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Abstract—Consider a hidden Markov chain obtained as the observation
process of an ordinary Markov chain corrupted by noise. Recently Zuk et
al. showed how, in principle, one can explicitly compute the derivatives of
the entropy rate of at extreme values of the noise. Namely, they showed
that the derivatives of standard upper approximations to the entropy rate
actually stabilize at an explicit finite time. We generalize this result to a nat-
ural class of hidden Markov chains called “Black Holes.” We also discuss
in depth special cases of binary Markov chains observed in binary-sym-
metric noise, and give an abstract formula for the first derivative in terms
of a measure on the simplex due to Blackwell.

Index Terms—Analyticity, entropy, entropy rate, hidden Markov chain,
hidden Markov model, hidden Markov process.

I. INTRODUCTION

Let Y = fY1
�1

g be a stationary Markov chain with a finite state
alphabet f1; 2; . . . ; Bg. A function Z = fZ1

�1
g of the Markov chain

Y with the form Z = �(Y ) is called a hidden Markov chain; here �
is a finite-valued function defined on f1; 2; . . . ; Bg, taking values in
f1; 2; . . . ; Ag. Let � denote the probability transition matrix for Y ; it
is well known that the entropy rate H(Y ) of Y can be analytically ex-
pressed using the stationary vector of Y and �. Let W be the simplex,
comprising the vectors

fw = (w1; w2; . . . ; wB) 2
B : wi � 0;

i

wi = 1g

and let Wa be all w 2 W with wi = 0 for �(i) 6= a. For a 2 A,
let �a denote the B � B matrix such that �a(i; j) = �(i; j) for j
with �(j) = a, and �a(i; j) = 0 otherwise. For a 2 A, define the
scalar-valued and vector-valued functions ra and fa on W by

ra(w) =w�a1

and

fa(w) =w�a=ra(w):

Note that fa defines the action of the matrix �a on the simplex W .
If Y is irreducible, it turns out that the entropy rate

H(Z) = �
a

ra(w) log ra(w)dQ(w) (1.1)
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where Q is Blackwell’s measure [1] on W . This measure is defined as
the limiting distribution p(y0 = �jz0

�1
).

Recently, there has been a great deal of work on the entropy rate of a
hidden Markov chain. Jacquet et al. [6] considered entropy rate of the
hidden Markov chain Z , obtained by passing a binary Markov chain
through a binary-symmetric channel with crossover probability ", and
computed the derivative of H(Z) with respect to " at " = 0. For the
same channel, Ordentlich and Weissman used Blackwell’s measure to
bound the entropy rate [11] and obtained an asymptotical formula for
entropy rate [12]. For certain more general channels, Zuk et al. [16],
[17] proved a “stabilizing” property of the derivatives of entropy rate
of a hidden Markov chain and computed the Taylor series expansion
for a special case. Several authors have observed that the entropy rate
of a hidden Markov chain can be viewed as the top Lyapunov exponent
of a random matrix product [5], [6], [3]. Under mild positivity assump-
tions, Han and Marcus [4] showed the entropy rate of a hidden Markov
chain varies analytically as a function of the underlying Markov chain
parameters.

In Section II, we establish a “stabilizing” property for the deriva-
tives of the entropy rate in a family we call “Black Holes.” Using this
property, one can, in principle, explicitly calculate the derivatives of
the entropy rate for this case, generalizing the results of [16], [17].

In Section III, we consider binary Markov chains corrupted by bi-
nary-symmetric noise. For this class, we obtain results on the support of
Blackwell’s measure, and for a special case, that we call the “nonover-
lapping” case, we express the first derivative of the entropy rate as the
sum of terms, involving Blackwell’s measure, which have meaningful
interpretations.

II. STABILIZING PROPERTY OF DERIVATIVES IN BLACK HOLE CASE

Suppose that for every a 2 A, �a is a rank one matrix, and every
column of �a is either strictly positive or all zeros. In this case, the
image of fa is a single point and each fa is defined on the whole sim-
plex W . Thus, we call this the Black Hole case. Analyticity of the en-
tropy rate at a Black Hole follows from Theorem 1.1 of [4].

As an example, consider a binary-symmetric channel with crossover
probability ". Let fXng be the input Markov chain with the transition
matrix

� =
�00 �01
�10 �11

: (2.2)

At time n the channel can be characterized by the following equation:

Zn = Xn � En

where � denotes binary addition, En denotes the independent and
identically distributed (i.i.d.) binary noise with pE(0) = 1 � "
and pE(1) = ", and Zn denotes the corrupted output. Then
Yn = (Xn; En) is jointly Markov, so fZn = �(Yn)g is a hidden
Markov chain with the corresponding

� =

�00(1� ") �00" �01(1� ") �01"

�00(1� ") �00" �01(1� ") �01"

�10(1� ") �10" �11(1� ") �11"

�10(1� ") �10" �11(1� ") �11"

;

here, � maps states 1 and 4 to 0 and maps states 2 and 3 to 1 (the
reader should not confuse � with the 4 � 4 matrix �, which defines
the hidden Markov chain via a deterministic function). When " = 0

� =

�00 0 �01 0

�00 0 �01 0

�10 0 �11 0

�10 0 �11 0

:

0018-9448/$25.00 © 2007 IEEE



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 7, JULY 2007 2643

In this case, the nonzero entries of �0 and �1 are restricted to a single
column and so both �0 and �1 have rank one. If �ij ’s are all positive,
then this is a Black Hole case.

For this channel, Zuk, et al. [17] and Ordentlich and Weissman [13]
proved the “stabilizing” property of the derivatives of H(Z) with re-
spect to " at " = 0. We remark that some other special kinds of chan-
nels, which are Black Holes, are treated too in [17] and Taylor series
expansion of H(Z) around " = 0 were computed in [16]. In this sec-
tion, we show that, in general, the coefficients of a Taylor series expan-
sion, centered at a Black Hole, can be explicitly computed.

Suppose that � is analytically parameterized by a vector vari-
able " = ("1; "2; . . . ; "m). For any smooth function f of " and
~n = (n1; n2; . . . ; nm) 2 m

+ , define

f
(~n) =

@j~njf

@"
n
1 @"

n
2 � � � @"nm

;

here j~nj denotes the order of the ~nth derivative of f with respect to ",
and is defined as

j~nj = n1 + n2 + � � �+ nm:

For ~n = ~l1 + ~l2 + � � � + ~lk , where ~lj = (lj;1; lj;2; . . . ; lj;m) 2 m
+ ,

define

~n!

~l1!~l2! � � �~lk!
=

i

ni!

l1;i!l2;i! � � � lk;i!
:

We say ~l � ~n, if every component of ~l is less or equal to the corre-
sponding one of ~n, and~l � ~n if ~l � ~n and at least one component of ~l
is strictly less than the corresponding one of ~n. For ~l � ~n, define

C
~l
~n =

~n!

~l!(~n�~l)!
:

Let Hn(Z) = H(Z0jZ
�1
�n). It is well known that H(Z) =

limn!1Hn(Z). The following theorem says that at a Black Hole,
one can calculate the derivatives of H(Z) with respect to " by taking
the derivatives of Hn(Z) with respect to " for large enough n.

Theorem 2.1: If at " = "̂, for every a 2 A, �a is a rank-one matrix,
and every column of �a is either a positive or a zero column, then for
~n = (n1; n2; . . . ; nm)

H(Z)(~n)
"="̂

= Hj~nj(Z)(~n)
"="̂

:

In fact, we give a stronger result, Theorem 2.5, later in this section.

Proof: For simplicity we drop " when the implication is clear
from the context.

We shall first prove that for all sequences z0�1, the ~nth derivative of
p(z0jz

�1
�1) stabilizes

p
(~n)(z0jz

�1
�1) = p

(~n)(z0jz
�1
�j~nj�1); at " = "̂: (2.3)

Since p(z0jz
�1
�1) = p(y�1 = �jz�1�1)�z 1 (here � represent the

states of the Markov chain Y , thus p(y�1 = �jz�1�1) is a row vector),
it suffices to prove that for the ~nth derivative of xi = p(yi = �jzi�1),
we have

x
(~n)
i = p

(~n)(yi = �jzi�1) = p
(~n)(yi = �jzii�j~nj); at " = "̂: (2.4)

Consider the iteration

xi =
xi�1�z

xi�1�z 1
:

In other words, xi can be viewed as a function of xi�1 and �z . Let
g denote this function. Since at " = "̂, �z is a rank-one matrix, we
conclude that g is constant as a function of xi�1. Thus, at " = "̂

xi= p(yi = �jzi�1)

=
xi�1�z

xi�1�z 1
=

p(yi�1= �)�z

p(yi�1 = �)�z 1
=p(yi= �jzi) (2.5)

where the third equality follows from the fact that g is a constant as a
function of xi�1.

When j~nj = 1, we have at " = "̂

x
(~n)
i =

@g

@�z "="̂

(xi�1;�z )�(~n)
z +

@g

@xi�1 "="̂

(xi�1;�z )x
(~n)
i�1:

Since at " = "̂, g is a constant as a function of xi�1, we have

@g

@xi�1 "="̂

(xi�1;�z ) =
@(a constant vector)

@xi�1
= 0:

It then follows from (2.5) that at " = "̂

x
(~n)
i = p

(~n)(yi = �jzi�1) = p
(~n)(yi = �jzii�1):

When j~nj > 1, we have

x
(~n)
i =

@g

@xi�1 "="̂

(xi�1;�z ) x
(~n)
i�1 + other terms

where “other terms” involve only lower order (than j~nj) derivatives of
xi�1. By induction, we conclude that

x
(~n)
i = p

(~n)(yi = �jzi�1) = p
(~n)(yi = �jzii�j~nj):

at " = "̂. We then have (2.4) and therefore (2.3) as desired.
By the proof of Theorem 1.1 of [4], the complexified Hn(Z) uni-

formly converges to the complexified H(Z), and so we can switch the
limit operation and the derivative operation.

Thus, when j~lj = 1, at all "

H
(~l)(Z)= lim

k!1
z

(p(z0�k) log p(z0jz
�1
�k)

(~l)

=� lim
k!1

z

p
(~l)(z0�k) log p(z0jz

�1
�k)+p(z0�k)

p(
~l)(z0jz

�1
�k)

p(z0jz
�1
�k)

:

Since

z

p(z0�k)
p(
~l)(z0jz

�1
�k)

p(z0jz
�1
�k)

=
z

p(z�1�k)p
(~l)(z0jz

�1
�k) = 0

we have for all "

H
(~l)(Z) = � lim

k!1
z

(p(
~l)(z0�k) log p(z0jz

�1
�k)): (2.6)

At " = "̂, we obtain

H
(~l)(Z) = � lim

k!1
z

(p(
~l)(z0�k) log p(z0jz�1))

= �

z

(p(
~l)(z0�1) log p(z0jz�1)) = H

(~l)
1 (Z)

which establishes the theorem in the case when j~nj = 1.
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When j~nj > 1, we fix any~l � ~n with j~lj = 1. Using the fact that we
can interchange the order of limit and derivative operations and using
(2.6) and multivariate Leibnitz formula, we have for all "

H(~n)(Z)

= (H(~l))(~n�
~l)(Z)

=� lim
k!1

z ~j�~n�~l

C
~j

~n�~l
p(
~l+~j)(z0�k)(log p(z0jz

�1
�k))

(~n�~l�~j):

Note that the term (log p(z0jz
�1
�k))

(~n�~l�~j) involves only the lower
order (less than or equal to j~nj � 1) derivatives of p(z0jz�1

�k), which
are already “stabilizing” in the sense of (2.3); so, we have at " = "̂

H(~n)(Z)

= �

z ~j�~n�~l

C
~j

~n�~l
p(
~l+~j)(z0�j~nj)(logp(z0jz

�1
�j~nj))

(~n�~l�~j)

=H
(~n)
j~nj (Z):

We thus prove the theorem.

Remark 2.2: It follows from (2.5) that a hidden Markov chain at a
Black Hole is, in fact, a Markov chain. Note that in the argument above
the proof of the stabilizing property of the first derivative (as opposed
to higher derivatives) requires only that the hidden Markov chain is
Markov and that we can interchange the order of limit and derivative
operations (instead of the stronger Black Hole property). Therefore, if
a hidden Markov chainZ defined by �̂ and� is in fact a Markov chain,
and the complexified Hn(Z) uniformly converges to H(Z) on some
neighborhood of �̂ (e.g., if the conditions of Theorem 1.1, 6.1, or 7.5
of [4] hold), then at �̂, we have

H 0(Z) = H 0
1(Z): (2.7)

For instance, consider the following hidden Markov chain Z defined
by

�̂ =

1=4 1=4 1=2

0 1=6 5=6

7=8 1=8 0

with�(1) = 0 and�(2) = �(3) = 1.Z is in fact a Markov chain (see
[7, p. 134]), and one checks that �̂ satisfies the conditions in Theorem
7.5 in [4]. We conclude that for this example, (2.7) holds.

In the cases studied in [16], [17], [13], the authors obtained, using
a finer analysis, a shorter “stabilizing length.” This shorter length can
be derived for the Black Hole case as well, as shown in Theorem 2.5
below, even though the proof in [17] does not seem to work.

We need some preliminary lemmas for the proof of Theorem 2.5.
We say~l < ~n if either (j~lj < j~nj) or (j~lj = j~nj and~l is less than~n lex-

icographically). By induction, one can prove that the formal derivative
of y log y takes the following form of the first equation at the bottom of
the page, where E[~a ;~a ;...;~a ] is a real number, denoting the corre-

sponding coefficient. Let q~i[y] denote the “coefficient” of y(
~i), which

is a function of y and its formal derivatives (up to the j~ijth order deriva-
tive). Thus, we have

(y log y)(
~N) =

~N

i=1

q~i[y]y
(~i) = High ~N [y] + Low ~N [y]

where

High ~N [y] =

d(j~Nj+1)=2e�j~ij�j~Nj

q~i[y]y
(~i)

and

Low ~N [y] =

j~ij�d(j~Nj�1)=2e

q~i[y]y
(~i):

For a sequence (without order)

a = a1; . . . ; a1

k times

; a2; . . . ; a2

k times

; . . . ; al; . . . ; al

k times

;

where aj ’s are pairwise distinct, let hai = k1!k2! � � � kl!.

Lemma 2.3: When d(j ~N j + 1)=2e � j~ij � j ~N j

q~i[y] = C
~i
~N(log y + 1)(

~N�~i):

Proof: In this proof, we use f(y) to denote the function y log y.
Then by multivariate Faa Di Bruno formula [2], [8], we have the second
equation at the bottom of the page,where we used the fact that

ha1; a2; . . . ; ami = ha2; . . . ; ami

if j~a1j � d(j~a1 + � � �+~amj+ 1)=2e. Bearing in mind that f (1)(y) =
log y + 1, we prove the lemma.

(y log y)(
~N) =

~a �~a �����~a :~a +~a +���+~a =~N

E[~a ;~a ;...;~a ]
y(~a )y(~a ) � � � y(~a )

ym
+ y(

~N)(log y + 1)

=
~i�~N

y(~a =~i)

~a �~a �����~a

E[~a ;~a ;...;~a ]
y(~a )y(~a ) � � � y(~a )

ym
+ y(

~N)(log y + 1)

f(y)(
~N) =

~a �~a �����~a :~a +~a +���+~a =~N

f (m)(y)
1

h~a1;~a2; . . . ;~ami

~N !

~a1!~a2! � � �~am!
y(~a )y(~a ) � � � y(~a )

=

d(j~N j+1)=2e�j~a j�j~Nj

C~a
~N
y(~a )

~a �����~a :~a +���+~a =~N�~a

(f (1))(m�1)(y)
1

h~a2; . . . ;~ami

( ~N � ~a1)!

~a2! � � �~am!
y(~a ) � � � y(~a ) + Low ~N [y]

=

d(j~Nj+1)=2e�j~a j�j~Nj

C~a
~N
y(~a )(f (1)(y))

~N� ~a + Low ~N [y]
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Lemma 2.4:

Low~N [ax]=

j~ij�d(j~Nj�1)=2e

r~i[a]x
(~i)+

j~ij�d(j~Nj�1)=2e

s~i[x]a
(~i)

where r~i[a] is a function of a and its derivatives (up to order d(j ~N j �
1)=2e), and s~i[x] is a function of x and its derivatives (up to order
d(j ~N j � 1)=2e). Also

s0[x] = Low ~N [x]:

Proof: By multivariate Leibnitz formula, we have

(ax log(ax))(
~N)

=
~i+~j�~N

~N !

~i!~j!( ~N �~i�~j)!
a(
~i)x(

~j)(log(ax))(
~N�~i�~j)

=
~i+~j�~N

~N !

~i!~j!( ~N �~i�~j)!
a(
~i)x(

~j)(log a+ log x))(
~N�~i�~j):

Thus, there exist a function of a and its derivatives t~i[a], and a function
of x and its derivatives w~i[x] such that

((ax) log(ax))(
~N) =

~i�~N

t~i[a]x
(~i) +

~i�~N

w~i[x]a
(~i)

with w0[x] = (x log x)(
~N).

By Lemma 2.3, we have

High~N [ax]

=

d(j~Nj+1)=2e�j~ij�j~Nj

q~i[ax](ax)
(~i)

=

d(j~Nj+1)=2e�j~ij�j~Nj

C
~i
~N(log a+ log x+ 1)(

~N�~i)(ax)(
~i):

Thus, we conclude that there exist a function of a and its derivatives
u~i[a], and a function of x and its derivatives v~i[x] such that

High ~N [ax] =
~i�~N

ui[a]x
(i) +

~i�~N

v~i[x]a
(~i)

with v0[x] = High ~N [x]. Since

Low ~N [ax] = ((ax) log(ax))(
~N) � High ~N [ax]

the existence of r~i[a] and s~i[x] then follows, and they depend on the
derivatives only up to d(j ~N j � 1)=2e, and s0[x] = Low ~N [x].

Theorem 2.5: If at " = "̂, for every a 2 A, �a is a rank-one matrix,
and every column of �a is either a positive or a zero column, then for
~n = (n1; n2; . . . ; nm)

H(Z)(~n)
"="̂

= Hd(j~nj+1)=2e(Z)
(~n)

"="̂
:

Proof: For simplicity, we drop " when the implication is clear
from the context. Recall that

Hn(Z)=�

z

p(z0�n) log p(z0jz
�1
�n)

=�

z

p(z0�n) log p(z
0
�n)�

z

p(z�1n ) log p(z�1n ) :

With slight abuse of notation (by replacing the formal derivative
with the derivative with respect to ", we can define High ~N [p(z0�n)] =
High ~N [p"(z0�n)]. Similarly, for Low ~N [p(z0�n)], etc.), we have

(p(z0�n) log p(z
0
�n))

(~N) =High ~N [p(z0�n)] + Low ~N [p(z0�n)];

(p(z�1�n) log p(z
�1
�n))

(~N) =High ~N [p(z�1�n)] + Low ~N [p(z�1�n)]:

Note that by Lemma 2.3, we have the first equation at the bottom of the
page, and

High~N [p(z�1�n)]

=

d(j~Nj+1)=2e�j~ij�j~Nj

C
~i
~N(log p(z�1�n) + 1)(

~N�~i)p(z�1�n)
(~i):

Thus, we get the second array of equations at the bottom of the page.
So the higher derivative part stabilizes at d(j ~N j + 1)=2e, namely, for
any j~nj � d(j ~N j + 1)=2e

z

High ~N [p(z0�n)]�

z

High ~N [p(z�1�n)]

=

z

High ~N [p(z0�d(j~Nj+1)=2e)]

�

z

High ~N [p(z�1
�d(j~Nj+1)=2e

)]:

And by Lemma 2.4, we have

Low ~N [p(z0�n)] =

j~ij�d(j~Nj�1)=2e

r~i[p(z0jz
�1
�n)]p(z

�1
�n)

(~i)

+

j~ij�d(j~Nj�1)=2e

s~i[p(z
�1
�n))]p(z0jz

�1
�n)

(~i)

High ~N [p(z0�n)] =

d(j~Nj+1)=2e�jij�j~Nj

C
~i
~N(log p(z0jz

�1
�n) + log p(z�1�n) + 1)(

~N�~i)p(z0�n)
(~i)

z

High ~N [p(z0�n)]�

z

High ~N [p(z�1�n)] =

z d(j~Nj+1)=2e�j~ij�j~Nj

C
~i
~N(log p(z0jz

�1
�n) + log p(z�1�n)� log p(z�1�n))

(~N�~i)p(z0�n)
(~i)

=

z d(j~Nj+1)=2e�j~ij�j~Nj

C
~i
~N(log p(z0jz

�1
�n))

(~N�~i)p(z0�n)
(~i)

=

z d(j~Nj+1)=2e�j~ij�j~Nj

C
~i
~N(log p(z0jz

�1

�d(j~Nj+1)=2e
))(

~N�~i)p(z0�d(j~Nj+1)=2e)
(~i):
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with s0[p(z
�1
�n))] = Low ~N [p(z

�1
�n)]. Thus

z

Low ~N [p(z
0
�n)]�

z

Low ~N [p(z�1
�n)]

=

z j~ij�d(j~Nj�1)=2e

r~i[p(z0jz
�1
�n)]p(z

�1
�n)

(~i):

=

z j~ij�d(j~Nj�1)=2e

r~i[p(z0jz
�1

�d(j~Nj+1)=2e
)]p(z�1

�d(j~Nj+1)=2e
)(
~i):

Consequently, the lower derivative part stabilizes at d(j ~N j + 1)=2e as
well, namely, for any n � d(j ~N j + 1)=2e

z

Low ~N [p(z0�n)]�

z

Low ~N [p(z�1
�n)]

=

z

Low ~N [p(z
0
�d(j~Nj+1)=2e)]

�

z

Low ~N [p(z
�1

�d(j~Nj+1)=2e
)]:

The theorem then follows.

Remark 2.6: For an irreducible stationary Markov chain Y with
probability transition matrix �, let Y �1 denote its reverse Markov
chain. It is well known that the probability transition matrix of Y �1

is diag (��1
1 ; ��1

2 ; . . . ; ��1
B )�tdiag (�1; �2; . . . ; �B), where �t de-

notes the transpose of � and (�1; �2; . . . ; �B) is the stationary vector
of Y . Therefore, if �t is a Black Hole case, the derivatives of H(Z�1)
(here, Z�1 is the reverse hidden Markov chain defined by Z�1 =
�(Y �1)) also stabilize. It then follows from H(Z) = H(Z�1) that
the derivatives of H(Z) also stabilize.

III. BINARY MARKOV CHAINS CORRUPTED BY

BINARY-SYMMETRIC NOISE

In this section, we further study hidden Markov chains obtained by
passing binary Markov chains through binary-symmetric channels with
crossover probability " (described in the beginning of Section II). We
take a concrete approach to studyH(Z), and we will “compute”H 0(Z)
in terms of Blackwell’s measure.

Recall that the Markov chain is defined by a 2 � 2 stochastic matrix
� = [�ij ]. When det(�) = 0, the rows of � are identical, and so
Y is an i.i.d. random sequence with distribution (�00; �01). Thus, Z
is an i.i.d. random sequence with distribution (�; 1 � �) where � =
�00(1 � ") + �01". So

H(Z) = �� log � � (1� �) log(1� �):

From now through the end of Section III-B, we assume the fol-
lowing:

• det(�) > 0 – and –

• all �ij > 0 – and –

• " > 0.

We remark that the condition det(�) > 0 is purely for convenience.
Results in this section will hold with the condition det(�) < 0 through
similar arguments, unless specified otherwise.

The integral formula (1.1) expresses H(Z) in terms of the measure
Q on the four-dimensional simplex; namely, Q is the distribution of
p((y0; e0)jz

0
�1). However, in the case under consideration,H(Z) can

be expressed as an integral on the real line [11], which we review as
follows.

From the chain rule of probability theory

p(zi1; yi) = p(zi�1
1 ; zi; yi�1 = 0; yi) + p(zi�1

1 ; zi; yi�1 = 1; yi)

= p(zi; yijz
i�1
1 ; yi�1 = 0)p(zi�1

1 ; yi�1 = 0)

+ p(zi; yijz
i�1
1 ; yi�1 = 1)p(zi�1

1 ; yi�1 = 1);

and

p(zi; yijz
i�1
1 ; yi�1 = 0)

= p(zi1jz
i�1
1 ; yi; yi�1 = 0)p(yijz

i�1
1 ; yi�1 = 0)

= p(zijyi)p(yijyi�1 = 0) = pE(ei)p(yijyi�1 = 0):

Let ai = p(zi1; yi = 0) and bi = p(zi1; yi = 1). The pair (ai; bi)
satisfies the following dynamical system:

ai = pE(zi)�00ai�1 + pE(zi)�10bi�1

bi = pE(�zi)�01ai�1 + pE(�zi)�11bi�1:

Let xi = ai=bi, we have a dynamical system with just one variable

xi+1 = fz (xi);

where

fz(x) =
pE(z)

pE(�z)

�00x+ �10
�01x+ �11

; z = 0; 1

starting with

x0 = �10=�01:

We are interested in the invariant distribution of xn, which is closely
related to Blackwell’s distribution of p((y0; e0)jz0�1). Now

p(yi= 0jzi�1
1 )

= p(yi = 0; yi�1 = 0jzi�1
1 ) + p(yi = 0; yi�1 = 1jzi�1

1 )

=�00p(yi�1 = 0jzi�1
1 ) + �10p(yi�1 = 1jzi�1

1 )

=�00
ai�1

ai�1 + bi�1
+ �10

bi�1

ai�1 + bi�1

=�00
xi�1

1 + xi�1
+ �10

1

1 + xi�1
:

Similarly, we have

p(yi= 1jzi�1
1 )

= p(yi = 1; yi�1 = 0jzi�1
1 ) + p(yi = 1; yi�1 = 1jzi�1

1 )

= �01
xi�1

1 + xi�1
+ �11

1

1 + xi�1
:

Further computation leads to

p(zi = 0jzi�1
1 )

= p(yi = 0; ei = 0jzi�1
1 ) + p(yi = 1; ei = 1jzi�1

1 )

= p(ei = 0)p(yi = 0jzi�1
1 ) + p(ei = 1)p(yi = 1jzi�1

1 )

= ((1�")�00+"�01)
xi�1

1+xi�1
+((1� ")�10 + "�11)

1

1 + xi�1

= r0(xi�1);

where

r0(x) =
((1� ")�00 + "�01)x+ ((1� ")�10 + "�11)

x+ 1
: (3.8)

Similarly, we have

p(zi = 1jzi�1
1 )

= p(yi = 0; ei = 1jzi�1
1 ) + p(yi = 1; ei = 0jzi�1

1 )

= p(ei = 1)p(yi = 0jzi�1
1 ) + p(ei = 0)p(yi = 1jzi�1

1 )

= (("�00+(1� ")�01)
xi�1

1+xi�1
+("�10+(1� ")�11)

1

1+xi�1

= r1(xi�1)
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where

r1(x) =
("�00 + (1� ")�01)x+ ("�10 + (1� ")�11)

x+ 1
: (3.9)

Now we write

p(xi 2 Ejxi�1) =
fajf (x )2Eg

p(zi = ajxi�1):

Note that

p(zi = 0jxi�1) = p(zi = 0jzi�1
1 ) = r0(xi�1)

p(zi = 1jxi�1) = p(zi = 1jzi�1
1 ) = r1(xi�1):

The analysis above leads to

p(xi 2 E)

=
f (E)

r0(xi�1)dp(xi�1) +
f (E)

r1(xi�1)dp(xi�1):

Abusing notation, we letQ denote the limiting distribution of xi (the
limiting distribution exists due to the martingale convergence theorem)
and obtain

Q(E) =
f (E)

r0(x)dQ(x) +
f (E)

r1(x)dQ(x): (3.10)

We may now compute the entropy rate of Zi in terms of Q. Note that

E(logp(zijz
i�1
1 ))

=E(p(zi = 0jzi�1
1 ) log p(zi = 0jzi�1

1 ))

+ p(zi = 1jzi�1
1 ) log p(zi = 1jzi�1

1 ))

=E(r0(xi�1) log r0(xi�1) + r1(xi�1) log r1(xi�1)):

Thus, (1.1) becomes

H(Z) = � (r0(x) log r0(x) + r1(x) log r1(x))dQ(x): (3.11)

A. Properties of Q

Since det(�) > 0, f0 and f1 are increasing continuous functions
bounded from above, and f0(0) and f1(0) are positive; therefore, they
each have a unique positive fixed point p0 and p1. Since f1 is dominated
by f0, we conclude p1 � p0. Let

• I denote the interval [p1; p0] – and –

• L = 1
n=1 Ln where

Ln = ffi � fi � � � � fi (pj)ji1; i2; . . . ; in 2 f0; 1g; j = 0; 1g:

Let Ii i ���i denote fi �fi � � � � �fi (I), and pi i ���i denote
p(z1 = i1; z2 = i2; . . . ; zn = in). The support of a probability mea-
sure Q, denoted supp(Q), is defined as the smallest closed subset with
measure one.

Theorem 3.1: supp(Q) = �L.
Proof: First, by straightforward computation, one can check that

f 00(p0) and f 01(p1) are both less than 1. Thus, p0 and p1 are attracting
fixed points. Since pi is the unique positive fixed point of fi, it follows
that the entire positive half of the real line is in the domain of attraction
of each fi, i.e., for any p > 0, f (n)i (p) approaches pi (here the super-
script (n) denotes the composition of n copies of the function).

We claim that both p0 and p1 are in supp(Q). If p0 is not in the
support, then there is a neighborhood Ip containing p0 with Q-mea-
sure 0. For any point p > 0, for some n, f (n)0 (p) 2 Ip . Thus,

by (3.10) there is a neighborhood of p with Q-measure 0. It follows
that Q([0;1)) = 0. On the other hand, Q is the limiting distribu-
tion of xi > 0 and so Q([0;1)) = 1. This contradiction shows that
p0 2 supp(Q). Similarly, p1 2 supp(Q).

By (3.10), we deduce

fi(supp(Q))� supp(Q):

It follows that L � supp(Q). Thus, �L � supp(Q).
Since fi((0;1)) is contained in a compact set, we may assume fi

is a contraction mapping (otherwise, compose f0 or f1 enough many
times to make the composite mapping a contraction as we argued in
[4]). In this case, the set of accumulation points of ffi � fi � � � �
fi (p)ji1; i2; . . . ; in 2 f0; 1g; p > 0g does not depend on p. Since any
point in supp(Q) has to be an accumulation point of ffi �fi � � � �
fi (�10=�01)ji1; i2; . . . ; in 2 f0; 1gg, it has to be an accumulation
point of L as well, which implies supp(Q) � �L.

It is easy to see the following.

Lemma 3.2: The following statements are equivalent.
1. f0(I) [ f1(I) I .
2. f0(I) \ f1(I) = �.
3. f1(p0) < f0(p1).

Theorem 3.3: supp(Q) is either a Cantor set or a closed interval.
Specifically

1. supp(Q) is a Cantor set if f0(I) [ f1(I) I ;
2. supp(Q) = I if equivalently f0(I) [ f1(I) = I .

Proof: Suppose that f0(I) [ f1(I) I . If (i1; i2; . . . ; in) 6=
(j1; j2; . . . ; jn), then

Ii i ���i \ Ij j ���j = �:

Define

Ihni =
i ;i ;...;i

Ii i ���i :

Alternatively we can construct Ihni as follows: let

Id = (f1(p0); f0(p1))

then

Ihn+1i = Ihnin
i ;i ;...;i

fi � fi � � � � � fi (Id):

Let Ih1i = 1
n=1 Ihni. It follows from the way it is constructed that

I1 is a Cantor set (think of Id as a “deleted” interval), and �L = Ih1i.
Thus, by Theorem 3.1, supp(Q) = �L is a Cantor set.

Suppose f0(I) [ f1(I) = I . In this case, for any point p 2 I , and
for all n, there exists i1; i2; . . . ; in such that

p 2 Ii i ���i :

From the fact that f0 and f1 are both contraction mappings (again,
otherwise compose f0 or f1 enough many times to make the composite
mapping a contraction as we argued in [4]), we deduce that the length
of Ii i ���i is exponentially decreasing with respect to n. It follows
that L is dense in I , and therefore, supp(Q) = �L = I .

Theorem 3.4: Q is a continuous measure, namely for any point p 2
supp(Q), and for any � > 0, there exists an interval Ip containing p
with Q(Ip) < � (or equivalently Q has no point mass).

Proof: Assume that there exists p 2 I such that for any interval
containing p, Q(Ip) > �0, where �0 is a positive constant. Let � =
maxfr0(x); r1(x) : x 2 Ig. One checks that 0 < � < 1. By (3.10),
we have

1

�
Q(Ip) � Q(f�1

0 (Ip)) +Q(f�1
1 (Ip)):



2648 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 7, JULY 2007

Iterating, we obtain

1

�

n

�0 �
i ;i ;...;i

Q(f�1
i � f�1

i � � � � � f�1
i (Ip)):

For fixed n, if we choose Ip small enough, then

f�1
i � f�1

i � � � � � f�1
i (Ip) \ f�1

j � f�1
j � � � � � f�1

j (Ip) = �

for (i1; i2; . . . ; in) 6= (j1; j2; . . . ; jn). It follows in this case that

Q(I) �
i ;i ;...;i

Q((f�1
i � f�1

i � � � � � f�1
i (Ip)) �

1

�

n

�0:

Therefore, for large n, we deduce

Q(I) > 1

which contradicts the fact that Q is a probability measure.

By virtue of Lemma 3.2, it makes sense to refer to Case 1 in The-
orem 3.3 as the nonoverlapping case. We now focus on this case. Note
that this is the case whenever " is sufficiently small; also, it turns out
that for some values of �ij ’s, the nonoverlapping case holds for all ".

Starting with x0 = �10=�01, and iterating according to
xn = fz ("; xn�1), each word z = z1; z2; . . . ; zn determines
a point xn = xn(z) with probability p(z1; z2; . . . ; zn). In the
nonoverlapping case, the map z 7! xn is one-to-one. We order the
distinct points fxng from left to right as

xn;1; xn;2; . . . ; xn;2

with the associated probabilities

pn;1; pn;2; . . . ; pn;2 :

This defines a sequence of distribution Qn which converge weakly to
Q. In particular, by the continuity of Q, Qn(J) ! Q(J) for any in-
terval J .

Theorem 3.5: In the nonoverlapping case

Q(Ii i ���i ) = Qn(Ii i ���i ) = pi i ���i :

Proof: We have

Qn(Ii i ���i ) = p(z1 = i1; z2 = i2; . . . ; zn = in):

Furthermore

Qn+1(Ii i ���i ) =Qn+1(I0i i ���i ) +Qn+1(I1i i ���i )

= p(z0 = 0; z1 = i1; z2 = i2; . . . ; zn = in)

+ p(z0 = 1; z1 = i1; z2 = i2; . . . ; zn = in)

= p(z1 = i1; z2 = i2; . . . ; zn = in):

Iterating one shows that for m � n

Qm(Ii i ���i ) = Qn(Ii i ���i ) = pi i ���i :

By the continuity of Q (Theorem 3.4)

Q(Ii i ���i ) = pi i ���i :

From this, as in [11], [12] we can derive bounds for the entropy rate.
Let

r(x) = �(r0(x) log r0(x) + r1(x) log r1(x)):

Using (3.11) and Theorem 3.5, we obtain the following.

Theorem 3.6: In the nonoverlapping case

i i ���i

rmi i ���i pi i ���i � H(Z) �
i i ���i

rMi i ���i pi i ���i

where

rmi i ���i = min
x2I

r(x)

and

rMi i ���i = max
x2I

r(x):

Proof: This follows immediately from the formula for the entropy
rate H(Z) (3.11).

B. Computation of the First Derivative in Nonoerlapping Case

To emphasize the dependence on ", we write pn;i(") = pn;i,
xn;i(") = xn;i, p0(") = p0, p1(") = p1, and Qn(") = Qn. Let
Fn("; x) denote the cumulative distribution function of Qn("). Let
H"
n(Z) be the finite approximation to H"(Z). It can be easily checked

that

H"
n(Z) =

I

r("; x)dQn(")

and we can rewrite (3.11) as

H"(Z) =
I

r("; x)dQ("):

In Theorem 3.7, we express the derivative of the entropy rate, with re-
spect to ", as the sum of four terms which have meaningful interpreta-
tions. Essentially, we are differentiatingH"(Z) with respect to " under
the integral sign, but care must be taken sinceQ(") is generally singular
and varies with ".

Rewriting this using the Riemann–Stieltjes integral and applying in-
tegration by parts, we obtain

H"
n(Z) =

I

r("; x)dFn("; x)

=Fn("; x)r("; x)j
p (")
p (") �

I

Fn("; x)g("; x)dx

where g("; x) = @r(";x)
@x

.
From now on 0 denotes the derivative with respect to ". Now

H"
n(Z)

0 = r("; p0("))
0 �Dn(")

where

Dn(") = lim
h!0

I
Fn("+h; x)g("+h; x)dx�

I
Fn("; x)g("; x)dx

h
:

We can decompose Dn(") into two terms

Dn(") =D1
n(") +D2

n(");

where

D1
n(") = lim

h!0 I

Fn("+ h; x)� Fn("; x)

h
g("; x)dx;

and

D2
n(") =

I

Fn("; x)g
0("; x)dx:
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In order to compute D1
n("), we partition I into two pieces: 1) small

intervals (xn;i("); xn;i("+h)) and 2) the complement of the union of
these neighborhoods, to yield

D1
n(") = lim

h!0 I

Fn("+ h; x)� Fn("; x)

h
g("; x)dx =

�
i

pn;i(")xn;i(")
0g("; xn;i)(") +

I

F 0n("; x)g("; x)dx:

Combining the foregoing expressions, we arrive at an expression for
H"
n(Z)0

H"
n(Z)0 = r("; p0("))

0 +
i

pn;i(")x
0

n;i(")g(";xn;i("))

�
I

F 0n("; x)g("; x)dx�
I

Fn("; x)g
0("; x)dx:

Write H"(Z) = H(Z), Q(") = Q, and let F ("; x) be the cumula-
tive distribution function of Q(").

We then show that H"
n(Z) converges uniformly to H"(Z) and

H"
n(Z)0 converges uniformly to some function; it follows that this

function is H"(Z)0. This requires showing that the integrands in
the second and third terms of the previous expression converge to
well-defined functions.

We think of the xn;i(") as locations of point masses. So, we can
think of xn;i(")0 as an instantaneous location change.

1. Second Term, Instantaneous Location Change (See Ap-
pendix C): For x 2 supp(Q(")) and any sequence of points
xn ;i ("); xn ;i ("); . . . approaching x,

K1("; x) = lim
j!1

x0n ;i (")

is a well-defined continuous function.
2. Third Term, Instantaneous Probability Change (See Ap-

pendix D): Recall that supp(Q(")) is a Cantor set defined by a
collection of “deleted” intervals: namely, Id � (f0(p1); f1(p0)),
and all intervals of the form fi �fi �� � ��fi (Id) (called deleted
intervals on level n). For x belonging to a deleted interval on
level n, define K2("; x) = F 0n("; x). Since the union of deleted
intervals is dense in I , we can extendK2("; x) to a function on all
x 2 I , and we show that K2("; x) is a well-defined continuous
function.

Using the boundedness of the instantaneous location change and prob-
ability change (established in Appendix A and Appendix B) and the
Arzela–Ascoli theorem (note that Appendix C and Appendix D imply
pointwise convergence of H"

n(Z)0 and Appendix A and Appendix B
imply equicontinuity of H"

n(Z)0), we obtain uniform convergence of
H"
n(Z)0 to H"(Z)0, which gives the result:

Theorem 3.7: In the nonoverlapping case

H"(Z)0 = r("; p0("))
0 +

supp(Q("))

K1("; x)g("; x)dF ("; x)

�
I

K2("; x)g("; x)dx�
I

F ("; x)g0("; x)dx:

Note that the second term in this expression is a weighted mean of
the instantaneous location change and the third term in this expression
is a weighted mean of the instantaneous probability change.

Remark 3.8: Using the same technique, we can give a similar for-
mula for the derivative of H"(Z) with respect to �ij ’s when " > 0.
We can also give such formulas for higher derivatives in a similar way.

Remark 3.9: The techniques in this section can be applied to give
an expression for the derivative of the entropy rate in the special over-
lapping case where f0(p1) = f1(p0).

C. Derivatives in Other Cases

1. If any two of the ���ijijij ’s are equal to 0, then

H"(Z) = �" log "� (1� ") log(1� ")

H"(Z) is not differentiable with respect to " at " = 0.
2. Of more interest, it was shown in [12] that H(Z) is not differen-

tiable with respect to " at " = 0 when exactly one of the ���ijijij ’s is
equal to 0.

3. Consider the case that """= 0 and all the �ij ’s are positive. As
discussed in Example 4.1 of [4], the entropy rate is analytic as a
function of " and �ij ’s.
In [6] (and more generally in [16], [17]), an explicit formula was
given for H 0(Z) at """= 0 in this case. We briefly indicate how this
is related to our results in Section III-B.
Instead of considering the dynamics of xn on the real line, we
consider those of (an; bn) on the one-dimensional simplex

W = f(w1; w2) : w1 + w2 = 1; wi � 0g:

Let Q denote the limiting distribution of (an; bn) on W , the en-
tropy H(Z) can be computed as follows:

H(Z) =
W

�(r0(w) log r0(w) + r1(w) log r1(w))dQ

where

r0(w) = ((1� ")�00 + "�01)w1 + ((1� ")�10 + "�11)w2

r1(w) = (("�00 + (1� ")�01)w1 + ("�10 + (1� ")�11)w2:

In order to calculate the derivative, we split the region of integra-
tion into two disjoint parts W = W 0 [W 1 with

W 0 = ft(0; 1) + (1� t)(1=2; 1=2) : 0 � t � 1g

W 1 = ft(1=2;1=2) + (1� t)(1;0) : 0 � t � 1g:

Let r(w) = �(r0(w) log r0(w) + r1(w) log r1(w)) and
Hi(Z) =

W
r(w)dQ, then

H(Z) = H0(Z) +H1(Z):

For W 0, we represent every point (w1; w2) using the coordinate
w1=w2. For W 1, we represent every point (w1; w2) using the co-
ordinate w2=w1. Computation shows that H"

n(Z) uniformly con-
verge to H"(Z) on [0; 1=2]. Note that expressions in Theorem
3.7 are not computable for " > 0, however, we can apply similar
uniform convergence ideas in each of these regions to recover the
formula given in [6] for " = 0.

4. (Low signal-to-noise ratio (SNR) regime, """= 1=2) In Corollary
6 of [11], it was shown that in the symmetric case (i.e., �01 =
�10), the entropy rate approaches zero at rate (1=2 � ")4 as "
approaches 1=2. It can be shown that the entropy rates at " and
1� " are the same, and so all odd-order derivatives vanish at " =
1=2. It follows that this result of [11] is equivalent to the statement
that in the symmetric case H 00(Z)j"=1=2 = 0. We generalize this
result to the nonsymmetric case as follows:

H 00(Z)j"=1=2 = �4
�10 � �01
�10 + �01

2

:

For more details, see Appendix E.
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APPENDIX A
PROOF OF BOUNDEDNESS OF INSTANTANEOUS LOCATION CHANGE

Claim: For any fix 0 < � < 1=2, x(k)n;i(") � C1(k; �), � � " �
1=2, C1 is a positive constant only depending on k; �.

Proof: We only prove the case when k = 1. Consider the iteration

xn+1 = fz ("; xn):

Taking the derivative with respect to ", we obtain

x0n+1 =
@fz

@"
("; xn) +

@fz

@x
("; xn)x

0

n:

Note that
@f

@"
("; xn) is uniformly bounded by a constant and

@f

@x
("; xn) is bounded by � with 0 < � < 1, we conclude x0n is

uniformly bounded too.

APPENDIX B
PROOF OF BOUNDEDNESS OF INSTANTANEOUS PROBABILITY CHANGE

Claim: For x =2 fxn;ig and 0 � " � 1=2, F (k)
n ("; x) � C2(k),

where C2 is a positive constant only depending on k.
Proof: We only prove the case when k = 1. For x with xn;2i <

x < xn;2i+1, we have Fn("; x) = Fn�1("; x), and consequently

@Fn("; x)

@"
=

@Fn�1("; x)

@"
:

For x with xn;2i�1 < x < xn;2i,
@F (";x)

@"
�

@F (";x)

@"
is bounded

by C�n1 , here C is a positive constant and 0 < �1 < 1 (see proof that
K2 is well defined in Appendix D). Therefore, we conclude that the
instantaneous probability change is uniformly bounded.

APPENDIX C
PROOF THAT K1 IS WELL DEFINED

Proof: We need to prove that if two points xn ;i and xn ;i are
close, then x0n ;i and x0n ;i are also close. Note that for nonoverlap-
ping case, if xn ;i and xn ;i are very close, their corresponding sym-
bolic sequences must share a long common tail. We shall prove that the
asymptotical dynamics of xn does not depend on the starting point as
long as they have the same common long tail. Without loss of gener-
ality, we assume that z, ẑ have common tail z1; z2; . . . ; zn. In this case,
the two dynamical systems start with different values x0, x̂0 along the
same path. Now the two iterations produce

x0n+1 =
@fz

@"
("; xn) +

@fz

@x
("; xn)x

0

n

x̂0n+1 =
@fz

@"
("; x̂n) +

@fz

@x
("; x̂n)x̂

0

n:

Taking the difference, we have

x0n+1 � x̂0n+1 =
@fz

@"
("; xn)�

@fz

@"
("; x̂n)

+
@fz

@x
("; xn)x

0

n �
@fz

@x
("; x̂n)x̂

0

n

=
@fz

@"
("; xn)�

@fz

@"
("; x̂n)

+
@fz

@x
("; xn)x

0

n �
@fz

@x
("; x̂n)x

0

n

+
@fz

@x
("; x̂n)x

0

n �
@fz

@x
("; x̂n)x̂

0

n:

Since
• when n!1, xn and x̂n are getting close uniformly with respect

to " – and –
• @f

@"
("; �) and @f

@x
("; �) (i = 0; 1) are Lipschitz – and –

• fi("; �) (i = 0; 1) are �-contraction mappings,
we conclude that x0n and x̂0n are very close uniformly with respect to
". The well definedness of K1 then follows.

APPENDIX D
PROOF THAT K2 IS WELL DEFINED

Proof: Every deleted interval corresponds to a finite sequence of
binary digits and K2 is well defined on these intervals. We order the
deleted intervals on level n from left to right

Idn;1; I
d
n;2; . . . ; I

d
n;2 :

We need to prove that if two deleted intervals Idm;i, I
d
n;j are close,

then Fm("; I
d
m;i) (which is defined as Fm("; x) with x 2 Idm;i) and

Fm("; I
d
m;i) are close. Assume m � n, then the points xn;k’s in be-

tween Idm;i and Idn;j must have a long common tail. Suppose that the
common tail is the path z1; z2; . . . ; zn, let qi denote the sum of the
probabilities associated with these points. Note that as long as the se-
quences have long common tail, the corresponding values of K2 are
getting closer and closer. For simplicity we only track one path for the
time being. Then we have

ai+1 = pE(zi+1)(�00ai + �10bi)

bi+1 = pE(�zi+1)(�01ai + �11bi):

It follows that

(ai+1 + bi+1) � �(ai + bi);

here 0 < � < 1 and � is defined as

� = maxf(1� ")�00 + "�01; (1� ")�10 + "�11; "�00

+(1� ")�01; "�10 + (1� ")�11g:

Immediately, we have

(an + bn) � �n:

Taking the derivative, we have

a0n+1 = � (�00an + �10bn) + (1� ")(�00a
0

n + �10b
0

n)

b0n+1 =(�01an + �11bn) + "(�10a
0

n + �11b
0

n):

In this case, we obtain

ja0n+1j + jb0n+1j � �(ja0nj+ jb0nj) + �n

which implies that there is a positive constant C and �1 with � < �1 <
1 such that

a0n + b0n � C�n1 :

Then we conclude that ja0n + b0nj ! 0 as n ! 1. Exactly the same
derivation can be applied to multiple path; it follows that

qn � �n; q0n � C�n1 :

So no matter which level we started from the deleted intervals, as long
as they have long common tails, the corresponding values of K2 func-
tion are close. Therefore, K2 is well defined.
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APPENDIX E
COMPUTATION OF H 00(Z)j"=1=2

In this appendix, we basically follow the framework of [6]. Let

pppn = [p(Zn
1 ; En = 0); p(Zn

1 ; En = 1)]

and

MMM(Zn�1; Zn) =
(1� ")pX(ZnjZn�1) "pX( �ZnjZn�1)

(1� ")pX(Znj �Zn�1) "pX( �Znj �Zn�1)
:

Then we have

pppn = pppn�1MMM(Zn�1; Zn):

Immediately, we obtain

pZ(Z
n
1 ) = ppp1MMM(Z1; Z2) � � �MMM(Zn�1; Zn)1:

We consider the case when the channel is operating on the low-SNR
region. For convenience, we let

� =
1

2
� ":

Thus, when the SNR is very low, namely, "! 1
2

, correspondingly we
have � ! 0. Since H(Z) is an even function at � = 0, the odd-order
derivatives at � = 0 are all equal to 0. In the sequel, we shall compute
the second derivative of H(Z) at � = 0.

In this case, we can rewrite the random matrixMMM i =MMM(zizi+1) in
the following way:

MMM i =
1

2

pX(zi+1jzi) pX(�zi+1jzi)

pX(zi+1j�zi) pX(�zi+1j�zi)

+�
pX(zi+1jzi) �pX(�zi+1jzi)

pX(zi+1j�zi) �pX(�zi+1j�zi)
:

For the special case when i = 0, we have

MMM0 =
1

2
[pX(z1); pX(�zi+1)] + � [pX(z1);�pX(�z1)] :

Then

pZ(z
n
1 )

=(
1

2
MMM

(0)
0 +�MMM

(1)
0 )(

1

2
MMM

(0)
1 +�MMM

(1)
1 ) � � � (

1

2
MMM

(0)
n�1+�MMM

(1)
n�1)1:

Now define the function

Rn(�) =
z

pZ(z
n
1 ) log(pZ(z

n
1 )):

Then according to the definition of H(Z)

H(Z) = � lim
n!1

1

n
RRRn(�):

It can be checked that

@RRRn(�)

@�
=

z

@pZ(z
n
1 )

@�
(log pZ(z

n
1 ) + 1)):

Now

@pZ(z
n
1 )

@� �=0

=
1

2

n�1 n�1

i=0

MMM
(0)
0 MMM

(0)
1 � � �MMM

(0)
i�1MMM

(1)
i MMM

(0)
i+1 � � �MMM

(0)
n�11

=
1

2

n�1 n

i=1

(pX(zi)� pX(�zi)):

Again, simple calculations will lead to the first equation at the bottom

of the page. Since @ p (z )

@�
�=0

is as defined in the second equation

at the bottom of the page, we have

@2RRRn(�)

@�2 �=0

=
z

2n
1

2

n�1 n

i=1

(pX(zi)�pX(�zi))

2

:

Let x; y temporarily denote the stationary distribution

pX(0) =
�10

�01 + �10
; pX(1) =

�01

�01 + �10

respectively. Then we get the equation at the top of the following page.
Using the following two combinatoric identities:

n

i=0

iC
i
n =n2n�1

and
n

i=0

i
2
C
i
n =n(n� 1)2n�2 + n2n�1;

we derive

@2RRRn(�)

@�2 �=0

=
1

2n�2
((x� y)2(n(n� 1)2n + n2n+1)

+ n
22n(2y � 1)2 + 2(x� y)(2y � 1)n22n)

= 4n(x� y)2:

@2RRRn(�)

@�2
=

z

@2pZ(z
n
1 )

@�2
log pZ(z

n
1 ) +

1

pZ(zn1 )

@pZ(z
n
1 )

@�

2

+
@2pZ(z

n
1 )

@�2
:

@2pZ(z
n
1 )

@�2 �=0

=
1

2

n�2

i 6=j

MMM
(0)
0 MMM

(0)
1 � � �MMM

(0)
i�1MMM

(1)
i MMM

(0)
i+1 � � �MMM

(0)
j�1MMM

(1)
j MMM

(0)
j+1 � � �MMM

(0)
n�11

=
1

2

n�2

[pX(zi+1);�pX(�zi+1)]
pX(zj+1jzi+1) �pX(�zj+1jzi+1)

pX(zj+1j�zi+1) �pX(�zj+1j�zi+1)

=
1

2

n�2

i6=j

(pX(zj+1; zi+1)� pX(zj+1; �zi+1)� pX(�zj+1; zi+1) + pX(�zj+1; �zi+1))
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@2RRRn(�)

@�2 �=0

=
1

2n�2

n

i=0

Ci
n(2ix+ 2(n� i)y � n)2

=
1

2n�2

n

i=0

Ci
n((2x� 2y)i+ 2ny � n)2

=(2x� 2y)2
n

i=0

Ci
ni

2 + (2ny � n)2
n

i=0

1 + 2(2x� 2y)(2ny � n)

n

i=0

Ci
ni:

From the fact that the derivatives of H(Z) with respect to " are uni-
formly bounded on [0; 1=2] (see [6], also implied by Theorem 1.1 of
[4] and the computation of H"(Z)j"=0), we draw the conclusion that
the second coefficient of H(Z) is equal to

H 00(Z)j"=1=2 = �4
�10 � �01
�10 + �01

2

:
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The Fading Number of Memoryless
Multiple-Input Multiple-Output

Fading Channels

Stefan M. Moser, Member, IEEE

Abstract—In this correspondence, we derive the fading number of mul-
tiple-input multiple-output (MIMO) flat-fading channels of general (not
necessarily Gaussian) regular law without temporal memory. The channel
is assumed to be noncoherent, i.e., neither receiver nor transmitter have
knowledge about the channel state, but they only know the probability law
of the fading process. The fading number is the second term, after the
double-logarithmic term, of the high signal-to-noise ratio (SNR) expansion
of channel capacity. Hence, the asymptotic channel capacity of memory-
less MIMO fading channels is derived exactly. The result is then specialized
to the known cases of single-input–multiple-output (SIMO), multiple-input
single-output (MISO), and single-input–single-output (SISO) fading chan-
nels, as well as to the situation of Gaussian fading.

Index Terms—Channel capacity, fading number, Gaussian fading, gen-
eral flat fading, high signal-to-noise ratio (SNR), multiple antenna, mul-
tiple-input multiple-output (MIMO), noncoherent.

I. INTRODUCTION

It has been recently shown in [1], [2] that, whenever the matrix-
valued fading process is of finite differential entropy rate (a so-called
regular process), the capacity of noncoherent multiple-input multiple-
output (MIMO) fading channels typically grows only double-logarith-
mically in the signal-to-noise ratio (SNR).

This is in stark contrast to both, the coherent fading channel where
the receiver has perfect knowledge about the channel state, and to
the noncoherent fading channel with nonregular channel law, i.e.,
the differential entropy rate of the fading process is not finite. In the
former case the capacity grows logarithmically in the SNR with a
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