
SIAM J. DISCRETE MATH. c© 2005 Society for Industrial and Applied Mathematics
Vol. 19, No. 2, pp. 321–344

STABILIZATION OF BLOCK-TYPE-DECODABILITY PROPERTIES
FOR CONSTRAINED SYSTEMS∗

PANU CHAICHANAVONG† AND BRIAN H. MARCUS‡

Abstract. We consider a class of encoders for constrained systems, which we call block-type-
decodable encoders. For a constrained system presented by a deterministic graph, we design a block-
type-decodable encoder by selecting a subset of states of the graph to be used as encoder states. Such
a subset is known as a set of principal states. Our goal is to find an optimal set of principal states, i.e.,
a set which yields the highest code rate. We study the relationship between optimal sets of principal
states at finite block length and at asymptotically large block length. Specifically, we show that for
a primitive constraint and a large enough block length, any optimal set of principal states is also
asymptotically optimal. Moreover, we give bounds on the block length such that this relationship
holds. We also characterize asymptotically optimal block-type-decodable encoders. Finally, we study
the complexity of various problems related to block-type-decodable encoders.

Key words. constrained systems, block encoders, block-decodable encoders, deterministic en-
coders, sets of principal states, integer programming, NP-complete problems

AMS subject classifications. 94A99, 94B99, 68R10, 90C90, 68Q17

DOI. 10.1137/S0895480104443679

1. Introduction. In most recording channels, arbitrary data is encoded into
constrained sequences to improve the performance of storage systems. A constraint is
presented by a labeled finite directed graph, and a constrained sequence is obtained by
reading the labels of a path in the graph. The best known constraint is the runlength-
limited (RLL(d, k)) constraint, which is the binary constraint that bounds the lengths
of the runs of zeros to be at least d and at most k (see Figure 1.1). This constraint is
used in magnetic tape drives and optical drives to suppress the interference between
adjacent bits and improve the timing recovery system. The constraint that we will
use as an example throughout this paper is the asymmetric-RLL(d0, k0, d1, k1) (see,
e.g., Immink [7, section 4.5]), which requires that the lengths of the runs of zeros are
between d0 and k0 and the lengths of the runs of ones are between d1 and k1.

For a given constraint and a given block length q, we consider fixed-rate encoders
that encode arbitrary user data into constrained blocks of length q such that strings
formed from concatenating consecutive encoded blocks satisfy the constraint. The
precise definitions of the encoders that we consider in this paper are given in sections 2
and 3.

In order to avoid error propagation in the decoding process, many practical ap-
plications use block encoders. Although these encoders are conceptually simplest, we
may be able to achieve higher rates using block-decodable encoders for which error
propagation is still limited to one block. However, the optimal rate is difficult to com-
pute, and an achieving block-decodable encoder is hard to design. Nevertheless, for
some constraints—including the RLL(d, k) constraint—this problem has been shown

∗Received by the editors May 12, 2004; accepted for publication (in revised form) November 29,
2004; published electronically October 20, 2005. Part of this work was presented at the 2003 IEEE
International Symposium on Information Theory, Yokohama, Japan.

http://www.siam.org/journals/sidma/19-2/44367.html
†Center for Magnetic Recording Research, University of California-San Diego, 9500 Gilman Drive,

La Jolla, CA 92093 (panu@ucsd.edu).
‡Department of Mathematics, University of British Columbia, 1984 Mathematics Road, Vancouver

V6T 1Z2, BC, Canada (marcus@math.ubc.ca).

321

322 PANU CHAICHANAVONG AND BRIAN H. MARCUS

Fig. 1.1. Presentation of RLL(d, k) constraint.

to be equivalent to the problem of designing a deterministic encoder [4], which is much
more tractable.

In this work, we are interested in these three classes of encoders, which we call
block-type-decodable encoders: block, block-decodable, and deterministic encoders.
It is known that the characterization of block-type-decodable encoders can be specified
by subsets of states called the sets of principal states [10].

An optimal set of principal states for a deterministic encoder can be found using
the Franaszek algorithm [4]. Algorithms for computing the optimal sets of principal
states for a block encoder were presented by Freiman and Wyner [5] and Marcus,
Siegel, and Wolf [11]; in this paper, we present a new framework for this problem. We
also give candidates for optimal sets of principal states for a block-decodable encoder,
together with upper and lower bounds on the optimal code rate; this is based on an
integer programming interpretation.

Typically, high code rates require large block lengths. Thus, it is of interest to
study the relationship between the optimal sets of principal states at a finite block
length and those at asymptotically large block length. In [3], for deterministic en-
coders, we showed how to compute an asymptotically optimal set of principal states
and observed that this is sometimes easier than the same problem at a finite block
length. Empirically, this asymptotically optimal set of principal states is a good ap-
proximation to the finite case. In the present paper, we show how to compute an
asymptotically optimal set of principal states for block and block-decodable encoders.
We will establish the relationship between the finite case and the asymptotic case by
showing that for a primitive constraint, there is a q0 such that for any q ≥ q0, any
optimal set of principal states at block length q is also asymptotically optimal. An
upper bound on q0 is given for each class of encoder; empirically, this bound appears
to be small.

Finally, we consider the complexity of designing optimal block-type-decodable
encoders. For deterministic encoders, this is known to be polynomial because the
Franaszek algorithm is polynomial. Ashley, Karabed, and Siegel [1] showed that the
problem of designing block-decodable encoders is NP-complete. In section 8, we show
that the complexity of designing a block encoder is also NP-complete. We further
show that if the number of states is fixed, all of these problems can be solved in
polynomial time.

2. Background. Here we summarize basic definitions in constrained coding
used in this paper. More detail can be found in [10, 7].

A labeled directed graph (or simply a graph) G = (V,E,L) consists of a finite set
of states V = VG, a finite set of edges E = EG where each edge has an initial state
and terminal state in VG, and an edge labeling L = LG : E → Σ where Σ is a finite
alphabet. We will sometimes refer to a label or a sequence of labels of G as a word.

STABILIZATION OF BLOCK-TYPE-DECODABILITY PROPERTIES 323

A constrained system or constraint S = S(G) is the set of finite sequences obtained
by reading the edge labels of a path in a labeled graph G. Such a graph is called a
presentation of the constraint.

Two important properties of a graph are irreducibility and primitivity. A graph
is irreducible if for any given pair u, v of states, there is a path from u to v and a
path from v to u. A graph that is not irreducible is called reducible. Such a graph
consists of nonoverlapping irreducible subgraphs, called irreducible components, and
transitional edges between them. A graph is primitive if there exists a positive integer
� such that for all pairs u, v of states, there are paths from u to v and v to u of length
�. A constrained system is said to be irreducible if it has an irreducible presentation.
Similarly, a constrained system is primitive if it has a primitive presentation. From
the definitions, we can see that primitivity is stronger in the sense that every prim-
itive graph (constrained system) is irreducible. Many practical constraints including
RLL(d, k) are primitive.

Irreducibility and primitivity are properties of the topology of a graph alone but
not its labeling. We now state the definitions of important properties of graph labeling
that are used throughout the paper.

• A labeled graph is deterministic if at each state, all outgoing edges carry
distinct labels. It is well known that every constraint has a deterministic
presentation. Furthermore, for an irreducible constraint, there is a unique
minimal (in terms of the number of states) deterministic presentation, called
the Shannon cover. This presentation is often used as a starting point to
construct a constrained encoder.

• A labeled graph has finite memory if there is an integer N such that all paths
of length N with the same labeling terminate at the same state. The smallest
N for which this holds is called the memory of the graph.

• A labeled graph is lossless if any two distinct paths with the same initial state
and terminal state have different labels. This is the weakest property among
all mentioned properties of labeling.

Let G be a labeled graph. The adjacency matrix A = AG is the |VG|×|VG| matrix
whose entry Au,v is the number of edges from state u to state v in G. We say that a
matrix is irreducible if it is the adjacency matrix of an irreducible graph. Similarly, a
matrix is primitive if it is the adjacency matrix of a primitive graph.

Let G be a labeled graph. The qth power of G, denoted Gq, is the labeled graph
with the same set of states as G, but with one edge for each path of length q in G,
labeled by the word of length q generated by that path. For a constraint S presented
by a labeled graph G, the qth power of S, denoted Sq, is the constraint presented by
Gq. If A is the adjacency matrix of G, it can be shown that the adjacency matrix of
Gq is Aq.

The capacity of a constraint S, denoted cap(S), is defined to be

cap(S) = lim
q→∞

1

q
logN(q;S),

where N(q;S) is the number of words of length q in S. (In this paper, the logarithmic
function has base 2.) The capacity measures the growth rate of the number of words
in S. It is known that cap(Sq) = qcap(S).

To express the capacity in terms of the adjacency matrix of a lossless (in par-
ticular, deterministic) presentation G of S, we need the following notation. For a
square matrix A, we denote by λ(A) the spectral radius of A, that is, the largest of

324 PANU CHAICHANAVONG AND BRIAN H. MARCUS

the absolute values of the eigenvalues of A. According to the Perron–Frobenius theory
[12], λ(A) is an eigenvalue of A. It is well known that

cap(S) = log λ(AG).

Let S be a constrained system and let n be a positive integer. An (S, n) encoder
is a labeled graph E such that

• each state of E has out-degree n, i.e., n outgoing edges,
• S(E) ⊆ S,
• E is lossless.

The labels of the encoder are sometimes called output labels. A tagged (S, n) encoder
is an (S, n) encoder whose outgoing edges from each state are assigned distinct input
tags from an alphabet of size n, and this defines an encoding function. For an (Sq, n)
encoder, we define the block length to be q and the rate to be (logn)/q. It is known
that cap(S) is an upper bound on the rate of any (Sq, n) encoder.

3. Block-type-decodable encoders. In this paper, we restrict our interest
to block, block-decodable, and deterministic encoders. A block encoder (blk) is a
finite-state encoder such that any two edges have the same input tag if and only if
they have the same output label. A block-decodable encoder (blkdec) is a finite-state
encoder such that any two edges with the same output label have the same input
tag. A deterministic encoder (det) is a finite-state encoder with deterministic output
labeling.

It is easy to see that a block encoder is block decodable, which in turn is deter-
ministic. A block-decodable encoder can be viewed as a deterministic encoder with
a consistent input tag assignment. In this paper, we focus on these three classes of
encoders which we call block-type-decodable encoders.

For a constrained system S, a class of encoders C ∈ {blk,blkdec,det}, and a block
length q, define MC(q) to be the maximum n such that there exists an (Sq, n) encoder
in class C. Suppose that S is irreducible and let G be an irreducible deterministic
presentation of S. For each class C of block-type-decodable encoders, it can be shown
that there exists an (S, n) encoder in class C if and only if there exists such an encoder
which is a subgraph of G. (For block encoder, see [5]. For block-decodable encoder,
this is a special case of [2, Corollary 12.2]. For deterministic encoder, see [4]. For
a unified treatment, see [10].) Thus the problem of designing block-type-decodable
encoders can be solved by choosing a subgraph of G. This can be broken into two
steps: First, choose a set of states, called a set of principal states. (A principal set of
states may be a more appropriate term, but we will follow Franaszek [4] who defined
it for deterministic encoders.) Then choose edges.

The reason for breaking this into two steps is that we often need to design an
(Sq, n) encoder for various block lengths q. Since the graphs Gq have the same set of
states for all q, we may need to solve the first step only once. In fact, the problem
of determining whether a set of principal states is optimal for all large enough q is
one of the main themes of the paper. That is, we study whether the optimal sets of
principal states stabilize and, if so, at what value of q. (A set of principal states is
optimal if it induces an encoder with the highest rate. For a more precise definition,
see below.)

Let MC(q, P) denote the maximum n such that there exists an (Sq, n) encoder
in class C constructed from the set of principal states P . Therefore we can write
MC(q) = maxP⊆VG

MC(q, P). Moreover, we say that P achieves MC(q) if MC(q, P) =
MC(q). We shall later refer to such a set P as an optimal set of principal states.

STABILIZATION OF BLOCK-TYPE-DECODABILITY PROPERTIES 325

In order to quantify the optimality of block-type-decodable encoders, we need the
following notations. Let u and v be any states in a labeled graph G. The follower set
of u in G, denoted FG(u), is the set of all finite words that can be generated from
u in G. We shall use Fq

G(u, v) to denote the set of all words of length q that can be
generated in G by paths that start at u and terminate at v. Similarly, for a set of
states P , Fq

G(u, P) denotes the set of all words of length q that can be generated in G
by paths that start at u and terminate at a state in P , i.e., Fq

G(u, P) =
⋃

v∈P Fq
G(u, v).

The states of a labeled graph are naturally endowed with the partial ordering by
inclusion of follower sets: u � v if FG(u) ⊆ FG(v). We say that a set P ⊆ VG is
complete if whenever u is in P and u � v, then v is also in P .

Based on these notations, Freiman and Wyner [5] showed that

Mblk(q) = max
P⊆VG

∣∣∣∣∣
⋂
u∈P

Fq
G(u, P)

∣∣∣∣∣ .
To simplify the search for an optimal P , they further proved that when G has finite
memory less than or equal to q, it suffices to consider sets P which are complete.
In fact, the following proposition shows that this is true for all classes of block-type-
decodable encoders even when the condition that q is greater than the memory is
removed.

Proposition 3.1. Let S be a constrained system with a deterministic presenta-
tion G. Let P ⊆ VG and let P ′ be the smallest complete set such that P ⊆ P ′. Then
for each class C of encoder and block length q, MC(q, P) ≤ MC(q, P ′).

Proof. Let v ∈ P ′. It suffices to show that there is a state u ∈ P such that
Fq

G(u, P) ⊆ Fq
G(v, P ′).

Since P ′ is the smallest complete set such that P ⊆ P ′, there must be a state
u ∈ P such that u � v. Let w ∈ Fq

G(u, P). Since u � v, v can also generate w. Since
G is deterministic, the outgoing edges from u and v labeled by w are unique. Denote
the terminal states of these edges by ū and v̄, respectively. Then ū � v̄ because
u � v. Hence v̄ ∈ P ′ because P ′ is complete and ū ∈ P ⊆ P ′. This implies that
w ∈ Fq

G(v, P ′).
Similar expressions for Mdet(q, P) and Mdet(q) are due to Franaszek [4]:

Mdet(q, P) = min
u∈P

|Fq
G(u, P)| = min

u∈P

∑
v∈P

(Aq
G)u,v,(3.1)

Mdet(q) = max
P⊆VG

min
u∈P

∑
v∈P

(Aq
G)u,v.

We do not know of a formula for Mblkdec(q) as simple as those above, but, as with
Mblk(q) and Mdet(q), it is a function of only an arbitrary irreducible deterministic
presentation of the constraint, such as the Shannon cover.

4. Stabilization at large block length. We know from the previous section
that to design a block-type-decodable encoder, we need to choose a set of principal
states. Our goal is to find an optimal set of principal states that maximizes the code
rate. In some cases, it is easier to find such an optimal set of principal states at
asymptotically large block length. Thus it is desirable if we can relate the optimal
sets of principal states at asymptotically large block length to the ones at finite block
length. In this section, we study the relationship between the two.

Recall that for a constraint S with the Shannon cover G, cap(S) = log λ(AG).
When it is clear from the context, we also denote λ(AG) by λ. From the expression

326 PANU CHAICHANAVONG AND BRIAN H. MARCUS

for cap(S), we would expect MC(q, P) to grow as λq. Thus it is natural to define
Mq

C(P) = MC(q, P)/λq. Let M∞
C (P) = limq→∞ Mq

C (P). In [3, Proposition 3], we
showed that M∞

det(P) exists for primitive constraints. We shall prove that M∞
blk(P)

and M∞
blkdec(P) exist for primitive constraints in sections 6 and 7, respectively. We

define M∞
C = maxP⊆VG

M∞
C (P). We say that a set P is asymptotically optimal if

M∞
C (P) = M∞

C . Furthermore, define PC(q) and P∞
C to be the collection of optimal

sets of principal states at block length q and the collection of asymptotically optimal
sets of principal states, respectively. Lastly we define M∗

C = limq→∞ MC(q)/λq.
Proposition 4.1. For any class C, if M∞

C (P) exists for each P ⊆ VG, then the
following hold:

(i) PC(q) ⊆ P∞
C for sufficiently large q.

(ii) M∗
C exists and is equal to M∞

C .
A proof of Proposition 4.1 is given later in this section. A slightly different version

of this proposition for deterministic encoders appears in [3].
Assuming that the condition in Proposition 4.1 is satisfied, it is natural to wonder

when (i) holds. In later sections, we give bounds on q such that this holds for each
class of encoder. In order to establish those bounds and to prove Proposition 4.1, we
need the following lemma. First, define

εC = M∞
C − max

P /∈P∞
C

M∞
C (P).

Lemma 4.2. If q satisfies

|Mq
C (P) −M∞

C (P)| < εC
2

(4.1)

for each P ⊆ VG, then PC(q) ⊆ P∞
C .

Proof. Let P ∈ PC(q) and P ∗ ∈ P∞
C . It follows from (4.1) that

M∞
C (P) +

εC
2

> Mq
C(P) ≥ Mq

C(P ∗) > M∞
C (P ∗) − εC

2
= M∞

C − εC
2
.

Therefore, M∞
C −M∞

C (P) < εC , and so P ∈ P∞
C by the definition of εC .

In the case that P∞
C has only one element, the condition in the lemma implies

that PC(q) = P∞
C . This allows us to determine the optimal set of principal states at

large block length, in particular the block length that satisfies the bounds given in
later sections, from the asymptotically optimal set of principal states.

Proof of Proposition 4.1. Suppose that M∞
C (P) exists for each P ⊆ VG. Then (4.1)

holds for sufficiently large q, and (i) follows by Lemma 4.2.
Since Mq

C(P) is a convergent sequence for each P ⊆ VG,

M∗
C = lim

q→∞
max
P⊆VG

Mq
C (P) = max

P⊆VG

lim
q→∞

Mq
C(P) = M∞

C .

This proves (ii).

5. Stabilization for deterministic encoders. In this section, we study bounds
on q such that Pdet(q) ⊆ P∞

det by utilizing the Perron–Frobenius theory [12]. From
the Perron–Frobenius theory, an irreducible matrix A has a unique largest positive
eigenvalue λ = λ(A). Moreover, the corresponding right and left eigenvectors, r and
l, have all positive entries. In our context, r is a column vector and l is a row vector.
Suppose r and l are normalized so that lr = 1. Define Λ = rl, a rank-one matrix. If
A is primitive, then it follows from the Perron–Frobenius theory that

lim
q→∞

Aq

λq
= Λ.(5.1)

STABILIZATION OF BLOCK-TYPE-DECODABILITY PROPERTIES 327

The following result, which gives a characterization of M∗
det, is a consequence of

[3, Proposition 4] and Proposition 4.1 above.
Proposition 5.1 (see [3]). For each P ⊆ VG, M∞

det(P) exists. Moreover,
(i) Pdet(q) ⊆ P∞

det for sufficiently large q,
(ii) M∗

det exists and is equal to M∞
det.

Before stating the main result of this section, we provide the definition of the
maximum row sum matrix norm. Let A be an n×n matrix over the complex numbers.
Then ‖A‖∞ is defined as

‖A‖∞ = max
1≤i≤n

n∑
j=1

|Ai,j |.

It can also be written as

‖A‖∞ = max
‖x‖∞=1

‖Ax‖∞.

The following theorem provides a bound on block length q such that an optimal
set of principal states for a deterministic encoder is also asymptotically optimal.

Theorem 5.2. If q satisfies∥∥∥∥Aq

λq
− Λ

∥∥∥∥
∞

<
εdet

2
,(5.2)

then Pdet(q) ⊆ P∞
det.

Proof. We shall show that if (5.2) holds, then for each P ,

|Mq
det(P) −M∞

det(P)| < εdet

2
,

and the theorem follows from Lemma 4.2.
Let x = (xu) be the characteristic vector of P , that is, a 0-1 vector of dimension

|VG| such that xu = 1 if u ∈ P and xu = 0 otherwise. Define

y =
Aq

λq
x,

z = Λx.

From (3.1) and (5.1), one can show that [3]

Mq
det(P) = min

u∈P
yu(5.3)

and

M∞
det(P) = min

u∈P
zu.(5.4)

Let u and v be states achieving the minimum in (5.3) and (5.4), respectively.
Then yu = Mq

det(P) and zv = M∞
det(P). Furthermore, yu ≤ yv and zv ≤ zu. Since x

is a 0-1 vector, ‖x‖∞ = 1. Then it follows from (5.2) that

‖y − z‖∞ =

∥∥∥∥Aq

λq
x − Λx

∥∥∥∥
∞

<
εdet

2
.

328 PANU CHAICHANAVONG AND BRIAN H. MARCUS

Fig. 5.1. Shannon cover of the asymmetric-RLL(2, 5, 1, 3).

•
• •

•
•

•
• •

•
•

•
• •

•
• •

• •
•

•

∥∥Aq

λq − Λ
∥∥
∞

q10−3

10−2

10−1

100

5 10 15 20

εdet

2

Fig. 5.2. ‖Aq

λq − Λ‖∞.

This implies that |yu − zu| < εdet/2 and |yv − zv| < εdet/2. We want to show that
|yu − zv| < εdet/2.

Case 1. Suppose yu − zv ≥ εdet/2. Since yu ≤ yv, we have yv − zv ≥ εdet/2, a
contradiction.

Case 2. Suppose yu − zv ≤ −εdet/2. Since zv ≤ zu, we have yu − zu ≤ −εdet/2, a
contradiction.

Thus we conclude that |Mq
det(P) −M∞

det(P)| < εdet/2.
Example 5.3. The Shannon cover for the asymmetric-RLL(2, 5, 1, 3) constraint is

shown in Figure 5.1.
In contrast to RLL constraints [8, 6], there is no known explicit characterization

of the optimal sets of principal states for the asymmetric-RLL constraint. However,
we can numerically compute Mdet(q), M

∗
det, and the achieving set of principal states

easily. We obtain M∗
det = 0.7563, εdet = 0.0487, and P ∗

det = {1, 2, 3, 4, 1̄, 2̄} is the only
asymptotically optimal set of principal states.

We compute ‖Aq

λq − Λ‖∞ explicitly for small values of q in Figure 5.2. The plot

suggests that ‖Aq

λq − Λ‖∞ < εdet/2 holds for q ≥ 13. Since we do not know whether

‖Aq

λq − Λ‖∞ is decreasing with q, we will compute an upper bound for ‖Aq

λq − Λ‖∞.

STABILIZATION OF BLOCK-TYPE-DECODABILITY PROPERTIES 329

In this example, A is diagonalizable: A = TDT−1, where D = diag[λi] is a
diagonal matrix with λ = |λ1| > |λ2| ≥ · · · ≥ |λ8|. Moreover, the first column of T
and the first row of T−1 are, respectively, the right (r) and left (l) eigenvectors of A
associated with the eigenvalue λ normalized so that lr = 1. Then we have∥∥∥∥Aq

λq
− Λ

∥∥∥∥
∞

=

∥∥∥∥ 1

λq
TDqT−1 − rl

∥∥∥∥
∞

=

∥∥∥∥∥∥∥∥∥
1

λq
T

⎡
⎢⎢⎢⎣

0
λq

2

. . .

λq
8

⎤
⎥⎥⎥⎦T−1

∥∥∥∥∥∥∥∥∥
∞

≤ 1

λq
‖T‖∞

∥∥∥∥∥∥∥∥∥

⎡
⎢⎢⎢⎣

0
λq

2

. . .

λq
8

⎤
⎥⎥⎥⎦
∥∥∥∥∥∥∥∥∥
∞

‖T−1‖∞

= ‖T‖∞‖T−1‖∞
(
|λ2|
λ

)q

= (2.8811)(3.8981)

(
1.1271

1.6372

)q

.

If q ≥ 17, then∥∥∥∥Aq

λq
− Λ

∥∥∥∥
∞

≤ 11.2308(0.6884)17 = 0.0197 < 0.0243 =
εdet

2
.

Therefore P ∗
det is the only optimal set of principal states for q ≥ 17.

In fact, by computing Mdet(q, P) for 1 ≤ q ≤ 12, one can show that P ∗
det is

optimal for all q and is the only optimal set of principal states precisely when q = 5
and q ≥ 7.

With the motivation from the above example, we offer the following corollary.
Corollary 5.4. Let λi be the distinct eigenvalues of A with λ1 = λ = λ(A).

Let si be the multiplicity of λi. Let T be a transformation matrix which decomposes
A into Jordan canonical form. If

1

λq
‖T‖∞‖T−1‖∞ max

i≥2

si−1∑
k=0

(
q

k

)
|λi|q−k <

εdet

2
,

then Pdet(q) ⊆ P∞
det.

Proof. Let J be the Jordan form of all eigenvalues of A other than λ; then∥∥∥∥Aq

λq
− Λ

∥∥∥∥
∞

=

∥∥∥∥ 1

λq
T

[
λq 0
0 Jq

]
T−1 − Λ

∥∥∥∥
∞

=

∥∥∥∥ 1

λq
T

[
0 0
0 Jq

]
T−1

∥∥∥∥
∞

≤ 1

λq
‖T‖∞‖T−1‖∞‖Jq‖∞

=
1

λq
‖T‖∞‖T−1‖∞ max

i≥2
‖Jq

i ‖∞,(5.5)

where Ji is the Jordan (sub)matrix associated with λi.

330 PANU CHAICHANAVONG AND BRIAN H. MARCUS

The Jordan matrix Ji can have several forms. The one which yields the largest
‖Jq

i ‖∞ is the one with single block

Ji =

⎡
⎢⎢⎢⎢⎢⎣

λi 1 0 · · · 0
0 λi 1 · · · 0
0 0 λi · · · 0
...

...
...

. . .
...

0 0 0 · · · λi

⎤
⎥⎥⎥⎥⎥⎦
si×si

.

One can show that

Jq
i =

⎡
⎢⎢⎢⎢⎢⎢⎣

λq
i

(
q
1

)
λq−1
i

(
q
2

)
λq−2
i · · ·

(
q

si−1

)
λq−si+1
i

0 λq
i

(
q
1

)
λq−1
i · · ·

(
q

si−2

)
λq−si+2
i

0 0 λq
i · · ·

(
q

si−3

)
λq−si+3
i

...
...

...
. . .

...
0 0 0 · · · λq

i

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Therefore

‖Jq
i ‖∞ =

si−1∑
k=0

(
q

k

)
|λi|q−k.

Then it follows from (5.5) that

∥∥∥∥Aq

λq
− Λ

∥∥∥∥
∞

≤ 1

λq
‖T‖∞‖T−1‖∞ max

i≥2

si−1∑
k=0

(
q

k

)
|λi|q−k,

and the corollary follows from Theorem 5.2.

6. Stabilization for block encoders. In this section, we present an algorithm
which computes Mblk(q) and M∗

blk together with the achieving sets of principal states.
Stabilization of block encoders is also studied.

Let G be a labeled graph. Define TG(w, v) to be the subset of states of G which
are the terminal states of the paths labeled by w starting from state v. (Note that
TG(w, v) has only one state if G is deterministic.)

Definition 6.1. Let G be a labeled graph. We define Ḡ to be the graph with VḠ

being the set of all nonempty subsets of VG, with an edge from U to V labeled by w if
1. for each u ∈ U , there is an outgoing edge with label w,
2.

⋃
u∈U TG(w, u) = V .

We denote by Ā the adjacency matrix of Ḡ.
This graph Ḡ is typically reducible and is closely related to the subset construc-

tion in finite automata theory. Note that S(Ḡ) = S(G). Moreover, Ḡ is always
deterministic.

Example 6.2. The Shannon cover G and the corresponding Ḡ of RLL(1,2) are
shown in Figures 6.1 and 6.2. By viewing each state u as a singleton subset {u}, we
see that G is a subgraph of Ḡ. (This is true for any deterministic graph.)

STABILIZATION OF BLOCK-TYPE-DECODABILITY PROPERTIES 331

Fig. 6.1. Shannon cover G of RLL(1, 2).

Fig. 6.2. Ḡ for RLL(1, 2).

Lemma 6.3.

Gq = (Ḡ)q.

Proof. First observe that the sets of vertices of Gq and (Ḡ)q are the same. Next, we
can see that there is an edge from U to V in Gq if and only if there is a sequence w and
a path of length q labeled by w from every state u ∈ U such that

⋃
u∈U TG(w, u) = V .

The same is true for (Ḡ)q. Because Gq and (Ḡ)q are deterministic by construction,
the edge is unique and we can conclude that Gq = (Ḡ)q.

The next theorem shows how to compute Mblk(q, P) from Ā.
Theorem 6.4. Let S be a constrained system and let G be a deterministic pre-

sentation of S. Let Ā be the adjacency matrix of Ḡ. Then

Mblk(q, P) =
∑
U⊆P

Āq
P,U .

Proof. From the definition of Mblk(q, P), a word that can be counted for Mblk(q, P)
must be generated by an edge from every state in P and the terminal state for this
edge must be in P . Hence,

Mblk(q, P) =

∣∣∣∣∣∣
⋃

U⊆P

F1
Gq (P,U)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
⋃

U⊆P

F1
(Ḡ)q (P,U)

∣∣∣∣∣∣ (by Lemma 6.3)

=

∣∣∣∣∣∣
⋃

U⊆P

Fq

(Ḡ)
(P,U)

∣∣∣∣∣∣ =
∑
U⊆P

Āq
P,U ,

where the last equality follows from the fact that Ḡ is deterministic.

332 PANU CHAICHANAVONG AND BRIAN H. MARCUS

Lemma 6.5. Let S be a primitive constrained system and let G be the Shannon
cover of S with adjacency matrix A. Then the adjacency matrix Ā of Ḡ has the
following properties:

(i) Ā has a unique largest eigenvalue λ = λ(A).
(ii) The right (r̄) and left (̄l) eigenvectors associated with λ are nonnegative.

Furthermore, if the states of Ḡ are ordered so that the first |VG| states are of the form
{u}, where u ∈ VG (subset of size one), then r̄ and l̄ have the form

r̄ =

[
r
s

]
, l̄ =

[
l 0

]
,

where r and l are the right and left eigenvectors of A associated with λ.
(iii) Suppose r̄ and l̄ are normalized so that l̄r̄ = 1 (equivalently lr = 1), and

define Λ̄ = r̄̄l. Then limq→∞
Āq

λq = Λ̄.
Proof.

(i) Because G is deterministic, G is a subgraph of Ḡ. In particular, G is an
irreducible component of Ḡ. Since G is the Shannon cover of S, there must be a
homing word h for a state in G [10, Lemma 2.10] (i.e., all paths in G that generate
h must terminate in the same state). Let H be another irreducible component of Ḡ.
Then H cannot generate h because any path with label h must end in G. Therefore
S(H) is a proper subset of S. Thus λ(AH) < λ by [9, Corollary 4.4.9]. Since the set
of eigenvalues of Ā is the union of the sets of eigenvalues of the adjacency matrices of
the irreducible components of Ḡ, we conclude that λ is the unique largest eigenvalue
of Ā.

(ii) It is easy to see that Ā has the form

Ā =

[
A 0
C D

]
.

Let l̄ =
[

l̄1 l̄2
]
. Then the left eigenvector equation is[

l̄1A + l̄2C l̄2D
]

= λ
[

l̄1 l̄2
]
.

From (i), λ is larger than all eigenvalues of D. Thus l̄2 = 0. Moreover, l̄1 = l is the
left eigenvector of A corresponding to λ.

On the other hand, let

r̄ =

[
r̄1

r̄2

]
.

Then the right eigenvector equation is[
Ar̄1

C r̄1 + Dr̄2

]
=

[
λr̄1

λr̄2

]
.

This implies that r̄1 = r is the right eigenvector of A associated with λ and

(λI −D)r̄2 = Cr,

r̄2 = (λI −D)−1Cr

= λ−1

(
I +

D

λ
+

D2

λ2
+ · · ·

)
Cr

≥ 0.

STABILIZATION OF BLOCK-TYPE-DECODABILITY PROPERTIES 333

(iii) Ā can be transformed into Jordan canonical form as

Ā =
[

r̄ R
] [λ 0

0 J

] [
l̄
L

]
,

where J comprises eigenvalues of D and A not equal to λ. From (i), all eigenvalues
of D have magnitude less than λ. Moreover, it can be shown that the Shannon cover
of a primitive constraint is primitive. Thus all eigenvalues of A not equal to λ have
magnitude less than λ. Therefore

Āq = r̄̄lλq + o(λq),

where limq→∞ o(λq)/λq = 0. Then the result follows.
The following gives a characterization of M∗

blk.
Theorem 6.6. Let r̄ and l̄ be as in (iii) of Lemma 6.5. For a primitive constrained

system,

M∞
blk(P) = r̄P

∑
u∈P

l̄{u}.

Moreover,
(i) Pblk(q) ⊆ P∞

blk for sufficiently large q,
(ii) M∗

blk = maxP⊆VG

(
r̄P

∑
u∈P l̄{u}

)
.

Proof. From Theorem 6.4, Mq
blk(P) = 1

λq

∑
U⊆P Āq

P,U . Thus from (iii) of Lemma
6.5, we have

M∞
blk(P) = lim

q→∞
Mq

blk(P) =
∑
U⊆P

Λ̄P,U = r̄P
∑
U⊆P

l̄U .

Since l̄ = [l 0],

M∞
blk(P) = r̄P

∑
u∈P

l̄{u}.

Then (i) and (ii) follow from Proposition 4.1.
Theorem 6.7. If q satisfies∥∥∥∥ Āq

λq
− Λ̄

∥∥∥∥
∞

<
εblk

2
,

then Pblk(q) ⊆ P∞
blk.

Proof. Let P be any set of principal states and let x = (xU) be a 0-1 vector of
dimension |VḠ| such that xU = 1 if U ⊆ P and xU = 0 otherwise. Then

|Mq
blk(P) −M∞

blk(P)| =

∣∣∣∣
(
Āq

λq
x

)
P

− (Λ̄x)P

∣∣∣∣
≤

∥∥∥∥ Āq

λq
− Λ̄

∥∥∥∥
∞

<
εblk

2
.

Then the theorem follows from Lemma 4.2.

334 PANU CHAICHANAVONG AND BRIAN H. MARCUS

• •
•

•
•

•
• •

•
•

•
• •

•
• •

• •
•

•

∥∥∥ Āq

λq − Λ̄
∥∥∥
∞

q10−3

10−2

10−1

100

5 10 15 20

εblk

2

Fig. 6.3. ‖ Āq

λq − Λ̄‖∞.

Example 6.8. Consider the asymmetric-RLL(2, 5, 1, 3) described in Example 5.3.
It is found that M∗

blk = 0.3445 and the only asymptotically optimal sets of principal
states are P ∗

blk1 = {2, 3, 1̄} and P ∗
blk2 = {2, 1̄, 2̄}. The second largest M∞

blk(P) is 0.3260
when P = {2, 1̄} and {2, 3, 1̄, 2̄}. Therefore εblk = 0.3445 − 0.3260 = 0.0185.

We plot ‖ Āq

λq − Λ̄‖∞ in Figure 6.3. The plot suggests that ‖ Āq

λq − Λ̄‖∞ < εblk/2
for q ≥ 15. This would imply that either P ∗

blk1 or P ∗
blk2 (or both) is an optimal set of

principal states for q ≥ 15.
The set of eigenvalues of Ā comprises the eight eigenvalues of A, all of which

are nonzero and have multiplicity 1, and a zero eigenvalue with large multiplicity.
Computing a transformation matrix for a matrix with an eigenvalue having such a
large multiplicity is unstable; thus the idea in Corollary 5.4 cannot be directly applied.
However, since the Shannon cover G has memory 5, all paths of length q ≥ 5 in G
that carry the same label must terminate at the same state. Therefore, assuming
q ≥ 5, every path of length q in Ḡ must terminate at a state of the form {u} (a
singleton state). Hence, Āq has only eight nonzero columns (that correspond to the
singleton subsets). It follows that the Jordan blocks of Āq that correspond to the zero
eigenvalue become zero. For this reason, when q ≥ 5, we can write

Āq = R̄D̄qL̄ =
[
R 0

] [D 0
0 0

]q [
L
0

]
,

where D is the diagonal matrix containing the eigenvalues of A, and R and L contain
the right and left eigenvectors of Ā corresponding to these eigenvalues, normalized so
that LR is the identity matrix. Now we apply Theorem 6.7:∥∥∥∥ Āq

λq
− Λ̄

∥∥∥∥
∞

≤ ‖R̄‖∞‖L̄‖∞
(
|λ2|
λ

)q

= (5.9628)(2.7878)

(
1.1271

1.6372

)q

.

If q ≥ 21, then∥∥∥∥ Āq

λq
− Λ̄

∥∥∥∥
∞

≤ (16.6233)(0.6884)21 = 0.0065 < 0.0092 =
εblk

2
.

STABILIZATION OF BLOCK-TYPE-DECODABILITY PROPERTIES 335

(We remark that ‖R̄‖∞‖L̄‖∞ is not unique; different normalization of L and R gives
different ‖R̄‖∞‖L̄‖∞.)

By explicitly computing Mblk(q, P) for 1 ≤ q ≤ 30, we find that P ∗
blk1 and P ∗

blk2

are optimal for all q in that range except q = 5. Moreover, they both are the only
optimal sets of principal states when 8 ≤ q ≤ 30.

We can further analyze the block codes L1 and L2 supported by P ∗
blk1 and P ∗

blk2.
One can show that L1 comprises words with prefix 001, 10, or 110, and suffix 100,
1000, or 01. Similarly, L2 comprises words with prefix 001, 0001, or 10, and suffix
100, 01, or 011. Thus, a word w = w1w2 · · ·wq is in L1 if and only if its reversal
wqwq−1 · · ·w1 is in L2. Therefore Mblk(q, P

∗
blk1) = |L1| = |L2| = Mblk(q, P

∗
blk2). We

can now conclude that P ∗
blk1 and P ∗

blk2 are optimal for all q except q = 5 and are the
only optimal sets of principal states when q ≥ 8.

7. Stabilization for block-decodable encoders. Among block-type-decodable
encoders, we know the least about block-decodable encoders. In this section, we
show that M∞

blkdec(P) and M∗
blkdec exist for any primitive constraint. Computation of

asymptotically optimal sets of principal states is described. We also give a bound on
q such that Pblkdec(q) ⊆ P∞

blkdec.
First consider the following input tag assignment problem. For a given determin-

istic graph G, we wish to find a block-decodable encoder that is a subgraph of G and
has the same set of states as G. We can proceed as follows.

Input tag assignment

Ψ ← set of all edge labels of G
τ ← 1
while (it is possible to choose a set of edge labels ψ = {w1, . . . , wk} ⊆ Ψ

such that each state of G can generate at least one wi)
do assign tag τ to each label in ψ

τ ← τ + 1
Ψ ← Ψ \ ψ

After the assignment, we obtain a desired encoder by keeping outgoing edges with
distinct labels at each state and removing the other edges.

If we choose ψ wisely, the algorithm will give an optimal block-decodable encoder.
Unfortunately, it is not clear how to choose ψ to maximize the number of tags; thus
an algorithm to choose ψ is needed. We will use integer and linear programming to
tackle this problem. Because the upcoming formulation of the integer programming
problem involves many complex notations, we offer the following example to illustrate
the idea.

Example 7.1. Let S be the constrained system presented by G in Figure 7.1. To
simplify the figure, we draw only one edge for parallel edges. For example, state I
has two edges to state J labeled by w3 and w4.

We wish to find an optimal block-decodable encoder for S. First we fix the set of
principal states P = {I, J,K} and compute Mblkdec(1, P). Consider the subgraph of
G with the set of states P . We divide the labels of this subgraph into groups so that
labels are in the same group if the sets of states that can generate them are equal.
The diagram in Figure 7.2 summarizes this.

From the diagram, only I can generate w3, only I and J can generate u,w4, w5,
and so on. We will denote each region in the diagram by a subset of P ; for example,
the region that contains w2 and w6 is denoted by {I,K}.

336 PANU CHAICHANAVONG AND BRIAN H. MARCUS

Fig. 7.1. G in Example 7.1.

Fig. 7.2. Partition of labels based on initial states for Example 7.1.

From the input tag assignment algorithm, we choose a set of labels such that each
state in P can generate at least one label. For instance, we can choose {w1} because
every state in P can generate w1. Then we assign tag 1 to all edges labeled by w1. Also,
we can choose {v2, w2} because I and K can generate w2 and J and K can generate
v2. So we assign tag 2 to all edges labeled by v2 and w2. Choosing a set of labels
like this determines a cover of P . For example, choosing {w1} determines {{I, J,K}}.
Also, choosing {v2, w2} determines {{J,K}, {I,K}}. To obtain an optimal encoder,
we only need to choose a set of labels that determines a minimal cover of P , that is,
a cover for which removing a single member destroys the covering property [15].

For the design of codes, it can be seen that only the number of labels in each
region is needed. For this reason, we further simplify the diagram to Figure 7.3.

It can be seen that there are eight minimal covers of P . We denote cover i by a 0-1
vector zi = (zU) of size 2|P | − 1 = 7 indexed by subsets of P such that zU = 1 if U is
in the cover and zU = 0 otherwise. Let ci denote the number of times that we choose
cover i. Then the input tag assignment problem becomes an integer programming
problem:

STABILIZATION OF BLOCK-TYPE-DECODABILITY PROPERTIES 337

Fig. 7.3. Number of labels based on initial states for Example 7.1.

maximize c1 + c2 + · · · + c8
subject to ci ∈ Z,

ci ≥ 0,

8∑
i=1

cizi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0
0 0 0 1 1 1 0 0
0 0 1 0 1 0 1 0
0 1 0 0 0 1 1 0
0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1
c2
c3
c4
c5
c6
c7
c8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≤

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
2
3
2
2
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.(7.1)

A solution to this problem is (ci) = [0 1 1 2 0 0 1 1]T which gives
Mblkdec(1, P) =

∑
i ci = 6. This solution can be achieved by assigning tag j to the

edges labeled by vj or wj . Compare this to Mdet(1, P) = 7 (minimum of the sums of
each circle in Figure 7.3) and Mblk(1, P) = 1 (the size of the region {I, J,K}).

It can be shown that no other sets of principal states can give Mblkdec(1, P) = 6.
This can be easily checked by computing Mdet(1, P). The maximum of Mdet(1, P) for
P
= {I, J,K} is 5; thus Mblkdec(1, P) ≤ 5 for P
= {I, J,K}.

Now we give a formal description of how to relate the input tag assignment prob-
lem to an integer programming problem. Let G be a deterministic presentation of a
constrained system S. Suppose w is a word and P ⊆ VG; we define

DG(w,P) = {u ∈ P : w ∈ FG(u, P)}.

We say that two words w1 and w2 are equivalent with respect to P if DG(w1, P) =
DG(w2, P). Clearly this is an equivalence relation. Therefore all words can be grouped
into classes; each class is identified with DG(w,P), a subset of P , where w belongs to
that class. In Example 7.1, this is the same as arranging words in Figure 7.2.

Define dG(q, P) to be the 2|P | − 1 tuple indexed by nonempty subsets of P : for
each U ⊆ P , dG(q, P)U = |{w : DG(w,P) = U and |w| = q}|, i.e., the number of
words of length q in class U . In Example 7.1, this dG(q, P) represents the vector in
the right-hand side of (7.1).

We claim that dG(q, P) is determined by Āq. To see this, let M be a (2|VG| −
1) × (2|VG| − 1) matrix indexed by the nonempty subsets of VG. For each nonempty

338 PANU CHAICHANAVONG AND BRIAN H. MARCUS

U ⊆ P , let γM (U,P) =
∑

V⊆P MU,V . In particular when M = Āq, γĀq (U,P) is the
number of words of length q that can be generated by every state in U with terminal
state in P . Note that γĀq (U,P) overcounts dG(q, P)U because it also counts words
generated from proper supersets of U . To compute dG(q, P), define

Δ(M,U, P) = γM (U,P) −
∑

{v}⊆P\U
γM (U ∪ {v}, P)

+
∑

{v1,v2}⊆P\U
γM (U ∪ {v1, v2}, P) − · · · (−1)|P |−|U |γM (P, P).

Then it follows from the principle of inclusion and exclusion that

dG(q, P)U = Δ(Āq, U, P).

Define d∞
G (P) = limq→∞ dG(q, P)/λq. It follows from (iii) of Lemma 6.5 that if S

is primitive and G is the Shannon cover of S, then d∞
G (P) exists and d∞G (P)U =

Δ(Λ̄, U, P).
By following the idea in Example 7.1, we view the classes of words as subsets of

P . Then we choose a minimal cover of P which can be represented by the vector z.
Let t = t(|P |) be the number of minimal covers of P . (t = 8 in Example 7.1.) Then
the problem of finding an input tag assignment which achieves Mblkdec(q, P) becomes
an integer programming problem:

maximize c1 + c2 + · · · + ct,
subject to ci ∈ Z,

ci ≥ 0,
c1z1 + c2z2 + · · · + ctzt ≤ dG(q, P).

If we delete the first condition, this becomes a linear programming problem. We view
the maximum of the objective function of this relaxed problem as a function μ(x)
whose argument x represents dG(q, P) above. (x is allowed to be real.) So the value
of μ(x) is

∑t
i=1 ci, where (ci) is a solution to the relaxed problem. This defines μ(x)

for a vector x of fixed dimension. We can generalize the domain of μ to include all
nonnegative real vectors with dimension of the form 2n − 1, 1 ≤ n ≤ |VG|. In this
way, we define μ(dG(q, P)) for any P . We can show the following properties of μ.

Proposition 7.2. Let R≥0 denote the set of nonnegative reals.
(i) μ(ax) = aμ(x) for any a ∈ R≥0.

(ii) |μ(x) − μ(y)| ≤ ‖x − y‖1 for any x,y ∈ R
2n−1
≥0 .

Proof.
(i) Since the case a = 0 is trivially true, we assume that a > 0. Suppose c = (ci)

is a solution to the linear programming problem with input x. Then ac satisfies the
condition of the problem when the input is ax. Thus μ(ax) ≥ a

∑
i ci = aμ(x). Using

the same argument with x replaced by ax and a replaced by 1/a, we can show that
μ(ax) ≤ aμ(x). Therefore μ(ax) = aμ(x).

STABILIZATION OF BLOCK-TYPE-DECODABILITY PROPERTIES 339

(ii) It is sufficient to show this when x and y differ at only one entry; then the
proposition follows from the triangle inequality. Suppose x and y differ at only the
jth entry. Without loss of generality, assume xj > yj . Suppose c is a solution to the

problem when x is the input. Consider the sum
∑t

i=1 ci(zi)j , which must be less than
or equal to xj . If it is less than or equal to yj , then c is also a solution when y is
the input and we have μ(y) = μ(x). If the sum is greater than yj , we find a vector
c′ as follows. Let I = {i : (zi)j = 1}. Let c′ be a vector such that c′i ≥ 0 for all
1 ≤ i ≤ t, c′i = ci for i /∈ I, and

∑
i∈I c

′
i = yj . The vector c′ satisfies the condition

of the problem when y is the input. Therefore μ(x) − μ(y) ≤
∑t

i=1 ci −
∑t

i=1 c
′
i =∑

i∈I ci −
∑

i∈I c
′
i ≤ xj − yj , and the proposition is proved.

We note that from (ii) above, μ is uniformly continuous.
Proposition 7.3.

Mblkdec(q, P) ≤ μ(dG(q, P)) ≤ Mblkdec(q, P) + t.

Proof. Recall that Mblkdec(q, P) is the maximum of the objective function in
the integer programming problem above. Since the domain of the variables is more
restricted (to integers rather than reals), Mblkdec(q, P) ≤ μ(dG(q, P)).

Suppose that a vector c = (ci) is a solution to the linear programming problem.
Then μ(dG(q, P)) =

∑t
i=1 ci, and �c
 = (�ci
) satisfies the condition in the integer

programming problem. Thus

Mblkdec(q, P) ≥
t∑

i=1

�ci
 ≥
t∑

i=1

ci − t = μ(dG(q, P)) − t.

Theorem 7.4. For a primitive constrained system,

M∞
blkdec(P) = μ(d∞

G (P)).

Moreover,
(i) Pblkdec(q) ⊆ P∞

blkdec for sufficiently large q,
(ii) M∗

blkdec = maxP⊆VG
μ(d∞

G (P)).
Proof.

lim
q→∞

μ(dG(q, P))

λq
= lim

q→∞
μ

(
dG(q, P)

λq

)
(by (i) of Proposition 7.2)

= μ(d∞
G (P)) (since μ is continuous).

From Proposition 7.3, Mblkdec(q, P)/λq also converges to the same limit. Then (i)
and (ii) follow from Proposition 4.1.

Next we give a bound on q similar to Theorems 5.2 and 6.7. Recall that t(k) is
the number of minimal covers of a set of size k. Define

ρ(G, q) = (2|VG| − 1)
∑
U,V

∣∣∣∣∣
(
Āq

λq

)
U,V

− Λ̄U,V

∣∣∣∣∣ +
t(|VG|)
λq

.

Note that limq→∞ ρ(G, q) = 0 because Āq

λq converges to Λ̄.

340 PANU CHAICHANAVONG AND BRIAN H. MARCUS

Theorem 7.5. If q satisfies ρ(G, q) < εblkdec/2, then Pblkdec(q) ⊆ P∞
blkdec.

Proof. First observe that Δ(Āq,W, P) can be written as
∑

U,V aU,V Ā
q
U,V , where

aU,V ∈ {0, 1,−1}. Thus for any W ,

dG(q, P)W
λq

− d∞G (P)W =
∑
U,V

aU,V

((
Āq

λq

)
U,V

− Λ̄U,V

)

≤
∑
U,V

∣∣∣∣∣
(
Āq

λq

)
U,V

− Λ̄U,V

∣∣∣∣∣ .
Therefore

|Mq
blkdec(P) −M∞

blkdec(P)|

≤
∣∣∣∣μ(dG(q, P))

λq
− μ(d∞

G (P))

∣∣∣∣ +

∣∣∣∣Mblkdec(q, P)

λq
− μ(dG(q, P))

λq

∣∣∣∣
≤

∣∣∣∣μ
(

dG(q, P)

λq

)
− μ(d∞

G (P))

∣∣∣∣ +
t(|P |)
λq

≤
∥∥∥∥dG(q, P)

λq
− d∞

G (P)

∥∥∥∥
1

+
t(|P |)
λq

≤ (2|P | − 1)
∑
U,V

∣∣∣∣∣
(
Āq

λq

)
U,V

− Λ̄U,V

∣∣∣∣∣ +
t(|P |)
λq

≤ (2|VG| − 1)
∑
U,V

∣∣∣∣∣
(
Āq

λq

)
U,V

− Λ̄U,V

∣∣∣∣∣ +
t(|VG|)
λq

= ρ(G, q) <
εblkdec

2
.

Then the theorem follows from Lemma 4.2.
With the technique described in this section, we can compute upper and lower

bounds for Mblkdec(q, P). The upper bound comes from the relaxed linear program-
ming problem. The lower bound is obtained by “rounding down” the solution of the
linear programming problem. Thus by checking all sets of principal states, we can
obtain upper and lower bounds for Mblkdec(q). In fact, from Proposition 3.1, it is
sufficient to check all complete sets. Given a deterministic graph G and an integer n,
Marcus, Siegel, and Wolf [11] gave an algorithm to find all complete sets P such that
Mdet(1, P) ≥ n. Therefore we can design a block-decodable encoder as follows.

Given a deterministic presentation G of the desired constraint S and a block
length q, find an optimal set of principal states Pdet for a deterministic encoder.
Then compute the upper and lower bounds for Mblkdec(q, Pdet); set n to be the lower
bound. For each complete set P such that Mdet(q, P) ≥ n, compute the upper and
lower bounds for Mblkdec(q, P). Set the upper and lower bounds for Mblkdec(q) to
be the maximum of the upper bounds and the maximum of the lower bounds for
Mblkdec(q, P), respectively. In this way, we also have the candidates for the optimal
sets of principal states.

STABILIZATION OF BLOCK-TYPE-DECODABILITY PROPERTIES 341

Example 7.6. By solving the linear programming problem described in this sec-
tion, we find the asymptotically optimal set of principal states for the asymmetric-
RLL(2, 5, 1, 3) to be P ∗

blkdec = {1, 2, 3, 1̄, 2̄} and M∗
blkdec = 0.7076. Moreover, εblkdec =

0.0146.
Next we apply Theorem 7.5 to compute the bound on q such that P ∗

blkdec achieves
Mblkdec(q). Let r̄i and l̄i, 1 ≤ i ≤ 8, be the right and left eigenvectors corresponding
to λi. From [14, Sequence A046165], t(8) = 3731508. Thus

ρ(G, q) = (2|VG| − 1)
∑
U,V

∣∣∣∣∣
(
Āq

λq

)
U,V

− Λ̄U,V

∣∣∣∣∣ +
t(|VG|)
λq

= (255)
1

λq

∑
U,V

∣∣∣∣∣
8∑

i=2

λq
i (r̄i l̄i)U,V

∣∣∣∣∣ +
3731508

λq

≤ (255)
1

λq

∑
U,V

8∑
i=2

|λi|q|(r̄i l̄i)U,V | +
3731508

λq
.

This expression is decreasing with q. If q ≥ 44, then ρ(G, q) ≤ 0.0050 <
εblkdec/2 = 0.0073.

In our construction of the integer programming problem described in this section,
the number of variables depends only on |P |. But dG(q, P) usually contains many
zeros and thus many minimal covers of P are not necessary. Thus we can formulate
an equivalent problem with a much smaller number of variables, and so the bound on
q given in Theorem 7.5 can be very weak. This is especially true when the constraint
has a lot of structure (e.g., when many follower sets can be ordered by inclusion). For
this example, after neglecting the unnecessary minimal covers, the maximum number
of variables is 14 when P = {1, 2, 3, 4, 1̄, 2̄} while t(8) = 3731508.

Finally we compute bounds on Mblkdec(q), 1 ≤ q ≤ 43, as well as candidates
for the achieving P . We find that P ∗

blkdec is the only optimal set of principal states
for 12 ≤ q ≤ 43. From this computation and the bound on q explained above, we
conclude that P ∗

blkdec is the only optimal set of principal states for q ≥ 12.

8. Complexity of block-type-decodability. We have studied some algorithms
to design block-type-decodable encoders, and the reader may have noticed that find-
ing an optimal deterministic encoder is easier than finding an optimal block encoder,
which in turn is easier than finding an optimal block-decodable encoder. In this sec-
tion, we study the complexity of these problems and show that, in some aspects, this
observation is indeed the case.

Let S be a constrained system with a deterministic presentation G and let n be
a positive integer. For each class C of encoders, we consider three slightly different
problems.

1. Subgraph encoder: We study the complexity of determining whether there
exists an (S, n) encoder in class C which is a subgraph of G. In this case, we aim to
answer whether MC(1) ≥ n. This is the most general and possibly the most important
problem.

2. Fully supported subgraph encoder: We consider the same problem but require
that the set of principal states be VG. This case can be viewed as a subproblem of
the first problem: we fix a set of principal states P and wish to determine whether
MC(1, P) ≥ n. We will see that this case distinguishes the complexity of computing
block and block-decodable encoders.

342 PANU CHAICHANAVONG AND BRIAN H. MARCUS

3. |VG| fixed: In a practical encoder design, we usually fix the constraint and
let the block length q vary; thus we study the first problem but consider the number
of states of G to be fixed.

We remark that our goal is to compute MC(1), but the complexity of this problem
is equivalent to the complexity of determining whether MC(1) ≥ n. We consider the
latter problem because it is a decision problem, and hence its complexity class is easier
to determine.

We begin with the problem of determining whether there exists an (S, n) deter-
ministic encoder which is a subgraph of G. This problem can be solved by applying
the Franaszek algorithm [4] to the adjacency matrix A of G and the all-ones vector x.
The algorithm proceeds by iteratively computing x ← min

{⌊
1
nAx

⌋
,x

}
(taken com-

ponentwise) until it converges. If Mdet(1) < n, the algorithm returns a zero vector;
if Mdet(1) ≥ n, the algorithm returns the characteristic vector of the largest set of
principal states P such that Mdet(1, P) ≥ n. It is easy to see that the algorithm ter-
minates in at most |VG| iterations; in each iteration, the running time is polynomial.
Thus, for the class of deterministic encoders, this problem is solvable in polynomial
time.

From this result, it follows that the other two easier problems on deterministic
encoders are also solvable in polynomial time. For the fully supported subgraph
encoder problem, there exists an (S, n) deterministic encoder with the set of principal
states VG if and only if the Franaszek algorithm terminates in one iteration and returns
the all-ones vector.

Next, we consider the class of block encoders. We will show that the problem of
determining whether there exists an (S, n) block encoder is NP-complete by relating
it to the well-known clique problem. We first describe the clique problem. A k-clique
in an undirected graph is a subgraph with k nodes such that there is an edge between
every two nodes in the clique. The clique problem is to determine whether a graph
contains a clique of a specified size. This problem is known to be NP-complete [13].

Theorem 8.1. Given a labeled graph G and an integer n, the problem of deter-
mining whether there exists an (S(G), n) block encoder which is a subgraph of G is
NP-complete. However, the problem becomes polynomial for every fixed n.

Proof. Given a graph G′ with output labeling and input tagging, it can be verified
in polynomial time whether (i) G′ is a subgraph of G and (ii) G′ is an (S, n) block
encoder. Therefore this problem is in NP. What remains is to show that the clique
problem is polynomial-time reducible to this problem. Given an undirected graph
H = (VH , EH), we construct a labeled directed graph G as follows. Let VG = VH and
assign an edge from state u to state v labeled by v if H has an edge between u and
v. Moreover, assign a self-loop to every state v labeled by v. One can show that H
has an n-clique if and only if there exists an (S, n) block encoder which is a subgraph
of G. Hence we conclude that the block encoder problem is NP-complete.

Suppose that n is fixed; we will show that the problem becomes polynomial.
We choose n words from the set of all words and determine whether they can be
concatenated with each other. If so, we have an (S, n) block encoder. If not, choose
another set of n words. Since there are polynomially many ways to choose n words,
we conclude that the problem is polynomial.

If we require that the set of principal states of our block encoder be VG, this
problem becomes polynomial. To see this, consider the following polynomial-time
algorithm.

STABILIZATION OF BLOCK-TYPE-DECODABILITY PROPERTIES 343

Computation of Mblk(1, VG)
Input: G with VG = {v1, . . . , vm}
L ← F1

G(v1)
for each 2 ≤ i ≤ m

for each w ∈ L
if w /∈ F1

G(vi)
then L ← L \ {w}

Output: |L|

For the third case where the number of states of G is fixed, the block encoder
problem becomes polynomial because we can adapt the above algorithm for each set
of principal states, and there is a fixed number of sets of principal states, namely,
2|VG| − 1.

Finally, we turn to the block-decodability problem. The complexity of this prob-
lem has been studied by Ashley, Karabed, and Siegel [1]; the following theorem is a
special case of [1, Theorem 5.4].

Theorem 8.2 (see [1]). Given a labeled graph G and an integer n, the problem
of determining whether there exists an (S(G), n) block-decodable encoder E which is a
subgraph of G and VE = VG is NP-complete. It is also NP-complete for fixed n ≥ 2.

Thus the fully supported subgraph encoder problem for the block-decodable en-
coder is NP-complete. We will show that the subgraph encoder problem is also NP-
complete by relating it to the fully supported subgraph encoder problem.

Theorem 8.3. Given a labeled graph G and an integer n, the problem of deter-
mining whether there exists an (S(G), n) block-decodable encoder which is a subgraph
of G is NP-complete. It is also NP-complete for fixed n ≥ 2.

Proof. This problem is easily seen to be in NP. We will show that the fully sup-
ported subgraph encoder problem is polynomial-time reducible to this more general
problem. Given a graph H with VH = {v1, . . . , vm}, we construct another graph G
as follows. Let VG = VH , and for each outgoing edge from vi in H, we assign an edge
in G from vi to vi+1 with the same label. (If i = m, we assign an edge from vm to
v1.) Clearly, if there is an (S(H), n) block-decodable encoder E which is a subgraph
of H and VE = VH , then there is an (S(G), n) block-decodable encoder which is a
subgraph of G. On the other hand, if there is an (S(G), n) block-decodable encoder
which is a subgraph of G, this encoder must have the same set of states as G. By using
the corresponding edges in H and the same tag assignment, we obtain an (S(H), n)
block-decodable encoder E which is a subgraph of H and VE = VH .

From Theorems 8.2 and 8.3, the block-decodability problem is generally intractable.
However, if we fix the number of states but let only the number of edges and the size
of the alphabet grow, then the problem becomes more tractable.

Theorem 8.4. Given a constrained system S with a deterministic presentation
G and an integer n, the problem of determining whether there exists an (S, n) block-
decodable encoder is solvable in polynomial time if we fix the number of states of G.

Proof. First we fix a set of principal states P . It is sufficient to show that the
problem of determining whether Mblkdec(1, P) ≥ n is solvable in polynomial time.
This is because the number of sets of principal states is fixed (= 2|VG| − 1).

In section 7, we showed that the computation of Mblkdec(1, P) is equivalent to an
integer programming problem. The worst-case number of variables of this problem
(the largest t) depends only on |P |. Hence, we can consider the number of variables
to be fixed.

344 PANU CHAICHANAVONG AND BRIAN H. MARCUS

Case 1. n > |EG|. Clearly, we can conclude that Mblkdec(1, P) < n.
Case 2. n ≤ |EG|. If we check the feasibility of all c such that 0 ≤ ci ≤ n,

we can determine whether Mblkdec(1, P) ≥ n. Since there are (n + 1)t such c, it can
be checked in polynomial time. This is because (n + 1)t ≤ (|EG| + 1)t and t is
fixed.

The complexity of each problem for each class of encoder is summarized in the
following table.

Table 8.1

Complexity of block-type-decodability problems.

Encoder class Subgraph encoder
Fully supported

subgraph encoder
|VG| fixed

Deterministic polynomial polynomial polynomial

Block
NP-complete

(polynomial for any fixed n)
polynomial polynomial

Block-decodable
NP-complete

for fixed n ≥ 2
NP-complete

for fixed n ≥ 2
polynomial

Acknowledgment. The authors are grateful to the anonymous referees for var-
ious comments and suggestions, particularly on the subject of minimal covers of finite
sets which greatly improves section 7.

REFERENCES

[1] J. J. Ashley, R. Karabed, and P. H. Siegel, Complexity and sliding-block decodability, IEEE
Trans. Inform. Theory, 42 (1996), pp. 1925–1947.

[2] J. Ashley and B. Marcus, Canonical encoders for sliding block decoders, SIAM J. Discrete
Math., 8 (1995), pp. 555–605.

[3] P. Chaichanavong and B. H. Marcus, Optimal block-type-decodable encoders for constrained
systems, IEEE Trans. Inform. Theory, 49 (2003), pp. 1231–1250.

[4] P. A. Franaszek, Sequence-state coding for digital transmission, Bell System Tech. J., 47
(1968), pp. 143–155.

[5] C. V. Freiman and A. D. Wyner, Optimum block codes for noiseless input restricted channels,
Information and Control, 7 (1964), pp. 398–415.

[6] J. Gu and T. E. Fuja, A new approach to constructing optimal block codes for runlength-
limited channels, IEEE Trans. Inform. Theory, 40 (1994), pp. 774–785.

[7] K. A. S. Immink, Codes for Mass Data Storage Systems, Shannon Foundation Publishers,
Eindhoven, The Netherlands, 1999.

[8] P. Lee and J. K. Wolf, A general error-correcting code construction for runlength limited
binary channels, IEEE Trans. Inform. Theory, 35 (1989), pp. 1330–1335.

[9] D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge
University Press, Cambridge, UK, 1995.

[10] B. H. Marcus, R. M. Roth, and P. H. Siegel, Constrained systems and coding for recording
channels, in Handbook of Coding Theory, Vols. I and II, North–Holland, Amsterdam, 1998,
pp. 1635–1764.

[11] B. H. Marcus, P. H. Siegel, and J. K. Wolf, Finite-state modulation codes for data storage,
IEEE J. Select. Areas Commun., 10 (1992), pp. 5–37.

[12] E. Seneta, Nonnegative Matrices and Markov Chains, 2nd ed., Springer Ser. Statist., Springer-
Verlag, New York, 1981.

[13] M. Sipser, Introduction to the Theory of Computation, PWS, Boston, 1997.
[14] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, http://www.research.

att.com/˜njas/sequences (22 April 2005).
[15] E. W. Weisstein, Minimal Cover, from MathWorld—A Wolfram Web Resource, http://

mathworld.wolfram.com/MinimalCover.html (2005).

