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5 REPRESENTATION AND POLY-TIME APPROXIMATION FOR PRESSURE

OF Z2 LATTICE MODELS IN THE NON-UNIQUENESS REGION

STEFAN ADAMS, RAIMUNDO BRICEÑO, BRIAN MARCUS, AND RONNIE PAVLOV

ABSTRACT. We develop a new pressure representation theorem for nearest-neighbour
Gibbs interactions and apply this to obtain the existence ofefficient algorithms for ap-
proximating the pressure in the 2-dimensional ferromagnetic Potts, multi-type Widom-
Rowlinson and hard-core models. For Potts, our results apply to every inverse temperature
but the critical. For Widom-Rowlinson and hard-core, they apply to certain subsets of both
the subcritical and supercritical regions. The main novelty of our work is in the latter.
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1. INTRODUCTION

Thepressureof an interaction is a crucial quantity studied in statistical mechanics and
dynamical systems. In the former, it coincides with thespecific Gibbs free energyof a
statistical mechanical system (e.g. [16, Part III] and [35, Chapter 3-4]). In the latter, it
is a generalization oftopological entropyand has many applications in a wide variety of
classes of dynamical systems, ranging from symbolic to smooth systems (e.g. [8, 23, 40]).

In this paper, we continue the development in [15, 29, 9] of representing pressure with
a simplified expression and using this to prove the existenceof efficient algorithms for
approximating pressure.

We considernearest-neighbour (n.n.) real-valued interactionsΦ onZd, i.e. interactions
defined only on configurations on single sites and pairs of adjacent sites. Since pressure
is normally defined for stationary interactions, we assume that our interactions are sta-
tionary here. Also, we allow the possibility of forbidden configurationsE on pairs of
adjacent sites, and so the space of feasible configurations on Zd may be constrained. In
the dynamical systems literature, the space of such feasible configurations is known as a
nearest-neighbour shift of finite type (n.n. SFT), that here we denoteΩ(E ) (see Section
3.1).

A specificationπ for a n.n. interactionΦ is a uniquely determined collection of Borel
probability measuresπξ

Λ given in an explicit form in terms ofΦ, for configurations on finite
subsetsΛ ofZd and feasible configurationsξ on the boundary ofΛ. A Gibbs measureµ for
a n.n. interactionΦ is a Borel probability measure onΩ(E ), whose conditional probability
distributions on any suchΛ agree with the specification forΦ for all boundary conditions
ξ of positiveµ-measure.

Gibbs measures exist for all n.n. interactions (and, indeed, for much more general
interactions), but a given n.n. interaction may have more than one Gibbs measure. In many
cases, including the ones of most interest to us here, there is a n.n. interactionΦ which
gives rise to a parameterized family of interactions{ζΦ}ζ>0, and uniqueness of Gibbs
measures holds for sufficiently smallζ (the so-calledsubcritical region) and uniqueness
fails for sufficiently largeζ (the so-calledsupercritical region).

Given a n.n. interactionΦ on a n.n. SFTΩ(E ), we can associate anenergyto any
feasible configuration on a finite subsetΛ of Zd. The partition functionZΦ

Λ of Φ on Λ
corresponds to the sum over all feasible configurations onΛ of a function (namely,e−x) of
their corresponding energy, and the pressure P(Φ) is defined as the asymptotic exponential
growth rate of the partition function ZΦBn

on an increasing sequence of boxes Bn which
exhaustsZd, asn→ ∞. Note that P(Φ) implicitly depends onΩ(E ).

Whend = 1, there is a closed-form expression for P(Φ) in terms of the largest eigen-
value of an adjacency matrix formed fromΦ (see [28, p. 99]). In contrast, whend ≥ 2,
there are very few n.n. interactionsΦ for which P(Φ) is known exactly.

There is much work in the literature on numerical approximations of P(Φ), both for
somewhat generalΦ and somewhat specificΦ (see [4, 14]). In our paper, we take a theo-
retical computer science point of view (see [26]): an algorithm for computing a real number



REPRESENTATION AND POLY-TIME APPROXIMATION FOR PRESSURE OF Z2 LATTICE MODELS 3

r is said to bepoly-timeif for every N ∈ N, the algorithm outputs an approximationrN to
r, which is guaranteed to be accurate within1

N and takes time at most polynomial inN to
compute. In that case, we say thatr is poly-time computable.

One of our goals is to prove the existence of poly-time algorithms for P(Φ) under certain
assumptions onΦ andΩ(E ). While one might expect such algorithms to exist for mostΦ
andΩ(E ) of practical interest, there existΩ(E ) for which even P(0) (which corresponds
to the topological entropy ofΩ(E ), when the n.n. interaction isΦ ≡ 0) is not poly-time
computable and some for which P(0) is not computable at any rate (see [22]). However, the
closed-form expression whend = 1 mentioned above, always gives a poly-time algorithm
in that case.

We follow an approach initiated by Gamarnik and Katz [15], and further developed by
two of the authors [29] of the present paper. The basic idea is motivated by thevariational
principle [23, Section 4.4], which asserts that P(Φ) is the supremum over all stationary
Borel probability measuresµ on Ω(E ) of the sum of two quantities: one quantity is the
measure-theoretic entropy h(µ) of µ and the other quantity is the integral, with respect to
µ , of a simple explicit functionAΦ : Ω(E )→ R, determined byΦ. The entropyh(µ) can
be expressed as the integral, also with respect toµ , of a function known as theinformation
function Iµ , i.e. h(µ) =

∫

Iµdµ . The supremum is always achieved by a Gibbs measureµ
for Φ, and so for suchµ , we can write P(Φ) =

∫

(Iµ +AΦ)dµ .
The idea of [15] was to represent P(Φ) as the integral of the same integrand, but with

respect to a simpler measureν, i.e. P(Φ) =
∫

(Iµ +AΦ)dν. This is what we call apressure
representationand requires some assumptions onµ , ν andΩ(E ).

A pressure representation becomes especially useful for approximating P(Φ) in the case
thatν is a periodic point measure, i.e. a measure which assigns equal weight to each dis-
tinct translation of a given periodic configuration (this was the only case considered in
[15]). Then

∫

(Iµ +AΦ)dν becomes a finite sum. The terms in this sum corresponding
to AΦ are easy to compute. In this way, the problem of approximating P(Φ) (and there-
fore proving that P(Φ) is poly-time computable) reduces to approximatingIµ on a single
periodic configuration and its translates.

The pressure representation theorems in [15] and [29], as well as in our paper (see
Theorem6.3), work in all dimensionsd. Among other conditions, these results require
conditions onΩ(E ) and a convergence condition for certain sequences of finite volume
half-plane measures (different convergence conditions inthe different results). In the case
d = 2, if the convergence holds at exponential rate, then one obtains a poly-time algorithm
for approximating P(Φ) (see Theorem9.1). For d > 2, one can deduce an algorithm for
approximating P(Φ) with sub-exponential but not polynomial rate.

In [15] and [29], the convergence condition is given in terms of the information function
Iµ of a stationary Gibbs measureµ for the interaction. In our paper, the condition is given
in terms of a closely related function̂Iπ , which depends only on the specificationπ of
the interaction (see Section6.2), in contrast with [15] and [29]. This is natural, since the
pressure depends only on the interaction and not on any particular Gibbs measureµ .

In [15], the convergence condition isstrong spatial mixingof a Gibbs measureµ for the
n.n. interactionΦ. This condition is known to imply that there is a unique Gibbsmeasure
for Φ and thus can be applied only in the uniqueness (subcritical)region of a given model.
The convergence conditions in [29] are weaker but also apply primarily to this region.
However, in our paper, since our convergence condition depends only on the interaction,
one might expect that the pressure representation and approximation results can apply in
the non-uniqueness region as well. Indeed, they do. As illustrations, we apply these results
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to explicit subcritical and supercritical sub-regions of the 2-dimensional(ferromagnetic)
Potts, (multi-type) Widom-Rowlinsonandhard-coremodels. In particular, for the pressure
approximation results for these models, we establish the required exponential convergence
conditions. However, we believe that our results are applicable to a much broader class
of models, in particular satisfying weaker conditions onΩ(E ) (e.g. thetopological strong
spatial mixing property, introduced in [9]). We remark that the strong spatial mixing con-
dition of [15] is a much stronger version of our condition, and so in this sense our results
generalize some results of that paper (in particular, for the hard-core model onZ2).

In the case of the 2-dimensional ferromagnetic Potts model,we obtain a pressure repre-
sentation and efficient pressure approximation for allβ 6= βc(q), whereq is the number of
colours,β is the inverse temperature andβc(q) = log(1+

√
q) is thecritical valuewhich

separates the uniqueness and non-uniqueness regions. Our proof in the non-uniqueness
region generalizes a result from [11] for q= 2 (i.e. theIsing model) and we closely follow
their proof, which relies heavily on a coupling with thebond random-cluster modeland
planar duality. For the uniqueness region, our result follows from [3]. (See Corollary2,
part 1.)

For the Widom-Rowlinson and hard-core models, our results are not as complete as in
the Potts case, since the subcritical and supercritical regions for these two models haven’t
been completely determined, in contrast with the Potts model. We also expect our re-
sults can be improved, because they only apply to proper subsets of the currently known
uniqueness/non-uniqueness regions.

For the Widom-Rowlinson model, in the supercritical region, we use a variation of
the disagreement percolation technique introduced in [7], combined with the connection
between the Widom-Rowlinson model and thesite random-cluster model. In the subcritical
region, we apply directly the results in [7]. (See Corollary2, part 2.)

For the hard-core model, in the supercritical region, we combine the coupling in [7] and
a Peierls argument used by Dobrushin (see [13]). In the subcritical region, we use a recent
result on strong spatial mixing for the hard-core model inZ2. (See Corollary2, part 3.)

For the Potts model, we also extend the pressure representation, by a continuity ar-
gument, to give an expression for the pressure at criticality. It is of interest that there is
an exact, explicit, but non-rigorous, formula for the pressure at criticality due to Baxter
[5]. So, our rigorously obtained expression should agree withthat formula, though we do
not know how to prove this statement. It seems that Baxter’s explicit expression gives a
poly-time approximation algorithm, but we cannot justify that our expression is poly-time
computable.

We remark that the finite volume half-plane measures mentioned above typically are
constant on their bottom boundaries and thus are related towetting models(see [34, 38]).
Our proofs are related with such models where the interaction with the hard-wall is the
same as the bulk interaction.

The remainder of the paper is organized as follows. Since we have drawn heavily on
many concepts from many different sources, for the convenience of the reader we have
collected a good deal of relevant background material earlyin the paper. This can be found
in Section2, Section3, Section4, Section5 and Section7, with the notable exception of
Lemma5.5 in Section5, there is very little new material in those sections. In Section 2
and Section3, we review the fundamentals on configuration spaces onZd, Gibbs measures
and pressure. In Section4, we review the specific lattice spin systems models to which we
apply our main results, and in Section5 we review the bond and site random-cluster mod-
els which are intimately connected with two of our models. Our pressure representation
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theorem is contained in Section6. We review spatial mixing and stochastic dominance in
Section7 and use these concepts in Section8 to help establish exponential convergence
results for our models. Finally, in Section9, we combine our pressure representation theo-
rem and our exponential convergence results in Section8 to obtain pressure representations
and poly-time algorithms for our models.

2. DEFINITIONS AND PRELIMINARIES

2.1. Hypercubic lattice Zd. Given d ∈ N, we consider thed-dimensional hypercubic
lattice Zd, which can be regarded as a countable graph with regular degree 2d, where
V(Zd) = Zd is the set of sites andE(Zd) =

{

{x,y} : x,y∈ Zd,‖x− y‖= 1
}

is the set of
bonds, with‖x‖ = ∑d

i=1 |xi | the 1-norm. We will mainly focus our attention on the case
d = 2.

Two sitesx,y∈ Zd areadjacentif {x,y} ∈ E(Zd) and we will denote this byx∼ y. All
subsets of sites inZd will be denoted with uppercase Greek letters (e.g.Λ, ∆, Θ, etc.).
Whenever a finite set∆ is contained in an infinite setΛ, we denote this by∆ ⋐ Λ. The
(outer) boundaryof Λ ⊆Zd is the set∂Λ of x∈ Zd \Λ which are adjacent to some element
of Λ, i.e. ∂Λ := {x∈ Λc : dist({x},Λ) = 1}, where dist(Λ1,Λ2) = minx∈Λ1,y∈Λ2 ‖x− y‖,
for Λ1,Λ2 ⊆ Zd. We also write theclosure ofΛ as Λ := Λ∪ ∂Λ. On the other hand,
the inner boundaryof Λ ⊆ Zd is the set∂ Λ := ∂Λc of x ∈ Λ which are adjacent to some
element ofΛc. When denoting subsets ofZd that are singletons, brackets will be usually
omitted, e.g. dist(x,Λ) will be regarded to be the same as dist({x},Λ).

A pathT ⋐ Zd will be any sequence of distinct sitesx1, . . . ,xn such thatxi ∼ xi+1, for
all 1≤ i < n. Similarly, acircuit C⋐ Zd will be any pathx1, . . . ,xn with n≥ 4 such that,
in addition,xn ∼ x1. We will say that the circuit issimple if xi ∼ x j iff |i − j| = 1 or
{i, j} = {1,n} (in particular,x1, . . . ,xn are all distinct). For∆,Θ ⊆ Zd, apath from∆ to Θ
is a path T whose first site is in∆ and whose last site is inΘ. A setΛ ⊆ Zd is said to be
connectedif for everyx,y∈ Λ, there is a path T fromx to y contained inΛ (i.e. T⊆ Λ). A
setΛ ⋐ Z2 is said to besimply lattice-connectedif Λ andΛc are both connected.

In Zd we can also define an alternative notion of adjacency and therefore, an alternative
notion of boundary, inner boundary, closure, path, connectedness, etc., by replacing the
1-norm‖ · ‖ with the∞-norm‖ · ‖∞, defined as‖x‖∞ = maxi=1,...,d |xi |, for x∈ Zd. When
referring to these notions with respect to the∞-norm, we will always add a⋆ superscript
and talk about⋆-adjacencyx

⋆∼ y , ⋆-boundary∂ ⋆Λ, inner⋆-boundary∂ ⋆Λ, ⋆-closureΛ⋆
, ⋆-

path,⋆-connectedness, etc. Notice that two sitesx andy are⋆-adjacent if they are adjacent
in a version of thed-dimensional hypercubic latticeZd including in addition diagonal
bonds. We will denote this version of the lattice byZd,⋆.

A natural order onZd is the so-calledlexicographic order, wherey≺ x (or x≻ y) if and
only if y 6= x and, for the smallesti for which yi 6= xi , yi is strictly smaller thanxi . We also
denotey 4 x (or x< y) if y ≺ x or y= x. Considering this order, we define the family of
setsSy,z ⋐ Zd as:

(2.1) Sy,z := {x< 000 :−y≤ x≤ z} ,

wherey,z∈ Zd are such thaty,z≥ 000 (here 000 denotes the vector(0, . . . ,0) ∈ Zd and≥,
the coordinate-wise comparison of vectors). In addition, given n ∈ N, we define then-
block as the set Bn := [−n,n]d ∩Zd and we abbreviate bySn the setS111n,111n = Bn \P,
whereP :=

{

x∈ Zd : x≺ 000
}

denotes the(lexicographic) pastof Zd and 111, the vector
(1, . . . ,1) ∈ Zd.
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2.2. Configuration spaces.Consider a finite set ofsymbolsA called thealphabet. A
configurationis a mapθ : Λ → A , for some /06= Λ ⊆ Zd (i.e. θ ∈ A Λ), which will be
usually denoted with lowercase Greek lettersθ , τ, υ . The setΛ is called theshapeof θ ,
and a configuration will be said to be finite if its shape is finite. For any configurationθ
with shapeΛ and∆ ⊆ Λ, θ (∆) denotes the restriction ofθ to ∆, i.e. thesub-configuration
of θ occupying∆. We will usually save the Greek lettersξ andη to denote configurations
whose shape is the boundary∂Λ of some given setΛ. For Λ1 andΛ2 disjoint sets,θ ∈
A Λ1 andτ ∈ A Λ2, θτ will be the configuration onΛ1⊔Λ2 defined by(θτ)(Λ1) = θ and
(θτ)(Λ2) = τ. For a ∈ A andΛ ⊆ Zd, aΛ denotes the configuration of alla’s on Λ. A

point is a configuration with shapeZd, i.e. an element ofA Zd
, usually denoted with the

Greek letterω .
Given setsΛ1,Λ2 ⊆ Zd, ∆ ⊆ Λ1∩Λ2 and a pair of configurationsθ ∈ A Λ1, τ ∈ A Λ2,

we define theset of∆-disagreementas:

(2.2) Σ∆(θ ,τ) := {x∈ ∆ : θ (x) 6= τ(x)} ,

i.e. the set of sites in∆ whereθ andη differ.
The mapσ : Zd ×A Zd → A Zd

will be the shift actionon A Zd
defined by(x,ω) 7→

σx(ω), wherex ∈ Zd andω ∈ A Zd
, with (σx(ω)) (y) = ω(x+ y), for y ∈ Zd. We also

extend the shift actionσx to configurations with arbitrary shapes, i.e. givenθ ∈ A Λ, we
defineσx(θ ) ∈ A Λ−x as the configuration such that(σx(θ )) (y) = θ (x+ y), for y∈ Λ− x.

Given a pointω ∈ A Zd
, we define itsorbit as the set O(ω) := {σx(ω)}x∈Zd . We will

say that a pointω is periodic if |O(ω)|< ∞.

2.3. Borel probability measures. Given a configurationθ ∈ A Λ, we define thecylinder
set[θ ]Λ := {ω ∈ A Zd

: ω(Λ) = θ} (or just[θ ], if Λ is understood). We denote byFΛ the
σ -algebra generated by all the cylinder sets with shapeΛ and setF := FZd .

A Borel probability measureµ onF is a measure determined by its values on cylinder
sets of finite configurations such thatµ(A Zd

) = 1. Given a cylinder set[θ ], we will just
write µ(θ ) for the value ofµ([θ ]). Thesupportof such a measureµ is defined as:

(2.3) supp(µ) :=
{

ω ∈ A
Zd

: µ(ω(Λ))> 0, for all Λ ⋐ Zd
}

.

Given∆ ⊆ Λ ⊆ Zd and a measureµ on FΛ, we denote byµ |∆ the restriction (or pro-
jection or marginalization) ofµ to F∆.

A measureµ is shift-invariant(or stationary) if µ(σx(A)) = µ(A), for all measurable

setsA∈F andx∈Zd. Given any pointω ∈A Zd
andA∈F , we define thedelta-measure

supported onω as the measure:

(2.4) δω(A) =

{

1 if ω ∈ A,

0 otherwise.

If ω is a periodic point with orbit O(ω) = {ω1, . . . ,ωk}, we defineνω to be the shift-
invariant Borel probability measure supported on O(ω) given by:

(2.5) νω :=
1
k

(

δω1 + · · ·+ δωk

)

.

2.4. Markov random fields.
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Definition 2.1. GivenΛ ⊆ Zd, a probability measureρ onA Λ is a Markov random field
(Λ-MRF) if, for any subsetΘ ⋐ Λ, anyθ ∈ A Θ, any∆ ⋐ Λ s.t. ∂Θ∩Λ ⊆ ∆ ⊆ Λ\Θ, and
anyτ ∈ A ∆ with ρ(τ)> 0, it is the case that:

(2.6) ρ (θ |τ) = ρ (θ |τ(∂Θ∩Λ)) .

In other words, an MRF is a measure where every finite configuration conditioned to its
boundary is independent of the configuration on the complement.

3. SPECIFICATIONS, GIBBS MEASURES AND PRESSURE

3.1. Gibbs specifications.Fix a dimensiond ∈ N and letE = (E1, . . . ,Ed) be aset of
constraintssuch thatEi ⊆ A 2, for i = 1, . . . ,d. Given any setΛ ⊆ Zd and a configuration
θ ∈A Λ, we say thatθ is feasiblefor E if for everyx∈ Λ such that{x,x+ei}⊆Λ, we have
that(θ (x),θ (x+ei)) /∈ Ei , wheree1, . . . ,ed is the canonical basis. Thenearest-neighbour
shift of finite type (n.n. SFT)Ω(E ) induced byE , is the set of points:

(3.1) Ω(E ) :=
{

ω ∈ A
Zd

: ω is feasible
}

.

We will always assume thatΩ(E ) 6= /0.
In the symbolic dynamics literature, a feasible configuration on a setΛ is calledlocally

admissible, and is calledglobally admissibleif it also extends to a point ofΩ(E ).
Notice thatΩ(E ) is always a shift-invariant set, i.e.σx(Ω(E )) = Ω(E ), for all x∈ Zd.

Given a n.n. SFTΩ(E ), M1(Ω(E )) denotes the set of Borel probability measures whose
support supp(µ) is contained inΩ(E ) andM1,σ (Ω(E )) ⊆ M1(Ω(E )), the correspond-
ing subset of shift-invariant Borel probability measures.Given a configurationθ ∈ A Λ,

[θ ]Ω(E )
Λ will denote the set[θ ]Λ ∩Ω(E ) (or just [θ ]Ω(E ) if Λ is understood).

Definition 3.1. A nearest-neighbour (n.n.) interactionfor a set of constraintsE is a real-
valued shift-invariant functionΦ from the set of configurations on sites x and feasible
configurations on bonds{x,x+ei} toR, for x∈ Zd and i= 1, . . . ,d. Here, shift-invariance
means thatΦ(σx(θ )) = Φ(θ ) for configurationsθ on sites and bonds, and for all x∈ Zd.

Often in the literature a n.n. interaction is not required tobe shift-invariant. Our as-
sumption of shift-invariance on a n.n. interaction fits naturally with the shift-invariance of
a n.n. SFT. Clearly, a n.n. interaction is defined by only finitely many numbers, namely
the values of the interaction on configurations on{000} and bonds{000,ei}, for i = 1, . . . ,d.

We can view an interactionΦ as implicitly determining the constraintsE , and hence
Ω(E ), by the absence ofE from the domain ofΦ. Some authors incorporate the constraints
by allowing the interaction to take the value+∞.

Definition 3.2. Given a n.n. interactionΦ for a set of constraintsE and a setΛ ⋐ Zd, we
define theenergy function EΦΛ : A Λ →R as:

(3.2) EΦ
Λ(θ ) := ∑

x∈Λ
Φ(θ (x))+

d

∑
i=1

∑
{x,x+ei}⊆Λ

Φ(θ ({x,x+ei})),

whereθ is any feasible configuration inA Λ. We define thepartition functionof Λ as:

(3.3) ZΦ
Λ := ∑

θ feasible

exp
(

−EΦ
Λ(θ )

)

,
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and the followingboundary-freeprobability measure onA Λ:

(3.4) π ( f )
Λ (θ ) :=

{

1
ZΦ

Λ
exp

(

−EΦ
Λ(θ )

)

if θ is feasible,

0 otherwise.

Analogously, for an arbitraryω ∈ Ω(E ), we can takeξ = ω(∂Λ) and consider:

(3.5) ZΦ,ξ
Λ := ∑

θ : θξ feasible

exp
(

−EΦ
Λ(θξ )

)

,

and then define theξ -boundaryprobability measure onA Λ:

(3.6) πξ
Λ(θ ) :=







1

ZΦ,ξ
Λ

exp
(

−EΦ
Λ(θξ )

)

if θξ is feasible,

0 otherwise.

The collectionπ = {πξ
Λ}Λ,ξ is called aZd Gibbs specificationfor the n.n. interaction

Φ. For ∆ ⊆ Λ andτ ∈ A ∆, we marginalize as follows:

(3.7) πξ
Λ(τ) = ∑

θ∈A Λ:θ(∆)=τ
πξ

Λ(θ ).

Notice that eachπξ
Λ is an MRF onA Λ. In addition, a Gibbs specificationπ as defined

above is always stationary, in the sense thatπσx(ξ )
Λ−x (σx(A)) = πξ

Λ(A), for everyA⊆A Λ. We
will usually think of the set of restrictionsE implicit when considering a n.n. interaction
Φ. Given a pointω ∈ Ω(E ), we will abbreviate:

(3.8) πω
Λ (·) := πω(∂Λ)

Λ (·).

3.2. Gibbs measures.

Definition 3.3. A nearest-neighbour (n.n.) Gibbs measurefor a n.n. interactionΦ is a
measureµ ∈ M1(Ω(E )) such that for anyΛ ⋐ Zd andω ∈ A Zd

with µ(ω(∂Λ)) > 0, we

have thatZΦ,ω(∂Λ)
Λ > 0 and:

(3.9) µ(θ |FΛc)(ω) = πω
Λ (θ ) µ-a.s.,

for θ ∈ A Λ, where{πξ
Λ}Λ,ξ is the stationaryZd Gibbs specification forΦ.

While our interactions and specifications are assumed to be shift-invariant, a Gibbs
measure for such an interaction may or may not be stationary.The definition of n.n. Gibbs
measure, shows that such a measure is an MRF. The definition isstated only for cylinder
events[θ ] in Λ, but this is equivalent to the usual definition with general eventsA ∈ F

instead.
Every n.n. interactionΦ has at least one (stationary) n.n. Gibbs measure (special case

of a general result in [35, Theorem 3.7 and Theorem 4.2]). For a singleΦ, multiple Gibbs
measures can exist. This phenomenon is usually called aphase transition.

3.3. Pressure. Now we proceed to define the pressure of a n.n. interactionΦ.

Definition 3.4. Given a n.n. interactionΦ for a set of restrictionsE , thepressure ofΦ is
defined as:

(3.10) P(Φ) := lim
n→∞

1
|Bn|

logZΦ
Bn
.
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Given n∈N, we can also define an analogous versionẐΦ
Bn

of the partition functionZΦ
Bn

,
but over globally admissible configurations:

(3.11) ẐΦ
Bn

:= ∑
θ∈A Bn :[θ ]Ω(E ) 6= /0

exp
(

−EΦ
Bn
(θ )

)

.

Notice thatẐΦ
Bn

≤ ZΦ
Bn

. The following result states that in the normalized limit, both
quantities coincide.

Theorem 3.1([35, Theorem 3.4], see also [14, Theorem 2.5]). Given a n.n. interactionΦ
for a set of restrictionsE :

(3.12) P(Φ) = lim
n→∞

1
|Bn|

logẐΦ
Bn
.

The pressure is the main quantity of interest in this paper. Our goals are to find simple
representations of pressure in terms of very special configurations and use this to develop
efficient (in principle) algorithms to approximate the pressure.

4. MAIN MODELS: POTTS, WIDOM-ROWLINSON AND HARD-CORE

In this section we introduce the three main families of lattice models studied in this
paper. The first one will be the Potts model, which can be regarded as a generalization
of the Ising model by considering more than two types of particles. The second one, the
Widom-Rowlinson model, is also a multi-type particle system but with hard-core exclusion
between particles of different type. The third one is the classical hard-core model.

4.1. The (ferromagnetic) Potts model.Givend,q∈N andβ > 0, theZd (ferromagnetic)
Potts model with q types and inverse temperatureβ is defined over the alphabetAq =
{1, . . . ,q} and given by the n.n. interaction:

(4.1) Φβ (θ ) =

{

−β if θ (x) = θ (x+ei),

0 if θ (x) 6= θ (x+ei),

for θ ∈ A
{x,x+ei}

q , x ∈ Zd, i = 1, . . . ,d, where the constraintsEi are empty. The speci-

fication πFP
β = {πξ

β ,Λ}Λ,ξ induced byΦβ defines the (ferromagnetic) Potts model, where
neighbouring sites preferably align to each other with the same type or “colour” from the
alphabetAq.

A measureµ ∈ M1(A
Zd

q ) is called aPotts Gibbs measurefor q types and inverse tem-
peratureβ > 0 if it is a n.n. Gibbs measure for the specificationπFP

β above.

Theorem 4.1([6]). For theZ2 (ferromagnetic) Potts model with q types and inverse tem-
peratureβ , there exists a critical inverse temperatureβc(q) := log(1+

√
q) such that

uniqueness of Gibbs measures holds forβ < βc(q) and for β > βc(q) there is a phase
transition.

4.2. The (multi-type) Widom-Rowlinson model. Given d,q ∈ N and λ > 0, theZd

Widom-Rowlinson model with q types and activityλ is defined over the alphabetBq =

{0,1, . . . ,q}, and given by the set of constraintsE =(E1, . . . ,Ed), whereEi = {θ ∈ (Bq \ {0})2 :
θ (1) 6= θ (2)}, for all i = 1, . . . ,d, and by the n.n. interaction forE over configurations on
sites:

(4.2) Φλ (θ ) =

{

− log(λ ) if θ ∈ {1, . . . ,q},
0 if θ = 0,
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whereθ ∈ B
{x}
q andx ∈ Zd. The specificationπWR

λ = {πξ
λ ,Λ}Λ,ξ induced byΦλ defines

the (multi-type) Widom-Rowlinson model, where neighbouring sites are forced to align to
each other with the same type or “colour” from the alphabetBq or with 0.

A measureµ ∈ M1(B
Zd

q ) is called aWidom-Rowlinson Gibbs measurefor q types and
activity λ > 0 if it is a n.n. Gibbs measure for the specificationπWR

λ above.

Theorem 4.2([36], see also [19]). For theZ2 Widom-Rowlinson model with q types and
activityλ , uniqueness of Gibbs measures holds for sufficiently smallλ and there is a phase
transition for sufficiently largeλ .

4.3. The hard-core lattice gas model.Givenγ > 0, theZd hard-core model with activity
γ is defined over the alphabet{0,1}, and given by the set of constraintsE , whereEi =
{(1,1)}, for all i = 1, . . . ,d, and the the n.n. interaction forE over configurations on sites:

(4.3) Φγ (θ ) =

{

− log(γ) if θ = 1,

0 if θ = 0,

for θ ∈ {0,1}{x}, x ∈ Zd. The specificationπHC
γ = {πξ

γ,Λ}Λ,ξ induced byΦγ defines the
hard-core model, where neighbouring sites cannot be both 1.

A measureµ ∈ M1({0,1}Zd
) is called ahard-core Gibbs measurefor activity γ > 0 if

it is a n.n. Gibbs measure for the specificationπHC
γ above.

Theorem 4.3([17, Theorem 3.3]). For theZ2 hard-core model with activityγ, unique-
ness of Gibbs measures holds for sufficiently smallγ and there is a phase transition for
sufficiently largeγ.

For both the Potts and Widom-Rowlinson models we will also distinguish a particular
type of particle or colour in the alphabet. W.l.o.g., we can take the typeq in Aq orBq\{0},

respectively. Given this colour, we will denote byωq the fixed pointqZ
d
. For the hard-core

model, we will consider the two special pointsω(e) andω(o), given by:

(4.4) ω(e)(x) :=

{

0 if ∑i xi is even,

1 if ∑i xi is odd,

andω(o) = σe1(ω(e)).

5. RANDOM-CLUSTER MODELS

The Potts and Widom-Rowlinson models have interpretationsin terms of a random-
cluster representation. The Potts model is related to a random-cluster model on bonds (via
the so-called Edwards-Sokal coupling), while the Widom-Rowlinson is naturally related to
a random-cluster model on sites.

Definition 5.1. A couplingof two probability measuresρ1 on a finite set X andρ2 on a
finite set Y , is a probability measureP on the set X×Y such that, for any A⊆ X and B⊆Y,
we have that:

(5.1) P(A×Y) = ρ1(A) andP(X×B) = ρ2(B).
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5.1. The bond random-cluster model and the Potts model.We will make use of the
bond random-cluster model. One of our main results, Part I of Theorem8.1, is proven
using arguments based on this model. This model is a two parameter family of dependent
bond percolation models on a finite graph. We are mainly interested in finite subgraphs of
Z2 and we describe the model with boundary conditions indexed by i = 0,1.

Fix a finite simply lattice-connected set of sitesΛ. Let E0(Λ) denote the set of bonds
with both endpoints inΛ andE1(Λ) the set of bonds with at least one endpoint inΛ. We
speak of a bondeas beingopenif w(e) = 1, and as beingclosedif w(e) = 0.

Definition 5.2. Given a finite simply lattice-connected setΛ, and parameters p∈ [0,1]
and q> 0, we define thefree(i = 0) andwired (i = 1) bond random-cluster distributions
on Ei(Λ) (i = 0,1) as the measuresφ i

p,q,Λ that to each w∈ {0,1}Ei(Λ) assigns probability
proportional to:

(5.2) φ (i)
p,q,Λ(w) ∝







∏
e∈Ei(Λ)

pw(e)(1− p)1−w(e)







qki
Λ(w) =

(

p
1− p

)#1(w)

qki
Λ(w),

where#1(w) is the number of open bonds in w and k0
Λ(w) and k1Λ(w) are the number of

connected components (including isolated sites) in the graphs(Λ,{e∈ E0(Λ) : w(e) = 1})
and(Z2,E0(Z2 \Λ)∪{e∈ E1(Λ) : w(e) = 1}), respectively.

Notice that whenq = 1, we recover the ordinary Bernoulli bond percolation measure
φp,Λ, while other choices ofq lead to dependence between bonds. For givenp and q,

one can also define bond random-cluster measuresφ (i)
p,q on Z2 as a limit of finite volume

measuresφ (i)
p,q,Λ (i = 0,1).

Theorem 5.1([17, Lemma 6.8]). For p∈ [0,1] and q∈ N, the limiting measures:

(5.3) φ (i)
p,q = lim

n→∞
φ (i)

p,q,Λn
, i ∈ {0,1},

exist and are translation invariant, where{Λn}n is any increasing sequence of finite simply
lattice-connected sets that exhaustsZ2.

General bond random-cluster measures onZ2 can be defined using an analogue of the
DLR condition [20, Definition 4.29]. Forq≥ 1, there is a valuepc(q) that delimits exactly
the transition for existence of an infinite open cluster for these measures. It is known [20,
p. 107] that forq≥ 1 andp< pc(q), there is a unique such measure which we denote by
φp,q (characterized by the nonexistence of infinite open clusters), and that coincides with

φ (0)
p,q andφ (1)

p,q in this region. It was recently proven (see [6]) that pc(q) =
√

q
1+

√
q, for every

q≥ 1.

Let p = 1−e−β . Thefree Edwards-Sokal couplingP(0)
p,q,Λ (see [20]) is a coupling be-

tween the boundary-freePotts measureπ ( f )
β ,Λ andφ (0)

p,q,Λ. Thewired Edwards-Sokal coupling

P
(1)
p,q,Λ is a coupling betweenπωq

β ,Λ andφ (1)
p,q,Λ. Notice thatpc(q) = 1−e−βc(q).

These couplings are measures on pairs of site configurationsand corresponding bond
configurations. The projection to site configurations is theboundary-free/ωq-boundary
Potts measure, and the projection to bond configurations is the free/wired bond random-
cluster measure, respectively.

Theorem 5.2([20, Theorem 1.13]). Let Λ be a finite simply lattice-connected set, q∈ N,
and let p∈ [0,1] andβ > 0 be such that p= 1−e−β . Then:
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(1) For w∈ {0,1}E1(Λ), the conditional measureP(1)
p,q,Λ

(

·
∣

∣A Λ
q ×{w}

)

on A Λ
q is ob-

tained by putting random colours on entire clusters of w not connected withZ2\Λ
(of which there are k1Λ(w)−1) and colour q on the clusters connected withZ2\Λ.
These colours are constant on given clusters, are independent between clusters,
and the random ones are uniformly distributed on the setAq.

(2) For θ ∈ A Λ, the conditional measureP(1)
p,q,Λ

(

·
∣

∣

∣
{θ}×{0,1}E1(Λ)

)

on{0,1}E1(Λ)

is obtained as follows. Consider the extended configurationθ̂ = θq∂Λ and an
arbitrary bond e= {x,y}∈E1(Λ). If θ̂ (x) 6= θ̂ (y), we set w(e)= 0. If θ̂ (x) = θ̂(y),
we set:

(5.4) w(e) =

{

1 with probabilityp,

0 otherwise,

the values of different w(e) being (conditionally) independent random variables.

The couplings can be used to relate probabilities and expectations for the Potts model
to corresponding events and expectations in the associatedbond random-cluster model. A
main example is a relation between the two-point correlation function in the Potts model
and the connectivity function in the bond random-cluster model [20, Theorem 1.16].

By considering a displaced version ofZ2, namely 1
2111+Z2 (the dual lattice), we can

define a notion of duality for bond configurationsw. Notice that every bonde∈ E(Z2) (if
we think of bonds as unitary vertical and horizontal straight segments) is intersected per-
pendicularly by one and only onedual bond e∗ ∈E(1

2111+Z2), so there is a clear correspon-
dence betweenE(Z2) andE(1

2111+Z2). We are mainly interested in wired bond random-
cluster distributions on the set of sitesB̃n := [−n+1,n]2∩Z2. Givenn∈N, if we consider
the set of bondsE1(B̃n), it is easy to check that there is a correspondencee 7→ e∗ between
this set and the set of bonds from12111+Z2 with both endpoints in[−n,n]2∩

(1
2111+Z2

)

,
which can be identified with the setE0(Bn). Then, given a bond configurationw∈ E1(B̃n)
we can associate a dual bond configurationw∗ ∈ E0(Bn) such thatw∗(e∗) = 0 if and only
if w(e) = 1.

Considering this, we have the corresponding equality:

Proposition 5.3 ([20, Equation 6.12 and Theorem 6.13]). Given n∈ N, p ∈ [0,1] and
q∈N:

(5.5) φ (1)
p,q,B̃n

(w) = φ (0)
p∗,q,Bn

(w∗),

for any bond configuration w∈ {0,1}E1(B̃n), whereB̃n = [−n+1,n]2∩Z2 and p∗ ∈ [0,1]
is the dual value of p, which is given by:

(5.6)
p∗

1− p∗
=

q(1− p)
p

.

The previous duality result can be generalized to more arbitrary shapes and it has also a
counterpart from free-to-wired boundary conditions, instead of from wired-to-free.

The unique fixed point of the mapp 7→ p∗ defined by (5.6) is
√

q
1+

√
q and, as mentioned

above, is known to coincide with the critical pointpc(q) for the existence of an infinite
open cluster for the bond random-cluster model (see [6, Theorem 1]). It is easy to see that
p> pc(q) iff p∗ < pc(q).
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5.2. The site random-cluster model and the Widom-Rowlinson model. In a similar
fashion to the bond random-cluster model, we can perturb Bernoulli site percolation, where
the probability measure is changed in favour of configurations with many (forq> 1) or few
(for q< 1) connected components. The resulting model is called thesite random-cluster
model.

Definition 5.3. GivenΛ ⋐Z2, and parameters p∈ [0,1] and q> 0, thewired site random-

cluster measureψ(1)
p,q,Λ is the probability measure on{0,1}Λ which to eachθ ∈ {0,1}Λ

assigns probability proportional to:

(5.7) ψ(1)
p,q,Λ(θ ) ∝

{

∏
x∈Λ

pθ(x)(1− p)1−θ(x)

}

qκΛ(θ) = λ #1(θ)qκΛ(θ),

whereλ = p
1−p, #1(θ ) is the number of1’s in θ and κΛ(θ ) is the number of connected

components in{x∈ Λ : θ (x) = 1} that do not intersect∂Λ.

Thefree site random-cluster measureψ(0)
p,q,Λ is defined as in (5.7) by replacingκΛ(θ ) by

the total number of connected components inΛ. However, we will not require that measure
in this work. In any case, takingq= 1 gives the ordinary Bernoulli site percolationψp,Λ,
while other choices ofq lead to dependence between sites, similarly to the bond random-
cluster model.

Proposition 5.4. Given a setΛ ⋐ Z2 and parametersλ > 0 and q∈ N, consider the
Widom-Rowlinson with q types distribution and monochromatic boundary conditionπωq

λ ,Λ.

Now, let f : BΛ
q →{0,1}Λ be defined site-wise as:

(5.8) ( f (θ ))(x) =

{

0 if θ (x) = 0,

1 if θ (x) 6= 0,

for θ ∈ BΛ
q and x∈ Λ, and let p= λ

1+λ . Then, f∗πωq

λ ,Λ = ψ(1)
p,q,Λ, where f∗πωq

λ ,Λ(·) :=

πωq

λ ,Λ( f−1(·)) denotes the push-forward measure on{0,1}Λ.

The requirement thatκΛ(·) does not count connected components that intersect the inner
boundary ofΛ in the site random-cluster model, corresponds to the fact that non 0 sites
adjacent to the monochromatic boundaryωq(∂Λ) in the Widom-Rowlinson model must
have the same colourq.

Forq= 2, Proposition5.4is proven in [21, Lemma 5.1 (ii)], and the proof extends easily

for generalq. Proposition5.4 can be regarded as a coupling betweenπωq

λ ,Λ andψ(1)
p,q,Λ,

because a push-forward measure can be naturally coupled with the original measure.

It is important to notice thatψ(1)
p,q,Λ is itself not an MRF: given sites on a simple circuit C,

the inside and outside of C are generally not conditionally independent, because knowledge
of sites outside C could cause connected components of 1’s inC to “amalgamate” into a
single component, which would affect the conditional distribution of configurations inside
C. The following lemma shows that in certain situations, when conditioning on a circuit C
labeled entirely by 1’s, this kind of amalgamation does not occur.

Lemma 5.5. Let /0 6= Θ ⊆ Λ ⋐ Z2 be such thatΛc∪Θ⋆
is connected. Take∆ := ∂ ⋆Θ∩Λ.

Consider an event A∈ FΘ and a configurationτ ∈ {0,1}Σ, whereΣ ⊆ Λ\Θ⋆
. Then:

(5.9) ψ(1)
p,q,Λ(A|1∆τ) = ψ(1)

p,q,Λ(A|1∆0Λ\Θ⋆

).



14 STEFAN ADAMS, RAIMUNDO BRICẼNO, BRIAN MARCUS, AND RONNIE PAVLOV

Proof. W.l.o.g., we may assume thatA is a cylinder event[θ ] with θ ∈ {0,1}Θ (by linear-
ity) andΣ = Λ\Θ⋆

(by taking weighted averages).
Now, Σ = Λ \Θ⋆

can be written as a disjoint union of⋆-connected componentsΣ =

K1 ⊔ ·· · ⊔Kn. For everyi, ∂ ⋆Ki ⊆ Λc ∪ Θ⋆
(in fact, ∂ ⋆Ki ⊆ Λc ∪∆). SinceΛc ∪Θ⋆

is
connected andΛ is finite, for every site in∂ ⋆Ki there is a path to infinity that does not
intersectKi .

Then, by application of a result of Kesten (see [24, Lemma 2.23]),∂ ⋆Ki is connected,
for everyi. In addition, we have thatΛ = Θ⊔∆⊔Σ and∂ ⋆Ki ⊆ Λc∪∆.

We claim that:

(5.10) κΛ(υ) = κΛ(υ(Θ)1∆0Σ)+
n

∑
i=1

κKi (υ(Ki)) = κΛ(υ(Θ)1∆0Σ)+κΣ(τ),

for anyυ ∈ {0,1}Λ such thatυ(∆) = 1∆ andυ(Σ) = τ.

FIGURE 1. A ⋆-connectedΘ (in black), the set∆ = ∂ ⋆Θ∩Λ (in dark
grey) andΛc (in light grey) forΛ = Sy,z.

To see this, given suchυ , we exhibit a bijectionr between the connected components
of υ that do not intersect∂ Λ and the union of: (a) the connected components ofυ(Θ)1∆0Σ

that do not intersect∂Λ, and (b) the connected components ofυ(Ki) that do not intersect
∂Ki , for all i; namely, ifC⊆ Λ is a connected component ofυ , thenr is defined as follows:

(5.11) r(C) =

{

C∩Θ⋆
if C∩Θ⋆ 6= /0,

C if C⊆ Σ.

In order to see thatr is well-defined, note that ifC intersectsΘ⋆
andΣ, the setC∩Θ⋆

is still connected thanks to the fact that∂ ⋆Ki is connected andυ(∆) = 1∆. To see thatr
is onto, observe that ifC′ is a connected component ofυ(Θ)1∆0Σ, then there is a unique
componentC of υ such thatC∩Θ⋆

=C′, due again to the fact that∂ ⋆Ki is connected. And
r is clearly injective because two distinct connected components cannot intersect.

Finally, we conclude from (5.10) that:

ψ(1)
p,q,Λ(θ | 1∆τ) =

λ #1(θ1∆τ)qκΛ(θ1∆τ)

∑υ∈{0,1}Λ:υ(∆)=1∆,υ(Σ)=τ λ #1(υ)qκΛ(υ)
(5.12)
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=
λ #1(θ1∆)+#1(τ)qκΛ(θ1∆0Σ)+κΣ(τ)

∑υ∈{0,1}Λ:υ(Σ)=τ λ #1(υ(Θ)1∆)+#1(τ)qκΛ(υ(Θ)1∆0Σ)+κΣ(τ)
(5.13)

=
λ #1(θ1∆)qκΛ(θ1∆0Λ\Θ⋆

)

∑θ̃∈{0,1}Θ λ #1(θ̃1∆)qκΛ(θ̃1∆0Λ\Θ⋆
)
= ψ(1)

p,q,Λ(θ |1∆0Λ\Θ⋆

),(5.14)

as we wanted. �

Remark 1. We claim that if /0 6= Θ ⊆ Λ ⋐ Z2 are such thatΛc is connected,Θ is ⋆-
connected andΘ⋆ ∩ ∂ Λ 6= /0, thenΛc∪Θ⋆

is connected, which is the main hypothesis of
Lemma5.5. This follows from the easy fact that the⋆-closure of a⋆-connected set is
connected.

6. PRESSURE REPRESENTATION

6.1. Variational principle. The variational principle states that the pressure of an inter-
action has a variational characterization in terms of shift-invariant measures. We state the
variational principle below for the case of an n.n. interaction Φ for a set of restrictionsE .

Theorem 6.1(Variational principle [23, 33, 35]). Given a n.n. interactionΦ for a set of
restrictionsE , we have that:

(6.1) P(Φ) = sup
µ∈M1,σ (Ω(E ))

(

h(µ)+
∫

AΦdµ
)

,

where:

• AΦ(ω) :=−Φ(ω(000))−∑d
i=1 Φ(ω({000,ei})), for ω ∈ Ω(E ), and

• h(µ) := limn→∞
−1
|Bn| ∑θ∈A Bn µ(θ ) log(µ(θ )) is themeasure-theoretic entropyof

µ , where0log0= 0.

In this case, the supremum is also always achieved (see [23, Section 4.2]) and any
measure which achieves the supremum is called anequilibrium statefor AΦ. So, if µ is an
equilibrium state, then:

(6.2) P(Φ) = h(µ)+
∫

AΦdµ .

For a shift-invariant measureµ andΛ ⋐ Zd \ {000}, define:

(6.3) pµ,Λ(ω) := µ(ω(000)|ω(Λ)),
and letpµ(ω) := limn→∞ pµ,Bn∩P (ω), which existsµ-a.s. [23, Theorem 3.1.10] by Lévy’s
zero-one law. In addition, let:

(6.4) Iµ(ω) :=− logpµ(ω),

which is also definedµ-a.s. and is usually called theinformation function. It is well-known
(see [16, p. 318, Equation 15.18] or [27, Theorem 2.4, p. 283]) that for any shift-invariant
measureµ , h(µ) =

∫

Iµdµ . Therefore, ifµ is an equilibrium state forΦ, we can rewrite
the preceding formula for P(Φ) as:

(6.5) P(Φ) =

∫

(

Iµ +AΦ
)

dµ .

So, the pressure can be represented as the integral of a function, determined by an
equilibrium stateµ andΦ, with respect toµ .

In this section, we show that the pressure can be representedas the integral of a function
similar to Iµ +AΦ, with respect to any invariant measureν, assuming some conditions.
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This is useful for approximation of pressure whenν is an atomic measure supported on a
periodic configuration (see Section9).

One of the conditions involves the SFTΩ(E ).

Definition 6.1. A n.n. SFTΩ(E ) for a set of constraintsE satisfies thesquare block D-
conditionif there exists a sequence of integers{rn}n≥1 such thatrn

n → 0 as n→ ∞ and, for
any finite setΛ ⋐ Bc

n+rn
, θ ∈ A Bn andτ ∈ A Λ:

(6.6) [θ ]Ω(E ), [τ]Ω(E ) 6= /0 =⇒ [θτ]Ω(E ) 6= /0.

This condition is a strengthened version of the classical D-condition (see [35, Section
4.1]) which guarantees that the set of Gibbs measures forΦ coincides with the set of
equilibrium states forAΦ.

Definition 6.2. Given a set of restrictionsE , the corresponding n.n. SFTΩ(E ) ⊆ A Zd

and a∈ A , we say thatΩ(E ) has asafe symbola if (a,b),(b,a) /∈ Ei, for every b∈ A ,
for all i = 1, . . . ,d.

It is easy to see that ifΩ(E ) has a safe symbol, then it satisfies the square block D-
condition. For the sets of restrictionsE in the Potts, Widom-Rowlinson and hard-core
models, the corresponding n.n. SFTΩ(E ) has a safe symbol in each case (anya ∈ Aq,
0∈ Bq, and 0∈ {0,1}, respectively), soΩ(E ) satisfies the square block D-condition for
the three models.

6.2. The function π̂ and additional notation. Given a n.n. interactionΦ for a set of
constraintsE , we will define some useful functions fromΩ(E ) toR. First, given 000∈ Λ ⋐

Zd andω ∈ Ω(E ), we define:

(6.7) πΛ(ω) := πω
Λ (θ (000) = ω(000)) = πω(∂Λ)

Λ (θ (000) = ω(000)).

Recall that, fory,z∈ Zd such thaty,z≥ 000, we have defined the setSy,z as{x < 000 :
−y ≤ x ≤ z}. Now, giveny,z≥ 000 andω ∈ Ω(E ), defineπy,z(ω) := πSy,z(ω) and, given
n∈ N, abbreviateπn(ω) := π111n,111n(ω). Considering this, we also define the limitπ̂(ω) :=
limn→∞ πn(ω), whenever it exists. If such limit exists, we will also denote Îπ(ω) :=
− logπ̂(ω).

It is not difficult to prove that under some mixing assumptions over an MRFµ , namely
the SSM property introduced in Definition7.1(see Section7), and assuming that supp(µ)=
Ω(E ), one has that the original information functionIµ coincides withÎπ in Ω(E ). In this
sense, our definition provides a generalization of previousresults (see [15]), whereIµ may
not be even well-defined.

Now, suppose we have a shift-invariant measureν such that supp(ν) ⊆ Ω(E ). We say
that:

(6.8) lim
y,z→∞

πy,z(ω) = π̂(ω) uniformly overω ∈ supp(ν),

if for all ε > 0, existsk∈N such that for all∀y,z≥ 111k:

(6.9)
∣

∣πy,z(ω)− π̂(ω)
∣

∣< ε, for all ω ∈ supp(ν).
In addition, we introduce the following bound:

(6.10) cπ(ν) := inf{πΛ(ω) : 000∈ Λ ⋐ Zd,ω ∈ supp(ν)}.
Lemma 6.2. Letπ be a n.n. interactionΦ for a set of restrictionsE , with π andΩ(E ) the
corresponding specification and n.n. SFT. Then, ifΩ(E ) has a a safe symbol, we have that
cπ(ν)> 0, for any shift-invariant measureν such thatsupp(ν)⊆ Ω(E ).
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Proof. The proof is analogous and a particular case of [29, Proposition 2.17]. In that
reference, under these assumptions, it is shown that cµ(ν) := inf{µ(ω(000)|ω(Λ)) : Λ ⋐

Zd \ {000},ω ∈ supp(ν)} > 0, for a given n.n. Gibbs measureµ for Φ. We leave it to the
reader to verify that cπ(ν)≥ cµ(ν), for any suchµ . �

In fact, much weaker conditions than the existence of a safe symbol are sufficient for
the result of Lemma6.2 and also for having the square block D-condition. See, for ex-
ample, thesingle-site fillabilityproperty [29] and thetopological strong spatial mixing
property[9]. Notice that, since the Potts, Widom-Rowlinson and hard-core models have a
safe symbol, we have thatcπ(ν)> 0, for any shift-invariantν with supp(ν)⊆ Ω(E ).

6.3. Pressure representation theorem.Pressure representation results can be found in
[29, Theorems 3.1 and 3.6]. Those results are not adequate for the application to the specific
models we are considering in this paper. Instead we will use the following result, whose
proof is adapted from the proof of [29, Theorem 3.1], as well as an idea of [29, Theorem
3.6]. In contrast to the results of [29], our result makes assumptions on the specification
rather than a Gibbs measure.

Theorem 6.3. Let Φ be a n.n. interaction for a set of restrictionsE and suppose that
Ω(E ) satisfies the square block D-condition. Letν be a shift-invariant measure such that
supp(ν) ⊆ Ω(E ) andcπ(ν)> 0. In addition, suppose that:

(6.11) lim
y,z→∞

πy,z(ω) = π̂(ω) uniformly over ω ∈ supp(ν).

Then:

(6.12) P(Φ) =
∫

(

Îπ +AΦ
)

dν.

Proof. Chooseℓ < 0 andL > 0 to be lower and upper bounds respectively on values ofΦ.
Givenn∈N, let rn be as in the definition of the square block D-condition and consider the
sets Bn andΛn := Bn+rn. We begin by proving that:

(6.13)
1

|Bn|
(logZΦ

Bn
+ logπω

Λn
(ω(Bn))+EΦ

Bn
(ω(Bn)))→ 0,

uniformly in ω ∈ Ω. For this, we will only use the square block D-condition. We fix n∈N,
ω ∈ supp(ν) and letmn := |Λn|− |Bn|. LetCd ≥ 1 be a constant such that for any∆ ⋐ Zd,
the total number of sites and bonds contained in∆ is bounded from above byCd|∆|.

πω
Λn
(ω(Bn))≥ πω

Λn
(ω(Λn))(6.14)

=
exp(−EΦ

Λn
(ω(Λn)))

∑θ :θω(∂Λn) feasibleexp(−EΦ
Λn
(θω(∂Λn)))

(6.15)

≥
exp(−EΦ

Bn
(ω(Bn))−CdmnL)

∑τ∈A Bn :τ feasibleexp(−EΦ
Bn
(τ))|A |Cdmn exp(−Cdmnℓ)

(6.16)

=
exp(−EΦ

Bn
(ω(Bn)))

ZΦ
Bn

exp(mn(Cdℓ−CdL−Cd log|A |)).(6.17)

Now, if τmax achieves the maximum ofπω
Λn
(ω(Bn)τ) overτ ∈ A Λn\Bn, then:

πω
Λn
(ω(Bn)) = ∑

τ∈A Λn\Bn :ω(Bn)τ feasible

πω
Λn
(ω(Bn)τ)(6.18)
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≤ |A |mnπω
Λn
(ω(Bn)τmax)(6.19)

= |A |mn
exp(−EΦ

Λn
(ω(Bn)τmaxω(∂Λn)))

∑θ :θω(∂Λn) feasibleexp(−EΦ
Λn
(θω(∂Λn)))

(6.20)

≤ |A |mn
exp(−EΦ

Bn
(ω(Bn))−Cdmnℓ)

∑τ∈A Bn :[τ]Ω 6= /0e−EΦ
Bn

(τ)exp(−CdmnL)
(6.21)

≤
exp(−EΦ

Bn
(ω(Bn)))

ẐΦ
Bn

exp(−mn(Cdℓ−CdL−Cd log|A |)),(6.22)

where the square block D-condition has been used in (6.21). Therefore,

(6.23) α−mn ≤ πω
Λn
(ω(Bn))ZΦ

Bn
exp(EΦ

Bn
(ω(Bn)))≤

ZΦ
Bn

ẐΦ
Bn

αmn,

whereα := e−(Cdℓ−CdL−Cd log|A |). Since mn
|Bn| → 0 and 1

|Bn|
(

logZΦ
Bn

− logẐΦ
Bn

)

→ 0 (thanks
to Theorem3.1), we have obtained (6.13).

We use (6.13) to represent pressure:

P(Φ) = lim
n→∞

logZΦ
Bn

|Bn|
= lim

n→∞

∫ logZΦ
Bn

|Bn|
dν(6.24)

= lim
n→∞

∫ − logπω
Λn
(ω(Bn))−EΦ

Bn
(ω(Bn))

|Bn|
dν.(6.25)

(Here the second equality comes from the fact that
logZΦ

Bn
|Bn| is independent ofω , and the

third from (6.13).) Sinceν is shift-invariant, it can be checked that:

(6.26) lim
n→∞

∫ −EΦ
Bn
(ω(Bn))

|Bn|
dν =

∫

AΦdν,

and so we can write:

(6.27) P(Φ) =
∫

AΦdν − lim
n→∞

∫ logπω
Λn
(ω(Bn))

|Bn|
dν.

It remains to show that:

(6.28) lim
n→∞

∫ − logπω
Λn
(ω(Bn))

|Bn|
dν =

∫

Îπdν.

Fix ω ∈ supp(ν) and denotec := cπ(ν). We will decomposeπω
Λn
(ω(Bn)) as a product

of conditional probabilities. By (6.11), for any ε > 0, there existsk := kε so that for
y,z≥ 111k, |πy,z(ω)− π̂(ω)| < ε for all ω ∈ supp(ν). For x ∈ Bn−1, we denote B−n (x) :=
{y∈ Bn−1 : y≺ x}. Then, we can decomposeπω

Λn
(ω(Bn)) as:

πω
Λn
(ω(Bn)) = πω

Λn
(ω(∂Bn)) ∏

x∈Bn−1

πω
Λn

(

ω(x)
∣

∣ω
(

B−
n (x)∪∂Bn

))

(6.29)

= πω
Λn

(ω(∂Bn)) ∏
x∈Bn−1

πy(x),z(x)(σx(ω)),(6.30)

wherey(x) := 111n+ x andz(x) := 111n− x, thanks to the MRF property and stationarity of
the specification.
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Let’s denoteRn,k := Bn\Bn−k. Then, Bn = ∂Bn⊔Bn−k−1⊔Rn−1,k and we have:

c|∂Bn|+|Rn−1,k| ∏
x∈Bn−k−1

πy(x),z(x)(σx(ω))≤ πω
Λn
(ω(Bn))(6.31)

≤ ∏
x∈Bn−k−1

πy(x),z(x)(σx(ω)).(6.32)

Taking− log(·), we have that:

0≤− logπω
Λn
(ω(Bn))− ∑

x∈Bn−k−1

− logπy(x),z(x)(σx(ω))(6.33)

≤ (|∂Bn|+ |Rn−1,k|) log
(

c−1) .(6.34)

So, by the choice ofk, for x∈ Bn−k−1,
∣

∣πy(x),z(x)(σx(ω))− π̂(σx(ω))
∣

∣< ε,(6.35)

and sinceπy(x),z(x)(σx(ω)), π̂(σx(ω))≥ c> 0, by the Mean Value Theorem:
∣

∣− logπy(x),z(x)(σx(ω))− Îπ(σx(ω))
∣

∣< εc−1,(6.36)

It follows from (6.11) that π̂ is the uniform limit of continuous functions on supp(ν).
In addition,π̂(ω) ≥ c> 0, for all ω ∈ supp(ν). Therefore, we can integrate with respect
to ν to see that:

(6.37)

∣

∣

∣

∣

∫

− logπy(x),z(x)(σx(ω))dν −
∫

Îπ(ω)dν
∣

∣

∣

∣

< εc−1.

We now combine the previous equations to see that:
∣

∣

∣

∣

∫

− logπω
Λn
(ω(Bn+1))dν −

∫

Îπ(ω)dν|Bn−k−1|
∣

∣

∣

∣

(6.38)

≤ |Bn−k−1|εc−1+(|∂Bn|+ |Rn−1,k|) log
(

c−1) .(6.39)

Notice that, for a fixedk, limn→∞
|∂Bn|+|Rn−1,k|

|Bn| = 0 and limn→∞
|Bn−k−1|
|Bn| = 1. Therefore,

−εc−1+

∫

Îπ(ω)dν ≤ lim inf
n→∞

∫ − logπω
Λn
(ω(Bn))

|Bn|
dν(6.40)

≤ limsup
n→∞

∫ − logπω
Λn
(ω(Bn))

|Bn|
dν(6.41)

≤
∫

Îπ(ω)dν + εc−1.(6.42)

By letting ε → 0, we see that:

(6.43) lim
n→∞

∫ − logπω
Λn
(ω(Bn))

|Bn|
dν =

∫

Îπ(ω)dν,

completing the proof. �

7. SPATIAL MIXING AND STOCHASTIC DOMINANCE

From now on, when talking about specifications for the Potts,Widom-Rowlinson and
hard-core lattice models, we will distinguish them by the subindex corresponding to the
parameterβ , λ or γ of the model, i.e.πξ

β ,Λ should be understood as a probability measure

in the Potts model,πξ
λ ,Λ in the Widom-Rowlinson andπξ

γ,Λ in the hard-core lattice model,

andπβ , πλ andπγ will denote the corresponding specifications. Also, we willwrite πβ
Λ ,
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π̂β andÎβ
π for the functionsπΛ, π̂ andÎπ in the Potts model, and short-hand notations when

Λ = Sn or Sy,z. For example,

πβ
n (ω) := πβ

Sn
(ω) := πω(∂Sn)

β ,Sn
(θ (000) = ω(000))

The analogous notation will be used for the Widom-Rowlinsonand hard-core cases, but
using the parametersλ andγ, respectively.

7.1. Spatial mixing properties. We now introduce concepts of spatial mixing that we
will need in this paper. Letf : N→R≥0 be a function such thatf (n)ց 0 asn→ ∞.

Definition 7.1. Given Λ ⊆ Zd, we say that aΛ-MRF µ satisfiesstrong spatial mixing
(SSM) with ratef (n) for a class of finite setsC if for any ∆ ∈ C such that∆ ⊆ Λ, any
Θ ⊆ ∆, θ ∈ A Θ andξ ,η ∈ A ∂∆ with µ(ξ )µ(η)> 0,

(7.1) |µ(θ |ξ )− µ(θ |η)| ≤ |Θ| f (dist(Θ,Σ∂∆(ξ ,η))) .

We say that a Gibbs specificationπ = {πξ
Λ}Λ,ξ satisfies SSM with rate f(n) for a class

of finite setsC if each elementπξ
Λ satisfies SSM with rate f(n) for the classC restricted to

subsets ofΛ.
If there exists C,α > 0 such that f can be chosen to be f(n) = Ce−αn, we say that

exponential SSMholds.

Definition 7.2. ([3, p. 445]) AZd-MRF µ satisfies theratio strong mixing property for a
class of finite setsC if there exists C,α > 0 such that for any∆ ∈ C , anyΘ,Σ ⊆ ∆ and
ξ ∈ A ∂∆ with µ(ξ )> 0,

sup

{∣

∣

∣

∣

µ(A∩B|ξ )
µ(A|ξ )µ(B|ξ ) −1

∣

∣

∣

∣

: A∈ FΘ,B∈ FΣ,µ(A|ξ )µ(B|ξ )> 0

}

≤C ∑
x∈Θ,y∈Σ

e−αdist(x,y).(7.2)

Proposition 7.1. Let µ be aZ2-MRF withsupp(µ) = A Z2
that satisfies the ratio strong

mixing property for the class of finite simply lattice-connected sets. Then,µ satisfies expo-
nential SSM for the family of sets{Sy,z}y,z≥0.

Proof. Fix y,z≥ 0 and the corresponding setSy,z⋐ Z2. Let Θ ⊆ Sy,z, θ ∈ A Θ andξ1,ξ2 ∈
A ∂Sy,z with µ(ξ1)µ(ξ2)> 0, consider:

(1) the setsΣ := Σ∂Sy,z(ξ1,ξ2) and∆ := Sy,z∪Σ,

(2) an arbitrary configuratioñξ ∈A ∂∆ such thatξ̃ (∂Sy,z\Σ) = ξi(∂Sy,z\Σ) (i = 1,2),
and

(3) the eventsA := [θ ] ∈ FΘ andBi := [ξi(Σ)] ∈ FΣ, for i = 1,2.

Notice that∆ is a finite simply lattice-connected set and, since supp(µ) = A Zd
, we can

be sure thatµ(ξ̃ )> 0. Then:

|µ(θ |ξ1)− µ(θ |ξ2)|=
∣

∣

∣
µ(A|[ξ̃ ]∩B1)− µ(A|[ξ̃ ]∩B2)

∣

∣

∣
(7.3)

=

∣

∣

∣

∣

∣

µ(A∩B1|ξ̃ )
µ(B1|ξ̃ )

− µ(A|ξ̃)+ µ(A|ξ̃)− µ(A∩B2|ξ̃ )
µ(B2|ξ̃ )

∣

∣

∣

∣

∣

(7.4)

≤
∣

∣

∣

∣

∣

µ(A∩B1|ξ̃ )
µ(B1|ξ̃ )µ(A|ξ̃ )

−1

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

1− µ(A∩B2|ξ̃ )
µ(B2|ξ̃ )µ(A|ξ̃ )

∣

∣

∣

∣

∣

(7.5)
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≤ 2C ∑
x∈Θ,y∈Σ

e−αdist(x,y)(7.6)

≤ |Θ|2C ∑
y∈Σ

e−αdist(∆,y).(7.7)

W.l.o.g., we can assume that|Σ|= 1 (see [9, Corollary 2]). Therefore, by takingC′ =2C,
we have:

(7.8) |µ(θ |ξ1)− µ(θ |ξ2)| ≤ |Θ|2K ∑
y∈Σ

e−αdist(∆,y) = |Θ|C′e−αdist(Θ,Σ).

�

Remark 2. The proof of Proposition7.1 seems to require some assumption on the sup-
port of µ (for the existence of̃ξ in the enumerated item list above). Fully supported (i.e.
supp(µ) =A Z2

) suffices, and is the only case in which we will apply this result (see Corol-
lary 1), but the conclusion probably holds under weaker assumptions.

Given y,z≥ 0, we define thebottom boundary of Sy,z as∂↓Sy,z := ∂Sy,z∩P, i.e. the
portion of the boundary ofSy,z included in the past, and thetop boundary of Sy,z as the
complement∂↑Sy,z := ∂Sy,z\P. Clearly,∂Sy,z = ∂↓Sy,z⊔∂↑Sy,z.

Proposition 7.2. Let π be a specification satisfying exponential SSM with parameters
C,α > 0. Then, for all n∈ N, y,z≥ 111n and a∈ A :

(7.9)
∣

∣

∣
πω1

Sn
(θ (000) = a)−πω2

Sy,z
(θ (000) = a)

∣

∣

∣
≤Ce−αn,

uniformly overω1,ω2 ∈ Ω(E ) such thatω1(P) = ω2(P).

Proof. Fix n ∈ N, y,z≥ 111n, a ∈ A andω1,ω2 ∈ Ω(E ) suchω1(P) = ω2(P). Denote
ξ := ω1(∂Sn). Then:

∣

∣

∣
πω1

Sn
(θ (000) = a)−πω2

Sy,z
(θ (000) = a)

∣

∣

∣
(7.10)

=

∣

∣

∣

∣

∣

πξ
Sn
(θ (000) = a)−∑

η
πω2

Sy,z
(θ (000) = a|η)πω2

Sy,z
(η)

∣

∣

∣

∣

∣

(7.11)

≤ ∑
η

∣

∣

∣
πξ

Sn
(θ (000) = a)−πη

Sn
(θ (000) = a)

∣

∣

∣
πω2

Sy,z
(η)(7.12)

≤ ∑
η

Ce−αdist(000,Σ∂Sn(ξ ,η))πω2
Sy,z

(η)≤Ce−αn,(7.13)

where the summation∑η is taken over allη ∈A ∂Sn such thatπω2
Sy,z

(η)> 0 andη
(

∂↓Sn
)

=

ω2
(

∂↓Sn
)

. The last inequality above follows from the fact that for anysuchη , Σ∂Sn(ξ ,η)⊆
∂↑Sn, so:

(7.14) dist(000,Σ∂Sn(ξ ,η))≥ dist
(

000,∂↑Sn
)

= n.

�

Definition 7.3 (Variational distance). Let S be a finite set and let X1 and X2 be two S-valued
random variables with distributionρ1 andρ2, respectively. Thevariational distancedTV of
X1 and X2 (or equivalently, ofρ1 andρ2) is defined by:

(7.15) dTV(ρ1,ρ2) :=
1
2 ∑

x∈S

|ρ1(x)−ρ2(x)| .
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It is well-known thatdTV(ρ1,ρ2) is a lower bound onP(X1 6= X2) over all couplingsP
of ρ1 andρ2 and that there is a coupling, called theoptimal coupling, that achieves this
lower bound.

Given a Gibbs specificationπ , we define:

(7.16) Q(π) := max
ω1,ω2∈Ω(E )

dTV

(

πω1
{000}(·),π

ω2
{000}(·)

)

.

The following result is essentially in [7].

Theorem 7.3. Let π be a Gibbs specification for a n.n. interactionΦ and a set of con-
straintsE , such thatΩ(E ) has a safe symbol. Then, if pc denotes the critical value of site
percolation onZ2 and Q(π)< pc, we have thatπ satisfies exponential SSM.

Proof. Takeµ any n.n. Gibbs measure forΦ. SinceΩ(E ) has a safe symbol,µ is fully
supported, i.e. supp(µ)=Ω(E ) (very special case of [35, Remark 1.14]). Given aZd-MRF
µ , define:

(7.17) Q(µ) := max
η1,η2

dTV(µ(θ (000) = ·|η1),µ(θ (000) = ·|η2)),

whereη1 andη2 range over all configurations on∂{000} such thatµ(η1),µ(η2)> 0. Then,
Q(µ)≤ Q(π)< pc, so by [7, Theorem 1] and shift-invariance ofΦ, µ satisfies exponential
SSM (see [30, Theorem 3.10]). Finally, sinceµ is fully supported, we can conclude thatπ
satisfies exponential SSM. �

7.2. Stochastic dominance.Suppose thatA is a finite linearly ordered set. Then for any
setL (in our context, usually a set of sites or bonds),A L is equipped with a natural partial
order� which is defined coordinate-wise: forθ1,θ2 ∈ A L, we writeθ1 � θ2 if θ1(x) ≤
θ2(x) for everyx ∈ L. A function f : A L → R is said to beincreasingif f (θ1) ≤ f (θ2)
wheneverθ1 � θ2. An eventA is said to be increasing if its characteristic functionχA is
increasing.

Definition 7.4. Let ρ1 and ρ2 be two probability measures onA L. We say thatρ1 is
stochastically dominatedbyρ2, writing ρ1 ≤D ρ2, if for every bounded increasing function
f : A L → R we haveρ1( f ) ≤ ρ2( f ), whereρ( f ) denotes the expected valueEρ ( f ) of f
according to the measureρ .

7.2.1. Stochastic dominance and connectivity decay for the bond random-cluster model.
Recall from Section5.1the bond random-cluster model on finite subsets ofZ2 with bound-
ary conditionsi = 0,1, and the bond random-cluster modelφp,q onZ2 (see page11).

Theorem 7.4([17, Equation (29)]). For any p∈ [0,1] and q∈ N, and any∆ ⊆ Λ ⋐ Z2:

(7.18) φ (0)
p,q,∆ ≤D φ (0)

p,q,Λ andφ (1)
p,q,Λ ≤D φ (1)

p,q,∆.

In particular, if p< pc(q), we have that, for anyΛ ⋐ Z2:

(7.19) φ (0)
p,q,Λ ≤D φp,q ≤D φ (1)

p,q,Λ,

where≤D is with respect to the restriction of each measure to events on E0(Λ).

The following result was a key element of the proof thatβc(q) = log(1+
√

q) is the
critical inverse temperature for the Potts model. We will use this result in a crucial way.

Recall that forp< pc(q), φp,q is the unique bond random cluster measure with param-
etersp andq.
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Theorem 7.5 ([6, Theorem 2]). Let q≥ 1. For any p< pc(q) =
√

q
1+

√
q, the two-point

connectivity function decays exponentially, i.e. there exist 0 < C(p,q),c(p,q) < ∞ such
that for any x,y∈ Z2:

(7.20) φp,q(x↔ y)≤C(p,q)e−c(p,q)‖x−y‖2,

where{x↔ y} is the event that the sites x and y are connected by an open pathand‖ · ‖2

is the Euclidean norm.

7.2.2. Stochastic dominance for the site random-cluster model.

Lemma 7.6. Given a setΛ ⋐ Zd and parameters p∈ [0,1] and q> 0, we have that for
any x∈ Λ and anyτ ∈ {0,1}Λ\{x}:

(7.21) p1(q)≤ ψ(1)
p,q,Λ(θ (x) = 1|τ)≤ p2(q),

where p1(q) =
pq

pq+(1−p)q2d and p2(q) =
pq

pq+(1−p) . In consequence,

(7.22) ψp1(q),Λ ≤D ψ(1)
p,q,Λ ≤D ψp2(q),Λ.

(Recall thatΨp,Λ denotes Bernoulli site percolation).

Proof. This result is obtained by adapting the discussion on [20, p. 339] to the wired site
random-cluster model. See also [21, Lemma 5.4] for the caseq= 2. �

7.2.3. Stochastic dominance for the Potts model.As before, letq∈ Aq denote a fixed, but
arbitrary, choice of a colour. LetΛ ⋐ Zd and considerg : A Λ

q → {+,−}Λ be defined by:

(7.23) (g(θ ))(x) =

{

+ if θ (x) = q,

− if θ (x) 6= q.

The functiong makes the non-q colours indistinguishable and gives areduced model.
We sayθ ≃ θ ′ if g(θ ) = g(θ ′). This relation defines a partition ofA Λ

q and unions of
elements of this partition form a sub-algebra ofA Λ

q , which can be identified with the

collection of all subsets of{+,−}Λ. Let π+
β ,Λ := g∗πωq

β ,Λ be the push-forward measure,

which is nothing more than the restriction (projection) ofπωq

β ,Λ to {+,−}Λ. Chayes showed
that the FKG property holds on events in this reduced model. In particular:

Proposition 7.7 ([11, Lemma on p. 211]). For all β > 0 and Λ ⋐ Z2, π+
β ,Λ satisfies the

following properties:

(1) For increasing subsets A,B⊆ {+,−}Λ: π+
β ,Λ(A | B)≥ π+

β ,Λ(A).

(2) If A is decreasing and B is increasing, then:π+
β ,Λ(A | B)≤ π+

β ,Λ(A).

(3) If ∆ ⊆ Λ and A is an increasing subset of{+,−}∆, then:π+
β ,∆(A)≥ π+

β ,Λ(A).
Proof.

(1) This is contained in [11, Lemma on p. 211].
(2) This is an immediate consequence of (1).
(3) This is a standard consequence of (1): LetB = +∂∆. Sinceg−1(B) is a sin-

gle configuration, namelyq∂∆, we obtain from the Markov property ofπωq

β ,Λ that

π+
β ,∆(A) = π+

β ,Λ(A | B). From (1), we haveπ+
β ,Λ(A | B)≥ π+

β ,Λ(A). Now, combine
the previous two statements.

�
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Remark 3. The preceding result immediately applies toπωq

β ,Λ for events inA Λ
q that are

measurable with respect to{+,−}Λ, viewed as a sub-algebra ofA Λ
q .

7.2.4. Volume monotonicity for the Widom-Rowlinson model with2 types.For the classical
Widom-Rowlinson model (q= 2), Higuchi and Takei showed that the FKG property holds.
In particular,

Proposition 7.8([21, Lemma 2.3]). Fix q= 2 and let∆ ⊆ Λ ⋐ Zd andλ > 0. Then:

(7.24) πλ
Λ (ωq)≤ πλ

∆ (ωq).

However, this kind of stochastic monotonicity can fail for generalq (see [17, p. 60]).

8. EXPONENTIAL CONVERGENCE OFπn IN Z2 LATTICE MODELS

In this section, we consider the Potts, Widom-Rowlinson andhard-core models and
establish exponential convergence results that will lead to pressure representation and ap-
proximation algorithms for these lattice models.

Recall that for the Potts model,πβ
y,z(ω) = πω(∂Sy,z)

β ,Sn
(θ (000) = ω(000)) and, in particular,

πβ
n (ω) = πω(∂Sn)

β ,Sn
(θ (000) = ω(000)), with similar notation for the Widom-Rowlinson and hard

core models.

8.1. Exponential convergence in the Potts model.

Theorem 8.1. For the Potts model with q types and inverse temperatureβ , there exists a
critical parameterβc(q) > 0 such that for0< β 6= βc(q), there exists C,α > 0 such that,
for every y,z≥ 111n:

(8.1)
∣

∣

∣
πβ

n (ωq)−πβ
y,z(ωq)

∣

∣

∣
≤Ce−αn.

Proof. In the supercritical regionβ > βc(q), our proof very closely follows [10, Theorem
3], which treated the Ising case. We fill in some details of their proof, adapting that proof
in two ways: to a half-plane version of their result (the quantities in (8.1) are effectively
half-plane quantities) and to the general Potts case. For the subcritical regionβ < βc(q),
the proposition will follow easily from [3, Theorem 1.8 (ii)].

Part I: β > βc(q). Let T−⋆
∂Sn

denote the event that there is a⋆-path of− from 000 to ∂Sn,

i.e. a path that runs along ordinaryZ2 bonds and diagonal bonds where the colour at each
site isnot q(in our context below, the configuration on the bottom piece∂↓Sy,z of ∂Sn will
be allq and thus a⋆-path of− from 000 to ∂Sn cannot terminate on∂↓Sn). Note that T−⋆

∂Sn

is an event that is measurable with respect to the sub-algebra{+,−}Λ, for any finite setΛ
containingSn, introduced in Section7.2.3(recall that this sub-algebra corresponds to the
reduced Potts model).

By decomposingπβ
y,z(ωq) into probabilities conditional on T−⋆

∂Sn
and(T−⋆

∂Sn
)c , we obtain:

πβ
n (ωq)−πβ

y,z(ωq)(8.2)

= πωq

β ,Sn
(θ (000) = q)−πωq

β ,Sy,z
(θ (000) = q)(8.3)

= πωq

β ,Sy,z
(T−⋆

∂Sn
)
(

πωq

β ,Sn
(θ (000) = q)−πωq

β ,Sy,z
(θ (000) = q|T−⋆

∂Sn
)
)

+(1−πωq

β ,Sy,z
(T−⋆

∂Sn
))
(

πωq

β ,Sn
(θ (000) = q)−πωq

β ,Sy,z
(θ (000) = q|(T−⋆

∂Sn
)c)

)

.(8.4)
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We claim that the expression in (8.2) is nonnegative. To see this, observe that the
events{ω(000) = q}, {ω(∂Sn) = q∂Sn} and{ω(∂Sy,z) = q∂Sy,z} may be viewed as the events
{ω(000) = +}, {ω(∂Sn) = +∂Sn} and{ω(∂Sn) = +∂Sy,z} in the sub-algebra{+,−}Sy,z of
the reduced model, as discussed in Section7.2.3. Now, apply Proposition7.7(part 3) and
Remark3.

We next claim that:

(8.5) πωq

β ,Sy,z
(θ (000) = q|(T−⋆

∂Sn
)c)≥ πωq

β ,Sn
(θ (000) = q).

To be precise, first observe thatω ∈ (T−⋆
∂Sn

)c iff ω contains an all-q path in Sn from

∂P∩{x1 < 0} to ∂P∩{x1 > 0}. So,(T−⋆
∂Sn

)c can be decomposed into a disjoint collection
of events determined by the unique furthest such path from 000. Using the MRF property of
Gibbs measures, it follows that we can regard each of these events as an increasing event
in {+,−}Sm. Now, apply Proposition7.7and Remark3. (The reader may notice that here
we have essentially used the strong Markov property (see [18, p. 1154]).)

Thus, (8.4) is nonpositive. This, together with the fact thatπωq

β ,Sn
(θ (000) = q|T−⋆

∂Sn
) = 0,

yields:

(8.6) 0≤ πβ
n (ωq)−πβ

y,z(ωq)≤ πωq

β ,Sy,z
(T−⋆

∂Sn
)πωq

β ,Sn
(θ (000) = q)≤ πωq

β ,Sy,z
(T−⋆

∂Sn
).

So, it suffices to show that supy,z≥111n πωq

β ,Sy,z
(T−⋆

∂Sn
) decays exponentially inn. Fix y,z≥ 111n

and letm> n such that 111m≥ y,z. By Proposition7.7(parts 2 and 3) and Remark3,

πωq

β ,Sy,z
(T−⋆

∂Sn
)≤ πωq

β ,Sm
(T−⋆

∂Sn
)(8.7)

= πωq

β ,Bm
(T−⋆

∂Sn
|qP)≤ πωq

β ,Bm
(T−⋆

∂Sn
)≤ πωq

β ,Bm
(T−⋆

∂Bn
).(8.8)

So, it suffices to show that supm>n πωq

β ,Bm
(T−⋆

∂Bn
) decays exponentially inn. Recall the

Edwards-Sokal couplingP(1)
p,q,Bm

for the Gibbs distribution and the corresponding bond

random-cluster measure with wired boundary conditionφ (1)
p,q,Bm

(see Section5.1).
W.l.o.g., let’s suppose thatn is even, i.e.n= 2k< m, for somek∈ N. We consider the

following two events in the bond random-cluster model, as in[11, Theorem 3]. LetRn be
the event of an open circuit in B2k \Bk that surrounds Bk. LetMn,m be the event in which
there is an open path from some site in Bk to ∂Bm. The joint occurrence of these two events
forces the Potts event(T−⋆

∂Bn
)c in the coupling:Rn∩Mn,m ⊆ (T−⋆

∂Bn
)c (here, technically, we

are identifying these events with their inverse images of the projections in the coupling).
Then, by the coupling property:

πωq

β ,Bm

(

(T−⋆
∂Bn

)c
)

= P
(1)
p,q,Bm

(

(T−⋆
∂Bn

)c
)

(8.9)

≥ P
(1)
p,q,Bm

(

(T−⋆
∂Bn

)c
∣

∣

∣
Rn∩Mn,m

)

P
(1)
p,q,Bm

(Rn∩Mn,m)(8.10)

= φ (1)
p,q,Bm

(Rn∩Mn,m) ,(8.11)

so:

(8.12) πωq

β ,Bm
(T−⋆

∂Bn
)≤ 1−φ (1)

p,q,Bm
(Rn∩Mn,m)≤ φ (1)

p,q,Bm
(Rc

n)+φ (1)
p,q,Bm

(Mc
n,m).

Therefore,

(8.13) sup
m>n

πωq

β ,Bm
(T−⋆

∂Bn
)≤ sup

m>n
φ (1)

p,q,Bm
(Rc

n)+ sup
m>n

φ (1)
p,q,Bm

(Mc
n,m).
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The first term on the right hand side of (8.13) is bounded from above as follows:

φ (1)
p,q,Bm

(Rc
n)≤ φ (1)

p,q,B̃m+1
(Rc

n)(8.14)

≤ ∑
x∈∂Bk,y∈∂ B2k

φ (0)
p∗,q,Bm+1

(x↔ y)(8.15)

≤ ∑
x∈∂Bk,y∈∂ B2k

φp∗,q(x↔ y),(8.16)

whereB̃m = [−m+ 1,m]2 ∩Z2 and p∗ denotes the dual ofp and the inequalities follow
from Proposition5.3and Theorem7.4.

If p> pc(q), thenp∗ < pc(q), and by Theorem7.5, the first term on the right side of
(8.13) is upper bounded by 64C(p∗,q)n2exp(−c(p∗,q)n/4), since|∂Bk||∂B2k| ≤ 64n2 and
‖x− y‖2 ≥ k−1≥ n

4, for all x∈ ∂Bk andy∈ ∂B2k. So, the first term on the right side of
(8.13) decays exponentially.

As for the second term, in order forMn,m to fail to occur, there must be a closed circuit
in Bm \ Bk and in particular a closed path fromLm,n := Bm \ Bk ∩ {x1 < 0,x2 = 0} to
Rm,n := Bm\Bk∩{x1 > 0,x2 = 0} in Bm. Thus,

φ (1)
p,q,Bm

(Mc
n,m)≤ φ (1)

p,q,B̃m+1
(Mc

n,m)(8.17)

≤ ∑
x∈Lm,n,y∈Rm,n

φ (0)
p∗,q,Bm+1

(x↔ y)(8.18)

≤ ∑
x∈Lm,n,y∈Rm,n

φp∗,q(x↔ y),(8.19)

where the last inequality follows by Proposition5.3and Proposition7.4. By Theorem7.5,
this is less than:

∑
i=n, j=n

C(p∗,q)e−c(p∗,q)(i+ j) ≤C(p∗,q)

(

e−c(p∗,q)n 1

1−e−c(p∗,q)

)2

(8.20)

=
C(p∗,q)

(1−e−c(p∗,q))2
e−2c(p∗,q)n.(8.21)

Thus, the 2nd term on the right side of (8.13) decays exponentially, so supm>n πωq

β ,m(T
−⋆
∂Bn

)

decays exponentially inn. Thus, by (8.7) supm>n πωq

β ,m(T
−⋆
∂Sn

) also decays exponentially in
n, as desired.

Part II: β < βc(q). Recall from Section7 the notions of strong spatial mixing and ratio
strong mixing property.

Theorem 8.2([3, Theorem 1.8 (ii)]). For theZ2 Potts model with q types and inverse tem-
peratureβ , if 0< β < βc(q) and exponential decay of the two-point connectivity function
holds for the corresponding random-cluster model, then the(unique) Potts Gibbs measure
satisfies the ratio strong mixing property for the class of finite simply lattice-connected
sets.

Corollary 1. For theZ2 Potts model with q types and inverse temperature0< β < βc(q),
the specificationπFP

β satisfies exponential SSM for the family of sets{Sy,z}y,z≥0.

Proof. This follows immediately from Theorem7.5, Theorem8.2and Proposition7.1. �
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Then, since exponential SSM holds for the class of finite simply lattice-connected sets
whenβ < βc(q), the desired result follows directly from Proposition7.2.

This completes the proof of Theorem8.1. �

8.2. Exponential convergence in the Widom-Rowlinson model.Recall that for Bernoulli
site percolation inZ2 there exists a probability parameterpc, known as thepercolation
threshold, such that forp < pc, there is no infinite cluster of 1’sψp,Z2-almost surely and
for p> pc, there is such a clusterψp,Z2-almost surely. Similarly, one can define an analo-
gous parameterp⋆c for the latticeZ2,⋆, which satisfiespc+ p⋆c = 1 (see [37]).

Theorem 8.3. For the Widom-Rowlinson model with q types and activityλ , there exist two
critical parameters0< λ1(q) < λ2(q) such that forλ < λ1(q) or λ > λ2(q), there exists
C,α > 0 such that, for every y,z≥ 111n:

(8.22)
∣

∣

∣
πλ

n (ωq)−πλ
y,z(ωq)

∣

∣

∣
≤Ce−αn.

Proof. As in the proof of Theorem8.1, we split the proof in two parts.

Part I: λ > λ2(q) := q3
(

pc
1−pc

)

. Fix n∈N andy,z≥ 111n. Notice that, due to the constraints

of the Widom-Rowlinson model, and recalling Proposition5.4:

(8.23) πλ
y,z(ωq) = πωq

λ ,Sy,z
(θ (000) = q) = ψ(1)

p,q,Sy,z
(θ (000) = 1),

wherep= λ
1+λ , and the same holds forπλ

n (ωq). Then, it suffices to prove that:

(8.24)
∣

∣

∣
ψ(1)

p,q,Sn
(θ (000) = 1)−ψ(1)

p,q,Sy,z
(θ (000) = 1)

∣

∣

∣
≤Ce−αn,

for someC,α > 0.
Notice that 000∈ Sn ⊆ Sy,z =: Λ. Fix any ordering on the setΛ. From now on, when we

talk about comparing sites inΛ, it is assumed we are speaking of this ordering. For con-
venience, we will extend configurations onSn andΛ to configurations onΛ by appending
1Λ\Sn and 1∂Λ, respectively.

Now, we will proceed to define a couplingPn,y,z of ψ(1)
p,q,Sn

andψ(1)
p,q,Λ, defined on pairs

of configurations(θ1,θ2) ∈ {0,1}Λ ×{0,1}Λ. The coupling is defined one site at a time,
using values from previously defined sites.

We use(τt
1,τ

t
2) to denote the (incomplete) configurations onΛ×Λ at stept = 0,1, . . . , |Sn|.

We therefore begin withτ0
1 = 1Λ\Sn andτ0

2 = 1∂Λ. Next, we setτ1
1 = τ0

1 and formτ1
2 by

extendingτ0
2 to Λ\Sn, choosing randomly according to the distributionψ(1)

p,q,Λ
(

·
∣

∣1∂Λ). At

this point of the construction, bothτ1
1 andτ1

2 have shapeΛ \Sn. In the end,(τ |Sn|
1 ,τ |Sn|

2 )
will give as a result a pair(θ1,θ2).

At any stept, we useWt to denote the set of sites inΛ on whichτt
1 andτt

2 have already
received values in previous steps. In particular,W1 = Λ\Sn. At an arbitrary stept of the
construction, we choose the next sitext+1 on which to assign values inτt+1

1 andτt+1
2 as

follows:

(i) If possible, takext+1 to be the smallest site in∂ ⋆Wt that is⋆-adjacent to a site
y∈Wt for which (τt

1(y),τ
t
2(y)) 6= (1,1).

(ii) Otherwise, just takext+1 to be the smallest site in∂ ⋆Wt .

Notice that at any stept, Wt is a⋆-connected set, and that it it always possible to find
the next sitext+1 for anyt < |Sn| (i.e. the two rules above give a well defined procedure).
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Now we are ready to augment the coupling fromWt to Wt ∪ {xt+1} by assigning

τt+1
1 (xt+1) and τt+1

2 (xt+1) according to an optimal coupling ofψ(1)
p,q,Sn

(·|τt
1)
∣

∣

∣

{xt+1}
and

ψ(1)
p,q,Sy,z

(· | τt
2)
∣

∣

∣

{xt+1}
, i.e. a coupling which minimizes the probability that, given (τt

1,τ
t
2),

θ1(xt+1) 6= θ2(xt+1). SincePn,y,z is defined site-wise, and at each step is assigned accord-

ing to ψ(1)
p,q,Sn

(·|τt
1) in the first coordinate andψ(1)

p,q,Sy,z
(· | τt

2) in the second, the reader may

check that it is indeed a coupling ofψ(1)
p,q,Sn

andψ(1)
p,q,Sy,z

. The key property ofPn,y,z is the
following.

Lemma 8.4. θ1(000) 6= θ2(000) Pn,y,z-a.s. if and only if there exists a pathT of ⋆-adjacent
sites from000 to ∂Sn, such that for each site y∈ T, (θ1(y),θ2(y)) 6= (1,1).

Proof. Suppose, for a contradiction, thatθ1(000) 6= θ2(000) and there exists no such path. This
implies that there exists a circuit C surrounding 000 (when we include the bottom boundary
as part of C) and contained inSn such that for ally∈ C, (θ1(y),θ2(y)) = (1,1). Define by
I the simply lattice-⋆-connected set of sites in the interior of C and, let’s say that at timet0,
xt0 was the first site withinI defined according to the site-by-site evolution ofPn,y,z. Then,
(τt0

1 (x
t0),τt0

2 (x
t0)) cannot have been defined according to rule (i) since all sites⋆-adjacent to

xt0 are either inI (and therefore not yet defined by definition ofxt0), or on C (and therefore
either not yet defined or sites at whichθ1 andθ2 are both 1).

Therefore,(θ1(xt0),θ2(xt0)) was defined according to rule (ii). We therefore define the
setD := Λ\Wt0−1 ⊇ I , and note that 000 andxt0 belong to the same⋆-connected component
Θ of D. We also know thatτt0−1

1 (∂ ⋆D) = τt0−1
2 (∂ ⋆D) = 1∂ ⋆D, otherwise some unassigned

site in D would be⋆-adjacent to a 0 in eitherτt0−1
1 (∂ ⋆D) or τt0−1

2 (∂ ⋆D), and so rule (i)
would be applied instead. We may now apply Lemma5.5 (combined with Remark1) to

Θ andΛ in order to see thatψ(1)
p,q,Sn

(θ1(Θ)|τt0−1
1 ) andψ(1)

p,q,Sy,z
(θ2(Θ)|τt0−1

2 ) are identical.

This means that the optimal coupling according to whichτt0
1 (x

t0) andτt0
2 (x

t0) are assigned
is supported on the diagonal, and soτt0

1 (x
t0) = τt0

2 (x
t0), Pn,y,z-almost surely. This will

not change the conditions under which we applied Lemma5.5, and so inductively, the
same will be true for each site inI as it is assigned, including 000. We have shown that
θ1(000) = θ2(000), Pn,y,z-almost surely, regardless of when 000 is assigned in the site-by-site
evolution ofPn,y,z. This is a contradiction, and so our original assumption wasincorrect,
implying that the desired path T exists. �

Given an arbitrary timet, let:

(8.25) ρ t
1(·) := ψ(1)

p,q,Sn
(·|τt−1

i )
∣

∣

∣

{xt}
and ρ t

2(·) := ψ(1)
p,q,Λ(·|τt−1

i )
∣

∣

∣

{xt}

be the two corresponding probability measures defined on theset {0,1}{xt}. Note that
at any step within the site-by-site definition ofPn,y,z, Lemma7.6 implies that λ

λ+q3 ≤
ρ t

i (1), whereλ = p
1−p and i = 1,2. Now, w.l.o.g., suppose thatρ t

2(0) ≥ ρ t
1(0). Then,

an optimal couplingQt of ρ t
1 andρ t

2 will assignQt({(0,0)}) = ρ t
1(0), Q

t({(0,1)}) = 0,
Qt({(1,0)}) = ρ t

2(0)−ρ t
1(0), andQt({(1,1)}) = 1−ρ t

2(0). Therefore,

(8.26) Qt({(1,1)}c) = ρ t
2(0)≤

q3

λ +q3 .
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Next, define the maph : {0,1}Sn ×{0,1}Sn → {0,1}Sn given by:

(8.27) (h(θ1,θ2))(x) =

{

1 if (θ1(x),θ2(x)) 6= (1,1),

0 if (θ1(x),θ2(x)) = (1,1).

By (8.26), h∗Pn,y,z (the push-forward measure) can be coupled against an i.i.d.measure

on {0,1}Sn which assigns 1 with probabilityq3

λ+q3 and 0 with probability λ
λ+q3 , and that

the former is stochastically dominated by the latter. This,together with Lemma8.4, yields
∣

∣

∣
ψ(1)

p,q,Sn
(θ (000) = 1)−ψ(1)

p,q,Sy,z
(θ (000) = 1)

∣

∣

∣
≤ Pn,y,z(θ1(000) 6= θ2(000))(8.28)

≤ ψ q3

λ+q3 ,Sn
(000

⋆↔ ∂Sn),(8.29)

Since we have assumedλ > q3
(

pc
1−pc

)

andpc+ p⋆c = 1, we have q3

λ+q3 < p⋆c. It follows

by [1, 32] that the expression in (8.29) decays exponentially inn. This completes the proof.

Part II: λ < λ1(q) := 1
q

(

pc
1−pc

)

. Observe that, by virtue of Proposition7.2, it suffices to

prove thatπWR
λ satisfies exponential SSM. For this, we use Theorem7.3. By considering

all cases of nearest-neighbour configurations at the origin, one can compute:

(8.30) Q(πWR
λ ) = max

ω1,ω2∈Ω(E )
dTV(πω1

λ ,{000},π
ω2
λ ,{000}) =

qλ
1+qλ

.

By Theorem7.3, we obtain exponential SSM when:

(8.31) λ <
1
q

(

pc

1− pc

)

= λ1(q).

Uniqueness of Gibbs states in this same region was mentionedin [19, p. 40], by appeal-
ing to [7, Theorem 1] (which is the crux of Theorem7.3). �

Remark 4. In the case q= 2, it is possible to give an alternative proof of Theorem8.3,
Part I, using the framework of the proof of Theorem8.1, Part I. The arguments through
(8.7) go through, with an appropriate re-definition of events anduse of Proposition7.8
for stochastic dominance. One can then apply Lemma7.6 to give estimates based on the
site random-cluster model. (In contrast to Theorem8.1, Part I, this does not require the
use of planar duality). So far, this approach is limited to q= 2 because we do not know
appropriate versions of Proposition7.8for q> 2.

8.3. Exponential convergence in the hard-core model.Our argument again relies on
proving exponential convergence for conditional measureswith respect to certain “ex-
tremal” boundaries onSn, but these now will consist of alternating 0 and 1 symbols rather
than a single symbol (recall from Section4.3 that ω(o) is defined as the configuration of
1’s on all even sites and 0 on all odd sites).

Theorem 8.5. For theZ2 hard-core model with activityγ, there exist two critical param-
eters0< γ1 < γ2 such that for any0< γ < γ1 or γ > γ2, there exist C,α > 0 such that for
every y,z≥ 111n,

(8.32)
∣

∣

∣
πγ

n(ω
(o))−πγ

y,z(ω
(o))

∣

∣

∣
≤Ce−αn.
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Proof. As in the previous two theorems, we consider two cases.

Part I: γ > γ2 := 468. Our proof essentially combines the disagreement percolation tech-
niques of [7] and the proof of non-uniqueness of equilibrium state for the hard-core model
due to Dobrushin (see [13]). We need enough details not technically contained in either
proof that we present a mostly self-contained argument here. From [7, Theorem 1] and
an averaging argument (as in the proof of Proposition7.2) on ∂↑Sn induced by a boundary
condition onSy,z, we know that for anyy,z≥ 111n,

(8.33)
∣

∣

∣
πγ

n(ω(o))−πγ
y,z(ω(o))

∣

∣

∣
≤ Pn,y,z

(

∃ a path of disagreement from 000↔ ∂↑Sn
)

for a certain couplingPn,y,z of πω(o)

γ,Sn
and πω(o)

γ,Sy,z

∣

∣

∣

Sn
. We do not need the structure ofPn,y,z

here, but instead note the following: a path of disagreementfor the boundariesω(o)(∂Sn)

andω(o)(∂Sy,z) implies that in one of the configurations, all entries on the path will be “out
of phase” with respect toω(o), i.e. that all entries along the path will have 1 at every odd
site and 0 at every even site rather than the opposite alternating pattern ofω(o). Then, if
we denote byTn the event that there is a path T from 000 ↔ ∂↑Sn with 1 at every odd site
and 0 at every even site, it is clear that:

(8.34) Pn,y,z
(

∃ a path of disagreement from 000↔ ∂↑Sn
)

≤ πω(o)

γ,Sn
(Tn)+πω(o)

γ,Sy,z
(Tn).

Sincey,z≥ 111n are arbitrary (in particular,y andzcan be chosen to be 111n), it suffices to

prove that supy,z≥111n πω(o)

γ,Sy,z
(Tn) decays exponentially withn. Define the set:

(8.35) Θy,z = {θ ∈ {0,1}S
⋆
y,z : θ is feasible andθ (∂ ⋆Sy,z) = ω(o)(∂ ⋆Sy,z)}.

For anyθ ∈ Θy,z, we defineΣ000(θ ) to be the connected component ofΣSy,z(θ ,ω(o))

(= {x∈ Sy,z : θ (x) 6= ω(o)(x)}) containing the origin 000. SinceTn ⊆ {Σ000(θ )∩ ∂↑Sn 6= /0},
our proof will then be complete if we can show that there existC,α > 0 so that for anyn
andy,z≥ 111n, the following holds:

(8.36) πω(o)

γ,Sy,z
(Σ000(θ )∩∂↑Sn 6= /0)≤Ce−αn.

To prove this, we use a Peierls argument, similar to [13].
Fix anyy,z≥ 111n and for anyθ ∈ Θy,z, defineΣ000(θ ) as above, and letK(θ ) to be the

connected component of{x ∈ S
⋆
y,z : θ (x) = ω(o)(x)} containing∂ ⋆Sy,z. Clearly, Σ000(θ )

andK(θ ) are disjoint,K(θ ) 6= /0 and, providedθ (000) = 0, Σ000(θ ) 6= /0. Then, defineΓ(θ ) :=
Σ000(θ )∩∂K(θ )⊆Sy,z. We note that for anyθ ∈Θy,z with θ (000)= 0, we have thatθ (Γ(θ )) =
0Γ(θ), since adjacent sites inΣ000(θ ) andK(θ ) must have the same letter by definition of
Σ000(θ ), and adjacent 1 symbols are forbidden in the hard-core model. Therefore, every
x∈ Γ(θ ) is even.

We need the concept ofinner external boundaryfor a connected setΣ ⋐ Z2. The inner
external boundary ofΣ is defined to be the inner boundary of the simply lattice-connected
set consisting of the union ofΣ and the union of all the finite components ofZ2 \Σ. Intu-
itively, the inner external boundary ofΣ is the inner boundary of the setΣ obtained after
“filling in the holes” ofΣ. Notice that the setΓ(θ ) corresponds exactly to the inner external
boundary ofΣ000(θ ). In addition, by [12, Lemma 2.1 (i)], we know that the inner external
boundary of a finite connected set (more generally a finite⋆-connected set) is⋆-connected.
Thus,Γ(θ ) ⊆ Sy,z is a⋆-connected set C⋆ that consists only of even sites and contains the
origin 000, for anyθ ∈ Θy,z with θ (000) = 0.
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Then, for C⋆ ⊆ Sy,z, we define the eventEC⋆ := {θ ∈ Θy,z : Γ(θ ) = C⋆}, and will bound

from aboveπω(o)

γ,Sy,z
(EC⋆), for every C⋆ such thatEC⋆ is nonempty. We make some more

notation: for every such a set C⋆, defineO(C⋆) (for ‘outside’) as the connected component
of (C⋆)c containing∂ ⋆Sy,z, and defineI(C⋆) (for ‘inside’) asSy,z\ (C⋆∪O(C⋆)). Then C⋆,
I(C⋆), andO(C⋆) form a partition ofS

⋆
y,z. We note that there cannot be a pair of adjacent

sites fromI(C⋆) andO(C⋆) respectively, since they would then be in the same connected
component of(C⋆)c. We also note that for everyθ ∈ EC⋆ , C⋆ ⊆ Σ000(θ ) ⊆ C⋆ ∪ I(C⋆)
andK(θ ) ⊆ O(C⋆) though the sets need not be equal, sinceΣ000(θ ) or K(θ ) could contain
“holes” which are “filled in” inI(C⋆) andO(C⋆), respectively.

0

1

0 1

101

1 1

1

01

01

0

1 1

1

1

0

0

0 1

1

0

0

0 0

01

1

11

11

0

0

0

0

0

0

00

00

01

0

0

1

1

1 0 0 0 0 0 0 0

0

0

0

0000

000

0

0 0

01

01

0

0

1

0

1

0

0 0

0

1

01

0

0

0 1

0

0 1

0

0

0

0 1

1 00

0

0

0

0

0

1

1

0

0 0

0

0 0

0

0

0

0

00000000

0

1 1 1

1

1

1

1

1111 1

111111

1

1

1 1 1 1

0

0

0

000

000

0

origin

FIGURE 2. A configurationθ ∈ EC⋆ . On the left, the associated sets
Σ000(θ ) andK(θ ). On the right, the setsI(C⋆) andO(C⋆) for Γ(θ ) = C⋆.

Choose any set C⋆ such thatEC⋆ 6= /0. For eachθ ∈ EC⋆ andx∈ C⋆, using the definition
of C⋆ and the fact thatK(θ )⊆O(C⋆), there existsx0 ∈{e1,−e1,e2,−e2} for whichx−x0 ∈
O(C⋆). Fix anx0 which is associated to at least|C⋆|/4 of the sites in C⋆ in this way. Then,

we define a functions : EC⋆ → {0,1}S
⋆
y,z that, givenθ ∈ EC⋆ , defines a new configuration

s(θ ) as follows:

(8.37) (s(θ ))(x) =



















θ (x− x0) if x∈ I(C⋆),

θ (x) if x∈ O(C⋆),

1 if x∈ C⋆ andx− x0 ∈ O(C⋆),

0 if x∈ C⋆ andx− x0 ∈ I(C⋆).

Informally, we move all 1 symbols insideI(C⋆) in the x0-direction by 1 unit (even if
those symbols were not part ofΣ000(θ )), add new 1 symbols at some sites in C⋆, and leave
everything inO(C⋆) unchanged.

It should be clear thats(θ ) has at least|C⋆|/4 more 1 symbols thanθ did. We make the
following two claims: s is injective onEC⋆ , and for everyθ ∈ EC⋆ , s(θ ) ∈ Θy,z. If these
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claims are true, then clearlyπω(o)

γ,Sy,z
(s(EC⋆))≥ γ |C⋆|/4πω(o)

γ,Sy,z
(EC⋆), implying that:

(8.38) πω(o)

γ,Sy,z
(EC⋆)≤ γ−|C⋆|/4.

Firstly, we show thats is injective. Suppose thatθ1 6= θ2, for θ1,θ2 ∈ EC⋆ . Then there is
a sitex at whichθ1(x) 6= θ2(x). If x∈O(C⋆), then(s(θ1))(x) = θ1(x) 6= θ2(x) = (s(θ2))(x)
and sos(θ1) 6= s(θ2). If x∈ I(C⋆), then(s(θ1))(x+x0) = θ1(x) 6= θ2(x) = (s(θ2))(x+x0),
and agains(θ1) 6= s(θ2). Finally, we note thatx cannot be in C⋆, since at all sites in C⋆,
bothθ1 andθ2 must have 0 symbols.

Secondly, we show that for anyθ ∈ EC⋆ , s(θ ) is feasible. All that must be shown is
that s(θ ) does not contain adjacent 1 symbols. We break 1 symbols ins(θ ) into three
categories:

(1) shifted, meaning that the 1 symbol came from shifting a 1 symbol at a site in I(C⋆)
in thex0-direction,

(2) new, meaning that the 1 symbol was placed at a sitex ∈ C⋆ such thatx− x0 ∈
O(C⋆), or

(3) untouched, meaning that the 1 symbol was at a site inO(C⋆) (⊇ ∂ ⋆Sy,z).

Note that untouched 1 symbols cannot be adjacent to C⋆: θ contains all 0 symbols on
C⋆, and so since C⋆ ⊆ Σ000(θ ), a 1 symbol adjacent to a symbol in C⋆ would be inΣ000(θ ) as
well, a contradiction sinceΣ000(θ )⊆ C⋆∪ I(C⋆), and soΣ000(θ ) andO(C⋆) are disjoint.

Clearly shifted 1 symbols cannot be adjacent to each other, since there were no adjacent
1 symbols inθ . All new 1’s were placed at sites in C⋆, and all sites in C⋆ are even, so new
1 symbols can’t be adjacent to each other. Untouched 1’s can’t be adjacent for the same
reason as shifted 1’s. We now address the possibility of adjacent 1 symbols ins(θ ) from
different categories. A shifted or new 1 ins(θ ) is at a site in C⋆∪ I(C⋆), and an untouched
1 can’t be adjacent to a site in C⋆ as explained above, and also cannot be adjacent to a site
in I(C⋆) sinceI(C⋆) andO(C⋆) do not contain adjacent sites. Therefore, shifted or new 1’s
can’t be adjacent to untouched 1’s. The only remaining case which we need to rule out is a
new 1 adjacent to a shifted 1. Suppose that(s(θ ))(x) is a new 1 and(s(θ ))(x′) is a shifted
1. Then by definition,x′−x0 ∈ I(C⋆) andx−x0 ∈ O(C⋆). We know thatI(C⋆) andO(C⋆)
do not contain adjacent sites, sox− x0 andx′− x0 are not adjacent, implying thatx andx′

are not adjacent. We’ve then shown thats(θ ) is feasible and then, since∂ ⋆Sy,z ⊆ O(C⋆),
s(θ ) ∈ Θy,z, completing the proof of (8.38).

Recall that every set C⋆ which we are considering is⋆-connected, occupies only even
sites, and contains the origin 000. Then, givenk ∈ N, it is direct to see that the number of
such C⋆ with |C⋆| = k is less than or equal tok · t(k), wheret(k) denotes the number of
site animals(see [25] for the definition) of sizek (the firstk factor comes from the fact that
site animals are defined up to translation, and here given a site animal of sizek, exactly
k translations of it will contain the origin 000). We know that for everyε > 0 there exists
Cε > 0 such thatt(k) ≤ Cε(δ + ε)k for everyk, whereδ := limk→∞ (t(k))1/k ≤ 4.649551
(see [25]).

If Σ000(θ )∩ ∂↑Sn 6= /0, thenΣ000(θ ) has to intersect the left, top or right boundary ofSn.
W.l.o.g., we may assume thatΣ000(θ ) intersects the right boundary ofSn. Then, every verti-
cal segment in the right half ofSn must intersectΣ000(θ ) and, therefore, at least one element
of its inner external boundary, namelyΓ(θ ). Then:

(8.39) Σ000(θ )∩∂↑Sn 6= /0 =⇒ |Γ(θ )| ≥ n.
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Therefore, taking an arbitraryε > 0, we may boundπω(o)

γ,Sy,z
(Σ000(θ )∩ ∂↑Sn 6= /0) from

above:

(8.40) πω(o)

γ,Sy,z
(Σ000(θ )∩∂↑Sn 6= /0)≤ ∑

C⋆:|C⋆|≥n

γ−|C⋆|/4 ≤
∞

∑
k=n

kCε (δ + ε)k · γ−k/4,

which decays exponentially inn as long asγ > (δ +ε)4, independently ofy andz. Sinceε
was arbitrary,γ > 468> δ 4 suffices for justifying (8.36), completing the proof.

Part II: γ < γ1 := 2.48. It is known (see [39]) that whend = 2 andγ < 2.48,πHC
γ satisfies

exponential SSM. Then, by applying Proposition7.2, we conclude. �

9. POLY-TIME APPROXIMATION FOR PRESSURE OFZ2 LATTICE MODELS

By apoly-time approximation algorithmto compute a numberr, we mean an algorithm
that, givenN ∈N, produces an estimaterN such that|r − rN|< 1

N and the time to compute
rN is polynomial inN.

Theorem 9.1. Let Φ be a n.n. interaction for a set of restrictionsE and suppose that
Ω(E ) satisfies the square block D-condition. Letω ∈ Ω(E ) be a periodic point such that
cπ(νω )> 0. In addition, suppose that there exists C,α > 0 such that, for every y,z≥ 111n:

(9.1)
∣

∣πn(ω)−πy,z(ω)
∣

∣ ≤Ce−αn overω ∈ O(ω).

Then:

(9.2) P(Φ) =
1

|O(ω)| ∑
ω∈O(ω)

Îπ(ω)+AΦ(ω),

and there is a poly-time approximation algorithm to computeP(Φ), when d= 2.

Proof. Notice that supp(νω )=O(ω)⊆Ω(E ), sinceΩ(E ) is shift-invariant andω ∈Ω(E ).
Now, since

∣

∣πn(ω)−πy,z(ω)
∣

∣ ≤ Ce−αn overω ∈ supp(νω ), we can easily conclude that
limy,z→∞ πy,z(ω) = π̂(ω) uniformly overω ∈ supp(νω ). This, combined withΩ(E ) satis-
fying the square block D-condition and cπ(νω )> 0, gives us

(9.3) P(Φ) =
∫

(

Îπ +AΦ
)

dνω =
1

|supp(νω)| ∑
ω∈supp(νω )

Îπ(ω)+AΦ(ω),

thanks to Theorem6.3.
For the algorithm, it suffices to show that there is a poly-time algorithm to compute

π̂(ω), for anyω ∈ O(ω).
By Equation9.1, there existC,α > 0 such that|πn(ω)− π̂(ω)| < Ce−αn. Since|∂Sn|

is linear inn whend = 2, by a modified transfer matrix approach (see [31, Lemma 4.8]),
we can computeπn(ω) in exponential timeKeρn for someK,ρ > 0. Combining the ex-
ponential time to computeπn(ω) for the exponential decay of|πn(ω)− π̂(ω)|, we get a
poly-time algorithm to compute P(Φ): namely, givenN ∈ N, let n be the smallest integer
such thatCe−α(n+1) < 1

N . Thenπn+1(ω) is within 1
N of π̂(ω) and since1

N ≤ Ce−αn, the
time to computeπn+1(ω) is at most:

(9.4) Keρ(n+1) = (KeρCρ/α)
1

(Ce−αn)ρ/α ≤ (KeρCρ/α)Nρ/α ,

which is a polynomial inN. �

Corollary 2. The following holds:
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(1) For theZ2 Potts model with q types and inverse temperatureβ > 0:

(9.5) P(Φβ ) = Îβ
π (ωq)+2β .

(2) For the Z2 Widom-Rowlinson model with q types and activityλ ∈ (0,λ1(q))∪
(λ2(q),∞):

(9.6) P(Φλ ) = Îλ
π (ωq)+ logλ ,

whereλ1(q) := 1
q

(

pc
1−pc

)

andλ2(q) := q3
(

pc
1−pc

)

.

(3) For theZ2 hard-core model with activityγ ∈ (0,γ1)∪ (γ2,∞):

(9.7) P(Φγ ) =
1
2

Î γ
π(ω(o))+

1
2

logγ,

whereγ1 = 2.48andγ2 = 468.

Moreover, for the three models in the corresponding regions(except in the case when
β = βc(q) in the Potts model), the pressure can be approximated in poly-time, where the
polynomial involved depends on the parameters of the models.

Proof. The representation of the pressure given in the previous statement for theZ2 Potts
model withq types and inverse temperatureβ 6= βc(q), theZ2 Widom-Rowlinson model
with q types and activityλ ∈ (0,λ1(q))∪(λ2(q),∞) and theZ2 hard-core model with activ-
ity γ ∈ (0,γ1)∪ (γ2,∞), is a direct consequence of Theorem9.1, by virtue of the following
facts:

• Recall that the corresponding n.n. SFTΩ(E ) for the Potts, Widom-Rowlinson
and hard-core model has a safe symbol, respectively, soΩ(E ) satisfies the square
block D-condition andcπ(ν)> 0, for any shift-invariantν with supp(ν)⊆ Ω(E ),
in each case.

• If we consider the delta-measureν = νωq = δωq, both in the Potts and Widom-
Rowlinson cases (in a slight abuse of notation, since the Potts and Widom-Row-

linsonσ -algebras are defined in different alphabets), or the measure ν = νω(o)
=

1
2δω(e) +

1
2δω(o) in the hard-core case, we have that in all three models, for the

range of parameters specified, except for whenβ = βc(q) in the Potts model, there
existsC,α > 0 such that, for everyy,z≥ 111n:

(9.8)
∣

∣πn(ω)−πy,z(ω)
∣

∣≤Ce−αn, overω ∈ supp(ν),

thanks to Theorem8.1, Theorem8.3and Theorem8.5, respectively. (Notice that
Î γ
π(ω(e)) = AΦ(ω(e)) = 0.)

This proves (9.5), (9.6) and (9.7), except in the Potts case whenβ = βc. To establish
this case, first note that it is easy to prove that P(Φβ ) is continuous with respect toβ .

Second, ifβ1 ≤ β2, thenπβ1
n (ωq)≤ πβ2

n (ωq). This follows by the Edwards-Sokal coupling
(see Theorem5.2) and the comparison inequalities for the bond random-cluster model [2,
Theorem 4.1].

As an exercise in analysis, it is not difficult to prove that ifam,n ≥ 0, and eacham+1,n ≤
am,n andam,n+1 ≤ am,n, then limm limnam,n = limn limmam,n = a, for somea≥ 0.

Now, consider the sequenceam,n := πβc(q)+ 1
m

n (ωq). By stochastic dominance (see Propo-
sition 7.7), am,n is decreasing inn. By the previous discussion (Edwards-Sokal coupling),
it is also decreasing inm. Therefore, and sinceam,n ≥ 0, we conclude that limm limnam,n =
limn limmam,n = a, for somea.
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Then, we have that:

P(Φβc(q)) = lim
m

P(Φβc(q)+
1
m
)(9.9)

= lim
m

− loglim
n

πβc(q)+
1
m

n (ωq)+2

(

βc(q)+
1
m

)

(9.10)

=− loglim
m

lim
n

πβc(q)+
1
m

n (ωq)+2βc(q)(9.11)

=− loglim
n

lim
m

πβc(q)+ 1
m

n (ωq)+2βc(q)(9.12)

=− loglim
n

πβc(q)
n (ωq)+2βc(q)(9.13)

= Îβc(q)
π (ωq)+2βc(q).(9.14)

(To prove that limmπβc(q)+ 1
m

n (ωq) = πβc(q)
n (ωq) is straightforward.)

Finally, the algorithmic implications are also a direct application of Theorem9.1. �

Remark 5. The algorithm given in Theorem9.1 seems to require explicit bounds on the
constants C andα, so that given N∈N, we can find an explicit n such that Ce−α(n+1) < 1

N .
Without such bounds, while there exists a poly-time algorithm, we do not always know how
to exhibit an explicit algorithm. However, for all three models, for regions sufficiently deep
within the supercritical region (i.e.β , λ or γ sufficiently large), one can find crude, but
adequate, estimates on C andα and thus can exhibit a poly-time algorithm. This is the case
for the hard-core model, where our proof does allow an explicit estimate of the constants
for any γ > 468. On the other hand, in the regions specified in Corollary2 within the
subcritical region, all three models satisfy exponential SSM and then using [31, Corollary
4.7], one can, in principle, exhibit a poly-time algorithm (even without estimates on C and
α).
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