R, t) ∈ [0,∞) × (0,∞), in which case the
right-hand side of (2.6) coincides with that of (1.1).

(c) If a MMD space (X,d,m,E,F) satisfies VD and HKE(�), then there exists a ver-
sion of the heat kernel pt(x, y) which is continuous in (t, x, y) ∈ (0,∞) × X × X; see, for
example, [12], Theorem 3.1.

(d) If a MMD space (X,d,m,E,F) satisfies the chain condition (see Definition 2.10(a)
below) in addition to VD and HKE(�), then (2.7) can be strengthened to a lower bound
of the same form as (2.6) valid for m-a.e. x, y ∈ X; see, for example, [24], Proof of Theo-
rem 6.5. Note that this global lower bound implies (2.7) since 
(c2d(x, y), t) is less than
some constant as long as d(x, y) ≤ δ�−1(t) by [23], (5.13).

In fact, HKE(�) itself is not very convenient for analyzing the energy measures, and there
is a characterization of HKE(�) by the conjunction of two functional inequalities which are
more suitable for our purpose, defined as follows:

DEFINITION 2.6 (PI(�) and CS(�)). Let (X,d,m,E,F) be a MMD space.

(a) We say that (X,d,m,E,F) satisfies the Poincaré inequality PI(�), if there exist con-
stants CP > 0 and A ≥ 1 such that, for all (x, r) ∈ X × (0,∞) and all f ∈ F ,

(PI(�))
∫
B(x,r)

|f − fB(x,r)|2 dm ≤ CP �(r)

∫
B(x,Ar)

d�(f,f ),

where fB(x,r) := m(B(x, r))−1 ∫
B(x,r) f dm.
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(b) For open subsets U,V of X with U ⊂ V , where U denotes the closure of U in X, we
say that a function ϕ ∈ F is a cutoff function for U ⊂ V if 0 ≤ ϕ ≤ 1 m-a.e., ϕ = 1 m-a.e.
on a neighbourhood of U and suppm[ϕ] ⊂ V . Then, we say that (X,d,m,E,F) satisfies the
cutoff Sobolev inequality CS(�), if there exists CS > 0 such that the following holds: for
each x ∈ X and each R, r > 0 there exists a cutoff function ϕ ∈F for B(x,R) ⊂ B(x,R + r)

such that, for all f ∈ F ,

CS(�)

∫
X

f 2 d�(ϕ,ϕ) ≤ 1

8

∫
B(x,R+r)\B(x,R)

ϕ2 d�(f,f ) + CS

�(r)

∫
B(x,R+r)\B(x,R)

f 2 dm.

Here and in what follows, we always consider a quasi-continuous m-version of f ∈F , which
exists by [19], Theorem 2.1.3, and is unique E-q.e. (i.e., up to sets of capacity zero) by [19],
Lemma 2.1.4, so that the values of f are uniquely determined �(g,g)-a.e. for each g ∈ F
since �(g,g)(N) = 0 for any Borel subset N of X of capacity zero by [19], Lemma 3.2.4;
see [19], Section 2.1, for the definitions of the capacity and the quasi-continuity of functions
with respect to a regular symmetric Dirichlet form.

REMARK 2.7. The specific constant 1
8 in the right-hand side of CS(�) is chosen for the

sake of convenience in its use; see, for example, the proof of Lemma 3.3 below. There is
no harm in making this choice because CS(�) is equivalent to the same condition with 1

8
replaced by arbitrary C′

S > 0 under Assumption 2.2 for � by [2], Lemma 5.1, whose proof
is easily seen to be valid without assuming diam(X,d) = ∞ or VD.

THEOREM 2.8 ([2, 9, 10, 22]; see also [42], Theorem 3.2). If a MMD space (X,d,m,

E,F) satisfies VD and HKE(�), then it also satisfies PI(�) and CS(�) and (X,d) is con-
nected.

REMARK 2.9.

(a) The converse of Theorem 2.8 has been proved in [22], Theorem 1.2, under the addi-
tional assumption that (X,d) is noncompact:

If a MMD space (X,d,m,E,F) satisfies VD, PI(�) and CS(�) and (X,d)

is connected and noncompact, then (X,d,m,E,F) also satisfies HKE(�).

This converse implication should be true even without assuming the non-compactness of
(X,d), because [24], Theorem 4.2, seems to be the only relevant result in [21, 22, 24] requir-
ing seriously the non-compactness but a suitable modification of it can be in fact proved by
using [23], Theorem 6.2, also in the case where (X,d) is compact. Since the converse would
not increase the applicability of our main theorem (Theorem 2.13), which assumes PI(�) and
CS(�) rather than HKE(�), we refrain from going into further details of its validity.

(b) There is a (minor but) non-trivial technical gap in the proofs of the implication from
VD and HKE(�) to PI(�) presented in [22, 42]. Specifically, both of their proofs utilize the
Neumann and Dirichlet heat semigroups {P N,B

t }t>0 and {P D,B
t }t>0, respectively, on a given

ball B := B(x, r) and the inequality

(2.9)
∫
B

P
N,B
t

(∣∣f − g(y)
∣∣2)(y) dm(y) ≥

∫
B

P
D,B
t

(∣∣f − g(y)
∣∣2)(y) dm(y)

for f,g ∈ L2(B,m|B) and t ∈ (0,∞), but the expressions P
N,B
t (|f − g(y)|2)(y) and

P
D,B
t (|f − g(y)|2)(y) in (2.9) do not make literal sense. While the latter can be still inter-

preted as representing
∫
B p

D,B
t (y, z)|f (z) − g(y)|2 dm(z) with {pD,B

t }t>0 denoting the heat
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kernel of {P D,B
t }t>0, whose existence is easily implied by HKE(�), the former does not al-

low even this way of interpretation because the heat kernel of {P N,B
t }t>0 might not exist. In

fact, (2.9) should rather be interpreted as∫
B

(
P

N,B
t

(
f 2)− 2gP

N,B
t f + g2P

N,B
t 1B

)
dm

≥
∫
B

(
P

D,B
t

(
f 2)− 2gP

D,B
t f + g2P

D,B
t 1B

)
dm,

(2.10)

which follows from the observation that, if additionally g is a simple function on B , then

P
N,B
t

(
f 2)− 2gP

N,B
t f + g2P

N,B
t 1B = ∑

a∈g(B)

1g−1(a)P
N,B
t

(|f − a1B |2)

≥ ∑
a∈g(B)

1g−1(a)P
D,B
t

(|f − a1B |2)

= P
D,B
t

(
f 2)− 2gP

D,B
t f + g2P

D,B
t 1B m|B-a.e.

Now, the proofs of PI(�) in [22], Proof of Theorem 1.2, and [42], Proof of Theorem 3.2, can
be easily justified by replacing (2.9) with (2.10) in their arguments.

2.3. Statement of the main result. The statement of our main result (Theorem 2.13 below)
requires some more definitions. First, the following conditions on the metric are crucial for
Theorem 2.13, especially for its first half on the singularity of the energy measures.

DEFINITION 2.10. Let (X,d) be a metric space.

(a) For ε > 0 and x, y ∈ X, we say that a sequence {xi}Ni=0 of points in X is an ε-chain in
(X,d) from x to y if

N ∈ N, x0 = x, xN = y and d(xi, xi+1) < ε for all i ∈ {0,1, . . . ,N − 1}.
Then, for ε > 0 and x, y ∈ X, define (with the convention that inf∅ := ∞)

(2.11) dε(x, y) := inf

{
N−1∑
i=0

d(xi, xi+1)

∣∣∣∣ {xi}Ni=0 is an ε-chain in (X,d) from x to y

}
.

We say that (X,d) satisfies the chain condition if there exists C ≥ 1 such that

(2.12) dε(x, y) ≤ Cd(x, y) for all ε > 0 and all x, y ∈ X.

(b) We say that (X,d) (or d) is geodesic if for any x, y ∈ X there exists γ : [0,1] → X

such that γ (0) = x, γ (1) = y and d(γ (s), γ (t)) = |s − t |d(x, y) for any s, t ∈ [0,1].
In fact, under the assumption that B(x, r) is relatively compact in X for all (x, r) ∈ X ×
(0,∞), (X,d) satisfies the chain condition if and only if d is bi-Lipschitz equivalent to a
geodesic metric ρ on X; see Proposition A.1 in Appendix A.1.

The following definition is standard in studying Gaussian heat kernel estimates, that is,
(2.6) with �(r) = r2 and the matching lower estimate of pt(x, y).

DEFINITION 2.11. Let (X,d,m,E,F) be a MMD space. We define its intrinsic metric
dint : X × X → [0,∞] by

(2.13) dint(x, y) := sup
{
f (x) − f (y)

∣∣ f ∈ Floc ∩ C(X), �(f,f ) ≤ m
}
,
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where

(2.14) Floc :=
⎧⎨
⎩f

∣∣∣∣∣∣
f is an m-equivalence class of R-valued Borel measurable
functions on X such that f1V = f #1V m-a.e. for some
f # ∈ F for each relatively compact open subset V of X

⎫⎬
⎭

and the energy measure �(f,f ) of f ∈ Floc associated with (X,d,m,E,F) is defined as
the unique Borel measure on X such that �(f,f )(A) = �(f #, f #)(A) for any relatively
compact Borel subset A of X and any V,f # as in (2.14) with A ⊂ V ; note that �(f #, f #)(A)

is independent of a particular choice of such V,f # by (2.3), (2.2) and [19], Corollary 3.2.1.

In the literature on Gaussian heat kernel estimates, it is customary to assume that the
intrinsic metric dint is a complete metric on X compatible with the original topology of X,
in which case it sounds natural in view of (2.13) to guess that the symmetric measure m

and the family of energy measures �(f,f ) should be “mutually absolutely continuous.” The
following definition due to [30] rigorously formulates the notion of such a measure.

DEFINITION 2.12 ([30], Definition 2.1). Let (X,d,m,E,F) be a MMD space. A σ -
finite Borel measure ν on X is called a minimal energy-dominant measure of (E,F) if the
following two conditions are satisfied:

(i) (Domination) For every f ∈ F , �(f,f ) � ν.
(ii) (Minimality) If another σ -finite Borel measure ν ′ on X satisfies condition (i) with ν

replaced by ν′, then ν � ν′.
Note that by [30], Lemmas 2.2, 2.3 and 2.4, a minimal energy-dominant measure of (E,F)

always exists and is precisely a σ -finite Borel measure ν on X such that for each Borel subset
A of X, ν(A) = 0 if and only if �(f,f )(A) = 0 for all f ∈ F .

Now, we can state the main theorem of this paper, which asserts that the conjunction of VD,
PI(�) and CS(�) implies the singularity and the absolute continuity of the energy measures,
if �(r) decays as r ↓ 0 sufficiently faster than r2 and at most as fast as r2, respectively.
We also describe what the intrinsic metric dint looks like in each case. Remember that the
assumption of VD, PI(�) and CS(�) in the following theorem can be replaced with that of
VD and HKE(�) by virtue of Theorem 2.8 and that diam(X,d) ∈ (0,∞] by #X ≥ 2.

THEOREM 2.13. Let (X,d,m,E,F) be a MMD space satisfying VD, PI(�) and
CS(�).

(a) (Singularity) If (X,d) satisfies the chain condition and

(2.15) lim inf
λ→∞ lim inf

r↓0

λ2�(r/λ)

�(r)
= 0,

then �(f,f ) ⊥ m for all f ∈ F . In this case the intrinsic metric dint is identically zero.
(b) (Absolute continuity) If

(2.16) lim sup
r↓0

�(r)

r2 > 0,

then m is a minimal energy-dominant measure of (E,F) and, in particular, �(f,f ) � m for
all f ∈ F . In this case, the intrinsic metric dint is a geodesic metric on X, and there exist
r1, r2 ∈ (0,diam(X,d)) and C1,C2 ≥ 1 such that

C−1
1 r2 ≤ �(r) ≤ C1r

2 for all r ∈ (0, r1),(2.17)

C−1
2 d(x, y) ≤ dint(x, y) ≤ C2d(x, y) for all x, y ∈ X with d(x, y) ∧ dint(x, y) < r2.(2.18)
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Furthermore, if, additionally, (X,d) satisfies the chain condition, then dint is bi-Lipschitz
equivalent to d , that is, (2.18) with r2 = ∞ holds for some C2 ≥ 1.

REMARK 2.14. If �(r) = rβ for some β > 1, then (2.15) is equivalent to β > 2 and
(2.16) is equivalent to β ≤ 2. For general � , however, the conditions (2.15) and (2.16) are
not complementary to each other since there are examples of � satisfying Assumption 2.2 but
not either of (2.15) and (2.16); indeed, for each k ∈ N, the homeomorphism �k : [0,∞) →
[0,∞) given by

�k(r) := r2η◦k
0 (r ∧ 1)

where η◦k
0 (r ∧ 1) where η0(r) := 1

log(e − 1 + r−1)

(
η0(0) := 0

)(2.19)

and η◦k
0 denotes the k-fold composition of η0 : [0,∞) → [0,∞), is such an example. In fact,

for a large class of such � , including �k as in (2.19), it is possible to construct a MMD space
which is equipped with a geodesic metric and satisfies VD and HKE(�), by considering
a class of fractals obtained by modifying the construction of the scale irregular Sierpiński
gaskets in Section 5 below in the following manner suggested by Barlow in [5]:

For each l = (ln)
∞
n=1 ∈ (N \ {1,2,3,4})N, we define the two-dimensional level-l thin scale

irregular Sierpiński gasket K̂ l by (5.1) with N = 2 and with Sl in Section 5 replaced by

Ŝl := {
(i1, i2) ∈ (

N∪ {0})2 ∣∣ i1 + i2 ≤ l − 1, i1i2(l − 1 − i1 − i2) = 0
}
,

that is, with the ways of cell subdivision in Section 5 modified so as to keep only the cells
along the boundary of the triangle at each subdivision step. Then, we can define in exactly the
same way as Section 5 a canonical MMD space (K̂ l, d̂l, m̂l, Ê l, F̂l) over K̂ l with the metric
d̂l geodesic, and, furthermore it can be shown, regardless of the possible unboundedness of
l = (ln)

∞
n=1, to satisfy VD, HKE(�̂l) for a homeomorphism �̂l : [0,∞) → [0,∞) defined

explicitly in terms of l, and �̂l(f, f ) ⊥ m̂l for all f ∈ F̂l for its associated energy measures
�̂l(·, ·). Now, it is possible to prove that for each homeomorphism η : [0,1] → [0,1] satisfy-
ing η(0) = 0 and the (seemingly mild) condition that

(2.20)
∞∑

n=0

η−1(2−n−1)

η−1(2−n)
< ∞,

which holds, for example, for η◦k
0 as in (2.19) for any k ∈ N, there exist lη ∈ (N\{1,2,3,4})N

and Cη ≥ 1 such that

(2.21) C−1
η �̂lη (r) ≤ �η(r) := r2η(r ∧ 1) ≤ Cη�̂lη (r) for any r ∈ [0,∞).

The details of the results stated in this paragraph will appear in the forthcoming paper [33].
Since the decay rate of �̂l(r) as r ↓ 0 can be made arbitrarily close to that of r2 by taking

suitable l ∈ (N \ {1,2,3,4})N, for example, lη as in (2.21) with η = η◦k
0 for arbitrarily large

k ∈ N yet the associated MMD space (K̂ l, d̂l, m̂l, Ê l, F̂l) still satisfies �̂l(f, f ) ⊥ m̂l for all
f ∈ F̂l , it is natural to expect that we would always have �(f,f ) ⊥ m for all f ∈ F under the
assumptions of Theorem 2.13 unless (2.16) holds. Namely, we have the following conjecture:

CONJECTURE 2.15 (Energy measure singularity dichotomy). Let (X,d,m,E,F) be a
MMD space satisfying VD, PI(�) and CS(�), and assume further that (X,d) satisfies the
chain condition and that

(2.22) lim
r↓0

�(r)

r2 = 0.

Then, �(f,f ) ⊥ m for all f ∈ F .
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2.4. Outline of the proof. The proofs of Theorem 2.13(a) and Theorem 2.13(b) are com-
pleted in Sections 3 and 4, respectively.

In Section 3 we reduce the proof of Theorem 2.13(a) to the case of harmonic functions
by approximating an arbitrary function in F by “piecewise harmonic functions;” see Propo-
sitions 3.9 and 3.10. The proof proceeds by contradiction. If the energy measure �(h,h) of
a harmonic function h has a non-trivial absolutely continuous part with respect to the sym-
metric measure m, then by Lebesgue’s differentiation theorem we can approximate �(h,h)

by a constant multiple of m locally at sufficiently many scales; see Lemma 3.1. Then, we can
estimate the variances of h on small balls from above by using PI(�) and from below by
CS(�) and the harmonicity of h; see (3.13) and (3.14). The conjunction of these upper and
lower bounds contradicts the assumption (2.15) on � .

In Section 4 we prove Theorem 2.13(b). We first deduce (2.17) from the assumption (2.16)
and a recent result [44], Corollary 1.10, by the second-named author (Lemma 4.1). We next
show that, for small enough r , the function (r − d(x, ·))+ belongs to F and has energy
measure absolutely continuous with respect to the symmetric measure m (Lemma 4.3). Then,
we approximate any function in F by using combinations of functions of the form (r −
d(x, ·))+; see Lemma 4.4 and Proposition 4.5. The minimality of m follows from PI(�) and
Lemma 4.3 (Proposition 4.7), the finiteness of the intrisic metric dint from (2.18) and [44],
Lemma 2.2 (Proposition 4.8), and we finally conclude the bi-Lipschitz equivalence of dint
to d (Proposition 4.8) by combining (2.18), the chain condition for (X,d) and the geodesic
property of dint proved in [48], Theorem 1.

NOTATION. In the following we will use the notation A � B for quantities A and B to
indicate the existence of an implicit constant C > 0 depending on some inessential parameters
such that A ≤ CB .

3. Singularity. In this section we give the proof of Theorem 2.13(a), that is, the singu-
larity of the energy measures under the assumption (2.15). We start with a lemma describing
the local behavior of a Radon measure in relation to another with VD:

LEMMA 3.1. Let (X,d,m) be a metric measure space satisfying VD, and let ν be a
Radon measure on X, that is, a Borel measure on X which is finite on any compact subset
of X. Let ν = νa + νs denote the Lebesgue decomposition of ν with respect to m, where
νa � m and νs ⊥ m. Let δ0 ∈ (0,1). Then, for m-a.e. x ∈ {z ∈ X

∣∣ dνa

dm
(z) > 0}, there exists

r0 = r0(x, δ0) > 0 such that for every r ∈ (0, r0), every δ ∈ [δ0,1] and every y ∈ B(x, r),

(3.1)
1

2

dνa

dm
(x) ≤ ν(B(y, δr))

m(B(y, δr))
≤ 2

dνa

dm
(x).

PROOF. Let f := dνa

dm
denote the Radon–Nikodym derivative. By VD and [27], (2.8),

(3.2) lim
r↓0

1

m(B(x, r))

∫
B(x,r)

∣∣f (z) − f (x)
∣∣dm(z) = 0

for m-a.e. x ∈ X. Also there exists C1 > 0 (which depends only on the constant CD in VD
and δ0) such that for all x ∈ X, r > 0, δ ∈ [δ0,1] and y ∈ B(x, r) we have

|νa(B(y, δr)) − f (x)m(B(y, δr))|
m(B(y, δr))

= | ∫B(y,δr)(f (z) − f (x)) dm(z)|
m(B(y, δr))
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≤
∫
B(x,2r) |f (z) − f (x)|dm(z)

m(B(y, δr))

(
by B(y, δr) ⊂ B(y, r) ⊂ B(x,2r)

)
(3.3)

≤
∫
B(x,2r) |f (z) − f (x)|dm(z)

m(B(x,2r))

m(B(y,3r))

m(B(y, δ0r))

(
by B(x,2r) ⊂ B(y,3r) and δ ≥ δ0

)

≤ C1

∫
B(x,2r) |f (z) − f (x)|dm(z)

m(B(x,2r))
(by VD).

Using (3.2) and (3.3), we obtain the following: for every x ∈ X satisfying dνa

dm
(x) > 0 and

(3.2), there exists r1 = r1(x, δ0) > 0 such that, for all r ∈ (0, r1), δ ∈ [δ0,1] and y ∈ B(x, r),

(3.4)
1

2

dνa

dm
(x) ≤ νa(B(y, δr))

m(B(y, δr))
≤ 3

2

dνa

dm
(x).

On the other hand, by Proposition A.4 in Appendix A.2 (see also [45], Theorem 7.13),

(3.5) lim
r↓0

νs(B(x, r))

m(B(x, r))
= 0

for m-a.e. x ∈ X. By using VD as in (3.3) above, we obtain the following: for every x ∈ X

satisfying dνa

dm
(x) > 0 and (3.5), there exists r2 = r2(x, δ0) > 0 such that, for all r ∈ (0, r2),

δ ∈ [δ0,1] and y ∈ B(x, r),

(3.6)
νs(B(y, δr))

m(B(y, δr))
≤ C1

νs(B(x,2r))

m(B(x,2r))
≤ 1

2

dνa

dm
(x).

Combining (3.2), (3.4), (3.5) and (3.6), we get the desired conclusion with r0 = r1 ∧ r2. �

We first prove the singularity of the energy measures of harmonic functions, which are
defined in the present framework as follows:

DEFINITION 3.2. Let (X,d,m,E,F) be a MMD space. A function h ∈ F is said to be
E-harmonic on an open subset U of X, if

(3.7) E(h, f ) = 0
for all f ∈ F ∩ Cc(X) with suppm[f ] ⊂ U or, equivalently,
for all f ∈ FU := {g ∈ F | g = 0 E-q.e. on X \ U },

where the equivalence of the two definitions follows from [19], Corollary 2.3.1.

The following reverse Poincaré inequality is an easy consequence of CS(�):

LEMMA 3.3 (Reverse Poincaré inequality). Let (X,d,m,E,F) be a MMD space satis-
fying CS(�), and let CS denote the constant in CS(�). Then, for any (x, r) ∈ X × (0,∞),
any a ∈ R and any function h ∈ F ∩ L∞(X,m) that is E-harmonic on B(x,2r),

(3.8)
∫
B(x,r)

d�(h,h) ≤ 8CS

�(r)

∫
B(x,2r)\B(x,r)

|h − a|2 dm.

PROOF. Let (x, r) ∈ X× (0,∞), and let h ∈ F ∩L∞(X,m) be E-harmonic on B(x,2r).
By the regularity of (E,F) and [19], Exercise 1.4.1, we can take g ∈ F ∩ Cc(X) such
that g = 1 on B(x,2r), then g is E-harmonic on B(x,2r) and �(g,g)(B(x,2r)) = 0 by
the strong locality of (E,F) and [19], Corollary 3.2.1 (or [17], Theorem 4.3.8), whence
�(h,h)|B(x,2r) = �(h− ag,h− ag)|B(x,2r) for any a ∈ R by (2.2) and (2.3). Therefore, (3.8)
for general a ∈ R follows from (3.8) for a = 0 by considering h − ag instead of h.
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Let ϕ be a cutoff function for B(x, r) ⊂ B(x,2r) from CS(�). Then, since h,ϕ ∈ F ∩
L∞(X,m), h is E-harmonic on B(x,2r) and hϕ2 = 0 E-q.e. on X \ B(x,2r) by suppm[ϕ] ⊂
B(x,2r) and [19], Lemma 2.1.4, we have

0 = E
(
h,hϕ2)= �

(
h,hϕ2)(X)

(
by (3.7) and (2.4)

)
=
∫
X

ϕ2 d�(h,h) + 2
∫
X

ϕhd�(h,ϕ)
(
by [19], Lemma 3.2.5

)

≥
∫
X

ϕ2 d�(h,h) − 2

√∫
X

ϕ2 d�(h,h)

∫
X

h2 d�(ϕ,ϕ)

(
by [19], Proof of Lemma 5.6.1

)
≥
∫
X

ϕ2 d�(h,h) − 1

2

∫
X

ϕ2 d�(h,h) − 2
∫
X

h2 d�(ϕ,ϕ)

≥ 1

4

∫
X

ϕ2 d�(h,h) − 2CS

�(r)

∫
B(x,2r)\B(x,r)

h2 dm
(
by CS(�)

)
.

(3.9)

Noting that ϕ = 1 E-q.e. on B(x, r) by [19], Lemma 2.1.4, and, hence, that ϕ = 1 �(h,h)-a.e.
on B(x, r) by [19], Lemma 3.2.4, from (3.9) we now obtain∫

B(x,r)
d�(h,h) ≤

∫
X

ϕ2 d�(h,h) ≤ 8CS

�(r)

∫
B(x,2r)\B(x,r)

h2 dm,

proving (3.8) for a = 0. �

Proposition 3.5 below establishes the singularity of the energy measures of E-harmonic
functions. For our convenience we introduce the notion of an ε-net in a metric space as
follows:

DEFINITION 3.4. Let (X,d) be a metric space, and let ε > 0. A subset N of X is called
an ε-net in (X,d) if the following two conditions are satisfied:

(i) (Separation) N is ε-separated in (X,d), that is, d(x, y) ≥ ε for any x, y ∈ N with
x �= y.

(ii) (Maximality) If N ⊂ M ⊂ X and M is ε-separated in (X,d), then M = N .

It is elementary to see that an ε-net in (X,d) exists if B(x, r) is totally bounded in (X,d) for
any (x, r) ∈ X × (0,∞) and that any ε-net in (X,d) is finite if (X,d) is totally bounded.

PROPOSITION 3.5. Let (X,d,m,E,F) be a MMD space satisfying VD, PI(�) and
CS(�), and assume further that d is geodesic and that � satisfies (2.15). Let U be an open
subset of X, and let h ∈F ∩ L∞(X,m) be E-harmonic on U . Then, �(h,h)|U ⊥ m|U .

PROOF. Assume to the contrary that the conclusion �(h,h)|U ⊥ m|U fails. Let A ≥ 1
denote the constant in PI(�), and let λ > 4A. By Lemma 3.1 and by replacing h with αh for
some suitable α ∈ (0,∞) if necessary, there exist x ∈ U and rx,λ > 0 with B(x, rx,λ) ⊂ U

such that, for all r ∈ (0, rx,λ), δ ∈ [λ−1,1] and y ∈ B(x, r),

(3.10)
1

2
≤ �(h,h)(B(y, δr))

m(B(y, δr))
≤ 2.

We remark that the constant rx,λ depends on both x and λ, as suggested by the notation.
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We set hB(y,s) := m(B(y, s))−1 ∫
B(y,s) h dm for (y, s) ∈ X × (0,∞). Let r ∈ (0, rx,λ), and

let N be an r/λ-net in (B(x, r), d). Then, for all y1, y2 ∈ N such that d(y1, y2) ≤ 3r/λ,

|hB(y1,r/λ) − hB(y2,r/λ)|2

=
∣∣∣∣ 1

m(B(y1, r/λ))m(B(y2, r/λ))

×
∫
B(y1,r/λ)

∫
B(y2,r/λ)

(
h(z1) − h(z2)

)
dm(z2) dm(z1)

∣∣∣∣2

≤ 1

m(B(y1, r/λ))m(B(y2, r/λ))

×
∫
B(y1,r/λ)

∫
B(y2,r/λ)

∣∣h(z1) − h(z2)
∣∣2 dm(z2) dm(z1)

(by the Cauchy–Schwarz inequality)

� 1

m(B(y1,4r/λ))2

×
∫
B(y1,4r/λ)

∫
B(y1,4r/λ)

∣∣h(z1) − h(z2)
∣∣2 dm(z2) dm(z1) (by VD)

� �(r/λ)

m(B(y1,4r/λ))

∫
B(y1,4Ar/λ)

d�(h,h)
(
by PI(�) and Assumption 2.2

)
≤ C1�(r/λ)

(
by (3.10) and VD

)
,

(3.11)

where C1 > 0 depends only on the constants in Assumption 2.2, VD and PI(�).
Let y1, y2 ∈ N be arbitrary. Since (X,d) is geodesic, approximating the concatenation of a

geodesic from y1 to x and a geodesic from x to y2 by using points in N as done in [34], Proof
of Lemma 2.5, we can choose k ∈ N and {zi}ki=0 ⊂ N so that k ≤ 3λ, z0 = y1, zk = y2 and
d(zi, zi+1) ≤ 3r/λ for all i ∈ {0, . . . , k − 1}. Therefore, by the triangle inequality and (3.11)
we obtain

(3.12) |hB(y1,r/λ) − hB(y2,r/λ)| ≤
k−1∑
i=0

|hB(zi,r/λ) − hB(zi+1,r/λ)| ≤ 3C
1/2
1 λ

√
�(r/λ).

Let y1 ∈ N be fixed. Combining (3.12) and (3.10) with VD and PI(�), we conclude∫
B(x,r)

|h − hB(x,r)|2 dm

≤
∫
B(x,r)

|h − hB(y1,r/λ)|2 dm

≤ ∑
y2∈N

∫
B(y2,r/λ)

|h − hB(y1,r/λ)|2 dm

≤ 2
∑

y2∈N

∫
B(y2,r/λ)

(|hB(y1,r/λ) − hB(y2,r/λ)|2 + |h − hB(y2,r/λ)|2)dm

(3.13)
≤ 2

∑
y2∈N

∫
B(y2,r/λ)

(
9C1λ

2�(r/λ) + |h − hB(y2,r/λ)|2)dm
(
by (3.12)

)

� λ2�(r/λ)m
(
B(x, r)

)+ ∑
y2∈N

�(r/λ)�(h,h)
(
B(y2,Ar/λ)

) (
by VD and PI(�)

)
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� λ2�(r/λ)m
(
B(x, r)

)+ ∑
y2∈N

�(r/λ)m
(
B(y2, r/λ)

) (
by (3.10) and VD

)

≤ C2λ
2�(r/λ)m

(
B(x, r)

)
(by VD),

where C2 > 0 depends only on the constants in Assumption 2.2, VD and PI(�).
On the other hand, by Lemma 3.3, (2.5), (3.10) and VD, for all r ∈ (0, rx,λ) we have

(3.14)
∫
B(x,r)

|h − hB(x,r)|2 dm ≥ C−1
3 �(r)�(h,h)

(
B(x, r/2)

)≥ C−1
4 �(r)m

(
B(x, r)

)
,

where C3,C4 > 0 depend only on the constants in Assumption 2.2, VD and CS(�). Now, it
follows from (3.13) and (3.14) that

λ2�(r/λ)

�(r)
≥ C−1

2 C−1
4 for all λ > 4A and all r ∈ (0, rx,λ),

and, hence, lim infλ→∞ lim infr↓0 λ2�(r/λ)/�(r) ≥ C−1
2 C−1

4 > 0, which contradicts (2.15)
and completes the proof. �

The absolute continuity and singularity of energy measures are preserved under linear
combinations and norm convergence in (F,E1), as stated in the following two lemmas:

LEMMA 3.6. Let (X,d,m,E,F) be a MMD space, and let ν be a σ -finite Borel measure
on X. Let f,g ∈ F and a, b ∈ R.

(a) If �(f,f ) � ν and �(g,g) � ν, then �(af + bg, af + bg) � ν.
(b) If �(f,f ) ⊥ ν and �(g,g) ⊥ ν, then �(af + bg, af + bg) ⊥ ν.

PROOF. (a) This is immediate from (2.2) and (2.3).
(b) By �(f,f ) ⊥ ν and �(g,g) ⊥ ν there exist Borel subsets B1,B2 of X such that

�(f,f )(B1) = �(g,g)(B2) = 0 and ν(X \ B1) = ν(X \ B2) = 0. Then, B := B1 ∩ B2 satis-
fies �(f,f )(B) = �(g,g)(B) = 0, hence, �(af + bg, af + bg)(B) = 0 by (2.2) and (2.3),
and also ν(X \ B) = 0, proving �(af + bg, af + bg) ⊥ ν. �

LEMMA 3.7. Let (X,d,m,E,F) be a MMD space, and let ν be a σ -finite Borel measure
on X. Let {fn}∞n=1 ⊂ F and f ∈ F satisfy limn→∞ E(f − fn,f − fn) = 0.

(a) If �(fn, fn) � ν for every n ∈ N, then �(f,f ) � ν.
(b) If �(fn, fn) ⊥ ν for every n ∈ N, then �(f,f ) ⊥ ν.

PROOF. (a) This is immediate from [30], Proof of Lemma 2.2.
(b) For each n ∈ N, by �(fn, fn) ⊥ ν there exists a Borel subset Bn of X such that

�(fn, fn)(Bn) = 0 and ν(X \ Bn) = 0. Then, B := ⋂∞
n=1 Bn satisfies �(fn, fn)(B) = 0 for

all n ∈ N and ν(X \ B) = 0. By (2.3), (2.2) with a = −b = 1 and (2.4),

�(f,f )(B) = ∣∣�(f,f )(B)1/2 − �(fn, fn)(B)1/2∣∣2
≤ �(f − fn,f − fn)(B) ≤ E(f − fn,f − fn)

n→∞−−−→ 0,
(3.15)

so that B satisfies both �(f,f )(B) = 0 and ν(X \ B) = 0, proving �(f,f ) ⊥ ν. �

We next show that any non-negative function in F ∩ Cc(X) can be approximated in norm
in (F,E1) by “piecewise E-harmonic functions” whose energy measures charge only their
domains of E-harmonicity. This approximation is used together with Lemma 3.7(b) to extend
the singularity of the energy measures to all f ∈ F in Proposition 3.10 below, and is obtained
on the basis of the following fact from the theory of regular symmetric Dirichlet forms:
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LEMMA 3.8. Let (X,d,m,E,F) be a MMD space, let U be an open subset of X with
m(U) < ∞ and let F be a closed subset of X with F ⊂ U . Then, there exists a linear map
HU

F : FU ∩ L∞(X,m) → FU such that, for any f ∈ FU ∩ L∞(X,m) with f ≥ 0, HU
F (f ) =

f E-q.e. on F , HU
F (f ) is E-harmonic on U \ F and 0 ≤ HU

F (f ) ≤ ‖f ‖L∞(X,m) E-q.e.

PROOF. Let HU
F be the map HB defined in [19], Theorem 4.3.2, with B := F ∪ (X \U).

It is a linear map from the extended Dirichlet space Fe to itself by [19], Theorem 4.6.5,
and for any f ∈ Fe with f ≥ 0 we have 0 ≤ HU

F (f ) ≤ ‖f ‖L∞(X,m) E-q.e. by [19],
Lemma 2.1.4, Theorem 4.2.1(ii) and Theorem 4.1.1, and HU

F (f ) = f E-q.e. on B by
[19], Theorem A.2.6(i), Theorem 4.1.3 and Theorem 4.2.1(ii). In particular, for any f ∈
FU ∩ L∞(X,m), HU

F (f ) = HU
F (f +) − HU

F (f −) ∈ L∞(X,m), HU
F (f ) = f E-q.e. on F ,

HU
F (f ) = f = 0 E-q.e. on X \ U , hence, HU

F (f ) ∈ Fe ∩ L2(X,m) = F by m(U) < ∞ and
[19], Theorem 1.5.2(iii), thus HU

F (f ) ∈ FU , and HU
F (f ) is E-harmonic on X \ B = U \ F

for any f ∈FU ∩ L∞(X,m) by [19], Theorem 4.6.5, completing the proof. �

PROPOSITION 3.9. Let (X,d,m,E,F) be a MMD space. Let f ∈ F ∩ Cc(X) satisfy
f ≥ 0, and for each n ∈ N set Fn := f −1(2−nZ) and define fn ∈FX\f −1(0) ∩ L∞(X,m) by

(3.16) fn = ∑
k∈Z∩[0,2n‖f ‖sup]

fn,k where fn,k := H
f −1((k2−n,∞))

f −1([(k+1)2−n,∞))

((
f − k2−n)+ ∧ 2−n).

Then, for any n ∈ N, fn = f E-q.e. on Fn, fn is E-harmonic on X \ Fn, �(fn, fn)(Fn) = 0
and |f − fn| ≤ 2−n1X\f −1(0) E-q.e. Moreover, limn→∞ E1(f − fn,f − fn) = 0.

PROOF. Let n ∈ N and k ∈ Z ∩ [0,2n‖f ‖sup]. Since (f − k2−n)+ ∧ 2−n ∈
Ff −1((k2−n,∞)) ∩ Cc(X) by [19], Theorem 1.4.1, we immediately see from Lemma 3.8 that
fn,k is a well-defined element of Ff −1((k2−n,∞)), is E-harmonic on f −1((k2−n, (k + 1)2−n))

and satisfies

(3.17) 0 ≤ fn,k ≤ 2−n E-q.e. and fn,k =
{

0 E-q.e. on f −1([0, k2−n]),
2−n E-q.e. on f −1([(k + 1)2−n,∞))

.

In particular, fn,k is E-harmonic on X \ f −1({k2−n, (k + 1)2−n}) by the strong local-
ity of (E,F) and the fact that g1U ∈ F ∩ Cc(X) and suppm[g1U ] ⊂ U for any g ∈
F ∩ Cc(X) with suppm[g] ⊂ X \ f −1({k2−n, (k + 1)2−n}) by [19], Exercise 1.4.1 and The-
orem 1.4.2(ii), where U denotes any one of f −1([0, k2−n)), f −1((k2−n, (k + 1)2−n)) and
f −1(((k + 1)2−n,∞)). Thus, fn ∈ FX\f −1(0) ∩ L∞(X,m), fn is E-harmonic on X \ Fn, and
it easily follows from (3.17) that |f − fn| ≤ 2−n1X\f −1(0) E-q.e. and that fn = f ∈ 2−nZ

E-q.e. on Fn, whence �(fn, fn)(Fn) ≤ �(fn, fn)(f
−1
n (2−nZ)) = 0 by the absolute con-

tinuity of �(fn, fn)(f
−1
n (·)) with respect to the Lebesgue measure on R deduced from

the strong locality of (E,F) and [17], Theorem 4.3.8. Also, integrating the inequality
|f − fn|2 ≤ 4−n1X\f −1(0) yields ‖f − fn‖L2(X,m) ≤ 2−nm(X \ f −1(0))1/2 n→∞−−−→ 0.

Finally, for any n, k ∈ N with n ≤ k, we have E(f, fn) = E(fn, fn) = E(fk, fn) by the
E-harmonicity of fn on X \ Fn, f = fn = fk E-q.e. on Fn and (3.7), and, therefore,

E(f, f ) = E(fn, fn) + E(f − fn,f − fn) ≥ E(fn, fn),(3.18)

E(fk, fk) − E(fn, fn) = E(fk − fn,fk − fn) ≥ 0.(3.19)

Then, {E(fn, fn)}∞n=1 ⊂ [0,E(f, f )] by (3.18), it is non-decreasing by (3.19) and, hence,
converges in R, which together with (3.19) and limn→∞ ‖f − fn‖L2(X,m) = 0 implies that
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{fn}∞n=1 is a Cauchy sequence in the Hilbert space (F,E1). So limn→∞ E1(g−fn, g−fn) = 0
for some g ∈ F , which has to coincide with f by limn→∞ ‖f − fn‖L2(X,m) = 0. �

As mentioned above, we now prove the following proposition as the last main step:

PROPOSITION 3.10. Let (X,d,m,E,F) be a MMD space, and assume that �(h,h)|U ⊥
m|U for any open subset U of X and any h ∈ F ∩L∞(X,m) that is E-harmonic on U . Then,
�(f,f ) ⊥ m for all f ∈F .

PROOF. Since F ∩Cc(X) is norm dense in (F,E1) by the regularity of (E,F), in view of
Lemma 3.7(b) it suffices to consider the case of f ∈ F ∩ Cc(X). Also, writing f = f + − f −
and noting that f +, f − ∈ F ∩ Cc(X) by [19], Theorem 1.4.2(i), thanks to Lemma 3.6(b) we
may assume without loss of generality that f ≥ 0.

Then, for each n ∈ N, setting Fn := f −1(2−nZ) and defining fn ∈ FX\f −1(0) ∩ L∞(X,m)

by (3.16), we have �(fn, fn)(Fn) = 0 and the E-harmonicity of fn on X \ Fn by Proposi-
tion 3.9, and, therefore, the assumption yields �(fn, fn)|X\Fn ⊥ m|X\Fn , which together with
�(fn, fn)(Fn) = 0 implies �(fn, fn) ⊥ m. Now, �(f,f ) ⊥ m follows by this fact, the norm
convergence limn→∞ E1(f − fn,f − fn) = 0 from Proposition 3.9 and Lemma 3.7(b). �

PROOF OF THEOREM 2.13(a). It is easy to verify that VD is preserved under a bi-
Lipschitz change of the metric and that so is PI(�) provided � satisfies Assumption 2.2.
The same holds also for CS(�) under Assumption 2.2 for � and VD by [2], Lemma 5.7;
to be precise, here we need to use a slight variant of [2], Lemma 5.7, with the radius r/2 in
its assumption replaced by r/(2C2) for the constant C ≥ 1 in the bi-Lipschitz equivalence
of the metrics, but [2], Proof of Lemma 5.7, works also for this variant. Therefore, using
Proposition A.1, we may assume without loss of generality that d is geodesic, and now it
follows from Propositions 3.5 and 3.10 that �(f,f ) ⊥ m for all f ∈ F . In particular, for any
f ∈Floc ∩C(X) with �(f,f ) ≤ m, we have �(f,f )(X) = 0, which together with PI(�) and
the relative compactness of B(x, r) in X for all (x, r) ∈ X × (0,∞) implies that f = a1X

for some a ∈R. Thus, dint(x, y) = 0 for any x, y ∈ X by (2.13). �

The above proof of Theorem 2.13(a) easily extends to the more general situation where
the Poincaré inequality PI(�PI) and the cutoff Sobolev inequality CS(�CS) are assumed to
hold with respect to possibly different space-time scale functions �PI and �CS, as follows:

THEOREM 3.11. Let �PI,�CS : [0,∞) → [0,∞) be homeomorphisms satisfying As-
sumption 2.2, and let (X,d,m,E,F) be a MMD space satisfying VD, PI(�PI) and CS(�CS).
Assume further that (X,d) satisfies the chain condition and that

(3.20) lim inf
λ→∞ lim inf

r↓0

λ2�PI(r/λ)

�CS(r)
= 0.

Then, �(f,f ) ⊥ m for all f ∈ F .

PROOF. It is straightforward to see that the proof of Proposition 3.5 extends to the present
situation under the additional assumption that d is geodesic. The rest of the proof goes in
exactly the same way as the above proof of Theorem 2.13(a). �
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4. Absolute continuity. In this section we give the proof of Theorem 2.13(b), namely,
the “mutual absolute continuity” between the symmetric measure m and the energy measures
under the assumption (2.16). In this section we do NOT assume that (X,d) satisfies the chain
condition except in Proposition 4.8. Recall that we always have diam(X,d) ∈ (0,∞] for a
metric measure space (X,d,m) by our standing assumption that #X ≥ 2.

We begin with the following lemma, which shows that the estimate (2.16) can be upgraded
to the Gaussian space-time scaling (2.17) at small scales:

LEMMA 4.1. Let (X,d,m,E,F) be a MMD space satisfying VD, PI(�) and CS(�),
and assume further that � satisfies (2.16). Then, there exist r1 ∈ (0,diam(X,d)) and C1 ≥ 1
such that (2.17) holds.

PROOF. By [44], Corollary 1.10, there exists C1 ≥ 1 such that

(4.1) C−1
1

r2

s2 ≤ �(r)

�(s)
for all 0 < s ≤ r < diam(X,d).

The desired upper bound on �(r) follows immediately from (4.1). The lower bound on �(r)

for r ∈ (0,diam(X,d)) follows by letting s ↓ 0 in (4.1) and using (2.16) to obtain

�(r)

r2 ≥ C−1
1 lim sup

s↓0

�(s)

s2 > 0,

completing the proof. �

The upper inequality in (2.18) is obtained from VD, PI(�) and (2.17), as follows:

LEMMA 4.2. Let (X,d,m,E,F) be a MMD space satisfying VD and PI(�), and as-
sume further that � satisfies (2.17). Then, there exist C, r0 > 0 such that dint(x, y) ≤
Cd(x, y) for all x, y ∈ X with d(x, y) < r0.

PROOF. Let f ∈ Floc ∩ C(X) satisfy �(f,f ) ≤ m. Then, by [44], Lemma 2.4 (see also
[28], Lemma 5.15), there exists C > 0 such that

(4.2)
∣∣f (x) − f (y)

∣∣≤ C
√

�(r) for all x, y ∈ X and r > 0 with d(x, y) ≤ C−1r .

The desired estimate follows from (4.2), (2.17) and (2.13). �

On the other hand, the lower inequality in (2.18) follows from VD, CS(�) and (2.17),
as stated in the following lemma, which also establishes standard properties of the functions
(1 − r−1d(x, ·))+ in studying Gaussian heat kernel estimates as a key step of the proof of the
“mutual absolute continuity” between the symmetric measure m and the energy measures:

LEMMA 4.3. Let (X,d,m,E,F) be a MMD space satisfying VD and CS(�), and as-
sume further that � satisfies (2.17). Then, there exist C, r0 > 0 such that, for all (x, r) ∈ X ×
(0, r0), the function fx,r := (1−r−1d(x, ·))+ satisfies fx,r ∈F and �(fx,r , fx,r ) ≤ C2r−2m.
In particular, dint(x, y) ≥ C−1d(x, y) for all x, y ∈ X with d(x, y) ∧ (Cdint(x, y)) < r0.

PROOF. Let r1 > 0 and C1 ≥ 1 be as in (2.17), (x, r) ∈ X × (0, r1) and n ∈ N \ {1}. For
each i ∈ {1, . . . , n − 1}, let ϕi,n ∈ F be a cutoff function for B(x, ir/n) ⊂ B(x, (i + 1)r/n)

as given in CS(�) and set Ui,n := B(x, (i + 1)r/n) \ B(x, ir/n), so that by CS(�) we have

(4.3)
∫
X

g2 d�(ϕi,n, ϕi,n) ≤ 1

8

∫
Ui,n

d�(g, g) + CS

�(r/n)

∫
Ui,n

g2 dm
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for all g ∈ F . Set

ϕn := 1

n − 1

n−1∑
i=1

ϕi,n,

so that 0 ≤ ϕn ≤ 1 m-a.e., suppm[ϕn] ⊂ B(x, r) and

(4.4) |ϕn − fx,r | ≤ 2n−11B(x,r) m-a.e.

By the strong locality of (E,F), [19], Corollary 3.2.1 (or [17], Theorem 4.3.8), and (2.3), we
have

(4.5) �(ϕn,ϕn) = (n − 1)−2
n−1∑
i=1

�(ϕi,n, ϕi,n).

Combining (4.3), (4.5) and (2.17), we obtain∫
X

g2 d�(ϕn,ϕn) ≤ (n − 1)−2

8

∫
B(x,r)

d�(g, g) + CS(n − 1)−2

�(r/n)

∫
B(x,r)

g2 dm

≤ (n − 1)−2

8

∫
B(x,r)

d�(g, g) + 4C1CS

r2

∫
B(x,r)

g2 dm

(4.6)

for all g ∈ F . Therefore, choosing g ∈ F ∩ Cc(X) with g = 1 on B(x, r), which exists by
the regularity of (E,F) and [19], Exercise 1.4.1, and noting that �(ϕn,ϕn)(X \ B(x, r)) =
�(g,g)(B(x, r)) = 0 by suppm[ϕn] ⊂ B(x, r), the strong locality of (E,F) and [19], Corol-
lary 3.2.1 (or [17], Theorem 4.3.8), we see from (4.6) that

E1(ϕn,ϕn) ≤
(

4C1CS

r2 + 1
)
m
(
B(x, r)

)
for all n ∈ N \ {1}.

Hence, by the Banach–Saks theorem ([17], Theorem A.4.1(i)), there exists a subsequence
{ϕnk

}∞k=1 of {ϕn}∞n=2 such that its Cesàro mean sequence

ψi := 1

i

i∑
k=1

ϕnk
, i ∈ N,

converges in norm in (F,E1) as i → ∞, but then its limit must be fx,r by (4.4) and, in
particular, fx,r ∈ F . On the other hand, by (2.2) and the Cauchy–Schwarz inequality similar
to (2.3), we have the triangle inequality

(4.7)
∣∣∣∣
(∫

X
g2 d�(f1, f1)

)1/2
−
(∫

X
g2 d�(f2, f2)

)1/2∣∣∣∣≤
(∫

X
g2 d�(f1 −f2, f1 −f2)

)1/2

for all f1, f2 ∈ F and all bounded Borel measurable function g : X → R. Combining (4.7)
and (2.4) with limi→∞ E1(fx,r − ψi,fx,r − ψi) = 0 in the same way as (3.15), we obtain∫

X
g2 d�(fx,r , fx,r )

= lim
i→∞

∫
X

g2 d�(ψi,ψi)

≤ lim inf
i→∞

1

i

i∑
k=1

∫
X

g2 d�(ϕnk
, ϕnk

)
(
by (4.7) and the Cauchy–Schwarz inequality

)
(4.8)

≤ lim
i→∞

1

i

i∑
k=1

(
(nk − 1)−2

8

∫
B(x,r)

d�(g, g) + 4C1CS

r2

∫
B(x,r)

g2 dm

) (
by (4.6)

)

= 4C1CS

r2

∫
B(x,r)

g2 dm for all g ∈ F ∩ Cc(X).
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Since F ∩Cc(X) is dense in (Cc(X),‖ · ‖sup) by the regularity of (E,F), it follows from (4.8)
that

(4.9) �(fx,r , fx,r ) ≤ 4C1CSr−2m.

In particular, for all (x, r) ∈ X × (0, r1), the function

f̂x,r := r(4C1CS)−1/2fx,r

satisfies f̂x,r ∈ F ∩ C(X) and �(f̂x,r , f̂x,r ) ≤ m by (4.9), and we therefore obtain

(4.10) dint(x, y) ≥ f̂x,r (x) − f̂x,r (y) = (4C1CS)−1/2r for all y ∈ X with d(x, y) ≥ r

in view of (2.13). Thus, for each x, y ∈ X, if d(x, y) ≥ r1, then (4C1CS)1/2dint(x, y) ≥ r1
by (4.10), hence, if (4C1CS)1/2dint(x, y) < r1, then d(x, y) < r1, and if in turn d(x, y) < r1,
then dint(x, y) ≥ (4C1CS)−1/2d(x, y) either by using (4.10) with r = d(x, y) ∈ (0, r1) or by
d(x, y) = 0, completing the proof. �

We also need the following lemma for the proof of the absolute continuity of the energy
measures achieved as Proposition 4.5 below. Recall the notion of an ε-net in a metric space
(X,d) introduced in Definition 3.4.

LEMMA 4.4 (Lipschitz partition of unity). Let (X,d,m,E,F) be a MMD space satisfy-
ing VD and CS(�), and assume further that � satisfies (2.17). Then, there exist C, r0 > 0
such that, for any ε ∈ (0, r0) and any ε-net N ⊂ X in (X,d), there exists {ϕz}z∈N ⊂ F∩Cc(X)

with the following properties:

(a)
∑

z∈N ϕz(x) = 1 for all x ∈ X.
(b) 0 ≤ ϕz(x) ≤ 1B(z,2ε)(x) for all x ∈ X and all z ∈ N .
(c) ϕz is Cε−1-Lipschitz for all z ∈ N , that is, |ϕz(x) − ϕz(y)| ≤ Cε−1d(x, y) for all

x, y ∈ X.
(d) �(ϕz,ϕz) ≤ Cε−2m for all z ∈ N .
(e) E(ϕz, ϕz) ≤ Cε−2m(B(z, ε)) for all z ∈ N .

PROOF. Let r0 > 0 be the constant from Lemma 4.3, and let fx,r ∈ F ∩ C(X) be as
defined in Lemma 4.3 for each (x, r) ∈ X × (0, r0). Let ε ∈ (0, r0/2), and let N ⊂ X be an
ε-net in (X,d). Noting that

(4.11)
1

2
≤ ∑

w∈N

fw,2ε(y) = ∑
w∈N∩B(z,4ε)

fw,2ε(y) ≤ #
(
N ∩ B(z,4ε)

)
� 1

for all z ∈ X and all y ∈ B(z,2ε) by
⋃

w∈N B(w, ε) = X and VD, we define

(4.12) ϕz := fz,2ε∑
w∈N fw,2ε

= fz,2ε∑
w∈N∩B(z,4ε) fw,2ε

for each z ∈ N ,

so that properties (a) and (b) obviously hold and {ϕz}z∈N ⊂F∩Cc(X) by [43], Exercise I.4.16
(or Corollary I.4.13), and the relative compactness of B(z,2ε) in X. The estimate (d) follows
easily from the chain rule [19], Theorem 3.2.2, for �, the Cauchy–Schwarz inequality similar
to (2.3), (4.11) and Lemma 4.3, and the estimate (e) is an immediate consequence of (2.4),
(b), [19], Corollary 3.2.1 (or [17], Theorem 4.3.8), (d) and VD.

It remains to prove (c). First, note that by the triangle inequality, fz,2ε is (2ε)−1-Lipschitz
for all z ∈ X, that is,

(4.13)
∣∣fz,2ε(x) − fz,2ε(y)

∣∣≤ (2ε)−1d(x, y) for all x, y, z ∈ X.
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Let z ∈ N and x, y ∈ X. If d(x, y) ≥ ε, then

(4.14)
∣∣ϕz(x) − ϕz(y)

∣∣≤ 1 ≤ ε−1d(x, y).

On the other hand, if d(x, y) < ε, then∣∣ϕz(x) − ϕz(y)
∣∣

≤
∣∣∣∣ fz,2ε(x)∑

w∈N fw,2ε(x)
− fz,2ε(y)∑

w∈N fw,2ε(x)

∣∣∣∣+
∣∣∣∣ fz,2ε(y)∑

w∈N fw,2ε(x)
− fz,2ε(y)∑

w∈N fw,2ε(y)

∣∣∣∣
≤ ε−1d(x, y) +

∣∣∣∣ 1∑
w∈N fw,2ε(x)

− 1∑
w∈N fw,2ε(y)

∣∣∣∣ (
by (4.11) and (4.13)

)
(4.15)

≤ ε−1d(x, y) + 4
∣∣∣∣ ∑
w∈N∩B(x,4ε)

(
fw,2ε(y) − fw,2ε(x)

)∣∣∣∣ (
by (4.11) and d(x, y) < ε

)

� ε−1d(x, y)
(
by (4.13) and (4.11)

)
.

Combining (4.14) and (4.15), we obtain (c). �

PROPOSITION 4.5 (Energy dominance of m). Let (X,d,m,E,F) be a MMD space sat-
isfying VD, PI(�) and CS(�), and assume further that � satisfies (2.16). Then, m is an
energy-dominant measure of (E,F), that is, �(f,f ) � m for all f ∈F .

PROOF. Since F∩Cc(X) is dense in (F,E1) by the regularity of (E,F), by Lemma 3.7(a)
it suffices to show that �(f,f ) � m for all f ∈ F ∩ Cc(X).

Let f ∈ F ∩ Cc(X). Noting that Lemma 4.4 is applicable by Lemma 4.1, let r1, r0 > 0
be the constants in Lemmas 4.1 and 4.4, respectively. Let n ∈ N satisfy 4n−1 < r1 ∧ r0, let
Nn ⊂ X be an n−1-net in (X,d) and let {ϕz}z∈Nn be the Lipschitz partition of unity as given
in Lemma 4.4. We define

(4.16) fn := ∑
z∈Nn

fB(z,n−1)ϕz where fB(z,n−1) := 1

m(B(z,n−1))

∫
B(z,n−1)

f dm,

so that fn is, in fact, a finite linear combination of {ϕz}z∈Nn by the relative compactness of⋃
x∈suppm[f ] B(x,n−1) in X and, hence, satisfies fn ∈ F ∩ Cc(X) and, by Lemma 3.6(a),

(4.17) �(fn, fn) � m.

Since ‖fn‖sup ≤ ‖f ‖sup by Lemma 4.4(a),(b), we easily see that

(4.18)
∣∣fn(x) − fn(y)

∣∣� n‖f ‖supd(x, y) for any x, y ∈ X

by treating the case of d(x, y) ≥ n−1 and that of d(x, y) < n−1 separately as in (4.14) and
(4.15) and using Lemma 4.4(b),(c) and VD for the latter case, and fn is thus Lipschitz. Fur-
thermore, by Lemma 4.4(a),(b), for any x ∈ X we have

∣∣fn(x) − f (x)
∣∣= ∣∣∣∣ ∑

z∈Nn∩B(x,2n−1)

(
fB(z,n−1) − f (x)

)
ϕz(x)

∣∣∣∣
≤ ∑

z∈Nn∩B(x,2n−1)

∣∣fB(z,n−1) − f (x)
∣∣ϕz(x)

≤ sup
{∣∣f (w) − f (x)

∣∣ ∣∣w ∈ B
(
x,3n−1)},

which together with the uniform continuity of f ∈ Cc(X) on X yields

(4.19) ‖fn − f ‖sup ≤ sup
{∣∣f (z) − f (w)

∣∣ ∣∣ z,w ∈ X, d(z,w) < 3n−1} n→∞−−−→ 0.
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Also, choosing (x0, r) ∈ X × (0,∞) so that suppm[f ] ⊂ B(x0, r), we have suppm[fn] ⊂
B(x0, r + 4) by Lemma 4.4(b), and, therefore, from (4.19) we obtain

(4.20) ‖fn − f ‖L2(X,m) ≤ ‖fn − f ‖supm
(
B(x0, r + 4)

)1/2 n→∞−−−→ 0.

On the other hand, using PI(�) together with VD and Lemma 4.1 in the same way as
(3.11), for all z,w ∈ Nn with d(z,w) ≤ 3n−1 we have

(4.21) |fB(z,n−1) − fB(w,n−1)|2 �
n−2

m(B(z,n−1))

∫
B(z,4An−1)

d�(f,f ),

where A ≥ 1 is the constant in PI(�). For each z ∈ Nn, observing that

fn(x) = fB(z,n−1) + ∑
w∈Nn∩B(z,3n−1)

(fB(w,n−1) − fB(z,n−1))ϕw(x) for all x ∈ B
(
z,n−1)

by Lemma 4.4(a),(b), we see from the strong locality of (E,F), [19], Corollary 3.2.1 (or [17],
Theorem 4.3.8), (4.7) and the Cauchy–Schwarz inequality that

�(fn, fn)
(
B
(
z,n−1))

≤ #
(
Nn ∩ B

(
z,3n−1))

× ∑
w∈Nn∩B(z,3n−1)

|fB(w,n−1) − fB(z,n−1)|2�(ϕw,ϕw)
(
B
(
z,n−1))

� �(f,f )
(
B
(
z,4An−1)) (

by VD, (4.21) and Lemma 4.4(d)
)
.

(4.22)

Since X = ⋃
z∈Nn

B(z,n−1) and
∑

z∈Nn
1B(z,4An−1) � 1 by VD, from (2.4) and (4.22) we

obtain

(4.23) E(fn, fn) ≤ ∑
z∈Nn

�(fn, fn)
(
B
(
z,n−1))� ∑

z∈Nn

�(f,f )
(
B
(
z,4An−1))� E(f, f ).

It follows from (4.20) and (4.23) that {fn}n>4(r1∧r0)
−1 is a bounded sequence in (F,E1),

and, hence, by the Banach–Saks theorem [17], Theorem A.4.1(i), there exists a subsequence
{fnk

}∞k=1 of {fn}n>4(r1∧r0)
−1 such that its Cesàro mean sequence {i−1∑i

k=1 fnk
}∞i=1 converges

in norm in (F,E1), but then the limit must necessarily be f by (4.20). Now, by (4.17),
Lemma 3.6(a) and Lemma 3.7(a), we obtain �(f,f ) � m, completing the proof. �

REMARK 4.6. The above proof of Proposition 4.5 is inspired by [37], Proof of Propo-
sition 4.7. Note that it also shows that F ∩ Lipc(X,d) is dense in (F,E1) in the situation
of Proposition 4.5, where Lipc(X,d) := {f ∈ Cc(X) | f is Lipschitz with respect to d}. We
remark that Proposition 4.5 and this denseness were proved also in [1], Lemma 2.11, with a
very similar proof under the additional a priori assumptions that d is the intrinsic metric dint
and that � is given by �(r) = r2.

PROPOSITION 4.7 (Minimality of m). Let (X,d,m,E,F) be a MMD space satisfying
VD, PI(�) and CS(�), and assume further that � satisfies (2.16). If ν is a minimal energy-
dominant measure of (E,F), then m � ν.

PROOF. Let m = ma +ms be the Lebesgue decomposition of m with respect to ν, so that
ma � ν and ms ⊥ ν. We are to show that ms(X) = 0, which will yield m = ma � ν.

Noting that Lemma 4.3 is applicable by Lemma 4.1, let r1 ∈ (0,diam(X,d)) and C, r0 > 0
be the constants in Lemmas 4.1 and 4.3, respectively. Then, by Lemma 4.3, for all (x, r) ∈
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X × (0, r0) we have fx,r := (1 − r−1d(x, ·))+ ∈ F and �(fx,r , fx,r ) ≤ C2r−2m, which to-
gether with �(fx,r , fx,r ) � ν ⊥ ms implies that

(4.24) �(fx,r , fx,r ) ≤ C2r−2ma.

On the other hand, for each (x, r) ∈ X × (0, r1/2), by B(x, r) �= X (recall that r1 ∈
(0,diam(X,d))) and [44], Proof of Corollary 2.3, there exists y ∈ B(x,3r/4) \ B(x, r/2),
and then there exists δ ∈ (0,1) determined solely by the constant CD in VD such that

(4.25) 1 − (fx,r )B(x,r) ≥ m(B(y, r/4))

4m(B(x, r))
≥ δ by B(y, r/4) ⊂ B(x, r) \ B(x, r/4) and VD,

where (fx,r )B(x,r) := m(B(x, r))−1 ∫
B(x,r) fx,r dm. Thus, for all (x, r) ∈ X × (0, r1/2) we

have fx,r − (fx,r )B(x,r) ≥ δ/2 on B(x, δr/2) by (4.25) and, hence,

m
(
B(x,Ar)

)
�m

(
B(x, δr/2)

)
�
∫
B(x,r)

∣∣fx,r − (fx,r )B(x,r)

∣∣2 dm (by VD)

��(r)�(fx,r , fx,r )
(
B(x,Ar)

) (
by PI(�)

)
�ma

(
B(x,Ar)

) (
by Lemma 4.1 and (4.24)

)
,

(4.26)

where A ≥ 1 is the constant in PI(�).
Now, assume to the contrary that ms(X) > 0. Then, by ma � ν ⊥ ms and the inner reg-

ularity of ms (see, e.g., [45], Theorem 2.18), there exists a compact subset K of X such
that ms(K) > 0 and ma(K) = 0. Let ε ∈ (0, r1/2), set Kε := ⋃

x∈K B(x, ε) and let Nε

be a 2ε-net in (K,d), so that Kε is relatively compact in X, K ⊂ ⋃
x∈Nε

B(x,2ε) and
B(x, ε) ∩ B(y, ε) =∅ for any x, y ∈ Nε with x �= y. Using these properties, we obtain

0 < m(K) ≤ ∑
x∈Nε

m
(
B(x,2ε)

)
�

∑
x∈Nε

m
(
B(x, ε)

)
�

∑
x∈Nε

ma

(
B(x, ε)

) (
by VD and (4.26)

)

= ma

( ⋃
x∈Nε

B(x, ε)

)
≤ ma(Kε)

ε↓0−−→ ma(K) = 0,

which is a contradiction and thereby proves that ms(X) = 0. �

As the last step of the proof of Theorem 2.13(b), we now establish first the finiteness of
dint, and then the bi-Lipschitz equivalence of dint to d under the additional assumption of the
chain condition for (X,d):

PROPOSITION 4.8. Let (X,d,m,E,F) be a MMD space satisfying VD, PI(�) and
CS(�), and assume further that � satisfies (2.16). Then, dint is a geodesic metric on X.
Moreover, if, additionally, (X,d) satisfies the chain condition, then dint is bi-Lipschitz equiv-
alent to d .

PROOF. By Lemmas 4.1, 4.2 and 4.3, there exist r0 > 0 and C ≥ 1 such that

(4.27) C−1d(x, y) ≤ dint(x, y) ≤ Cd(x, y) for all x, y ∈ X with d(x, y) ∧ dint(x, y) < r0.

Let dε and dint,ε denote the ε-chain metric corresponding to d and dint, respectively, as defined
in Definition 2.10(a) for each ε > 0; note that dint,ε can be defined by (2.11) even though dint
is yet to be shown to be a metric on X. Let ε ∈ (0, r0). Then, we easily see from (2.11), (4.27)
and the triangle inequality for d and dint that for all x, y ∈ X,

(4.28) C−1d(x, y) ≤ (
C−1dCε(x, y)

)∨ dint(x, y) ≤ dint,ε(x, y) ≤ CdC−1ε(x, y) < ∞,
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where we used the fact that dC−1ε(x, y) < ∞ by [44], Lemma 2.2. It follows from (4.28),
(4.27) and the completeness of (X,d) that dint is a complete metric on X compatible with the
original topology of (X,d), and thus we can apply [48], Theorem 1, to obtain the geodesic
property of dint, which together with (2.11) and (4.28) implies that

(4.29) dint(x, y) = dint,ε(x, y) ≥ C−1d(x, y) for all x, y ∈ X.

Finally, assuming now that (X,d) satisfies the chain condition, for some C′ ≥ 1 we have
dC−1ε(x, y) ≤ C′d(x, y) for all x, y ∈ X, which in combination with (4.28) shows that

(4.30) dint,ε(x, y) ≤ CdC−1ε(x, y) ≤ CC′d(x, y) for all x, y ∈ X.

We therefore conclude from (4.29) and (4.30) the bi-Lipschitz equivalence of dint to d . �

PROOF OF THEOREM 2.13(b). We have (2.17) by Lemma 4.1, then (2.18) by (2.17),
Lemmas 4.2 and 4.3, and m is a minimal energy-dominant measure of (E,F) by Propositions
4.5 and 4.7. Finally, by Proposition 4.8, dint is a geodesic metric on X, and it is bi-Lipschitz
equivalent to d under the additional assumption of the chain condition for (X,d). �

5. Examples: Scale irregular Sierpiński gaskets. This section is devoted to presenting
an application of Theorem 2.13(a) to a class of fractals called scale irregular Sierpiński gas-
kets, which are constructed in a way similar to the standard Sierpiński gasket (K2 in Figure 1)
but allowing different configurations of the cells in different scales and, thus, are not exactly
self-similar. This class of fractals are also called homogeneous random Sierpiński gaskets
in the literature, especially when the sequence of cell configurations in different scales is
randomly chosen according to some probability distribution, but here we prefer not to use
this term because we do not make such random construction. We could introduce an abstract
class of self-similar fractals generalizing the Sierpiński gasket and use them to construct our
scale irregular Sierpiński gaskets, as is done in [13, 26] and [36], Chapter 24. For the sake
of brevity, however, we instead consider just a concrete family of self-similar Sierpiński gas-
kets, which give rise to the higher dimensional analogs of the two-dimensional scale irregular
Sierpiński gaskets considered initially by Hambly in [25].

Throughout this section, we fix N ∈ N\ {1} and a regular N -dimensional simplex � ⊂ RN

with side length 1 and the set of its vertices {qk | k ∈ {0, . . . ,N}} =: V0, where � denotes the
convex hull of V0 in RN and is thus a compact convex subset of RN . For each l ∈ N \ {1},
we set Sl := {(ik)Nk=1 ∈ (N ∪ {0})N ∣∣ ∑N

k=1 ik ≤ l − 1}, and for each i = (ik)
N
k=1 ∈ Sl set

ql
i := q0 +∑N

k=1(ik/ l)(qk − q0) and define F l
i : RN →RN by F l

i (x) := ql
i + l−1(x − q0).

Let l = (ln)
∞
n=1 ∈ (N\{1})N satisfy supn∈N ln < ∞, set W l

n :=∏n
k=1 Slk for each n ∈ N and

F l
w := F l1

w1
◦ · · · ◦F ln

wn
for each n ∈ N and w = w1 . . .wn ∈ W l

n. We define the N -dimensional

FIG. 1. The 2-dimensional level-l (self-similar) Sierpiński gaskets Kl (l = 2,3,4).
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FIG. 2. A 2-dimensional level-l scale irregular Sierpiński gasket Kl (l = (2,3,4,2, . . .)).

level-l scale irregular Sierpiński gasket K l as the non-empty compact subset of � given by

(5.1) K l :=
∞⋂

n=1

⋃
w∈W l

n

F l
w(�)

(see Figure 2); note that {⋃w∈W l
n
F l

w(�)}∞n=1 is a strictly decreasing sequence of non-empty
compact subsets of � and that

(5.2) F l
w(�) ∩ F l

v(�) = F l
w(V0) ∩ F l

v(V0) for any n ∈ N and any w,v ∈ W l
n with w �= v.

We also set V l
0 := V0 and V l

n :=⋃
w∈W l

n
F l

w(V0) for each n ∈ N, so that {V l
n}∞n=0 is a strictly

increasing sequence of finite subsets of K l and
⋃∞

n=0 V l
n is dense in K l . In particular, for each

l ∈ N \ {1} we let ll := (l)∞n=1 denote the constant sequence with value l, set Kl := K ll and

V l
n := V

ll
n for n ∈ N ∪ {0}, and call Kl the N -dimensional level-l Sierpiński gasket, which is

exactly self-similar in the sense that Kl =⋃
i∈Sl

F l
i (K

l) (see Figure 1).
As discussed in [13, 25, 26] (see also [36], Part 4), we can define a canonical MMD

space (K l, dl,ml,E l,Fl) over K l with the metric dl geodesic, as follows. First, we define
dl : K l × K l → [0,∞) by

(5.3) dl(x, y) := inf
{
Length(γ )

∣∣ γ : [0,1] → K l , γ is continuous, γ (0) = x, γ (1) = y
}
,

where Length(γ ) denotes the Euclidean length of γ , that is, the total variation of γ as an RN -
valued map. Then, it is easy to see by following [13], Proof of Lemma 2.4, that dl is a geodesic
metric on K l which is bi-Lipschitz equivalent to the restriction to K l of the Euclidean metric
on RN . Next, the standard measure-theoretic arguments immediately show that there exists a
unique Borel probability measure ml on K l such that

(5.4) ml

(
F l

w

(
K l))= 1

M l
n

for any n ∈ N and any w ∈ W l
n,
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where M l
n := (#Sl1) · · · (#Sln), and then ml is clearly a Radon measure on K l with full sup-

port. The measure ml can be considered as the “uniform distribution on K l .”
The Dirichlet form (E l,Fl) is constructed as the “inductive limit” of a certain canonical

sequence of discrete Dirichlet forms on the finite sets {V l
n}∞n=0 by the standard method pre-

sented in [35], Chapter 3 (see also [3], Sections 6 and 7). We start with defining a non-negative
definite symmetric bilinear form E0 :RV0 ×RV0 →R on RV0 = RV l

0 by

(5.5) E0(f, g) := 1

2

N∑
j,k=0

(
f (qj ) − f (qk)

)(
g(qj ) − g(qk)

)
, f, g ∈ RV0 .

We would like to define a bilinear form E l,n on RV l
n for each n ∈ N as the sum of the copies of

(5.5) on {F l
w(V0)}w∈W l

n
and take their limit as n → ∞, but for the existence of their limit they

actually need to be multiplied by certain scaling factors given as follows. For each l ∈ N\ {1},
the Euclidean-geometric symmetry of V0 = V l

0 and V l
1 immediately implies the existence of

a unique rl ∈ (0,∞) such that, for any f ∈ RV0 ,

(5.6) min
{∑

i∈Sl

E0(g ◦ F l
i |V0, g ◦ F l

i |V0

) ∣∣∣∣ g ∈ RV l
1 , g|V0 = f

}
= rlE0(f, f ),

and rl ∈ (0,1) by [35], Corollary 3.1.9. Then, setting E l,0 := E0 and defining for each n ∈ N

a non-negative definite symmetric bilinear form E l,n : RV l
n ×RV l

n →R on RV l
n by

(5.7) E l,n(f, g) := 1

Rl
n

∑
w∈W l

n

E0(f ◦ F l
w|V0, g ◦ F l

w|V0

)
, f, g ∈ RV l

n ,

where Rl
n := rl1 · · · rln , we easily see from (5.6) and (5.2) that, for any n ∈ N and any f ∈

RV l
n−1 ,

(5.8) min
{
E l,n(g, g)

∣∣ g ∈ RV l
n , g|V l

n−1
= f

}= E l,n−1(f, f ).

The equality (5.8) allows us to take the “inductive limit” of {E l,n}∞n=0, that is, to define a linear
subspace Fl of C(K l) and a non-negative definite symmetric bilinear form E l : Fl ×Fl →R

on Fl by

Fl :=
{
f ∈ C

(
K l) ∣∣∣ lim

n→∞E l,n(f |V l
n
, f |V l

n

)
< ∞

}
,(5.9)

E l(f, g) := lim
n→∞E l,n(f |V l

n
, g|V l

n

) ∈ R, f, g ∈Fl,(5.10)

where {E l,n(f |V l
n
, f |V l

n
)}∞n=0 ⊂ [0,∞) is non-decreasing by (5.8) and, hence, has a limit in

[0,∞] for any f ∈ C(K l). Then, exactly the same arguments as in [36], Chapter 22, show
that (E l,Fl) is a local regular resistance form on K l in the sense of [36], Chapters 3, 6 and 7,
with its resistance metric giving the same topology as dl , and is thereby a strongly local,
regular symmetric Dirichlet form on L2(K l,ml) by [36], Theorem 9.4.

For the present MMD space (K l, dl,ml,E l,Fl), it turns out that the right choice of a
space-time scale function � is the homeomorphism �l : [0,∞) → [0,∞) defined by

(5.11) �l(s) :=
⎧⎪⎨
⎪⎩

(Ll
ns)

βln

T l
n

if n ∈ N and s ∈ [(
Ll

n

)−1
,
(
Ll

n−1
)−1],

sβmin
l if s ∈ [1,∞),

where βl := logl(#Sl/rl) for l ∈ N \ {1}, βmin
l := minn∈N βln , Ll

0 := T l
0 := 1, Ll

n := l1 · · · ln
and T l

n := M l
n/R

l
n for n ∈ N, so that βl ∈ (1,∞) for any l ∈ N \ {1} by #Sl ≥ l + 1 and
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rl < 1 and, hence, also βmin
l ∈ (1,∞) by supn∈N ln < ∞. It is immediate from (5.11) and

supn∈N ln < ∞ that �l satisfies Assumption 2.2 with βmin
l and βmax

l := maxn∈N βln in place
of β0 and β1, respectively. In particular, if l ∈ N \ {1} and l is the constant sequence ll =
(l)∞n=1 with value l, then �ll (s) = sβl for any s ∈ [0,∞).

The following result is essentially a special case of [13], Theorem 4.5 and Lemma 5.3,
and it is concluded from [36], Theorem 15.10, by proving the conditions (DM1)�l ,dl

and
(DM2)�l ,dl

defined in [36], Definition 15.9(3),(4), which can be achieved in exactly the same
way as [36], Chapter 24:

THEOREM 5.1. (K l, dl,ml,E l,Fl) satisfies VD and HKE(�l).

COROLLARY 5.2. (K l, dl,ml,E l,Fl) satisfies VD, PI(�l) and CS(�l).

PROOF. This is immediate from Assumption 2.2 for �l , Theorems 5.1 and 2.8. �

Thus, our present MMD space (K l, dl,ml,E l,Fl) will prove to fall into the situation of
Theorem 2.13(a) once �l has been shown to satisfy (2.15), which is indeed the case, as
stated in Proposition 5.3 below. Note that this proposition is not entirely obvious since it
seems impossible to calculate the values of rl and βl explicitly for general l ∈ N \ {1}.

PROPOSITION 5.3. βl > 2 for any l ∈ N \ {1}. In particular, βmin
l > 2 and �l satisfies

(2.15).

PROOF. Let l ∈ N \ {1}, consider the case where l is the constant sequence ll = (l)∞n=1
with value l, that is, that of the N -dimensional level-l Sierpiński gasket Kl , set dl := dll ,
ml := mll and (E l ,Fl) := (E ll ,Fll ), and let �l(f, f ) denote the energy measure of f ∈ Fl

associated with (Kl, dl,ml,E l,Fl). Then, by [31], Theorem 2, we have �l(f, f ) ⊥ ml for
all f ∈ Fl , which together with Corollary 5.2 for l = ll and Theorem 2.13(b) implies that
lim sups↓0 sβl−2 = lim sups↓0 s−2�ll (s) = 0 since only one of �l(f, f ) ⊥ ml and �l(f, f ) �
ml can hold for each f ∈Fl \R1Kl by �l(f, f )(Kl) = E l(f, f ) > 0. Thus, βl > 2, which in
combination with supn∈N ln < ∞ yields βmin

l > 2. Now, (2.5) for �l with βmin
l > 2 in place

of β0 shows (2.15) for �l .
An alternative elementary proof of βl > 2, which is a slight modification of that suggested

by an anonymous referee, is based on the specific structure of V l
1 and E0 and goes as follows.

Define f :RN →R by f (q0 +∑N
k=1 ak(qk − q0)) :=∑N

k=1 ak for each (ak)
N
k=1 ∈RN . Then,

since f ◦ F l
i = l−1f + f (ql

i )1RN for any i ∈ Sl and g := f |V l
1

is easily seen not to attain
the minimum in the left-hand side of (5.6) with f |V0 in place of f , from (5.5) and (5.6) we
obtain

0 < E0(f |V0, f |V0) <
1

rl

∑
i∈Sl

E0(f ◦ F l
i |V0, f ◦ F l

i |V0

)= #Sl

rl
l−2E0(f |V0, f |V0),

whence #Sl/rl > l2 and βl = logl(#Sl/rl) > 2. �

REMARK 5.4. The alternative proof of βl > 2 in the second paragraph of the proof of
Proposition 5.3 above can be adapted to give an elementary proof of the counterpart of βl > 2
for the canonical Dirichlet form on Sierpiński carpets; see [32] for details.

Finally, applying Theorem 2.13(a) to (K l, dl,ml,E l,Fl) on the basis of Corollary 5.2 and
Proposition 5.3, we arrive at the following result.

THEOREM 5.5. Let �l(f, f ) denote the energy measure of f ∈ Fl associated with the
MMD space (K l, dl,ml,E l,Fl). Then, �l(f, f ) ⊥ ml for all f ∈ Fl .



ON SINGULARITY OF ENERGY MEASURES FOR SYMMETRIC DIFFUSIONS 2947

APPENDIX: MISCELLANEOUS FACTS

In this appendix we state and prove a couple of miscellaneous facts utilized in the proof of
Theorem 2.13(a). The former (Proposition A.1) achieves the equivalence between the chain
condition and the bi-Lipschitz equivalence to a geodesic metric and allows us to reduce the
proof to the case where the metric is geodesic. The latter (Proposition A.4) is a straightfor-
ward extension, to a general metric measure space satisfying VD, of the classical Lebesgue
differentiation theorem ([45], Theorem 7.13) for singular measures on the Euclidean space,
and here we give a complete proof of it for the reader’s convenience.

A.1. Chain condition and bi-Lipschitz equivalence to a geodesic metric.

PROPOSITION A.1. Let (X,d) be a metric space such that B(x, r) := {y ∈ X |
d(x, y) < r} is relatively compact in X for any (x, r) ∈ X × (0,∞). Then, the following
are equivalent:

(a) (X,d) satisfies the chain condition.
(b) There exists a geodesic metric ρ on X which is bi-Lipschitz equivalent to d , that is,

satisfies C−1d(x, y) ≤ ρ(x, y) ≤ Cd(x, y) for any x, y ∈ X for some C ∈ [1,∞).

We need the following definition and lemma for the proof of Proposition A.1.

DEFINITION A.2. Let (X,d) be a metric space, and let x, y ∈ X. We say that z ∈ X is a
midpoint in (X,d) between x, y if d(x, z) = d(y, z) = d(x, y)/2.

LEMMA A.3. Let (X,d) be a metric space. If ε > 0 and x, y ∈ X satisfy dε(x, y) < ∞,
then there exists z ∈ X such that |2dε(x, z) − dε(x, y)| ≤ 5ε and |2dε(y, z) − dε(x, y)| ≤ 5ε.

PROOF. By the definition (2.11) of dε(x, y) and the assumption dε(x, y) < ∞, we can
take an ε-chain {xi}ni=0 in (X,d) from x to y such that

(A.1)
n−1∑
i=0

d(xi, xi+1) ≥ dε(x, y) ≥
n−1∑
i=0

d(xi, xi+1) − ε.

Let k ∈ {1, . . . , n} be the smallest integer such that

(A.2)
k−1∑
i=0

d(xi, xi+1) ≥ 1

2

n−1∑
i=0

d(xi, xi+1).

We claim that z := xk satisfies the desired inequalities. Indeed, by d(xk−1, xk) < ε and the
minimality of k among the elements of {1, . . . , n} with the property (A.2), we have

(A.3)
k−1∑
i=0

d(xi, xi+1) ≥ 1

2

n−1∑
i=0

d(xi, xi+1) >

k−1∑
i=0

d(xi, xi+1) − ε

and

(A.4)
1

2

n−1∑
i=0

d(xi, xi+1) ≥
n−1∑
i=k

d(xi, xi+1) >
1

2

n−1∑
i=0

d(xi, xi+1) − ε.

Noting that dε satisfies the triangle inequality, we see from the lower inequality in (A.1) and
the definition (2.11) of dε that

n−1∑
i=0

d(xi, xi+1) − ε ≤ dε(x, y) ≤ dε(x, z) + dε(y, z) ≤
n−1∑
i=0

d(xi, xi+1),
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which yields

(A.5) −ε ≤
(
dε(x, z) −

k−1∑
i=0

d(xi, xi+1)

)
+
(
dε(y, z) −

n−1∑
i=k

d(xi, xi+1)

)
≤ 0.

Since both of the terms in (A.5) are non-positive by (2.11), we obtain

(A.6)

∣∣∣∣∣dε(x, z) −
k−1∑
i=0

d(xi, xi+1)

∣∣∣∣∣≤ ε and

∣∣∣∣∣dε(y, z) −
n−1∑
i=k

d(xi, xi+1)

∣∣∣∣∣≤ ε.

Now, it follows from the triangle inequality, (A.6), (A.3) and (A.1) that∣∣∣∣dε(x, z) − 1

2
dε(x, y)

∣∣∣∣≤
∣∣∣∣∣dε(x, z) −

k−1∑
i=0

d(xi, xi+1)

∣∣∣∣∣+
∣∣∣∣∣
k−1∑
i=0

d(xi, xi+1) − 1

2

n−1∑
i=0

d(xi, xi+1)

∣∣∣∣∣
+ 1

2

∣∣∣∣∣dε(x, y) −
n−1∑
i=0

d(xi, xi+1)

∣∣∣∣∣
≤ ε + ε + ε

2
= 5

2
ε,

and in the same way from (A.6), (A.4) and (A.1) that |2dε(y, z) − dε(x, y)| ≤ 5ε. �

PROOF OF PROPOSITION A.1. (b) ⇒ (a): Let ε > 0 and x, y ∈ X. Note that
ρC−1ε(x, y) = ρ(x, y) by the definition (2.11) of ρC−1ε(x, y) and the geodesic property of ρ.
Since C−1ρ ≤ d ≤ Cρ by (b), each C−1ε-chain in (X,ρ) from x to y is also an ε-chain in
(X,d) from x to y, and, therefore,

dε(x, y) ≤ CρC−1ε(x, y) = Cρ(x, y) ≤ C2d(x, y).

(a) ⇒ (b): Note that, for each x, y ∈ X, (0,∞) � ε �→ dε(x, y) is a non-increasing function
and, hence, the limit ρ(x, y) := limε↓0 dε(x, y) exists. Since dε is a metric on X and d ≤ dε ≤
Cd for any ε > 0 for some C ≥ 1 by (a), ρ is a metric on X, satisfies d ≤ ρ ≤ Cd and is thus
bi-Lipschitz equivalent to d , which in particular yields the completeness of the metric space
(X,ρ), thanks to that of (X,d) implied by the assumed relative compactness of B(x, r) in X

for all (x, r) ∈ X × (0,∞).
It remains to prove that (X,ρ) is geodesic, and by its completeness and [16], Proof of

Theorem 2.4.16, it suffices to show that, for any x, y ∈ X, there exists a midpoint z ∈ X in
(X,ρ) between x, y. To this end, let x, y ∈ X and, noting Lemma A.3, for each n ∈ N choose
zn ∈ X so that

(A.7)
∣∣2dn−1(x, zn) − dn−1(x, y)

∣∣≤ 5n−1 and
∣∣2dn−1(y, zn) − dn−1(x, y)

∣∣≤ 5n−1.

Then, since {zn}∞n=1 is included in the relatively compact subset B(x,Cd(x, y) + 5) of X by
(A.7) and d ≤ dn−1 ≤ Cd , there exists a subsequence {znk

}∞k=1 of {zn}∞n=1 converging to some
z ∈ X in (X,d). Now, for any k ∈ N, by the triangle inequality for d

n−1
k

, (A.7), d
n−1

k
≤ Cd

and limj→∞ d(z, znj
) = 0 we obtain∣∣2d

n−1
k

(x, z) − d
n−1

k
(x, y)

∣∣≤ 2
∣∣d

n−1
k

(x, z) − d
n−1

k
(x, znk

)
∣∣+ ∣∣2d

n−1
k

(x, znk
) − d

n−1
k

(x, y)
∣∣

≤ 2d
n−1

k
(z, znk

) + 5n−1
k ≤ 2Cd(z, znk

) + 5n−1
k

k→∞−−−→ 0,

which yields 2ρ(x, z) − ρ(x, y) = limk→∞(2d
n−1

k
(x, z) − d

n−1
k

(x, y)) = 0. Exactly the same

argument also shows 2ρ(y, z) − ρ(x, y) = 0, proving that z is a midpoint in (X,ρ) between
x, y and thereby completing the proof. �



ON SINGULARITY OF ENERGY MEASURES FOR SYMMETRIC DIFFUSIONS 2949

A.2. Lebesgue’s differentiation theorem for singular measures.

PROPOSITION A.4 (Cf. [45], Theorem 7.13). Let (X,d,m) be a metric measure space
satisfying VD, let ν be a Radon measure on X, that is, a Borel measure on X which is finite
on any compact subset of X, and assume ν ⊥ m. Then,

(A.8) lim
r↓0

ν(B(x, r))

m(B(x, r))
= 0 for m-a.e. x ∈ X.

PROOF. By taking x0 ∈ X and considering ν(· ∩ B(x0, n)) for each n ∈ N instead of ν,
we may assume without loss of generality that ν(X) < ∞. For each x ∈ X, we define

(Qrν)(x) := ν(B(x, r))

m(B(x, r))
, r ∈ (0,∞),

(Mν)(x) := sup
r∈(0,∞)

(Qrν)(x),

(Dν)(x) := lim sup
r↓0

(Qrν)(x).

Since (0,∞) � r �→ m(B(x, r)) and (0,∞) � r �→ ν(B(x, r)) are left-continuous, we have

(A.9) (Mν)(x) = sup
r∈(0,∞)∩Q

(Qrν)(x) and (Dν)(x) = lim
n→∞ sup

r∈(0,n−1)∩Q
(Qrν)(x).

An easy application of the triangle inequality shows that the functions X � x �→ m(B(x, r))

and X � x �→ ν(B(x, r)) are lower semi-continuous and, hence, Borel measurable. Thus,
X � x �→ (Qrν)(x) is also Borel measurable and so are X � x �→ (Mν)(x) and X � x �→
(Dν)(x) by (A.9). Let CD denote the constant in VD. Using the estimate m(B(x,3r)) ≤
C2

Dm(B(x, r)) for (x, r) ∈ X × (0,∞) and the arguments in [45], Proofs of Lemma 7.3 and
Theorem 7.4, together with the inner regularity of m (see, e.g., [45], Theorem 2.18), we obtain
the maximal inequality

(A.10) m
(
(Mν)−1((λ,∞]))≤ C2

Dλ−1ν(X) for all λ > 0.

Let λ, ε > 0. Since ν ⊥ m, the inner regularity of ν (see, e.g., [45], Theorem 2.18) implies
the existence of a compact subset K of X such that m(K) = 0 and ν(K) > ν(X) − ε. Set
ν1 := ν(· ∩ K) and ν2 := ν(· ∩ (X \ K)), so that ν = ν1 + ν2 and ν2(X) < ε. For every
x ∈ X \ K , we have

(Dν)(x) = (Dν2)(x) ≤ (Mν2)(x),

hence,

(Dν)−1((λ,∞])⊂ K ∪ (Mν2)
−1((λ,∞])

and, therefore, it follows from m(K) = 0, (A.10) for the measure ν2 and ν2(X) < ε that

(A.11) m
(
(Dν)−1((λ,∞]))≤ m

(
(Mν2)

−1((λ,∞]))≤ C2
Dλ−1ν2(X) < C2

Dλ−1ε.

Since (A.11) holds for every λ, ε > 0, we conclude that Dν = 0 m-a.e., which is (A.8). �
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Ann. Inst. Henri Poincaré Probab. Stat. 25 225–257. MR1023950
[7] BARLOW, M. T. and BASS, R. F. (1992). Transition densities for Brownian motion on the Sierpiński carpet.
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