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ASYMPTOTICS OF INPUT-CONSTRAINED BINARY
SYMMETRIC CHANNEL CAPACITY

By Guangyue Han, Brian Marcus

University of Hong Kong, University of British Columbia

We study the classical problem of noisy constrained capacity in
the case of the binary symmetric channel (BSC), namely, the capacity
of a BSC whose inputs are sequences chosen from a constrained set.
Motivated by a result of Ordentlich and Weissman in [28], we derive
an asymptotic formula (when the noise parameter is small) for the
entropy rate of a hidden Markov chain, observed when a Markov chain
passes through a BSC. Using this result we establish an asymptotic
formula for the capacity of a BSC with input process supported on
an irreducible finite type constraint, as the noise parameter tends to
zero.

1. Introduction and Background. Let X, Y be discrete random vari-
ables with alphabet X ,Y and joint probability mass function pX,Y (x, y)

4
=

P (X = x, Y = y), x ∈ X , y ∈ Y (for notational simplicity, we will write
p(x, y) rather than pX,Y (x, y), similarly p(x), p(y) rather than pX(x), pY (y),
respectively, when it is clear from the context). The entropy H(X) of the
discrete random variable X, which measures the level of uncertainty of X,
is defined as (in this paper log is taken to mean the natural logarithm)

H(X) = −
∑

x∈X
p(x) log p(x).

The conditional entropy H(Y |X), which measures the level of uncertainty
of Y given X, is defined as

H(Y |X) =
∑

x∈X
p(x)H(Y |X = x)

4
= −

∑

x∈X
p(x)

∑

y∈Y
p(y|x) log p(y|x) = −

∑

x∈X ,y∈Y
p(x, y) log p(y|x).

The definitions above naturally include the case when X, Y are vector-valued
variables, e.g., X = X`

k
4
= (Xk, Xk+1, . . . , X`), a sequence of discrete random

variables.
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2 G. HAN, B. MARCUS

For a left-infinite discrete stationary stochastic process X = X0−∞
4
= {Xi :

i = 0,−1,−2, · · · } the entropy rate of X is defined to be

(1.1) H(X) = lim
n→∞

1
n + 1

H(X0
−n),

where H(X0−n) denotes the entropy of the vector-valued random variable
X0−n. Given another stationary process Y = Y 0−∞, we similarly define the
conditional entropy rate

(1.2) H(Y |X) = lim
n→∞

1
n + 1

H(Y 0
−n|X0

−n).

A simple monotonicity argument in page 64 of [10] shows the existence of
the limit in (1.1). Using the chain rule for entropy (see page 21 of [10]), we
obtain

H(Y 0
−n|X0

−n) = H(X0
−n, Y 0

−n)−H(X0
−n),

and so we can apply the same argument to the processes (X, Y ) and X to
obtain the limit in (1.2).

If Y = Y 0−∞ is a stationary finite-state Markov chain, then H(Y ) has a
simple analytic form. Specifically, denoting by ∆ the transition probability
matrix of Y , we have

(1.3) H(Y ) = H(Y0|Y−1) = −
∑

i,j

P (Y0 = i)∆(i, j) log ∆(i, j).

A function Z = Z0−∞ of the stationary Markov chain Y with the form
Zi = Φ(Yi) is called a hidden Markov chain; here Φ is a function defined
on the alphabet of Yi, taking values in the alphabet of Zi. We often write
Z = Φ(Y ). Hidden Markov chains are typically not Markov.

For a hidden Markov chain Z, the entropy rate H(Z) was studied by
Blackwell [6] as early as 1957, where the analysis suggested the intrinsic
complexity of H(Z) as a function of the process parameters. He gave an
expression for H(Z) in terms of a measure Q on a simplex, obtained by
solving an integral equation dependent on the parameters of the process.
However, the measure is difficult to extract from the equation in any explicit
way, and the entropy rate is difficult to compute.

Recently, the problem of computing the entropy rate of a hidden Markov
chain has drawn much interest, and many approaches have been adopted
to tackle this problem. These include asymptotic expansions as Markov
chain parameters tend to extremes [17, 21, 22, 27, 28, 40, 41], analytic-
ity results [16], variations on a classical bound [11], efficient Monte Carlo
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INPUT-CONSTRAINED CHANNEL CAPACITY 3

methods [1, 33, 36]; and connections with the top Lyapunov exponent of a
random matrix product have been observed [14, 19–21], relating to earlier
work on Lyapunov exponents [4, 31, 32, 34].

Of particular interest are hidden Markov chains which arise as output
processes of noisy channels. For example, the binary symmetric channel with
crossover probability ε (denoted BSC(ε)) is an object which transforms input
processes to output processes by means of a fixed i.i.d. binary noise process
E = {En} with pEn(0) = 1 − ε and pEn(1) = ε. Specifically, given an
arbitrary binary input process X = {Xn}, which is independent of E, define
at time n,

Zn(ε) = Xn ⊕ En,

where ⊕ denotes binary addition modulo 2; then Zε = {Zn(ε)} is the output
process corresponding to X.

When the input X is a stationary Markov chain, the output Zε can be
viewed as a hidden Markov chain by appropriately augmenting the state
space of X [12]; specifically, in the case that X is a first order binary Markov
chain with transition probability matrix

Π =

[
π00 π01

π10 π11

]
,

then Yε = {Yn(ε)} = {(Xn, En)} is jointly Markov with transition probabil-
ity matrix

∆ =




y (0, 0) (0, 1) (1, 0) (1, 1)
(0, 0) π00(1− ε) π00ε π01(1− ε) π01ε
(0, 1) π00(1− ε) π00ε π01(1− ε) π01ε
(1, 0) π10(1− ε) π10ε π11(1− ε) π11ε
(1, 1) π10(1− ε) π10ε π11(1− ε) π11ε




,

and Zε = {Zn(ε)} is a hidden Markov chain with Zn(ε) = Φ(Yn(ε)), where
Φ maps states (0, 0) and (1, 1) to 0 and maps states (0, 1) and (1, 0) to 1.

In section 2 we give asymptotics for the entropy rate of a hidden Markov
chain, obtained by passing a binary Markov chain, of arbitrary order, through
BSC(ε) as the noise ε tends to zero. In section 2.1, we review, from [22], the
result when the transition probabilities are strictly positive. In section 2.2,
we develop the formula when some transition probabilities are zero (which
is our main focus), thereby generalizing a specific result from [28].

The remainder of the paper is devoted to asymptotics for noisy con-
strained channel capacity. The capacity of the (unconstrained) BSC(ε) is
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4 G. HAN, B. MARCUS

defined

(1.4) C(ε) = lim
n→∞ sup

X0
−n

1
n + 1

(H(Z0
−n(ε))−H(Z0

−n(ε)|X0
−n));

here X0−n is a finite-length input process from time −n to 0 and Z0−n(ε) is
the corresponding output process. Seminal results of information theory, due
to Shannon [38], include: 1) the capacity is the optimal rate of transmission
possible with arbitrarily small probability of error, and 2) the capacity can
be explicitly computed: C(ε) = 1−H(ε), where H(ε) is the binary entropy
function defined as

H(ε) = ε log 1/ε + (1− ε) log 1/(1− ε).

We are interested in input-constrained channel capacity, i.e., the capacity
of BSC(ε), where the possible inputs are constrained, described as follows.

Let X = {0, 1}, X ∗ denote all the finite length binary words, and X n de-
note all the binary words with length n. A binary finite type constraint [24,
26] S is a subset of X ∗ defined by a finite set (denoted by F) of forbidden
words; in other words, any element in S does not contain any element in F
as a contiguous subsequence. A prominent example is the (d, k)-RLL con-
straint S(d, k), which forbids any sequence with fewer than d or more than
k consecutive zeros in between two 1’s. So for S(d, k), a possible forbidden
set F can be

F = {1 0 · · · 0︸ ︷︷ ︸
l

1 : 0 ≤ l < d} ∪ {0k+1};

when d = 1, k = ∞, F can be chosen to be {11}. These constraints on
input sequences arise in magnetic recording in order to eliminate the most
damaging error events [26].

We will use Sn to denote the subset of S consisting of words with length
n. A finite type constraint S is irreducible if for any u, v ∈ S, there is a
w ∈ S such that uwv ∈ S.

For a finite binary stochastic (not necessarily stationary) process X =
X0−n, define the set of allowed words with respect to X as

A(X0
−n) = {w0

−n ∈ X n+1 : P (X0
−n = w0

−n) > 0}.

For a left-infinite binary stochastic (again not necessarily stationary) process
X = X0−∞, define the set of allowed words with respect to X as

A(X) = {w0
−m ∈ X ∗ : m ≥ 0, P (X0

−m = w0
−m) > 0}.
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INPUT-CONSTRAINED CHANNEL CAPACITY 5

For a constrained BSC(ε) with input sequences in S, the noisy constrained
capacity C(S, ε) is defined as

C(S, ε) = lim
n→∞ sup

A(X0
−n)⊆S

1
n + 1

(H(Z0
−n(ε))−H(Z0

−n(ε)|X0
−n)),

where again Z0−n(ε) is the output process corresponding to the input process
X0−n. Let P (resp. Pn) denote the set of all left-infinite (resp. length n)
stationary processes over the alphabet X . Using the approach in Section
12.4 of [15], one can show that
(1.5)

C(S, ε) = lim
n→∞ sup

X0
−n∈Pn+1, A(X0

−n)⊆S

1
n + 1

(H(Z0
−n(ε))−H(Z0

−n(ε)|X0
−n))

= sup
X∈P, A(X)⊆S

H(Zε)−H(Zε|X),

where, Z0−n(ε), Zε are the output process corresponding to the input pro-
cesses X0−n, X, respectively.

In section 3, we apply the results of section 2 to derive an asymptotic
formula for capacity of the input-constrained BSC(ε)(again as ε tends to
zero) for any irreducible finite type input constraint. In section 4, we consider
the special case of the (d, k)-RLL constraint, and compute the coefficients
of the asymptotic formulas.

Regarding prior work on C(S, ε), the best results in the literature have
been in the form of bounds and numerical simulations based on producing
random (and, hopefully, typical) channel output sequences (see, e.g., [39],
[37], [2] and references therein). These methods allow for fairly precise nu-
merical approximations of the capacity for given constraints and channel
parameters.

For a more detailed introduction to entropy, capacity and related concepts
in information theory, we refer to standard textbooks such as [10, 15].

2. Asymptotics of Entropy Rate. Consider a BSC(ε) and suppose
the input is an m-th order irreducible Markov chain X defined by the tran-
sition probabilities P (Xt = a0|Xt−1

t−m = a−1
−m), a0−m ∈ Xm+1, here again

X = {0, 1}, and the output hidden Markov chain will be denoted by Zε.

2.1. When transition probabilities of X are all positive. This case is
treated in [22]:
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6 G. HAN, B. MARCUS

Theorem 2.1. ([22] (Theorem 3)) If P (Xt = a0|Xt−1
t−m = a−1

−m) > 0 for
all a0−m ∈ X n+1, the entropy rate of Zε for small ε is

(2.1) H(Zε) = H(X) + g(X)ε + O(ε2),

where, denoting by z̄i the Boolean complement of zi, and

ž2m+1=z1 . . . zmz̄m+1zm+2 . . . z2m+1,

we have

g(X) =
∑

z2m+1
1 ∈X2m+1

PX(z2m+1
1 ) log

PX(z2m+1
1 )

PX(ž2m+1
1 )

(2.2)

We remark that the expression here for g(X) is a familiar quantity in infor-
mation theory, known as the Kullback-Liebler divergence; specifically g(X)
is the divergence between the two distributions PX(z2m+1

1 ) and PX(ž2m+1
1 ).

In [22] a complete proof is given for first-order Markov chains, as well
as the sketch for the generalization to higher order Markov chains. Alter-
natively, after appropriately enlarging the state space of X to convert the
m-th order Markov chain to a first order Markov chain, we can use Theorem
1.1 of [16] to show H(Zε) is analytic with respect to ε at ε = 0, and The-
orem 2.5 of [17] to show that all the derivatives of H(Zε) at ε = 0 can be
computed explicitly (in principle) without taking limits. Theorem 2.1 does
this explicitly (in fact) for the first derivative.

2.2. When transition probabilities of X are not necessarily all positive.
First consider the case when X is a binary first order Markov chain with
the transition probability matrix

(2.3)

[
1− p p

1 0

]

where 0 ≤ p ≤ 1. This process generates sequences satisfying the (d, k) =
(1,∞)-RLL constraint, which simply means that the string 11 is forbidden.
Sequences generated by the output process Zε, however, will generally not
satisfy the constraint. The probability of the constraint-violating sequences
at the output of the channel is polynomial in ε, which will generally con-
tribute a term O(ε log ε) to the entropy rate H(Zε) when ε is small. This was
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INPUT-CONSTRAINED CHANNEL CAPACITY 7

already observed for the probability transition matrix (2.3) in [28], where it
is shown that

(2.4) H(Zε) = H(X) +
p(2− p)
1 + p

ε log 1/ε + O(ε)

as ε → 0.
In the following, we shall generalize Formulas (2.1), (2.4) and derive a

formula for entropy rate of any hidden Markov chain Zε, obtained when
passing a Markov chain X of any order m through a BSC(ε). We will apply
the Birch bounds [5], for n ≥ m, which yield:
(2.5)

H(Z0(ε)|Z−1
−n+m(ε), X−n+m−1

−n , E−n+m−1
−n ) ≤ H(Zε) ≤ H(Z0(ε)|Z−1

−n(ε)).

Note that the lower bound is really just

H(Z0(ε)|Z−1
−n+m(ε), X−n+m−1

−n ),

since Z0−n+m(ε), if conditioned on X−n+m−1
−n , is independent of E−n+m−1

−n .

Lemma 2.2. For a stationary input process X0−n and the corresponding
output process Z0−n(ε) through BSC(ε) and 0 ≤ k ≤ n,

H(Z0(ε)|Z−1
−n+k(ε), X

−n+k−1
−n ) = H(X0|X−1

−n)+fk
n(X0

−n)ε log(1/ε)+gk
n(X0

−n)ε+O(ε2 log ε),

where fk
n(X0−n) and gk

n(X0−n) are given by (2.8) and (2.9) below, respectively.

Proof. In this proof, w = w−1
−n, where w−j is a single binary bit, and we

let v denote a single binary bit. And we use the notation for probability:

pXZ(w) = P (X−n+k−1
−n = w−n+k−1

−n , Z−1
−n+k(ε) = w−1

−n+k),

pXZ(wv) = P (X−n+k−1
−n = w−n+k−1

−n , Z−1
−n+k(ε) = w−1

−n+k, Z0(ε) = v),

and

pXZ(v|w) = P (Z0(ε) = v|Z−1
−n+k(ε) = w−1

−n+k, X
−n+k−1
−n = w−n+k−1

−n ).

We remark that the definition of pXZ does depend on ε and how we partition
w−1
−n according to k, however we keep the dependence implicit for notational

simplicity.
We split H(Z0(ε)|Z−1

−n+k(ε), X
−n+k−1
−n ) into five terms:

(2.6) H(Z0(ε)|Z−1
−n+k(ε), X

−n+k−1
−n ) =

∑

wv∈A(X)

−pXZ(wv) log(pXZ(v|w))
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8 G. HAN, B. MARCUS

+
∑

w∈A(X),wv/∈A(X)

−pXZ(wv) log(pXZ(v|w))+
∑

pXZ(w)=Θ(ε),pXZ(wv)=Θ(ε)

−pXZ(wv) log(pXZ(v|w))

+
∑

pXZ(w)=Θ(ε),pXZ(wv)=O(ε2)

−pXZ(wv) log(pXZ(v|w))+
∑

pXZ(w)=O(ε2)

−pXZ(wv) log(pXZ(v|w)),

here by α = Θ(β), we mean, as usual, there exist positive constants C1, C2

such that C1|β| ≤ |α| ≤ C2|β|, while by α = O(β), we mean there exists a
positive constant C such that |α| ≤ C|β|; note that from

pXZ(w) =
∑

u−1
−n+k

:w−n+k−1
−n u−1

−n+k
∈A(X−1

−n)


P (X−n+k−1

−n = w−n+k−1
−n , X−1

−n+k = u−1
−n+k)

−1∏

j=−n+k

pE(uj ⊕ wj)


 ,

we see that pXZ(w) = Θ(ε) is equivalent to the statement that w 6∈ A(X−1
−n),

and by flipping exactly one of the bits in w−1
−n+k, one obtains, from w, a

sequence in A(X−1
−n).

For the fourth term, we have
∑

pXZ(w)=Θ(ε),pXZ(wv)=O(ε2)

−pXZ(wv) log(pXZ(v|w)) = O(ε2 log ε).

For the fifth term, we have
∑

pXZ(w)=O(ε2)

−pXZ(wv) log(pXZ(v|w)) =
∑

pXZ(w)=O(ε2)

−pXZ(w)
∑
v

pXZ(v|w) log(pXZ(v|w))

≤ (log 2)
∑

pXZ(w)=O(ε2)

pXZ(w) = O(ε2),

where we use the fact that −∑
v pXZ(v|w) log(pXZ(v|w)) ≤ log 2 for any w.

We conclude that the sum of the fourth term and the fifth term is O(ε2 log ε).
For a binary sequence u−1

−n, define hk
n(u−1

−n) to be:

(2.7) hk
n(u−1

−n) =
n−k∑

j=1

pX(u−j−1
−n ū−ju

−1
−j+1)− (n− k)pX(u−1

−n).

Note that with this notation, hk
n(w) and hk

n+1(wv) can be expressed as
derivatives with respect to ε at ε = 0:

hk
n(w) = p′XZ(w)|ε=0, hk

n+1(wv) = p′XZ(wv)|ε=0.

Then for the first term, we have
∑

wv∈A(X)

−pXZ(wv) log(pXZ(v|w))
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INPUT-CONSTRAINED CHANNEL CAPACITY 9

= −
∑

wv∈A(X)

(pX(wv)+hk
n+1(wv)ε+O(ε2)) log(pX(v|w)+

hk
n+1(wv)pX(w)− hk

n(w)pX(wv)
p2

X(w)
ε+O(ε2))

= H(X0|X−1
−n)−

∑

wv∈A(X)

(
hk

n+1(wv) log pX(v|w) +
hk

n+1(wv)pX(w)− hk
n(w)pX(wv)

pX(w)

)
ε+O(ε2).

For the second term, it is easy to check that for w ∈ A(X) and wv /∈ A(X),
pXZ(v|w) = Θ(ε) and so

pXZ(wv) = hk
n+1(wv)ε + O(ε2);

we then obtain

∑

w∈A(X),wv/∈A(X)

−pXZ(wv) log(pXZ(v|w)) = −
∑

w∈A(X),wv/∈A(X)

hk
n+1(wv)ε log

hk
n+1(wv)ε + O(ε2)

pX(w)
+O(ε2) log Θ(ε)

=
∑

w∈A(X),wv/∈A(X)

hk
n+1(wv)ε log(1/ε)−


 ∑

w∈A(X),wv/∈A(X)

hk
n+1(wv) log

hk
n+1(wv)
pX(w)


 ε+O(ε2 log ε).

For the third term, we have
∑

pXZ(w)=Θ(ε),pXZ(wv)=Θ(ε)

−pXZ(wv) log(pXZ(v|w))

= −
∑

pXZ(w)=Θ(ε),pXZ(wv)=Θ(ε)

(hk
n+1(wv)ε + O(ε2)) log

(
hk

n+1(wv)
hk

n(w)
+ O(ε)

)

= −

 ∑

pXZ(w)=Θ(ε),pXZ(wv)=Θ(ε)

hk
n+1(wv) log

(
hk

n+1(wv)
hk

n(w)

)
 ε + O(ε2).

In summary, H(Z0(ε)|Z−1
−n+k(ε), X

−n+k−1
−n ) can be rewritten as

H(Z0(ε)|Z−1
−n+k(ε), X

−n+k−1
−n ) = H(X0|X−1

−n)+fk
n(X0

−n)ε log(1/ε)+gk
n(X0

−n)ε+O(ε2 log ε),

where (see (2.7) for the definition of hk
n(·))

(2.8) fk
n(X0

−n) =
∑

w∈A(X),wv/∈A(X)

hk
n+1(wv)

=
∑

w∈A(X),wv/∈A(X)




n−k∑

j=1

pX(w−j−1
−n w̄−jw

−1
−j+1v) + pX(w−1

−n)


 ,
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10 G. HAN, B. MARCUS

and

gk
n(X0

−n) = −
∑

wv∈A(X)

(
hk

n+1(wv) log pX(v|w) +
hk

n+1(wv)pX(w)− hk
n(w)pX(wv)

pX(w)

)

(2.9)

−
∑

w∈A(X),wv/∈A(X)

hk
n+1(wv) log

hk
n+1(wv)
pX(w)

−
∑

pXZ(w)=Θ(ε),pXZ(wv)=Θ(ε)

hk
n+1(wv) log

(
hk

n+1(wv)
hk

n(w)

)
.

Remark 2.3. For any δ > 0 and fixed n, the constant in O(ε2 log ε) in
Lemma 2.2 can be chosen uniformly on Pn+1,δ, where Pn+1,δ denotes the set
of binary stationary processes X = X0−n, such that for all w0−n ∈ A(X), we
have pX(w) ≥ δ.

Theorem 2.4. For an m-th order Markov chain X passing through a
BSC(ε), with Zε as the output hidden Markov chain,

H(Zε) = H(X) + f(X)ε log(1/ε) + g(X)ε + O(ε2 log ε),

where f(X) = f0
2m(X0−2m) = fm

2m(X0−2m) and g(X) = g0
3m(X0−3m) = gm

3m(X0−3m).

Proof. We apply Lemma 2.2 to the Birch upper and lower bounds (eqn.
(2.5)) of H(Zε). For the upper bound, k = 0, we have, for all n,

H(Z0(ε)|Z−1
−n(ε)) = H(X0|X−1

−n)+f0
n(X0

−n)ε log(1/ε)+g0
n(X0

−n)ε+O(ε2 log ε).

And for the lower bound, k = m, we have, for n ≥ m,

H(Z0(ε)|Z−1
−n+m(ε), X−n+m−1

−n ) = H(X0|X−1
−n)+fm

n (X0
−n)ε log(1/ε)+gm

n (X0
−n)ε+O(ε2 log ε).

The first term always coincides for the upper and lower bounds. When
n ≥ m, since X is an m-th order Markov chain,

H(X0|X−1
−n) = H(X0|X−1

−m) = H(X).

Let w = w−1
−n, where w−j is a single bit, and v denotes a single bit. If

w ∈ A(X) and wv /∈ A(X), then pX(w−1
−mv) = 0. It then follows that for an

m-th order Markov chain, when n ≥ 2m,

(2.10) fm
n (X0

−n) = f0
n(X0

−n) = f0
2m(X0

−2m) = fm
2m(X0

−2m).
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INPUT-CONSTRAINED CHANNEL CAPACITY 11

Now consider gk
n(X0−n). When 0 ≤ k ≤ m, we have the following facts (for

a detailed derivation of (2.11)-(2.13), see the Appendix).

(2.11) if wv ∈ A(X), pX(v|w) = pX(v|w−1
−m), for n ≥ m,

(2.12)

if w ∈ A(X), wv /∈ A(X),
hk

n+1(wv)
pX(w)

is constant (as function of n and k) for n ≥ 2m, 0 ≤ k ≤ m,

(2.13)

if pXZ(w) = Θ(ε), pXZ(wv) = Θ(ε),
hk

n+1(wv)
hk

n(w)
is constant for n ≥ 3m, 0 ≤ k ≤ m.

It then follows (see the derivations of (2.14)-(2.16) in the Appendix) that
(2.14)

∑

wv∈A(X)

hk
n+1(wv)pX(w)− hk

n(w)pX(wv)
pX(w)

is constant (as a function of n) for n ≥ 2m, 0 ≤ k ≤ m,

(2.15)
∑

w∈A(X),wv/∈A(X)

hk
n+1(wv) log

hk
n+1(wv)
pX(w)

is constant for n ≥ 2m, 0 ≤ k ≤ m,

and
(2.16)

∑

wv∈A(X)

hk
n+1(wv) log pX(v|w)+

∑

pXZ(w)=Θ(ε),pXZ(wv)=Θ(ε)

hk
n+1(wv) log

hk
n+1(wv)
hk

n(w)
is constant for n ≥ 3m, 0 ≤ k ≤ m.

Consequently, we have

(2.17) gm
n (X0

−n) = g0
n(X0

−n) = g0
3m(X0

−3m) = gm
3m(X0

−3m).

Let f(X) = f0
2m(X0−2m) and g(X) = g0

3m(X0−3m), then the theorem follows.

Remark 2.5. Note that this result applies in particular to the case
when the transition probabilities of X are all positive; thus in this case the
formula should reduce to that of Theorem 2.1. Indeed when all transition
probabilities of X are positive, f(X) vanishes since the summation in (2.8)
is taken over an empty set; on the other hand, again from (2.8), if some of
the transition probabilities of X are zero, then f(X) does not vanish (to
see this, note that when w ∈ A(X), wv /∈ A(X), necessarily we will have
wv̄ ∈ A(X)). The agreement of g(X) with expression in Theorem 2.1 is a
straightforward, but tedious, computation.
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12 G. HAN, B. MARCUS

Remark 2.6. Together with Remark 2.3, the proof of Theorem 2.4 im-
plies that for any δ > 0 and fixed m, the constant in O(ε2 log ε) in The-
orem 2.4 can be chosen uniformly on Qm,δ, where Qm,δ denotes the set of
all m-th order Markov chains X such that whenever w = w0−m ∈ A(X), we
have pX(w) ≥ δ.

Remark 2.7. The error term in the formula of Theorem 2.4 can not be
improved, in the sense that, in some cases, the error term is dominated by
a strictly positive constant times ε2 log ε.

As we showed in Theorem 2.4, the Birch upper bound with n = 3m yields:

H(Z0(ε)|Z−1
−n(ε)) = H(X) + f(X)ε log(1/ε) + g(X)ε + O(ε2 log ε).

Together with (2.6), one checks that the Θ(ε2 log ε) term in the error term
O(ε2 log ε), is contributed by (see the second term in (2.6) with k = 0)

∑

w∈A(X),wv/∈A(X)

−pZ(wv) log(pZ(v|w))

and (see the fourth term in (2.6) with k = 0)
∑

pZ(w)=Θ(ε),pZ(wv)=O(ε2)

−pZ(wv) log(pZ(v|w)),

and this Θ(ε2 log ε) term does not vanish at least for certain cases. For
instance, consider the input Markov chain X with the following transition
probability matrix [

1− p p
1 0

]
,

where 0 < p < 1. Then one checks that for this case, m = 1, n = 3, and the
coefficient of the above-mentioned Θ(ε2 log ε) term takes the form of

p3 − 7p2 + 6p− 1
1 + p

,

which is strictly positive for p = 1/2.

3. Asymptotics of Capacity. Consider a binary irreducible finite type
constraint S defined by F , which consists of forbidden words with length
m̂ + 1. In general, there are many such F ’s corresponding to the same S
with different lengths; here we may choose F to be the one with the smallest
length m̂ + 1. And m̂ = m̂(S) is defined to be the topological order of the
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INPUT-CONSTRAINED CHANNEL CAPACITY 13

constraint S. For example, the order of S(d, k), discussed in the introduc-
tion, is k [24]. The topological order of a finite type constraint is analogous
to the order of a Markov chain.

Recall from (1.5) that For an input-constrained BSC(ε) with input se-
quences X0−n in S and with the corresponding output Z0−n(ε), the capacity
can be written as:

C(S, ε) = lim
n→∞ sup

X0
−n∈Pn+1, A(X0

−n)⊆S
(1/(n+1)(H(Z0

−n(ε))−H(Z0
−n(ε)|X0

−n))

Since the noise distribution is symmetric and the noise process E is i.i.d.
and independent of X, this can be simplified to:

C(S, ε) = lim
n→∞ sup

X0
−n∈Pn+1, A(X0

−n)⊆S
H(Z0

−n(ε))/(n + 1)−H(ε),

which can be rewritten as:

C(S, ε) = lim
n→∞ sup

X0
−n∈Pn+1, A(X0

−n)⊆S
H(Z0(ε)|Z−1

−n(ε))−H(ε),

where we used the chain rule for entropy (see page 21 of [10])

H(Z0
−n(ε)) =

n∑

j=0

H(Z0(ε)|Z−1
−j (ε)),

and the fact that (further) conditioning reduces entropy (see page 27 of [10])

H(Z0(ε)|Z−1
−j1

(ε)) ≥ H(Z0(ε)|Z−1
−j2

(ε)) for j1 ≤ j2.

Recall from (1.5) that

C(S, ε) = sup
X∈P, A(X)⊆S

H(Zε)−H(Zε|X).

Now let
Hn(S, ε) = sup

X0
−n∈Pn+1,A(X0

−n)⊆S
H(Z0(ε)|Z−1

−n(ε)),

and
hm(S, ε) = sup

X∈Mm,A(X)⊆S
H(Zε),

where Mm denotes the set of all m-th order binary irreducible Markov
chains, we then have the bounds for C(S, ε):

(3.1) hm(S, ε)−H(ε) ≤ C(S, ε) ≤ Hn(S, ε)−H(ε).
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14 G. HAN, B. MARCUS

Noting that

sup
X0
−n∈Pn+1,A(X0

−n)(Sn+1

H(X0|X−1
−n) < sup

X0
−n∈Pn+1,A(X0

−n)=Sn+1

H(X0|X−1
−n)

(here ( means “proper subset of”), and H(Z0(ε)|Z−1
−n(ε)) are continuous at

ε = 0, we conclude that for ε sufficiently small (ε < ε0), one may choose
δ > 0 (here, δ depends on n and m) such that

Hn(S, ε) = sup
X0
−n∈Pn+1,δ,A(X0

−n)=Sn+1,

H(Z0(ε)|Z−1
−n(ε)).

So from now on we only consider stationary processes X = X0−n with
A(X0−n) = Sn+1.

Now for a stationary process X = X0−n, define ~pn as the following proba-
bility vector indexed by all the elements in Sn+1,

~pn = ~pn(X0
−n) = (P (X0

−n = w0
−n) : w0

−n ∈ Sn+1).

To emphasize the dependence of X0−n on ~pn, in the following, we shall rewrite
X0−n as X0−n(~pn). For an m-th order binary irreducible Markov chain X =
X0−∞, slightly abusing the notation, define ~pm as the following probability
vector indexed by all the elements in Sm+1,

~pm = ~pm(X0
−∞) = (P (X0

−m = w0
−m) : w0

−m ∈ Sm+1).

Similarly, to emphasize the dependence of X = X0−∞ on ~pm, in the following,
we shall rewrite X as X~pm . And we shall use Z0−n(~pn, ε) to denote the output
process obtained by passing X0−n(~pn) through BSC(ε), and use Z~pm,ε to
denote the output process obtained by passing X~pm through BSC(ε).

Lemma 3.1. For any stationary process X0−n(~pn) with A(X0−n(~pn)) =
Sn+1, H(X0(~pn)|X−1

−n(~pn)), as a function of ~pn, has a negative definite Hes-
sian matrix.

Proof. Note that

H(X0(~pn)|X−1
−n(~pn)) = −

∑

x0
−n∈S

p(x0
−n) log p(x0|x−1

−n).

For two different probability vectors ~pn and ~qn, consider the convex combi-
nation

~rn(t) = t~pn + (1− t)~qn,
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INPUT-CONSTRAINED CHANNEL CAPACITY 15

where 0 ≤ t ≤ 1. It suffices to prove that H(X0(~rn(t))|X−1
−n(~rn(t))) has a

strictly negative second derivative with respect to t. Now consider a single
term in H(X0(~pn)|X−1

−n(~pn)):

−(t~pn(x0
−n) + (1− t)~qn(x0

−n)) log
t~pn(x0−n) + (1− t)~qn(x0−n)
t~pn(x−1

−n) + (1− t)~qn(x−1
−n)

.

Note that for two formal symbols α and β, if we assume α′′ = 0 and β′′ = 0,
the second order formal derivative of α log α

β can be computed as:

(
α log

α

β

)′′
=

(
α′√
α
−√α

β′

β

)2

.

It then follows that the second derivative of this term (with respect to t)
can be calculated as:

−

 ~pn(x0−n)− ~qn(x0−n)√

t~pn(x0−n) + (1− t)~qn(x0−n)
−

√
t~pn(x0−n) + (1− t)~qn(x0−n)

~pn(x0
−(n−1))− ~qn(x0

−(n−1))

t~pn(x0
−(n−1)) + (1− t)~qn(x0

−(n−1))




2

.

That is, the expression above is always non-positive, and is equal to 0 only
if

~pn(x0−n)− ~qn(x0−n)
t~pn(x0−n) + (1− t)~qn(x0−n)

=
~pn(x0

−(n−1))− ~qn(x0
−(n−1))

t~pn(x0
−(n−1)) + (1− t)~qn(x0

−(n−1))
,

which is equivalent to

(3.2) P (X0(~pn) = x0|X−1
−n(~pn) = x−1

−n) = P (X0(~qn) = x0|X−1
−n(~qn) = x−1

−n).

Since S is an irreducible finite type constraint andA(X0−n(~pn)) = A(X0−n(~qn)) =
Sn+1, the expression (3.2) can not be true for every x0−n unless ~pn = ~qn. So
we conclude that the second derivative of H(X0(~rn(t))|X−1

−n(~rn(t))) (with
respect to t) is strictly negative. Thus H(X0(~pn)|X−1

−n(~pn)), as a function of
~pn, has a strictly negative definite Hessian .

For m ≥ m̂, over all m-th order Markov chains X~pm with A(X~pm) = S,
H(X~pm) is maximized at some unique Markov chain X~pmax

m
(see [24, 29]).

Moreover X~pmax
m

doesn’t depend on m and is an m̂-th order Markov chain, so
we will drop the subscript m and use X~pmax instead to denote X~pmax

m
for any

m ≥ m̂. The same idea shows that over all stationary distributions X0−n(~pn)
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16 G. HAN, B. MARCUS

(n ≥ m̂) with A(X0−n(~pn)) = Sn+1, H(X0(~pn)|X−1
−n(~pn)) is maximized at

~pmax
n , which corresponds to the above unique X~pmax as well.
Note that C(S) = C(S, 0) is equal to the noiseless capacity of the con-

straint S. This quantity has been extensively studied, and several interpre-
tations and methods for its explicit derivation are known (see, e.g., [26] and
extensive bibliography therein). It is well known that C(S) = H(X~pmax)
(see [24, 29]).

Theorem 3.2. 1. If n ≥ 3m̂(S),

Hn(S, ε) = C(S) + f(X~pmax)ε log(1/ε) + g(X~pmax)ε + O(ε2 log2 ε).

2. If m ≥ m̂(S),

hm(S, ε) = C(S) + f(X~pmax)ε log(1/ε) + g(X~pmax)ε + O(ε2 log2 ε).

Here, as defined in Theorem 2.4, f(X~pmax) = f0
2m̂(X0

−2m̂(~pmax)) and
g(X~pmax) = g0

3m̂(X0
−3m̂(~pmax)).

Proof. We first prove the statement for Hn(S, ε). As mentioned before,
for ε sufficiently small (ε < ε0), Hn(S, ε) is achieved by X0−n with A(X0−n) =
Sn+1; and one may choose δ such that

Hn(S, ε) = sup
~p:X0

−n(~pn)∈Pn+1,δ,A(X0
−n(~pn))=Sn+1

H(Z0(~pn, ε)|Z−1
−n(~pn, ε)).

Below, we assume ε < ε0, X0−n(~pn) ∈ Pn+1,δ, A(X0−n(~pn)) = Sn+1; and for
notational convenience, we rewrite f0

n(X0−n(~pn)) as fn(~pn), g0
n(X0−n(~pn)) as

gn(~pn).
In Lemma 2.2, we have proved that

H(Z0(~pn, ε)|Z−1
−n(~pn, ε)) = H(X0(~pn)|X−1

−n(~pn))+fn(~pn)ε log(1/ε)+gn(~pn)ε+O(ε2 log ε).

Moreover, by Remark 2.3, for any δ > 0, O(ε2 log ε) is uniform on Pn+1,δ,
i.e., there is a constant C (depending on n) such that for all X0−n with
X0−n(~p) ∈ Pn+1,δ and A(X0−n) = Sn+1,

|H(Z0(~pn, ε)|Z−1
−n(~pn, ε))−H(X0(~pn)|X−1

−n(~pn))−fn(~pn)ε log(1/ε)−gn(~pn)ε| ≤ Cε2 log ε.

Let ~qn = ~pn − ~pmax
n . Since H(X0(~pn)|X−1

−n(~pn)) is maximized at ~pmax
n , we

can expand H(X0(~pn)|X−1
−n(~pn)) around ~pmax

n :

H(X0(~pn)|X−1
−n(~pn)) = H(X0(~pmax

n )|X−1
−n(~pmax

n ))+ ~qn
tK1~qn+O(|~qn|3) = H(X~pmax)+~qt

nK1~qn+O(|~qn|3),
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INPUT-CONSTRAINED CHANNEL CAPACITY 17

where K1 is a negative definite matrix by Lemma 3.1 (the second equality
follows from the fact that X~pmax is an m̂-th order Markov chain). So for |~qn|
sufficiently small, we have

H(X0(~pn)|X−1
−n(~pn)) < H(X~pmax) + (1/2)~qt

nK1~qn.

Now we expand fn(~pn) and gn(~pn) around ~pmax
n :

fn(~pn) = fn(~pmax
n ) + K2 · ~qn + O(|~qn|2),

gn(~pn) = gn(~pmax
n ) + K3 · ~qn + O(|~qn|2),

(here, K2 and K3 are vectors of first order partial derivatives). Then, for
|~qn| sufficiently small, we have

fn(~pn) ≤ fn(~pmax
n ) + 2

∑

j

|K2,j ||qn,j |,

gn(~p) ≤ gn(~pmax
n ) + 2

∑

j

|K3,j ||qn,j |,

where K2,j ,K3,j , qn,j are the j-th coordinates of K2,K3, ~qn, respectively.
With a change of coordinates, if necessary, we may assume K1 is a diagonal

matrix with strictly negative diagonal elements K1,j . In the following we
assume 0 < ε < ε0. And we may further assume that for some ` ≥ 1,
|qn,j | > 4|K2,j/K1,j |ε log(1/ε) + 4|K3,j/K1,j |ε for j ≤ ` − 1, and |qn,j | ≤
4|K2,j/K1,j |ε log(1/ε) + 4|K3,j/K1,j |ε for j ≥ `. Then for each j ≤ l− 1, we
have (1/2)K1,jq

2
n,j + 2|K2,j ||qn,j |ε log(1/ε) + 2|K3,j ||qn,j |ε < 0. Thus,

H(Z0(~pn, ε)|Z−1
−n(~pn, ε)) < H(X~pmax

n
) + fn(~pmax

n )ε log(1/ε) + gn(~pmax
n )ε

+
∑

j

((1/2)K1,jq
2
n,j + 2|K2,j ||qn,j |ε log(1/ε) + 2|K3,j ||qn,j |ε) + Cε2 log ε

< H(X~pmax)+fn(~pmax
n )ε log(1/ε)+gn(~pmax

n )ε+
∑

j≥l

(1/2)K1,j(4|K2,j/K1,j |ε log(1/ε)+4|K3,j/K1,j |ε)2

+
∑

j≥l

2|K2,j |(4|K2,j/K1,j |ε log(1/ε) + 4|K3,j/K1,j |ε)ε log(1/ε)

+
∑

j≥l

2|K3,j |(4|K2,j/K1,j |ε log(1/ε) + 4|K3,j/K1,j |ε)ε + Cε2 log ε.

Collecting terms, we eventually reach:

H(Z0(~pn, ε)|Z−1
−n(~pn, ε)) < H(X~pmax)+fn(~pmax

n )ε log(1/ε)+gn(~pmax
n )ε+O(ε2 log2 ε),
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18 G. HAN, B. MARCUS

and since Hn(S, ε) is the sup of the left hand side expression, together with
H(X~pmax) = C(S), we have

Hn(S, ε) ≤ C(S) + fn(~pmax
n )ε log(1/ε) + gn(~pmax

n )ε + O(ε2 log2 ε).

As discussed in Theorem 2.4, we have

(3.3) fn(~pmax
n ) = f(X~pmax), n ≥ 2m̂,

and

(3.4) gn(~pmax
n ) = g(X~pmax), n ≥ 3m̂.

So eventually we reach

Hn(S, ε) ≤ C(S) + f(X~pmax)ε log(1/ε) + g(X~pmax)ε + O(ε2 log2 ε).

The reverse inequality follows trivially from the definition of Hn(ε).
We now prove the statement for hm(S, ε). First, observe that

H3m(S, ε) ≥ hm(S, ε) ≥ hm̂(S, ε) ≥ H(Z~pmax,ε),

where Z~pmax,ε is the output process corresponding to input process X~pmax .
By part 1, H3m(S, ε) is of the form C(S)+f(X~pmax)ε log(1/ε)+g(X~pmax)ε+
O(ε2 log2 ε). By Theorem 2.4, H(Z~pmax,ε) is of the same form. Thus, hm(S, ε)
is also of the same form, as desired.

Corollary 3.3.

C(S, ε) = C(S) + (f(X~pmax)− 1)ε log(1/ε) + (g(X~pmax)− 1)ε + O(ε2 log2 ε).

In fact, for each m ≥ m̂(S), hm(S, ε)−H(ε) is of this form.

Proof. This follows from Theorem 3.2, inequality (3.1), and the fact
that

H(ε) = ε log 1/ε + (1− ε) log 1/(1− ε) = ε log 1/ε + ε + O(ε2).

Remark 3.4. Note that the error term here for noisy constrained capac-
ity is O(ε2 log2 ε), which is larger than the error term, O(ε2 log ε), for entropy
rate in Theorem 2.4. At least in some cases, this cannot be improved, as
we show at the end of the next section.
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4. Binary Symmetric Channel with (d, k)-RLL Constrained In-
put. We now apply the results of the preceding section to compute asypm-
totics for the the noisy constrained BSC channel with inputs restricted to
the (d, k)-RLL constraint S(d, k). Expressions (2.8) and (2.9) allow us to
explicitly compute f(X~pmax) and g(X~pmax). In this section, as an example,
we derive the explicit expression for f(X~pmax), omitting the computation
of g(X~pmax) due to tedious derivation. We remark that for a BSC(ε) for
some cases, the (d, k)-RLL constrained input, similar expressions have been
independently obtained in [23].

It is first shown in [23] that in the case k ≤ 2d, for any binary stationary
Markov chain X, of any order, with A(X) ⊆ S(d, k), f(X) = 1, and so,
in this case, C(S(d, k), ε) = C(S(d, k), 0) + O(ε), i.e., the noisy constrained
capacity differs from the noiseless capacity by O(ε), rather than O(ε log ε).
In the following, we take a look at this using different approach. For this,
first note that for any d, k, f(X) takes the form:
(4.1)
f(X) =

∑

l1+l2≤k−1,0≤l2≤d−1,l1≥d

pX(10l1+l2+11)+
∑

l1+l2=k,l1≥d

pX(10l110l2)+
∑

1≤l≤d

pX(10l).

Now, when k ≤ 2d,
∑

l1+l2=k,l1≥d

pX(10l110l2) =
∑

d≤l1≤k

pX(10l11) = p(1),

and
∑

l1+l2≤k−1,0≤l2≤d−1,l1≥d

pX(10l1+l2+11) = pX(10d+1)+pX(10d+2)+· · ·+pX(10k).

So

f(X) = pX(1) + pX(10) + · · ·+ pX(10d) + pX(10d+1) + · · ·+ pX(10k) = 1,

as desired.

Now we consider the general RLL constraint S(d, k). By Corollary 3.3,
we have
(4.2)
C(S(d, k), ε) = C(S(d, k))+(f(X~pmax)−1)ε log 1/ε+(g(X~pmax)−1)ε+O(ε2 log2 ε).

For any irreducible finite type constraint, the noiseless capacity and Markov
process of maximal entropy rate can be computed in various ways (which
all go back to Shannon; see [26] or [24] (p. 444)). Let A denote the ad-
jacency matrix of the standard graph presentation, with k + 1 states, of

imsart-aap ver. 2007/12/10 file: capacity_asymptotics_20.tex date: September 22, 2008



20 G. HAN, B. MARCUS

S(d, k). Let ρ denote the reciprocal of the largest eigenvalue. One can write
C(S(d, k)) = − log ρ0, and in this case ρ0 is the real root of

(4.3)
k∑

`=d

ρ`+1
0 = 1.

In the following we compute f(X~pmax) explicitly in terms of ρ0. Let ~w =
(w0, w1, · · · , wk) and ~v = (v0, v1, · · · , vk) denote the left and right eigenvec-
tors of A. Assume that ~w and ~v are scaled such that ~w · ~v = 1. Then one
checks that with X = X~pmax ,

pX(1) = w0v0 =
1

(k + 1)−∑k
j=d+1

∑j−d−1
l=0 1/ρl−j

0

,

pX(10l1+l2+11) = pX(1)ρl1+l2+2
0 , pX(10k1) = pX(1)ρk+1

0 ,

pX(10l110l2) = pX(10l110l21) + pX(10l110l2+11) + · · ·+ pX(10l110k1)

= pX(1)ρl1+l2+2
0 (1 + ρ0 + · · ·+ ρk−l2

0 ) = pX(1)ρl1+l2+2
0

1− ρk−l2+1
0

1− ρ0

and
pX(10l) = pX(10l1) + pX(10l+11) + · · ·+ pX(10k1)

= pX(1)ρl+1
0 (1 + ρ0 + · · ·+ ρk−l

0 ) = pX(1)ρl+1
0

1− ρk−l+1
0

1− ρ0
.

So we obtain an explicit expression:

f(X~pmax) =
∑

l1+l2≤k−1,0≤l2≤d−1,l1≥d

pX(10l1+l2+11)+(
∑

l1=k,l2=0

+
∑

l1+l2=k,k−1≥l1≥d

)pX(10l110l2)+
∑

1≤l≤d

pX(10l)

= pX(1)ρk+1
0 +

∑

l1+l2≤k−1,0≤l2≤d−1,l1≥d

pX(1)ρl1+l2+2
0

+
∑

l1+l2=k,k−1≥l1≥d

pX(1)ρl1+l2+2
0

1− ρk−l2+1
0

1− ρ0
+

∑

1≤l≤d

pX(1)ρl+1
0

1− ρk−l+1
0

1− ρ0
.

The coefficient g can also be computed explicitly but takes a more compli-
cated form.
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Example 4.1. Consider a first order stationary Markov chain X with
A(X) ⊆ S(1,∞), transmitted over BSC(ε) with the corresponding output
Z, a hidden Markov chain. In this case, X can be characterized by the
following probability vector:

~p1 = (pX(00), pX(01), pX(10)).

Note that m̂(S) = 1, and the only sequence w−2w−1v, which satisfies the
requirement that w−2w−1 is in S and w−2w−1v is not allowable in S, is 011.
It then follows that

(4.4) f(X~p1
) = p(011̄) + p(01̄1) + p(0̄11) = π01(2− π01)/(1 + π01),

where π01 denotes the transition probability from 0 to 1 in X. Straightfor-
ward, but tedious, computation also leads to

g(X~p1
) = (1+π01)−1(2π01−π2

01−2π3
01+3π4

01−π5
01+(−2π01+4π3

01−2π4
01) log(2)

+(−1+3π01−π2
01−2π3

01+5π4
01−3π5

01) log(π01)+(2−6π01+7π3
01−8π4

01+3π5
01) log(1−π01)

+(2π01 + π2
01 − 3π3

01 + π4
01) log(2− π01))

Thus,

H(Z~p1,ε) = H(X~p1
)+(π01(2−π01)/(1+π01))ε log(1/ε)+(g(X~p1

)−1)ε+O(ε2 log ε).

This asymptotic formula was originally proven in [28], with the less precise
result that replaces (g(X~p1

)− 1)ε + O(ε2 log2(1/ε)) by O(ε).
The maximum entropy Markov chain X~pmax on S(1,∞) is defined by the

transition probability matrix:
[

1/λ 1/λ2

1 0

]

and
C(S) = H(X~pmax) = log λ,

where λ is the golden mean. Thus, in this case π01 = 1/λ2 and so by Corol-
lary 3.3, we obtain:

C(S, ε) = log λ−((2λ+2)/(4λ+3))ε log(1/ε)+(g(X~p1
)|π01=1/λ2−1)ε+O(ε2 log2(1/ε)).
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We now show that the error term in the above formula cannot be im-
proved, in the sense that the error term is of size at least a positive constant
times ε2 log2(1/ε). First observe that if we parameterize ~p1 = ~p1(ε) in any
way, we obtain

(4.5) C(S, ε) ≥ H(Z~p1(ε),ε)−H(ε).

Since ~p1 is uniquely determined by the transition probability π01, we shall
re-write ~p1(ε) as π01(ε). We shall also re-write the value of π01 = 1/λ2 at
the maximum entropy Markov chain as pmax.

Choose the parametrization π01(ε) = pmax + αε log(1/ε) where α is se-
lected as follows. Let K1 denote the value of the second derivative of H(Xπ01)
at π01 = pmax (the first derivative at π01 = pmax is 0). Let K2 denote the
value of the first derivative of f(Xπ01) at π01 = pmax. These values can be
computed explicitly: K1 from the formula for entropy rate of a first order
Markov chain (1.3) and K2 from (4.4) above. A computation shows that
K1 ≈ −3.065 and K2 ≈ .571 (all that really matters is that neither constant
is 0). Let α be any number such that 0 < α < K2/|K1|.

From Theorem 2.4 and Remark 2.6, we have
(4.6)
H(Zπ01(ε),ε) ≥ H(Xπ01(ε)) + f(Xπ01(ε))ε log(1/ε) + g(Xπ01(ε))ε + C1ε

2 log ε,

for some constant C1 (independent of ε sufficiently small). We also have

(4.7) H(Xπ01(ε)) ≥ H(Xpmax) + K1(αε log(1/ε))2 + C2(αε log(1/ε))3

for some constant C2. And

(4.8) f(Xπ01(ε)) ≥ f(Xpmax) + K2(αε log(1/ε)) + C3(αε log(1/ε))2,

(4.9) g(Xπ01(ε)) ≥ g(Xpmax) + C4αε log(1/ε))

for constants C3, C4. And recall that

(4.10) H(ε) = ε log 1/ε + (1− ε) log 1/(1− ε) = ε log 1/ε + ε + C5ε
2.

for some constant C5.
Recalling that H(Xpmax) = C(S) and combining (4.5 – 4.10), we see that

C(S, ε) ≥ C(S)+(f(Xpmax)−1)ε log(1/ε)+(g(Xpmax)−1)ε+K1(αε log(1/ε))2+K2(αε2 log2(1/ε))

plus “error terms” which add up to

C1ε
2 log ε + C2(αε log(1/ε))3 + C3α

2(ε log(1/ε))3 + C4αε2 log(1/ε)) + C5ε
2,
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which is lower bounded by a constant M times ε2 log(1/ε)). Thus, we see
that the difference between C(S, ε) and C(S) + (f(Xpmax)− 1)ε log(1/ε) +
(g(Xpmax)− 1)ε is lower bounded by

(4.11) α(K1α + K2)ε2 log2(1/ε) + Mε2 log(1/ε))

Since α > 0 and K1α + K2 > 0, for sufficiently small ε, (4.11) is lower
bounded by a positive constant times ε2 log2(1/ε), as desired.

Acknowledgements: We are grateful to Wojciech Szpankowski, who
raised the problem addressed in this paper and suggested a version of the
result in Corollary 3.3. We also thank the anonymous reviewer for helpful
comments.

Appendix. We first prove (2.11)-(2.13).
• (2.11) follows trivially from the fact that X is an m-th order Markov

chain.
• Now consider (2.12). For w ∈ A(X) and wv /∈ A(X),

hk
n+1(wv) =

n−k∑

j=1

pX(w−j−1
−n w̄−jw

−1
−j+1v)+pX(w−1

−nv̄) =
m∑

j=1

pX(w−j−1
−n w̄−jw

−1
−j+1v)+pX(w−1

−nv̄).

So
hk

n+1(wv)
pX(w)

=
∑m

j=1 pX(w−j−1
−n w̄−jw

−1
−j+1v) + pX(w−1

−nv̄)

pX(w−1
−n)

=
(
∑m

j=1 pX(w−j−1
−m w̄−jw

−1
−j+1v|w−m−1

−2m ) + pX(w−1
−mv̄|w−m−1

−2m ))pX(w−m−1
−n )

pX(w−1
−m|w−m−1

−2m )pX(w−m−1
−n )

=
∑m

j=1 pX(w−j−1
−2m w̄−jw

−1
−j+1v) + pX(w−1

−2mv̄)

pX(w−1
−2m)

.

• For (2.13), there are two cases. If pX(w−m−1
−n ) = 0,

hk
n+1(wv)
hk

n(w)
=

∑n−k
j=1 pX(w−j−1

−n w̄−jw
−1
−j+1v)

∑n−k
j=1 pX(w−j−1

−n w̄−jw
−1
−j+1)

=
∑n−k

j=m+1 pX(w−j−1
−n w̄−jw

−1
−j+1v)

∑n−k
j=m+1 pX(w−j−1

−n w̄−jw
−1
−j+1)

= pX(v|w−1
−m).

If pX(w−m−1
−n ) > 0,

hk
n+1(wv)
hk

n(w)
=

∑n−k
j=1 pX(w−j−1

−n w̄−jw
−1
−j+1v)

∑n−k
j=1 pX(w−j−1

−n w̄−jw
−1
−j+1)

=
∑2m

j=1 pX(w−j−1
−n w̄−jw

−1
−j+1v)

∑2m
j=1 pX(w−j−1

−n w̄−jw
−1
−j+1)

=
∑2m

j=1 pX(w−j−1
−3m w̄−jw

−1
−j+1v)

∑2m
j=1 pX(w−j−1

−3m w̄−jw
−1
−j+1)

.
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Using (2.11)-(2.13), we now proceed to prove (2.14)-(2.16).
• For (2.14), we have

∑

wv∈A(X)

hk
n+1(wv)pX(w)− hk

n(w)pX(wv)
pX(w)

=
∑

wv∈A(X)

hk
n+1(wv)−

∑

wv∈A(X)

hk
n(w)pX(v|w−1

−m)

=
∑

wv∈A(X)

(
n−k∑

j=1

pX(w−j−1
−n w̄−jw

−1
−j+1v)+pX(w−1

−nv̄))−(n+1−k)
∑

wv∈A(X)

pX(wv)

−
∑

wv∈A(X)

n−k∑

j=1

pX(w−j−1
−n w̄−jw

−1
−j+1)pX(v|w−1

−m) + (n− k)
∑

wv∈A(X)

pX(wv)

=
∑

wv∈A(X)

n−k∑

j=1

pX(w−j−1
−n w̄−jw

−1
−j+1v)−

∑

w∈A(X)

n−k∑

j=1

pX(w−j−1
−n w̄−jw

−1
−j+1)+

∑

wv∈A(X)

pX(w−1
−nv̄)−1

=
∑

wv∈A(X)

n−k∑

j=1

pX(w−j−1
−n w̄−jw

−1
−j+1v)−

∑

w∈A(X)

(
n−k∑

j=1

pX(w−j−1
−n w̄−jw

−1
−j+10)

+
n−k∑

j=1

pX(w−j−1
−n w̄−jw

−1
−j+11)) +

∑

w−1
−mv∈A(X)

pX(w−1
−mv̄)− 1

=
∑

wv∈A(X)

n−k∑

j=1

pX(w−j−1
−n w̄−jw

−1
−j+1v)−

∑

wv∈A(X)

n−k∑

j=1

pX(w−j−1
−n w̄−jw

−1
−j+1v)

−
∑

w∈A(X),wv/∈A(X)

n−k∑

j=1

pX(w−j−1
−n w̄−jw

−1
−j+1v) +

∑

w−1
−mv∈A(X)

pX(w−1
−mv̄)− 1

= −
∑

w−1
−2m∈A(X),w−1

−2mv/∈A(X)

m∑

j=1

pX(w−j−1
−2m w̄−jw

−1
−j+1v)+

∑

w−1
−mv∈A(X)

pX(w−1
−mv̄)−1.

• For (2.15), we have

∑

w∈A(X),wv/∈A(X)

hk
n+1(wv) log

hk
n+1(wv)
pX(w)

=
∑

w∈A(X),wv/∈A(X)

hk
n+1(wv) log

h0
2m+1(w

−1
−2mv)

pX(w−1
−2m)

=
∑

w∈A(X),wv/∈A(X)

n−k∑

j=1

pX(w−j−1
−n w̄−jw

−1
−j+1v) log

h0
2m+1(w

−1
−2mv)

pX(w−1
−2m)
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=
∑

w−1
−2m∈A(X),w−1

−2mv/∈A(X)

m∑

j=1

pX(w−j−1
−2m w̄−jw

−1
−j+1v) log

h0
2m+1(w

−1
−2mv)

pX(w−1
−2m)

.

• For (2.16), we have

∑

wv∈A(X)

hk
n+1(wv) log pX(v|w)+

∑

pXZ(w)=Θ(ε),pXZ(wv)=Θ(ε)

hk
n+1(wv) log

h0
n+1(wv)
h0

n(w)

=
∑

wv∈A(X)

(
n−k∑

j=1

pX(w−j−1
−n w̄−jw

−1
−j+1v)+pX(w−1

−nv̄)−(n+1−k)pX(wv)) log pX(v|w−1
−m)

+
∑

pXZ(w)=Θ(ε),pXZ(wv)=Θ(ε),pX(w−m−1
−n )=0

hk
n+1(wv) log

hk
n+1(wv)
hk

n(w)

+
∑

pXZ(w)=Θ(ε),pXZ(wv)=Θ(ε),pX(w−m−1
−n )>0

hk
n+1(wv) log

hk
n+1(wv)
hk

n(w)

= (
∑

wv∈A(X)

+
∑

pXZ(w)=Θ(ε),pXZ(wv)=Θ(ε),pX(w−m−1
−n )=0

)(
n−k∑

j=1

pX(w−j−1
−n w̄−jw

−1
−j+1v)+pX(w−1

−nv̄)) log pX(v|w−1
−m)

−(n + 1− k)
∑

w−1
−mv∈A(X)

pX(w−1
−mv) log pX(v|w−1

−m)

+
∑

pXZ(w−1
−3m)=Θ(ε),pXZ(w−1

−3mv)=Θ(ε),pX(w−m−1
−3m )>0

h0
3m+1(wv) log

h0
3m+1(wv)
h0

3m(w)

= (n− k −m)
∑

w−1
−mv∈A(X)

pX(w−1
−mv) log pX(v|w−1

−m)

+
∑

wv∈A(X)

(
m∑

j=1

p(w−j−1
−n w̄−jw

−1
−j+1v) + pX(w−1

−nv̄)) log pX(v|w−1
−m)

−(n + 1− k)
∑

w−1
−mv∈A(X)

pX(w−1
−mv) log pX(v|w−1

−m)

+
∑

pXZ(w−1
−3m)=Θ(ε),pXZ(w−1

−3mv)=Θ(ε),pX(w−m−1
−3m )>0

h0
3m+1(wv) log

h0
3m+1(wv)
h0

3m(w)

= (−m− 1)
∑

w−1
−mv∈A(X)

pX(w−1
−mv) log pX(v|w−1

−m)
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+
∑

w−1
−2mv∈A(X)

(
m∑

j=1

pX(w−j−1
−2m w̄−jw

−1
−j+1v) + pX(w−1

−2mv̄)) log pX(v|w−1
−m)

+
∑

pXZ(w−1
−3m)=Θ(ε),pXZ(w−1

−3mv)=Θ(ε),pX(w−m−1
−3m )>0

h0
3m+1(wv) log

h0
3m+1(wv)
h0

3m(w)
.
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