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ABSTRACT. We develop a new pressure representation theorem for stewighbour
Gibbs interactions and apply this to obtain the existencefiidient algorithms for ap-
proximating the pressure in the 2-dimensional ferromagrfeotts, multi-type Widom-
Rowlinson and hard-core models. For Potts, our results/dpmvery inverse temperature
but the critical. For Widom-Rowlinson and hard-core, thpplg to certain subsets of both
the subcritical and supercritical regions. The main ngwveitour work is in the latter.

arXiv:1508.06590v1 [math.DS] 26 Aug 2015

CONTENTS
1. Introduction 2
2. Definitions and preliminaries 5
2.1. Hypercubic lattic&d 5
2.2. Configuration spaces 6
2.3. Borel probability measures 6
2.4. Markov random fields 6
3. Specifications, Gibbs measures and pressure 7
3.1. Gibbs specifications 7
3.2. Gibbs measures 8
3.3. Pressure 8
4. Main models: Potts, Widom-Rowlinson and hard-core 9
4.1. The (ferromagnetic) Potts model 9
4.2. The (multi-type) Widom-Rowlinson model 9
4.3. The hard-core lattice gas model 10
5. Random-cluster models 10
5.1. The bond random-cluster model and the Potts model 11
5.2. The site random-cluster model and the Widom-Rowlimaodel 13
6. Pressure representation 15
6.1. Variational principle 15
6.2. The functiontand additional notation 16
6.3. Pressure representation theorem 17
7. Spatial mixing and stochastic dominance 19
7.1. Spatial mixing properties 20
7.2. Stochastic dominance 22
8. Exponential convergence o in Z? lattice models 24
8.1. Exponential convergence in the Potts model 24
8.2. Exponential convergence in the Widom-Rowlinson model 27

2010Mathematics Subject ClassificatioB2B20, 37D35, 37B10, 68W25.
Key words and phraseressure , Gibbs measure, Variational principle, Pottseiafidom-Rowlinson
model, Hard-core model.
1


http://arxiv.org/abs/1508.06590v1

2 STEFAN ADAMS, RAIMUNDO BRICENO, BRIAN MARCUS, AND RONNIE PAVLOV

8.3. Exponential convergence in the hard-core model 29
9. Poly-time approximation for pressure®f lattice models 33
Acknowledgements 35
References 35

1. INTRODUCTION

The pressureof an interaction is a crucial quantity studied in statetimechanics and
dynamical systems. In the former, it coincides with #pecific Gibbs free energyf a
statistical mechanical system (e.dL6] Part Ill] and B5, Chapter 3-4]). In the latter, it
is a generalization afopological entropyand has many applications in a wide variety of
classes of dynamical systems, ranging from symbolic to $meystems (e.g 8] 23, 40)).

In this paper, we continue the developmentis,[29, 9] of representing pressure with
a simplified expression and using this to prove the exist@fafficient algorithms for
approximating pressure.

We considenearest-neighbour (n.n.) real-valued interactishsnZ9, i.e. interactions
defined only on configurations on single sites and pairs afcatjt sites. Since pressure
is normally defined for stationary interactions, we assuhat our interactions are sta-
tionary here. Also, we allow the possibility of forbiddennéigurationss” on pairs of
adjacent sites, and so the space of feasible configuratin$ anay be constrained. In
the dynamical systems literature, the space of such feasiifigurations is known as a
nearest-neighbour shift of finite type (n.n. SFRat here we denot@ (&) (see Section
3.D.

A specificationrt for a n.n. interactior is a uniquely determined collection of Borel
probability measuresf\ given in an explicit form in terms ab, for configurations on finite
subsetd\ of Z¢ and feasible configuratioson the boundary of. A Gibbs measurg for
an.n. interactionp is a Borel probability measure d&(&’), whose conditional probability
distributions on any such agree with the specification fob for all boundary conditions
& of positiveu-measure.

Gibbs measures exist for all n.n. interactions (and, indé@dmuch more general
interactions), but a given n.n. interaction may have moae ttne Gibbs measure. In many
cases, including the ones of most interest to us here, teeeain. interactio® which
gives rise to a parameterized family of interactididsp}, .o, and uniqueness of Gibbs
measures holds for sufficiently smdll(the so-calledsubcritical regior) and uniqueness
fails for sufficiently large{ (the so-calledsupercritical region.

Given a n.n. interactio® on a n.n. SFTQ(&’), we can associate anergyto any
feasible configuration on a finite subgetof Z9. The partition functionZ}‘\’ of ® on A
corresponds to the sum over all feasible configuration& oha function (namelye™) of
their corresponding energy, and the pressyf)Rs defined as the asymptotic exponential
growth rate of the partition l‘unctiongn on an increasing sequence of boxgsvihich
exhaust&d, asn — . Note that P®) implicitly depends orQ(&).

Whend = 1, there is a closed-form expression fdidP in terms of the largest eigen-
value of an adjacency matrix formed fro#n (see R8, p. 99]). In contrast, whed > 2,
there are very few n.n. interactiodsfor which R ®) is known exactly.

There is much work in the literature on numerical approxioret of R®), both for
somewhat generab and somewhat specifid (see f, 14]). In our paper, we take a theo-
retical computer science point of view (s€€]): an algorithm for computing a real number
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r is said to bepoly-timeif for every N € N, the algorithm outputs an approximatiogto
r, which is guaranteed to be accurate Witlr{r,imnd takes time at most polynomialto
compute. In that case, we say thas poly-time computable

One of our goals is to prove the existence of poly-time athars for Rd) under certain
assumptions o® andQ(&). While one might expect such algorithms to exist for nmst
andQ(&) of practical interest, there exi§&(&’) for which even P0) (which corresponds
to the topological entropy adR(&’), when the n.n. interaction & = 0) is not poly-time
computable and some for whici® is not computable at any rate (s@2]). However, the
closed-form expression wheh= 1 mentioned above, always gives a poly-time algorithm
in that case.

We follow an approach initiated by Gamarnik and Kat3][ and further developed by
two of the authors39] of the present paper. The basic idea is motivated by #nmtional
principle [23, Section 4.4], which asserts thatd® is the supremum over all stationary
Borel probability measureg on Q(&’) of the sum of two quantities: one quantity is the
measure-theoretic entropy(f) of 1 and the other quantity is the integral, with respect to
u, of a simple explicit functio\s : Q(&) — R, determined byb. The entropyh(u) can
be expressed as the integral, also with respegt @f a function known as thiaformation
function I, i.e. h(u) = [1,du. The supremum is always achieved by a Gibbs megsure
for ®, and so for suchu, we can write P®) = [ (1, +Agp)dpu.

The idea of 5] was to represent(®) as the integral of the same integrand, but with
respect to a simpler measwrei.e. R®) = [ (I, +Asp)dv. This is what we call @ressure
representatiorand requires some assumptionsigrv andQ(¢&).

A pressure representation becomes especially useful fwoajmating F®) in the case
thatv is a periodic point measure, i.e. a measure which assigred eegight to each dis-
tinct translation of a given periodic configuration (thissmhe only case considered in
[15]). Then [ (I, +As)dv becomes a finite sum. The terms in this sum corresponding
to Ap are easy to compute. In this way, the problem of approxirge®®) (and there-
fore proving that Pd) is poly-time computable) reduces to approximatingn a single
periodic configuration and its translates.

The pressure representation theoremslifl pnd [29], as well as in our paper (see
Theorem6.3), work in all dimensionsl. Among other conditions, these results require
conditions onQ (&) and a convergence condition for certain sequences of fioiteme
half-plane measures (different convergence conditiotiseérdifferent results). In the case
d = 2, if the convergence holds at exponential rate, then oragrodbé poly-time algorithm
for approximating Pd) (see Theoremd.1). Ford > 2, one can deduce an algorithm for
approximating Pd) with sub-exponential but not polynomial rate.

In[15] and [29], the convergence condition is given in terms of the infaliorafunction
|, of a stationary Gibbs measugefor the interaction. In our paper, the condition is given
in terms of a closely related functidi, which depends only on the specificationof
the interaction (see Sectidh?), in contrast with 15] and [29]. This is natural, since the
pressure depends only on the interaction and not on anyplartiGibbs measurg.

In [15], the convergence condition$trong spatial mixingf a Gibbs measurg for the
n.n. interactior®. This condition is known to imply that there is a unique Gibfxsasure
for ® and thus can be applied only in the uniqueness (subcritiegipn of a given model.
The convergence conditions i29] are weaker but also apply primarily to this region.
However, in our paper, since our convergence condition mi@penly on the interaction,
one might expect that the pressure representation and»apyation results can apply in
the non-uniqueness region as well. Indeed, they do. Agridltisns, we apply these results
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to explicit subcritical and supercritical sub-regions lo¢ 2-dimensionalferromagnetic)
Potts (multi-type) Widom-Rowlinsaendhard-coremodels. In particular, for the pressure
approximation results for these models, we establish tipaired exponential convergence
conditions. However, we believe that our results are appleto a much broader class
of models, in particular satisfying weaker conditions®{¥’) (e.g. thetopological strong
spatial mixing propertyintroduced in §]). We remark that the strong spatial mixing con-
dition of [15] is a much stronger version of our condition, and so in thissseour results
generalize some results of that paper (in particular, feftérd-core model 0%2).

In the case of the 2-dimensional ferromagnetic Potts medegbtain a pressure repre-
sentation and efficient pressure approximation fofa# Bc(q), whereq is the number of
colours,B is the inverse temperature afiglq) = log(1+ ,/q) is thecritical valuewhich
separates the uniqueness and non-unigueness regions.r@tiirpthe non-uniqueness
region generalizes a result frorhl] for g = 2 (i.e. thelsing model and we closely follow
their proof, which relies heavily on a coupling with thend random-cluster modeind
planar duality. For the uniqueness region, our result ¥alédrom [3]. (See Corollary2,
part1.)

For the Widom-Rowlinson and hard-core models, our resuéisat as complete as in
the Potts case, since the subcritical and supercriticedmedor these two models haven'’t
been completely determined, in contrast with the Potts modée also expect our re-
sults can be improved, because they only apply to propeessib$ the currently known
unigueness/non-uniqueness regions.

For the Widom-Rowlinson model, in the supercritical regiare use a variation of
the disagreement percolation technique introducedincombined with the connection
between the Widom-Rowlinson model and #ite random-cluster modelin the subcritical
region, we apply directly the results ifi][ (See Corollan?, part 2.)

For the hard-core model, in the supercritical region, weltiomthe coupling in7] and
a Peierls argument used by Dobrushin (SE})[ In the subcritical region, we use a recent
result on strong spatial mixing for the hard-core modéin (See Corollary, part 3.)

For the Potts model, we also extend the pressure repreisenthy a continuity ar-
gument, to give an expression for the pressure at critycalitis of interest that there is
an exact, explicit, but non-rigorous, formula for the pressat criticality due to Baxter
[5]. So, our rigorously obtained expression should agree thih formula, though we do
not know how to prove this statement. It seems that Baxteqdiat expression gives a
poly-time approximation algorithm, but we cannot justifyat our expression is poly-time
computable.

We remark that the finite volume half-plane measures meati@bove typically are
constant on their bottom boundaries and thus are relategtiing modelg¢see B4, 3§)).
Our proofs are related with such models where the intenaatith the hard-wall is the
same as the bulk interaction.

The remainder of the paper is organized as follows. Sinceave drawn heavily on
many concepts from many different sources, for the conveeief the reader we have
collected a good deal of relevant background material éatlye paper. This can be found
in Section2, Section3, Section4, Section5 and Sectior?, with the notable exception of
Lemmab.5in Section5, there is very little new material in those sections. In Bec?
and Sectior8, we review the fundamentals on configuration spacea®%Gibbs measures
and pressure. In Secti@ghnwe review the specific lattice spin systems models to whieh w
apply our main results, and in Sectibnve review the bond and site random-cluster mod-
els which are intimately connected with two of our models.r Piessure representation
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theorem is contained in Secti@n We review spatial mixing and stochastic dominance in

Section7 and use these concepts in Sect®to help establish exponential convergence

results for our models. Finally, in Secti®we combine our pressure representation theo-
rem and our exponential convergence results in Se8tiorbtain pressure representations

and poly-time algorithms for our models.

2. DEFINITIONS AND PRELIMINARIES

2.1. Hypercubic lattice Z9. Givend € N, we consider thal-dimensional hypercubic
lattice Z9, which can be regarded as a countable graph with regulaedetjy where
V(z9) = 74 is the set of sites anB(Z%) = {{x,y} :x,y € 29, |x—y| = 1} is the set of
bonds, with||x|| = S&_; x| the 1-norm. We will mainly focus our attention on the case

Two sitesx,y € Z9 areadjacentf {x,y} € E(Z%) and we will denote this by ~ y. All
subsets of sites iZ? will be denoted with uppercase Greek letters (e)g.A, ©, etc.).
Whenever a finite seh is contained in an infinite s&t, we denote this byA € A. The
(outer) boundarpf A C Z9 is the sePA of x € Z9\ A which are adjacent to some element
of A, i.e. N := {xe A®:dist({x},A\) = 1}, where dist\1,A2) = Minyep, yen, [[X—Y,
for A1,A, C Z9. We also write theclosure of A as/AA := AUJA. On the other hand,
theinner boundaryof A C Z9 is the setd/\ := dA° of x € A which are adjacent to some
element ofA°. When denoting subsets @f that are singletons, brackets will be usually
omitted, e.g. disi,A\) will be regarded to be the same as @st,N\).

A pathT & Z9 will be any sequence of distinct sit&s, ..., x, such thatx ~ x;, 1, for
all 1 <i < n. Similarly, acircuit C € 79 will be any pathxy, ..., x, with n > 4 such that,
in addition, x, ~ x1. We will say that the circuit isimpleif x ~ x; iff |i—j| =1 or
{i,j} = {4,n} (in particularxy, ..., %, are all distinct). Fon,® C Z9, apath fromA to ©
is a path T whose first site is ih and whose last site is i®. A setA C Z% is said to be
connectedf for everyx,y € A, there is a path T fromto y contained i\ (i.e. TC A). A
set/ € Z? is said to besimply lattice-connecteidl A andA° are both connected.

In Z9 we can also define an alternative notion of adjacency andfibrer, an alternative
notion of boundary, inner boundary, closure, path, coretiwss, etc., by replacing the
1-norm|| - || with the co-norm || - ||, defined ag|x|| = max_1._q|x|, for x € Z9. When

referring to these notions with respect to thenorm, we will always add & superscript
and talk about-adjacenc <y, x-boundaryd*A, innerx-boundaryd*A, x-closureh”, x-
path,x-connectedness, etc. Notice that two skemdy arex-adjacent if they are adjacent
in a version of thed-dimensional hypercubic latticE? including in addition diagonal
bonds. We will denote this version of the lattice BY*.

A natural order orZ¢ is the so-calledexicographic orderwherey < x (or x > y) if and
only if y # x and, for the smallestfor whichy; # X, y; is strictly smaller tharx. We also
denotey < x (or x 3= y) if y < x ory=x. Considering this order, we define the family of
setsS,; € Z9 as:

(2.1) Sz ={x=0:-y<x<z},

wherey,z € Z9 are such thay,z > 0 (here@denotes the vectdp,...,0) € Z¢ and>,
the coordinate-wise comparison of vectors). In additiamegn € N, we define then-
block as the set B:= [—n,n|¢NZ% and we abbreviate b, the setSyn1, = Bn\ 2,
where & = {xe 78 x < 0} denotes thelexicographic) pasof Z4 and 1, the vector
1,...,1) ezq.
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2.2. Configuration spaces.Consider a finite set afymbols< called thealphabet A
configurationis a map8 : A — <7, for some 0£ A C Z9 (i.e. 6 € &7), which will be
usually denoted with lowercase Greek lettérsr, v. The setA is called theshapeof 9,
and a configuration will be said to be finite if its shape is @niFor any configuratiof
with shape\ andA C A, 6(A) denotes the restriction @f to A, i.e. thesub-configuration
of 6 occupyingA. We will usually save the Greek lettefsandn to denote configurations
whose shape is the boundaih of some given sef\. For/A; and/\; disjoint sets,0 €
/™ andt € @72, Ot will be the configuration or\; LI A, defined by(87)(A;) = 6 and
(01)(A2) = 1. Forac .« andA C 74, @ denotes the configuration of als on A. A
pointis a configuration with shapg?, i.e. an element ol’zﬂd, usually denoted with the
Greek letterw.

Given sets\;,A\» C Z9, A C A1 N/, and a pair of configuration € «7"\1, T € o7/2,
we define theset ofA-disagreemenas:

(2.2) IA(0,7):={xeA:0(X) £ T(X)},

i.e. the set of sites ih where8 andn differ.

The mapo : Z9 x o7%2* — &7 will be the shift actionon «7%* defined by(x, w) —
ox(w), wherex € 79 andw € &%, with (gy(w)) (y) = w(x+Y), fory € Z4. We also
extend the shift actiowy to configurations with arbitrary shapes, i.e. givee 7"\, we
definedy(0) € «7* as the configuration such th@i(0)) (y) = 6(x+Y), fory € A—x.

Given a pointw € /™", we define itsorbit as the set Q) = {ox(W) }ycza. We will
say that a poiniv is periodicif |O(w)| < oo.

2.3. Borel probability measures. Given a configuratio® € <", we define theylinder
set[O]p = {we P w(N) = 6} (orjust[6], if Ais understood). We denote ¥, the
o-algebra generated by all the cylinder sets with shapad set¥ = .%,q.

A Borel probability measurg on.# is a measure determined by its values on cylinder

sets of finite configurations such tha(;zﬂd) = 1. Given a cylinder sef9], we will just
write u(0) for the value ofu([6]). Thesupportof such a measurg is defined as:

(2.3) supgu) = {w e ™ p(w(N) >0, forall A e Zd}.

GivenA C A C 2% and a measurg on.%,, we denote byu|, the restriction (or pro-
jection or marginalization) oft to .%x.
A measureu is shift-invariant(or stationary if p(ox(A)) = u(A), for all measurable

setsA € .Z andx € Z9. Given any pointo € 7™ andAe 7, we define thelelta-measure
supported orw as the measure:

1 fweA
0 otherwise.

(2.4) %w={

If wis a periodic point with orbit Qw) = {w, ..., w}, we definev® to be the shift-
invariant Borel probability measure supported oftf) given by:

1

2.4. Markov random fields.
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Definition 2.1. GivenA C Z9, a probability measurg on <7\ is a Markov random field
(A-MRF) if, for any subse® € A, any8 € 7®, anyA € As.t. 0ONACACA\ O, and
anyt € &2 with p(1) > 0, it is the case that:

(2.6) p(O]T) = p(BT(3ONN)).

In other words, an MRF is a measure where every finite configam@onditioned to its
boundary is independent of the configuration on the compiéme

3. SPECIFICATIONS GIBBS MEASURES AND PRESSURE

3.1. Gibbs specifications.Fix a dimensiond € N and let& = (41,...,44) be aset of

constraintssuch thats; C .72, fori =1,...,d. Given any sef\ C Z9 and a configuration
0 € o7\, we say thab is feasiblefor & if for everyx € A such thatx,x+ g} C A, we have

that(6(x),0(x+&)) ¢ &, whereey, ..., ey is the canonical basis. Theearest-neighbour
shift of finite type (n.n. SFX)(&) induced by#, is the set of points:

(3.1) Q&) = {w c ™ wis feasib|e} .

We will always assume th& (&) # 0.

In the symbolic dynamics literature, a feasible configaratin a sef\ is calledlocally
admissibleand is calledjlobally admissibléf it also extends to a point d(&).

Notice thatQ(&) is always a shift-invariant set, i.ex(Q(&)) = Q(&), for all x € Z9.
Given an.n. SFRQ(&), .#1(Q(£)) denotes the set of Borel probability measures whose
support supfu) is contained inNQ(&’) and.#1 4(Q(&)) C .#1(Q(&)), the correspond-
ing subset of shift-invariant Borel probability measur&iven a configuratior® € .7,

6]2“) will denote the seff], N Q(&) (or just[6]2(¢) if A is understood).

Definition 3.1. A nearest-neighbour (n.n.) interactifor a set of constraints’ is a real-
valued shift-invariant functiond from the set of configurations on sites x and feasible
configurations on bondsi, x+ &} to R, for x € Z% andi=1,...,d. Here, shift-invariance
means thatb(ox(0)) = ®(6) for configurationsd on sites and bonds, and for allxZ.

Often in the literature a n.n. interaction is not requiredéoshift-invariant. Our as-
sumption of shift-invariance on a n.n. interaction fits mally with the shift-invariance of
a n.n. SFT. Clearly, a n.n. interaction is defined by only élyitnany numbers, namely
the values of the interaction on configurations{@} and bondq0,&}, fori =1,...,d.

We can view an interactiof? as implicitly determining the constrainis, and hence
Q(&), by the absence & from the domain ofp. Some authors incorporate the constraints
by allowing the interaction to take the valyeo.

Definition 3.2. Given a n.n. interactio for a set of constraint&’ and a set\ € Z9, we
define theenergy function B : &/ — R as:

d
(3.2) EX(8) = ZACD(G(X)H 21 > ®O({xx+a})),

Xe i=1{xx+g}CA
where@ is any feasible configuration i\, We define theartition functionof A as:

(3.3) Zi:= 5 exp(-Ex(9)),

0 feasible
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and the followingooundary-fregrobability measure ory”:

L exp(—E®(6)) if 6is feasibl
(3.4) ne) = & P(-EX(8)) ¢
0 otherwise

Analogously, for an arbitrary € Q(&’), we can také = w(dA\) and consider:

(3.5) Zti= Y exp(—EX69)),
0: 6¢ feasible

and then define th&-boundaryprobability measure onr”:
1 _E® if OF | i
i exp(—~E2(08))  if 6¢ is feasible

0 otherwise

(3.6) i (6) = {

The collectionm = {r[f\},\g is called aZ? Gibbs specificatioffor the n.n. interaction
®. For A C A andt € 72, we marginalize as follows:

(3.7) mo= 3  m)

OcaN.O(L)=1

Notice that eachr,i is an MRF one7”\. In addition, a Gibbs specificatiomas defined

above is always stationary, in the sense ﬂf@f ) (ox(A) = r[,‘(\(A), foreveryAC &/, We
will usually think of the set of restrictiong implicit when considering a n.n. interaction
®. Given a poiniw € Q(&), we will abbreviate:

(3.8) () =),
3.2. Gibbs measures.

Definition 3.3. A nearest-neighbour (n.n.) Gibbs measfmea n.n. interaction® is a

measureu € .1 (Q(&)) such that for any\ € Z4 andw € 2/ with H(w(dN)) >0, we

have thazy ") > 0 and:

(3.9) H(6].Fne)(w) = my'(0) p-as,
for 6 € o7, where{nf\},\,g is the stationaryZ® Gibbs specification fofb.

While our interactions and specifications are assumed tchbfeirsvariant, a Gibbs
measure for such an interaction may or may not be statioireydefinition of n.n. Gibbs
measure, shows that such a measure is an MRF. The definitsbatési only for cylinder
events[0] in A, but this is equivalent to the usual definition with generadrdsA € .7
instead.

Every n.n. interactior® has at least one (stationary) n.n. Gibbs measure (spesial ca
of a general result in35, Theorem 3.7 and Theorem 4.2]). For a singlemultiple Gibbs
measures can exist. This phenomenon is usually calpgthae transition

3.3. Pressure. Now we proceed to define the pressure of a n.n. interaddion

Definition 3.4. Given a n.n. interactior for a set of restrictiong”, thepressure ofp is
defined as:

(3.10) R®) = lim —

(o)
A, B logZg, .
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Given ne N, we can also define an analogous versf@] of the partition functiorzq’n,
but over globally admissible configurations:
(3.11) 78 = S exp(—E (0)).
Be.o/Bn:[6]24) 40

Notice thatZ"B’n < Zg . The following result states that in the normalized limibtt
guantities coincide.

Theorem 3.1([35, Theorem 3.4], see als@4, Theorem 2.5]) Given a n.n. interactio®
for a set of restrictions’”:

. 1
(3.12) Rd) = lim —

vad
LA logZg,,.

The pressure is the main quantity of interest in this paper. ddals are to find simple
representations of pressure in terms of very special corligus and use this to develop

efficient (in principle) algorithms to approximate the [mese.

4. MAIN MODELS: POTTS, WIDOM-ROWLINSON AND HARD-CORE

In this section we introduce the three main families of ¢t&ttmodels studied in this
paper. The first one will be the Potts model, which can be dEghas a generalization
of the Ising model by considering more than two types of pkesi. The second one, the
Widom-Rowlinson model, is also a multi-type particle systaut with hard-core exclusion
between particles of different type. The third one is thesilzal hard-core model.

4.1. The (ferromagnetic) Potts model. Givend, q € N andf > 0, theZ¢ (ferromagnetic)
Potts model with g types and inverse temperaiiris defined over the alphabety =
{1,...,q} and given by the n.n. interaction:

—B if 6(x) =0(x+8),

(4.1) ®p(0) = {o if 6(x) # 6(x+a),

for 0 € %{X’Ha}, xe 79, i=1,...,d, where the constraint§ are empty. The speci-
fication nEP: {7‘[2’/\}/\’5 induced by®g defines the (ferromagnetic) Potts model, where
neighbouring sites preferably align to each other with #rae type or “colour” from the
alphabeta;.

A measureu € ///1(%Zd) is called aPotts Gibbs measur®r g types and inverse tem-
peraturg3 > 0 if it is a n.n. Gibbs measure for the speciﬁcat'vtzgﬁD above.

Theorem 4.1([6]). For the Z? (ferromagnetic) Potts model with g types and inverse tem-
perature 3, there exists a critical inverse temperatuBg(q) := log(1+ ,/q) such that
uniqueness of Gibbs measures holds flox 3:(q) and for 3 > [B:(q) there is a phase
transition.

4.2. The (multi-type) Widom-Rowlinson model. Givend,q € N andA > 0, the Z¢
Widom-Rowlinson model with g types and activitys defined over the alphabgfy =
{0,1,...,q}, and given by the set of constrairts= (£, ..., &4), where& = {0 € (%4 \ {0})?:
6(1) #£6(2)},foralli=1,...,d, and by the n.n. interaction f&f over configurations on
sites:

4.2 (D)\(e):{—bg(/\) if 6e{1,...,9},

0 if 0 =0,
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where@ ¢ %’éX} andx € Z9. The specification'R = {nf’,\},\,g induced byd, defines
the (multi-type) Widom-Rowlinson model, where neighbogrsites are forced to align to
each other with the same type or “colour” from the alphaBgtor with 0.

A measureu € //{1(%?) is called awidom-Rowlinson Gibbs measu g types and
activity A > 0if itis a n.n. Gibbs measure for the specificati@i"iR above.

Theorem 4.2([36], see also19]). For theZ2 Widom-Rowlinson model with q types and
activity A, uniqueness of Gibbs measures holds for sufficiently stretld there is a phase
transition for sufficiently large\ .

4.3. The hard-core lattice gas model.Giveny > 0, theZ¢ hard-core model with activity
y is defined over the alphabg0, 1}, and given by the set of constraints wheres; =
{(1,1)}, foralli=1,...,d, and the the n.n. interaction fét over configurations on sites:

(4.3) ®y(6) = {; loa(y) '; gz;’

for 6 € {0,1}%, x € Z9. The specifications© = {T'i/\}/\f induced by®, defines the
hard-core model, where neighbouring sites cannot be both 1.

A measureu € .#1({0,1}%") is called ahard-core Gibbs measufer activity y > 0 if
it is a n.n. Gibbs measure for the specificatigff above.

Theorem 4.3([17, Theorem 3.3]) For the Z? hard-core model with activity, unique-
ness of Gibbs measures holds for sufficiently smalhd there is a phase transition for
sufficiently largey.

For both the Potts and Widom-Rowlinson models we will alsiidguish a particular
type of particle or colour in the alphabet. W.l.0.g., we caltetthe typeyin <7 or %4\ {0},

respectively. Given this colour, we will denote ty the fixed poin'qzd. For the hard-core
model, we will consider the two special points® andw(®, given by:

(4.4) W)= ¢ 0 T Iixiiseven,
1 if 3% is odd,

andw® = g, (w®).

5. RANDOM-CLUSTER MODELS

The Potts and Widom-Rowlinson models have interpretatiorisrms of a random-
cluster representation. The Potts model is related to aorarduster model on bonds (via
the so-called Edwards-Sokal coupling), while the WidonwRason is naturally related to
a random-cluster model on sites.

Definition 5.1. A couplingof two probability measureg; on a finite set X ang, on a
finite setY , is a probability measufeon the set X< Y such that, forany A X and BC Y,
we have that:

(5.1) P(AxY) = p1(A) andP(X x B) = pa(B).



REPRESENTATION AND POLY-TIME APPROXIMATION FOR PRESSUREFQZ? LATTICE MODELS 11

5.1. The bond random-cluster model and the Potts modelWe will make use of the
bond random-cluster modelOne of our main results, Part | of Theoredrd, is proven
using arguments based on this model. This model is a two pearfamily of dependent
bond percolation models on a finite graph. We are mainly éstted in finite subgraphs of
7? and we describe the model with boundary conditions indeyad0, 1.

Fix a finite simply lattice-connected set of sit&s Let E°(A) denote the set of bonds
with both endpoints i\ andEY(A) the set of bonds with at least one endpoinfinWe
speak of a bone as beingpenif w(e) = 1, and as beinglosedif w(e) = 0.

Definition 5.2. Given a finite simply lattice-connected et and parameters g [0, 1]
and g> 0, we define théee (i = 0) andwired (i = 1) bond random cluster distributions

on E(A) (i=0,1) as the measureqapq,\ that to each we {0, 1}E' assigns probability
proportional to:

(i) Ww(e) 1-w(e) | K (w) P\ yw
(5.2) @ (W) O p"¥(1-p) =11 gAY,
ecEi(N) P

where# (w) is the number of open bonds in w anfi(w) and ki (w) are the number of
connected components (including isolated sites) in thplggé\, {e € EO(A) : w(e) = 1})
and(z?,E%(Z2\ N)u{ec E}(A) : w(e) = 1}), respectively.

Notice that wherg = 1, we recover the ordinary Bernoulli bond percolation measu
@A, While other choices of| lead to dependence between bonds. For gpemndg,

one can also define bond random-cluster meaapéi,ésan 7?2 as a limit of finite volume
measureq)é")q‘,\ (i=0,1).

Theorem 5.1([17, Lemma 6.8]) For p € [0,1] and g< N, the limiting measures:

(5.3) Ga=lm g, ie{01},

exist and are translation invariant, whe{é\, } , is any increasing sequence of finite simply
lattice-connected sets that exhaugfs

General bond random-cluster measureZéman be defined using an analogue of the
DLR condition 20, Definition 4.29]. Foig > 1, there is a valu@:(q) that delimits exactly
the transition for existence of an infinite open cluster f@se measures. It is knowa(d,
p. 107] that forg > 1 andp < pc(q), there is a unique such measure which we denote by
¢ q (characterized by the nonexistence of infinite open clestand that coincides with

(pr(,?(} and cpéla in this region. It was recently proven (se®)[that pc(q) = for every
q>1.
Let p=1—eP. Thefree Edwards-Sokal coupliri@ifé‘,\ (see RQ)) is a coupling be-

A
T+ /3’

tween the boundary-free Potts measné’fé\ andqoéoc; A+ Thewired Edwards-Sokal coupling

]P’i)()q,\ is a coupling betweert; " A andqopq,\ Notice thatpe(q) = 1 — e Fe(d),

These couplings are measures on pairs of site configuradimthgorresponding bond
configurations. The projection to site configurations is bleeindary-freedy-boundary
Potts measure, and the projection to bond configuratiorigisree/wired bond random-

cluster measure, respectively.

Theorem 5.2([20, Theorem 1.13]) Let A be a finite simply lattice-connected set; @,
and let pe [0,1] and > 0 be such that p= 1 —e #. Then:
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(1) For we {0,1}E'™) the conditional measurﬁijl‘é‘,\ (-] x {w}) on .=} is ob-
tained by putting random colours on entire clusters of w rstreected witl72 \ A
(of which there are k(w) — 1) and colour g on the clusters connected with\ A.
These colours are constant on given clusters, are indepermween clusters,

and the random ones are uniformly distributed on thesgt
.. 1 1 1
(2) For 6 € &7\, the conditional measuﬂE(p,a,A (-‘{9} x {0,1}E (’\)) on{0,1}E'N

is obtained as follows. Consider the extended configuraﬁ@ﬂ ng’\ and an
arbitrary bond e= {x,y} € EX(A). If 6(x) # 6(y), we set We) = 0. If 8(x) = O(y),
we set:

(5.4) w(e) = 1 with pr(.)bab|lltyp,
0 otherwise

the values of different () being (conditionally) independent random variables.

The couplings can be used to relate probabilities and eapens for the Potts model
to corresponding events and expectations in the assodiatetirandom-cluster model. A
main example is a relation between the two-point corratatimction in the Potts model
and the connectivity function in the bond random-clustedei@?0, Theorem 1.16].

By considering a displaced version @f, namely%h—Z2 (the dual lattice), we can
define a notion of duality for bond configurations Notice that every bond € E(Z?) (if
we think of bonds as unitary vertical and horizontal stragggments) is intersected per-
pendicularly by one and only onial bond & € E(%l—l— 72), so there is a clear correspon-
dence betweek (Z?) andE(%1+Zz). We are mainly interested in wired bond random-
cluster distributions on the set of sitBg := [—n+ 1,n|2NZ?. Givenn € N, if we consider
the set of bond&*(B,), it is easy to check that there is a correspondeneee’ between
this set and the set of bonds frofi + Z2 with both endpoints irfl—n,nj2N (31+ Z2),
which can be identified with the sEP(Bn). Then, given a bond configurationc El(én)
we can associate a dual bond configuratiére E®(By,) such thaw*(e*) = 0 if and only
if w(e) =1.

Considering this, we have the corresponding equality:

Proposition 5.3 ([20, Equation 6.12 and Theorem 6.13fpiven ne N, p € [0,1] and
geN:
1 0
(5.5) o s, (W) = B8, (W),
for any bond configuration v {0,1}E'®n), whereB, = [-n+1,n2nZ2 and p € [0,1]
is the dual value of p, which is given by:
p°_9l-p)

5.6 =
(5:6) 1-p* p

The previous duality result can be generalized to moreraryishapes and it has also a
counterpart from free-to-wired boundary conditions, éast of from wired-to-free.

The unique fixed point of the mgp— p* defined by 5.6) is T\/\% and, as mentioned
above, is known to coincide with the critical poipt(q) for the existence of an infinite

open cluster for the bond random-cluster model (§e@&tieorem 1]). It is easy to see that
P> pe(q) iff p* < pe(q).
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5.2. The site random-cluster model and the Widom-Rowlinson mode In a similar
fashion to the bond random-cluster model, we can perturb@eii site percolation, where
the probability measure is changed in favour of configuretiith many (foig > 1) or few
(for g < 1) connected components. The resulting model is calleditteandom-cluster
model

Definition 5.3. GivenA € Z?, and parameters g [0,1] and g> 0, thewired site random-

cluster measurwé,lé,,\ is the probability measure ofi0,1}” which to eachd € {0, 1}
assigns probability proportional to:

(5.7) ‘»U;(),l&,/\(e) 0 { rl pe(x)(l_ p)le(x)} qK/\(G) _ A#lw)q'(/\(e),
Xe

whereA = 2 50 #1(6) is the number ofi’'s in 6 and Ka(6) is the number of connected
components ||{x € N\ : 6(x) = 1} that do not intersecdA.

Thefree site random-cluster measu,té ) A is defined as ing.7) by replacingka (0) by
the total number of connected component& itHowever, we will not require that measure
in this work. In any case, taking= 1 gives the ordinary Bernoulli site percolatign x,
while other choices of| lead to dependence between sites, similarly to the bondrand
cluster model.

Proposition 5.4. Given a setA € Z? and parameters\ > 0 and g< N, consider the
Widom-Rowlinson with g types distribution and monochraertaundary condmom“’q

Now, let f: 2 — {0,1}" be defined site-wise as:

0 ife(x)=

58) (1(8))0x) = {1 000 20

for 6 € %’\ and xe A, and let p= 1+/\ Then, irrwq = qu/\’ where t () =

T, /\(f 1(.)) denotes the push-forward measure{ml}’\.

The requirementthada (-) does not count connected components that intersect the inne
boundary ofA in the site random-cluster model, corresponds to the fattribn O sites
adjacent to the monochromatic boundasy(dA) in the Widom-Rowlinson model must
have the same cologr

Forq= 2, Propositiorb.4is provenin P1, Lemma 5.1 (ii)], and the proof extends easily
for generalg. Proposition5.4 can be regarded as a coupling betwerl;“f}\ and wé.lg]l,\,
because a push-forward measure can be naturally coupledheibriginal measure.

Itis important to notice thav.pp aA is itself not an MRF: given sites on a simple circuit C,
the inside and outside of C are generally not conditionaliependent, because knowledge
of sites outside C could cause connected components of Cstin“amalgamate” into a
single component, which would affect the conditional dlsttion of configurations inside
C. The following lemma shows that in certain situations, whenditioning on a circuit C
labeled entirely by 1’s, this kind of amalgamation does routLo.

Lemma5.5. Letd # © C A € Z? be such tha\° U®" is connected. Tak& := d*ONA.
Consider an event & .%o and a configuratiorr € {0,1}%, whereZ C A\ ©". Then:

(5.9) W (A2 = ) (AN,
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Proof. W.l.0.g., we may assume thatis a cylinder even] with 8 € {0,1}° (by linear-
ity) andX = A\ O (by taking weighted averages).

Now, > = A\é* can be written as a disjoint union @fconnected componenks=
Kil---UKp. For everyi, 0*K; C AU (in fact, 3*Kj C A°UA). SinceA°U®O" is
connected and\ is finite, for every site ind*K; there is a path to infinity that does not
interseck;.

Then, by application of a result of Kesten (s@d,[Lemma 2.23])0*K; is connected,
for everyi. In addition, we have that = @ LUAUZ andd*K; C ACUA.

We claim that:

(510)  Ka(u) = ka(0(©)1°0%) +_§1KKi<u<Ki» — KA(V(©)120%) + K (1),

foranyu € {0,1}"\ such thaw (A) = 1% andu(Z) = 1.

FIGURE 1. A x-connectedd (in black), the sef\ = 0*© N A (in dark
grey) andA° (in light grey) forA = S ,.

To see this, given such, we exhibit a bijectiorr between the connected components
of v that do not interse@A and the union of: (a) the connected components(&) 120>
that do not interse@l/\, and (b) the connected componentwdK;) that do not intersect
0K;, for alli; namely, ifC C A is a connected componentofthenr is defined as follows:

(5.11) r(C)—{C”@ ifCNe" £0,

lc ifCcs.

In order to see that is well-defined, note that i€ intersect®d” andz, the selCNO"
is still connected thanks to the fact thttK; is connected and (A) = 14, To see that
is onto, observe that £ is a connected component 0f@)120%, then there is a unique
componen€ of u such thaCN®" =C/, due again to the fact that'K; is connected. And
r is clearly injective because two distinct connected coneptsicannot intersect.

Finally, we conclude from%.10 that:

A#1(01°87) oKa(61°1)
5.12) ¢, (0]1%) = 9

ve{0,1}Nu(8)=12v(%)=T A#l(u)qKA(u)
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/\#1(61A)+#1(T)qK/\(GlAOZ)Jer(T)

(>13) T Suc(onhuz)_r APOOI AT GRG0 ks (1)
A AN\O*
5.14) ATy (o)
Sgejoajo AACR g B0 TR ’
as we wanted. O

Remark 1. We claim that ifd # © C A € Z? are such that\°® is connected® is x-
connected an®" N dA # 0, thenA®U®" is connected, which is the main hypothesis of
Lemmab5.5 This follows from the easy fact that theclosure of ax-connected set is
connected.

6. PRESSURE REPRESENTATION

6.1. Variational principle. The variational principle states that the pressure of asrint
action has a variational characterization in terms of shifariant measures. We state the
variational principle below for the case of an n.n. intei@ctb for a set of restrictions’.

Theorem 6.1(Variational principle 23, 33, 35]). Given a n.n. interactiomp for a set of
restrictionsé&’, we have that:

(6.1) Ro) = sup (h(w+ [ o),
HEA,6(QE))
where:
o Ao(w) i=~®(w(0) — 3L, ®(w({0,8})), for w € Q(£), and
e h(p) :=IliMpse ﬁ S gerBn U(0)log(H(B)) is themeasure-theoretic entromf
U, whereOlog0= 0.

In this case, the supremum is also always achieved @&eSection 4.2]) and any
measure which achieves the supremum is calleelcailibrium statefor Ag. So, if 1 is an
equilibrium state, then:

(6.2) A®) =h(p) + [ Aody.
For a shift-invariant measuge andA € 29\ {0}, define:
(6.3) Pun(w) = p(w(0)|w(N)),

and letpy (w) := liMp_,w Py N2 (W), Which existgu-a.s. P3, Theorem 3.1.10] by Lévy's
zero-one law. In addition, let:

(6.4) lu(w) := —logpu(w),

which is also defineg-a.s. and is usually called ti@ormation function |t is well-known
(see [L6, p. 318, Equation 15.18] o[, Theorem 2.4, p. 283]) that for any shift-invariant
measureu, h(u) = [1,du. Therefore, ifu is an equilibrium state fo®, we can rewrite
the preceding formula for(®) as:

6.5) R®) = / (1 + Ag)dp.

So, the pressure can be represented as the integral of aofundetermined by an
equilibrium stateu and®, with respect tqu.

In this section, we show that the pressure can be represastbd integral of a function

similar to I, + Ag, with respect to any invariant measwegassuming some conditions.
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This is useful for approximation of pressure whers an atomic measure supported on a
periodic configuration (see Sectidh
One of the conditions involves the SEX(&).

Definition 6.1. A n.n. SFTQ(&) for a set of constraintg’ satisfies thesquare block D-
conditionif there exists a sequence of integérs}n-1 such that2 — 0 as n— o and, for
any finite se\ € BS,, , 6 € &/Bn andt € &/

(6.6) [Q]QW)’[T]Q(G”) £0 = [er]mg) £ 0.

This condition is a strengthened version of the classicabbedition (see 35, Section
4.1]) which guarantees that the set of Gibbs measuresfopincides with the set of
equilibrium states foAg.

Definition 6.2. Given a set of restrictiong’, the corresponding n.n. SKR(&) C P
and ac «7, we say thaQ)(&) has asafe symboh if (a,b), (b,a) ¢ &;, for every be 7,
foralli=1,...,d.

It is easy to see that 2(£) has a safe symbol, then it satisfies the square block D-
condition. For the sets of restrictios in the Potts, Widom-Rowlinson and hard-core
models, the corresponding n.n. SEX&’) has a safe symbol in each case (any 7,

0 € Ay, and 0 {0, 1}, respectively), s (&) satisfies the square block D-condition for
the three models.

6.2. The function 7r and additional notation. Given a n.n. interactio® for a set of
constraintss’, we will define some useful functions fro@(&’) to R. First, given@®e A &
79 andw € Q(&), we define:

6.7) (@) = 1(6(0) = w(0)) = 7Y (8(0) = w(0)).

Recall that, fory,z € Z9 such thaty,z > 0, we have defined the s§,as{x=0:
—y <x<z}. Now, giveny,z> 0 andw € Q(&), definern;(w) := 1g,,(w) and, given
n e N, abbreviaten(w) := my 1n(w). Considering this, we also define the limitw) :=
limn_e Th(w), whenever it exists. If such limit exists, we will also dead?ﬁ(w) =
—logfi(w).

It is not difficult to prove that under some mixing assumpsioner an MRFu, namely
the SSM property introduced in Definitiahl (see Sectioff), and assuming that sufp) =
Q(&), one has that the original information functigncoincides withi; in Q(&). In this
sense, our definition provides a generalization of previesslts (seel[5]), wherel, may
not be even well-defined.

Now, suppose we have a shift-invariant measureich that supfy) C Q(&). We say
that:

(6.8) yIZ@ 1,2(w) = 71(w) uniformly overw € supgv),

if for all € > 0, existsk € N such that for ally,z > 1k:
(6.9) |T5,2(w) — Ti{w)| < &, for all w € supgv).
In addition, we introduce the following bound:
(6.10) Gi(v) == inf{m(w):0e A€ Z we supgv)}.

Lemma 6.2. Let mbe a n.n. interactionp for a set of restrictiong’, with randQ(¢&’) the
corresponding specification and n.n. SFT. The(if’) has a a safe symbol, we have that
cr(v) > 0, for any shift-invariant measure such thasupgv) C Q(&).
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Proof. The proof is analogous and a particular case 2%, [Proposition 2.17]. In that
reference, under these assumptions, it is shown that)c= inf{u(w(0)|w(A)) : A €
79\ {0}, w € supfv)} > 0, for a given n.n. Gibbs measugefor ®. We leave it to the
reader to verify thatg(v) > c,(v), for any suchu. O

In fact, much weaker conditions than the existence of a saféel are sufficient for
the result of Lemmd.2 and also for having the square block D-condition. See, for ex
ample, thesingle-site fillabilityproperty R9] and thetopological strong spatial mixing
property[9]. Notice that, since the Potts, Widom-Rowlinson and hasteenodels have a
safe symbol, we have the(v) > 0, for any shift-invariant with supgv) C Q(&).

6.3. Pressure representation theorem Pressure representation results can be found in
[29 Theorems 3.1 and 3.6]. Those results are not adequatesfaptilication to the specific
models we are considering in this paper. Instead we will beddllowing result, whose
proof is adapted from the proof 029, Theorem 3.1], as well as an idea @B Theorem
3.6]. In contrast to the results 029, our result makes assumptions on the specification
rather than a Gibbs measure.

Theorem 6.3. Let ® be a n.n. interaction for a set of restrictiors and suppose that
Q(&) satisfies the square block D-condition. lwebe a shift-invariant measure such that
supgv) C Q(&) andcy(v) > 0. In addition, suppose that:

(6.11) yimo 75,2(w) = 71(w) uniformly over w € supfVv).
Then:
(6.12) R®) = [ (it Ac)av.

Proof. Choosel < 0 andL > 0 to be lower and upper bounds respectively on valuegs. of
Givenn e N, letry be as in the definition of the square block D-condition andsaber the
sets B and/\p := Bnr,,. We begin by proving that:

1
|Bn
uniformly in w € Q. For this, we will only use the square block D-condition. Werfie N,
w € supgv) and letm, := |An| — |Bn|. LetCq > 1 be a constant such that for afiye Z9,
the total number of sites and bonds containedl ia bounded from above /A

(6.13) (logZ§ +1og7 (w(Bn)) + ES, (w(Bn))) — O,

(614) 72 (w(Bn)) > 7 (@(An)
exp(—EZ(w(An)))

6.15 =
(6.15) > 6:60(0/n) feasib|eeXP(—E%(9w(5/\n)))
exp(—Eg, (w(Bn)) — CamuL)
(6.16) - ZTEWBWT feasibleex[:(_EqBDn(T))|"Z{|Cdmn exp(—Cdrrhﬂ)
_ exp(—Eg (w(Bn)))
(6.17) = exp(Mn(Cql — CyL —Cylog|.e7|)).

zg
Now, if Tmax achieves the maximum af’ (w(Bn)T) overt € &/"\n\Bn, then:

(6.18) 72 (w(By)) = 3 0 (@(Bo)T)

1€/ M\Bn:y(Bp)1 feasible
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(6.19) < |/|™ iy (@(Bn) Tmax)
exp(—E;‘\’_n(w(Bn)rmaxw(d/\n)))

Y 6:00(0An) feasibleexq_E%(ew(d/\n)))
exp(—Eg, (w(Bn)) — Camn/)

Y reaBr ]Q?éweng“(r) exp(—Cymnl)

_ exH—Eg, (w(Bn))
< Z¢

(6.20) = |7 |™

(6.21) < |at|™

(6.22) exp(—Mh(Cal — Cal — Cylog|/ ),

where the square block D-condition has been use@.Ril). Therefore,

VA
(6.23) o™ < 70 ((Bn))Z8, eXP(ES, ((Bn))) < 5gra™,
Bn

whereq := e (Cal~Cal—Cqlog|/]) Sinceg? — 0 and‘Bl‘ (logZ® —logZ® ) — 0 (thanks
to TheorenB.1), we have obtaineds(13.
We use 6.13 to represent pressure:

__logzg ~ rlogZg
(6.24) P(®) = lim = _n'l'l,/ = dv
- —logm? (w(Bp)) — E® (w(B
(6.25) — lim g7y, (@(Bn)) — Eg, (&( n>)dv.
n—oo |Bn|

(0]
(Here the second equality comes from the fact %%Zrﬁ'—” is independent ofo, and the
third from (6.13.) Sincev is shift-invariant, it can be checked that:

6.26 l —E&,(w(Bn)) d
(6.26) n'ﬂl/ IBnI /A“’ v,
and so we can write:
. log iy’ (w(Bn))
(6.27) RO) _/Aq,dv—rI]mnm ey,
It remains to show that:

~ —logm® (w(B A

(6.28) lim Mdv:/lndv.
N0 |Bn

Fix w € supfv) and denote := c,(v). We will decomposety (w(Bn)) as a product
of conditional probabilities. By&.11), for any € > 0, there existk := ks so that for
y,z> 1K, |15,,(w) — Ti{w)| < € for all w € supp(v) Forx € Bp_1, we denote B(x) :=
{y €Bn-1:y=<Xx}. Then, we can decompos (w(Bn)) as:

(6.29) T, (w(Bn)) = ), (w(9Bn)) IB_l m, (“) (X)|w (B (x) UdBn))
(6.30) = T, (w(9Bn)) Th(x),2(x) (Ox (@),

wherey(x) := In+x andz(x) := 1n— x, thanks to the MRF property and stationarity of
the specification.
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Let's denoteR, i := Bn \ Bn_«. Then, B, = dBn LIB,_k_1R,_1x and we have:
(6.31) cl2Bnl+1Rn-14d Th(x) 2(x) (Ox () < Ty, (@(Bn))

XEBn_k-1

(6.32) < TH(x),2(x) (ox(w)).

XEBn-_Kk-1

Taking—log(-), we have that:

(6-33) O§_|09n/[<)n(w(8n))_ BZ _|Og7-§'(x),z(x)(0x(w))
k-1
(6.34) < (18Bn| + [Ry-14/)log (c ).
So, by the choice df, forx € Bn K1,
(6.35) | T(.,200 (Ox()) — Fi{ox(w))| <&,

and sincey) ;) (0x(W)), n(ax( )) > c> 0, by the Mean Value Theorem:
(6.36) |10 T8 200 (0(®0)) — n(O())| < eC 7,

It follows from (6.11) that 7 is the uniform limit of continuous functions on supp.
In addition, 7i(w) > ¢ > 0, for all w € supgv). Therefore, we can integrate with respect
to v to see that:

(6.37) / 109 7)) 203 (Ox (@) )dv — /I w)dv| < ect.
We now combine the previous equations to see that:
(6.38) ‘/ logn (w(Bns1) dv—/l @)dV(Bn_k 1|
(6.39) < |Bn7k71|8071+ (10Bn| + [Ro-1x])log (c ™).
Notice that, for a fixedk, limp_e % =0 and lim_e % = 1. Therefore,
—logn? (w(B
(6.40) _ec +/| ©)dv < liminf [ 29 a(@(Bn)) |
n—e |Bn|
—logn? (w(B
(6.41) < limsup 10978, (@(Bn)
N0 |Bnl
(6.42) /I w)dv + ec L.
By letting € — 0, we see that:
6.43 li ~logm, (@ I
(6.43) nLrpo |Bn /
completing the proof. O

7. SPATIAL MIXING AND STOCHASTIC DOMINANCE

From now on, when talking about specifications for the Pdttislom-Rowlinson and
hard-core lattice models, we will distinguish them by théiedex corresponding to the

parametef3, A or y of the model, i.enf;,\ should be understood as a probability measure
in the Potts modelzrf A in the Widom-Rowlinson anatj,\ in the hard-core lattice model,

andrg, m, andr, will denote the corresponding specifications. Also, we wilite rrB,



20 STEFAN ADAMS, RAIMUNDO BRICENO, BRIAN MARCUS, AND RONNIE PAVLOV

i andfﬁ for the functionsy, frandiy; in the Potts model, and short-hand notations when
N =S§, orS;;. For example,

() = 1€ (w) 1= 1,0 ™ (8(0) = w(0))

The analogous notation will be used for the Widom-Rowlinaod hard-core cases, but
using the parametessandy, respectively.

7.1. Spatial mixing properties. We now introduce concepts of spatial mixing that we
will need in this paper. Lef : N — R~ be a function such thdt(n) \, 0 asn — .

Definition 7.1. GivenA C Z9, we say that a\-MRF p satisfiesstrong spatial mixing
(SSM) with ratef (n) for a class of finite setg’ if for any A € ¢ such thatA C A, any
OCA 0c.7®andé,nc o with u(&)u(n) >0,

(7.1) [1(6]8) — u(B[n)| < |O[f (dist(©,294(&,N)))-

We say that a Gibbs specification= {71,5\},\,5 satisfies SSM with rate(fi) for a class
of finite setss” if each elementrf\ satisfies SSM with rate(ifi) for the classé” restricted to
subsets oA\.

If there exists Ca > 0 such that f can be chosen to b¢nf = Ce 9", we say that
exponential SShMholds.

Definition 7.2. ([3, p. 445]) AZ3-MRF u satisfies theatio strong mixing property for a
class of finite set$ if there exists Ca > 0 such that for anyA € ¢, any©,%~ C A and
& € /% with u(&) > 0,

HANBE o
SUP{}M(AIE)N(BIE) ! 'Aed‘evazvu<A|£>u<B|«s>>o}

(7.2) <C g adistxy),

Xe0,yex

Proposition 7.1. Let u be aZ?-MRF with supgu) = </”* that satisfies the ratio strong
mixing property for the class of finite simply lattice-contesl sets. Themn satisfies expo-
nential SSM for the family of se{§ .}y -~o.

Proof. Fix y,z> 0 and the corresponding s&t, € Z?. Let® C S, 6 € &/ and&;,&, €
o799z with p (&) (&) > 0, consider:
(1) the sets .= Zasﬂ(él, &) andA =S, Uz,
(2) an arbitrary configuratiofl € o9 such thaf(asy’z\ 2)=¢i(0S2\2) (i=1,2),
and
(3) the eventd\:= [0] € Fp andB; := [§i(X)] € F5, fori=1,2.

Notice thatA is a finite simply lattice-connected set and, since $upp- ,szﬂd, we can

be sure thatt(&) > 0. Then:

(7.3)  |K(6]&) — k(61&)] = |u(AIE]NBy) — u(AE] N By)|
7.4 _|\HANBE)  aE _u(AﬂBglf)‘
(7.4) S BalE) H(AE) + p(AE) B
(7.5) < “(Aﬁ—m_l‘Jr‘l_ H(ANBE) ‘

" @I nAE) H(B2lE)u(AE)
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(7.6) <2C g adist(xy)
€Q,yeX

(7.7) <lej2c Eze*“disw.

W.l.0.g., we can assume that = 1 (see §, Corollary 2]). Therefore, by taking' =
we have:

(7.8) [H(8181) —H(6]&)] < [O[2K 5 e I8 = [@[Cle 7O,

O

Remark 2. The proof of Propositior7.1 seems to require some assumption on the sup-
port of u (for the existence of in the enumerated item list above). Fully supported (i.e.

supu) = ;zﬂz) suffices, and is the only case in which we will apply thislt§see Corol-
lary 1), but the conclusion probably holds under weaker assumgptio

Giveny,z > 0, we define thdottom boundary of\ asd,S;; := 9§, N Z, i.e. the
portion of the boundary 0§, included in the past, and thep boundary of & as the

complemen®;S,; := 0S5,z \ 2. Clearly,dS,; = 0,S,7,10;S,7.

Proposition 7.2. Let 1T be a specification satisfying exponential SSM with pararsete
C,a > 0. Then, forallne N, y,z> 1n and ac "

(7.9) |7E2(6(0) = &) — 12(0(0) = )| < Ce ™.
uniformly overwy, wp € Q(&') such thatw (F2) = wp(2).

Proof. Fixne N, y,z>1n,ac & andw, w; € Q(&) suchwi(Z) = wp(Z?). Denote
& = wi(0Sy). Then:

(7.10) |7E2(6(0) = a) ~ 7§2(6(0) = a)|

(7.11) = |r§<e< )= > 76(600) = ain) rrgf(n>|
(7.12) < 3 |7,(6(0) =) - 1 (6(0) = )| &% (1)
(7.13) < %c:e“disfmxza%(fﬂ))rgi (n) <Ce

where the summatiofi,, is taken over alh € =79 such thaﬂ‘@z >0andn (0,S) =

@ (0,S)). The last inequality above follows from the fact that for amghn, 5, (€,n) C
0;S,, s0:

(7.14) dist0, Z,g,(£,1n)) > dist(0,8,S) = n.
O

Definition 7.3 (Variational distance)Let S be a finite set and le§ dnd % be two S-valued
random variables with distributiop; andp,, respectively. Theariational distancédry of
X1 and % (or equivalently, ofp; andp,) is defined by:

(7.15) drv(p1,p2) 25|Pl



22 STEFAN ADAMS, RAIMUNDO BRICENO, BRIAN MARCUS, AND RONNIE PAVLOV

It is well-known thatdrv(p1, p2) is a lower bound of?(X; # Xy) over all couplings?
of p; andp, and that there is a coupling, called thptimal coupling that achieves this
lower bound.

Given a Gibbs specification, we define:

(7.16) Qm:= max dry (n{‘*g}(-),ngg}(-)) .

w1, WEQ(&)
The following result is essentially ir¥].

Theorem 7.3. Let 11 be a Gibbs specification for a n.n. interactighand a set of con-
straints&’, such thatQ(&’) has a safe symbol. Then, if denotes the critical value of site
percolation orZ? and Q1) < pc, we have thair satisfies exponential SSM.

Proof. Takeu any n.n. Gibbs measure fdr. SinceQ(&’) has a safe symbaols is fully
supported, i.e. sugp) = Q(&) (very special case o8b, Remark 1.14]). Given a%-MRF
u, define:

(7.17) Q(u) := maxdry(u(6(0) = -|n1), u(6(0) = -|n2)),

N1,N2

wheren; andn;, range over all configurations @0} such thafu(n1), u(n2) > 0. Then,
Q(u) < Q(m) < pe, so by [7, Theorem 1] and shift-invariance @, u satisfies exponential
SSM (see 30, Theorem 3.10]). Finally, since is fully supported, we can conclude tirat
satisfies exponential SSM. O

7.2. Stochastic dominance.Suppose that7 is a finite linearly ordered set. Then for any
setL (in our context, usually a set of sites or bonds); is equipped with a natural partial
order= which is defined coordinate-wise: f65,0, € <", we write 6; < 6, if 61(x) <
0>(x) for everyx € L. A function f : &7% — R is said to bencreasingif f(6;) < f(6»)
wheneverf; < 6,. An eventA is said to be increasing if its characteristic functiphis
increasing.

Definition 7.4. Let p; and p, be two probability measures ow-. We say thap; is
stochastically dominatdaly p,, writing p1 <p p», if for every bounded increasing function
f: o7t — R we havep(f) < pa(f), wherep(f) denotes the expected vallg(f) of f
according to the measu.

7.2.1. Stochastic dominance and connectivity decay for the bondamn-cluster model.
Recall from Sectios.1the bond random-cluster model on finite subset%fvith bound-
ary conditions = 0,1, and the bond random-cluster moggl, onZ? (see pagdl).

Theorem 7.4([17, Equation (29)]) For any pc [0,1] and g€ N, and anyA C A € Z2:
0 0 1 1
(7.18) 0% 4 <o ¢ and @ <p @i -
In particular, if p < pe(q), we have that, for anj € Z2:
(7.19) A A <0 Gha <b G A,
where<p is with respect to the restriction of each measure to evelmlé%/\).

The following result was a key element of the proof ti§atq) = log(1+ ,/q) is the
critical inverse temperature for the Potts model. We wi# tigs result in a crucial way.

Recall that forp < pc(q), ¢hq is the unique bond random cluster measure with param-
etersp andg.
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Theorem 7.5([6, Theorem 2]) Let q> 1. For any p< p¢(q) = 1+\/"’ the two-point

connectivity function decays exponentially, i.e. theristéx< C(p,q),c(p,q) < « such
that for any xy € Z2:

(7.20) Grg(x<y) <C(p,q)e” c(Pa)lx-yll2

where{x +> y} is the event that the sites x and y are connected by an operapdth- ||»
is the Euclidean norm.

7.2.2. Stochastic dominance for the site random-cluster model.

Lemma 7.6. Given a set\ € Z9 and parameters g [0,1] and q> 0, we have that for
any xe A and anyt € {0,1}"\X}:

(7.21) m@swﬁAﬂwzﬂﬂ<m@
where p(q) = W and p(q) = m In consequence,
(7.22) Wp(g).A <D lllp,q,/\ <b Yps(g).A

(Recall that¥, A denotes Bernoulli site percolation).

Proof. This result is obtained by adapting the discussion2i) p. 339] to the wired site
random-cluster model. See alstil] Lemma 5.4] for the casg= 2. O

7.2.3. Stochastic dominance for the Potts modes before, leq € <7 denote a fixed, but
arbitrary, choice of a colour. Let € Z9 and consideg: ,c%q’\ — {4, -} be defined by:

+ ifo(x) =q,
— if 8(x) #4q.

The functiong makes the nomtcolours indistinguishable and giveseduced model
We sayf ~ 6’ if g(6) = g(6’). This relation defines a partition oﬁq’\ and unions of
elements of this partition form a sub—algebrawg\, which can be identified with the
collection of all subsets of+,—}". Let "E,/\ =0 n;f}\ be the push-forward measure,

which is nothing more than the restriction (projection)‘éﬁ\ to {+, —}\. Chayes showed
that the FKG property holds on events in this reduced modedatticular:

(7.23) mwmw={

Proposition 7.7 ([11, Lemma on p. 211]) For all B > 0 and A & Z?, "E/\ satisfies the
following properties:

(1) Forincreasing subsets,B C {+, —}": 1T (A| B) > (A).

(2) If Ais decreasing and B is increasing, therz;m (A B) + AA).

(3) If AC A and A'is an increasing subset pf-, —}4, then: 1t (A) > T[EA(A)
Proof.

(1) Thisis contained in]1, Lemmaon p. 211].
(2) Thisis an immediate consequence of (1).
(3) This is a standard consequence of (1): Bet +%2. Sinceg (B) is a sin-
gle configuration namelg®®, we obtain from the Markov property of;;f}\ that
T A(A) =113 (A | B). From (1), we havety , (A | B) > 115 , (A). Now, combine
the prewous two statements.
O
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Remark 3. The preceding result immediately appliesr@\ for events in%’\ that are
measurable with respect for, —}", viewed as a sub-algebra of;".
7.2.4. Volume monotonicity for the Widom-Rowlinson model &itypes. For the classical

Widom-Rowlinson modeld = 2), Higuchi and Takei showed that the FKG property holds.
In particular,

Proposition 7.8([21, Lemma 2.3]) Fix q= 2 and letA C A € Z9 andA > 0. Then:
(7.24) M () < 13 (wy).

However, this kind of stochastic monotonicity can fail fargralg (see L7, p. 60]).

8. EXPONENTIAL CONVERGENCE OFTH, IN Z2 LATTICE MODELS

In this section, we consider the Potts, Widom-Rowlinson hadd-core models and
establish exponential convergence results that will legaréssure representation and ap-
proximation algorithms for these lattice models.

Recall that for the Potts modezlrfz(w) = ;’gSm(G(O) = w(0)) and, in particular,

1% (w) = n;gs“)(e(O) = w(0)), with similar notation for the Widom-Rowlinson and hard

core models.

8.1. Exponential convergence in the Potts model.

Theorem 8.1. For the Potts model with g types and inverse temperafyrihere exists a
critical parameterf;(q) > 0 such that foi0 < 3 # 3:(q), there exists Ca > 0 such that,
for every yz> 1n:

(8.1) |7 () — 1 (o) | < e

Proof. In the supercritical regio8 > (:(q), our proof very closely follows10, Theorem
3], which treated the Ising case. We fill in some details ofrtheof, adapting that proof
in two ways: to a half-plane version of their result (the dités in (8.1) are effectively
half-plane quantities) and to the general Potts case. feosubcritical regiorB < B:(q),
the proposition will follow easily from3, Theorem 1.8 (ii)].

PartI: B> B:(q). Let ngn denote the event that there iscgpath of — from 0 t0 9S,,

i.e. a path that runs along ordingf§ bonds and diagonal bonds where the colour at each
site isnot g(in our context below, the configuration on the bottom piécs, ; of 95, will
be allq and thus a-path of — from 0 to dS, cannot terminate o8, S;). Note that 'I;;;1

is an event that is measurable with respect to the sub-aldebr}", for any finite set\
containingS,, introduced in Sectiofi.2.3(recall that this sub-algebra corresponds to the
reduced Potts model).

By decomposingxfz(ah) into probabilities conditional ongl's*n and(T,Z% )¢, we obtain:

oS
(8.2) T () — 16, o0y)
(8.3) = HE?SH(G(O) =q)— HE’,“SYZ(G(O) =0q)

(8.4) (1T (To2)) (e (8(0)=a) — s (8(0)=d](T;5)°)).
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We claim that the expression i8.9) is nonnegative. To see this, observe that the
events{w(0) = g}, {w(9S)) = ¢’} and{w(9S,7) = q°>2} may be viewed as the events
{w(0) = 4}, {w(0Sh) = +95} and{w(9S,) = +99} in the sub-algebrd+, —}5 of
the reduced model, as discussed in Secti@3 Now, apply Propositio.7 (part 3) and
Remark3.

We next claim that:

(8.5) e (6(0)=a|(T,2)°) > 5% (6(0) = q).

To be precise, first observe thate (ngn)c iff w contains an aly path inS, from

902 N{x <0} t0dF¥N{x > 0}. So,(T,¢ )° can be decomposed into a disjoint collection
of events determined by the unique furthest such path fotising the MRF property of
Gibbs measures, it follows that we can regard each of thes@®®as an increasing event
in {4, —}5". Now, apply Propositioi7.7 and Remarlk3. (The reader may notice that here
we have essentially used the strong Markov property (5&ep| 1154]).)

Thus, 8.4 is nonpositive. This, together with the fact th‘qifsq(e(O) =q[T,5) =0,
yields:

(8.6)  0< 7 (wy) — () < ML (Tp3)T (6(0) =) < 7L (T58).

So, it suffices to show that syip 4, H?%Z(Tgé;) decays exponentially in. Fixy,z> 1n
and letm> n such thatlin > y,z. By Proposition7.7 (parts 2 and 3) and RemaBk

(8.7) s, (Tos) < s (T55)
(8.8) - n;ﬁBm(ngJqf}) < ngﬁBm(Tgé) < ngﬁBm(T(;gn).

So, it suffices to show that sy, n;f]'Bm(Tl;gn) decays exponentially in. Recall the

1)
p.g.Bm

random-cluster measure with wired boundary conditﬁé]éBm (see Sectio’k.1).

W.l.0.g., let’s suppose thatis even, i.en = 2k < m, for somek € N. We consider the
following two events in the bond random-cluster model, afslih Theorem 3]. LetR,, be
the event of an open circuit inJB\ B that surrounds B Let M, m be the event in which
there is an open path from some site intBdB,. The joint occurrence of these two events
forces the Potts eve(ﬂ';gn)c in the coupling:RnNMnm C (T;én)c (here, technically, we
are identifying these events with their inverse images efditojections in the coupling).

Then, by the coupling property:

©9) 7% ((T5,)°) = Pgen (To2)°)

Edwards-Sokal coupling for the Gibbs distribution and the corresponding bond

(8.10) >pl . ((T;én)c Rn Mn,m) P s (RaNMom)
(8.11) =@ e, (RaNMom),

SO:

(812) 7% (Toe) <1—@hae, (RaNMam) < @hag, (RS) + Gha e (Mam)-

Therefore,

(1

(8.13) supty (Tos ) < supgl s (RS)+supglo e (MG ).
m>n : m>n m>n
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The first term on the right hand side &.13 is bounded from above as follows:

1 1
(8.14) (P,(),c{Bm(Rrﬁ) < Qoé,c;’gmﬂ(gzﬁ)
(8.15) < Z qoég,)q,Bm (xey)
XEOBy,yeIdBoy
(8.16) <Y mrgxey),
XEOBy,yedBoy
whereBy, = [-m+1,m2NZ2 and p* denotes the dual g and the inequalities follow

from Propositiorb.3and Theoren7.4.

If p> pc(q), thenp* < pc(qg), and by Theoren?.5, the first term on the right side of
(8.13 is upper bounded by & p*, q)n exp(—c(p*,q)n/4), since|dBy||dBx| < 64n? and
[x—yll2>k—1> 7, forall x e dB andy € dBx. So, the first term on the right side of
(8.13 decays exponentially.

As for the second term, in order foi{n m to fail to occur, there must be a closed circuit
in Bm\ Bk and in particular a closed path froln, := Bm \ Bk N {x1 < 0,x2 = 0} to
Rmn :=Bm\ BN {X1 > 0,x2 = 0} in Bm. Thus,

1 1
(8.17) o Mim) < B (V)
0
(8.18) < z (pr()*?q,Bml (X<y)
XELmn,YERmn
(8.19) < Y ®axey),
XELmn,YERmn

where the last inequality follows by Propositibr8Band Propositior7.4. By Theoren .5,
this is less than:

R . 1 2
8.20 Cp".qle <P+ < c(pr <ec(p an >
(8.20) 2. (p",0) <C(p",0) o

_ C( p*,Q) —2c(p*.q)n
(8.21) = 7(1_efc(p*’q))2e .
Thus, the 2nd term on the right side 813 decays exponentially, So syp, ngfqm(T‘;gn)
decays exponentially in. Thus, by 8.7) sup,.., ngf*m(Tl;;) also decays exponentially in
n, as desired. '

Part Il: B < B:(q). Recall from Sectior¥ the notions of strong spatial mixing and ratio
strong mixing property.

Theorem 8.2([3, Theorem 1.8 (ii)]) For theZ? Potts model with ¢ types and inverse tem-
peraturef, if 0 < B < Bc(q) and exponential decay of the two-point connectivity fuoncti
holds for the corresponding random-cluster model, ther(timque) Potts Gibbs measure
satisfies the ratio strong mixing property for the class oitdisimply lattice-connected
sets.

Corollary 1. For theZ? Potts model with g types and inverse tempera@re < B(q),
the specificatiomgP satisfies exponential SSM for the family of §8s,}y -~0.

Proof. This follows immediately from Theoreih5 TheorenB.2and Propositioi7.1L [
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Then, since exponential SSM holds for the class of finite girtgitice-connected sets
whenf < B:(q), the desired result follows directly from Propositiar2
This completes the proof of Theoresril O

8.2. Exponential convergence in the Widom-Rowlinson modelRecall that for Bernoulli
site percolation irZ? there exists a probability parametes, known as thepercolation
threshold such that fop < pc, there is no infinite cluster of 1'g, ,>-almost surely and
for p > pc, there is such a clustelr, ;2-almost surely. Similarly, one can define an analo-

gous parametgp; for the latticeZ?*, which satisfiege + p; = 1 (see B7)).

Theorem 8.3. For the Widom-Rowlinson model with g types and acti¥ityhere exist two
critical parameters) < A1(q) < A2(q) such that forA < A1(q) or A > A»(q), there exists
C,a > 0such that, for every,g > 1n:

(8.22) R () = T ey | < Ce ™
Proof. As in the proof of Theorer8i.1, we split the proof in two parts.

Partl: A > Ax(q) :=q3( 2 ). Fix n€ N andy,z> 1n. Notice that, due to the constraints

1-pc
of the Widom-Rowlinson model, and recalling Proposittos
(8.23) Mo(a) = 145 (8(0) =) = Yy, (6(0) = 1),
wherep = li—/\ and the same holds far' («,). Then, it suffices to prove that:
(8.24) |Whas(600) = 1)~ g (6(0) = 1) <Ce ™,

for someC,a > 0.

Notice that@®e S, C S,; =: A. Fix any ordering on the sét. From now on, when we
talk about comparing sites ify, it is assumed we are speaking of this ordering. For con-
venience, we will extend configurations 8npandA to configurations o\ by appending
1M\ and P, respectively.

Now, we will proceed to define a couplirit,y,, of LIJE:'&’SH and Lpé,l&,,\, defined on pairs
of configurationg 8y, 6,) € {0,1}" x {0,1}". The coupling is defined one site at a time,
using values from previously defined sites.

We use(1}, 75) to denote the (incomplete) configurationsdr A at steg = 0,1, ..., |Si|.
We therefore begin with? = 1M\S and 19 = 19, Next, we setr} = 19 and formti by
extendingrd to A\ S, choosing randomly according to the distributipﬁg‘,\ (-]29M). At

this point of the construction, bott} and 1} have shapé \ S,. In the end,(r‘ls”‘,r‘zs”‘)
will give as a result a paif6, 6).

At any stept, we uséV! to denote the set of sites flnon whicht} andt} have already
received values in previous steps. In particlWit,= A\ S,. At an arbitrary step of the
construction, we choose the next sité on which to assign values ir{** and 7, as
follows:

(i) If possible, takex*?! to be the smallest site id*W! that is x-adjacent to a site
y € Wt for which (7} (y), T5(y)) # (1,1).
(i) Otherwise, just take!*! to be the smallest site id*W".

Notice that at any stefy W! is ax-connected set, and that it it always possible to find

the next sited*1 for anyt < |S,| (i.e. the two rules above give a well defined procedure).
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Now we are ready to augment the coupling fréf to W U {x*1} by assigning

TiF1(xX+1) and 151 (x*+1) according to an optimal coupling apé’l()]’&(-htl)‘{)ﬁl} and

wé’l%’sw(. | 1) oy’ i.e. a coupling which minimizes the probability that, giva}, 73),

01 (X*+1) #£ 6,(X*1). SincePny; is defined site-wise, and at each step is assigned accord-
ing to Lpé‘lé‘sq (-|7}) in the first coordinate an(ﬂll(llg‘sﬂ(- | 5) in the second, the reader may

check that it is indeed a coupling qf;g‘lclsq and ‘p;(),l(;,sﬂ- The key property 0Py is the
following. -

Lemma 8.4. 6:(0) # 6,(0) Pny-a.s. if and only if there exists a paihof x-adjacent
sites from0 to S, such that for each siteg T, (61(y), 62(y)) # (1,1).

Proof. Suppose, for a contradiction, thé(0) # 6,(0) and there exists no such path. This
implies that there exists a circuit C surround@vthen we include the bottom boundary
as part of C) and contained & such that for ally € C, (61(y), 62(y)) = (1,1). Define by

| the simply latticex-connected set of sites in the interior of C and, let’s saydh&imety,

x'o was the first site withi defined according to the site-by-site evolutioriPaf,,. Then,
(T;O (x0), T;O (x0)) cannot have been defined according to rule (i) since all sitedjacent to
X are either in (and therefore not yet defined by definitionsdsf), or on C (and therefore
either not yet defined or sites at whi@hand6, are both 1).

Therefore 6, (x0), 8,(x0)) was defined according to rule (ii). We therefore define the
setD := A\Wb~1 D1, and note thad@ndx' belong to the same-connected component
© of D. We also know that® *(9*D) = 12 *(9*D) = 19°P, otherwise some unassigned
site in D would bex-adjacent to a 0 in eitheu"lo’l(d*D) or r;(”l(a*D), and so rule (i)
would be applied instead. We may now apply Lembna(combined with Remark) to
© andA in order to see thawé’lé’sq(el(e)|rt1°’l) and Lpé’lé’sﬂ(ez(e)|r;°’l) are identical.
This means that the optimal coupling according to whi519h><t0) andr;"(xto) are assigned
is supported on the diagonal, and BtlEJ(XtO) = T;O (X0), Pnyz-almost surely. This will
not change the conditions under which we applied Lent%a and so inductively, the
same will be true for each site inas it is assigned, includin@.0We have shown that
61(0) = 6,(0), Pny-almost surely, regardless of whéni® assigned in the site-by-site
evolution of P y,. This is a contradiction, and so our original assumption imasrrect,
implying that the desired path T exists. O

Given an arbitrary time, let:

(8.25) PLC) = Whas, (I D] and pS() = wigaClT Y|

{x} {x}

be the two corresponding probability measures defined orseh€0, 1}{Xt}. Note that
at any step within the site-by-site definition Bf,,, Lemma7.6 implies thatﬁ <

pl(1), whereA = 1Tpp andi = 1,2. Now, w.l.o.g., suppose th@(0) > p}(0). Then,

an optimal couplingd! of p} andp} will assignQ'({(0,0)}) = p}(0), Q'({(0,1)}) =0,
Q'({(1,0)}) = p4(0) — pi(0), andQ! ({(1,1)}) = 1 p}(0). Therefore,

q3

A+

(8.26) Q' ({(1,1)}°) = p5(0) <
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Next, define the map: {0,1}% x {0,1}% — {0,1}> given by:

1 if (61(x),62(x)) # (1, 1),

(8.27) (h(61,62)) (x) = {o it (61(%), 62(x)) = (1,1).

By (8.2, h.PPny (the push-forward measure) can be coupled against anmedsure
on {0,1}% which assigns 1 with probabilit;(‘iiq3 and 0 with probabilityﬁqy and that
the former is stochastically dominated by the latter. Ttugether with Lemm@.4, yields
(828)  |Whus,(B(0)=1)~ Yfhs (6(0) = 1)| < Poyz(61(0) # 6:(0)

(8.29) <y g (0808,

A+3’

Since we have assumad> g° (lfcpc) andpe+ ps =1, we have/%g < pt. Itfollows

by [1, 32] that the expression ir8(29 decays exponentially in. This completes the proof.

Partll: A <A1(q) := % (%Cpc) Observe that, by virtue of Propositian2, it suffices to

prove thatrr)\"’R satisfies exponential SSM. For this, we use Theore3nBy considering
all cases of nearest-neighbour configurations at the grigia can compute:

WRy __ — q)\_

(8.30) Q™) = | max drv(mo) o) = T3 g1

By Theoreni/.3 we obtain exponential SSM when:

1 Pc )

8.31 A<= = A1(Q).
831) 2 (%) M

Uniqueness of Gibbs states in this same region was mentioii&€, p. 40], by appeal-
ing to [7, Theorem 1] (which is the crux of Theorens). O

Remark 4. In the case g= 2, it is possible to give an alternative proof of Theor8r8,
Part I, using the framework of the proof of Theor@, Part |. The arguments through
(8.7) go through, with an appropriate re-definition of events ars#® of Propositiorv.8
for stochastic dominance. One can then apply Leningdo give estimates based on the
site random-cluster model. (In contrast to Theorgrh Part I, this does not require the
use of planar duality). So far, this approach is limited te-® because we do not know
appropriate versions of Proposition8for q > 2.

8.3. Exponential convergence in the hard-core modelOur argument again relies on
proving exponential convergence for conditional measwi#ls respect to certain “ex-

tremal” boundaries 08, but these now will consist of alternating 0 and 1 symbolseat

than a single symbol (recall from SectidtB that w(® is defined as the configuration of
1's on all even sites and 0 on all odd sites).

Theorem 8.5. For the Z? hard-core model with activity, there exist two critical param-
etersO < y1 < y» such that for anyd < y < y3 or y > y», there exist Ca > 0 such that for
every yz> 1n,

(8.32) () — Y, (w'?)| < Ce M.
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Proof. As in the previous two theorems, we consider two cases.

Part I: y >y := 468 Our proof essentially combines the disagreement peroolétich-
nigues of ] and the proof of non-uniqueness of equilibrium state ferhiard-core model
due to Dobrushin (seelf]). We need enough details not technically contained inegith
proof that we present a mostly self-contained argument herem [7, Theorem 1] and
an averaging argument (as in the proof of Proposifidh on 9,5, induced by a boundary
condition onS;;, we know that for any,z > 1n,

(8.33) |m(w®)— n;}fz(w(o))‘ < Pny (3 a path of disagreement frofx@ 4, S,)

for a certain coupling’y ., of nyg and n;fg)z

here, but instead note the following: a path of disagreererihe boundaries(®) (9S,)
andw(o)(ﬁsy’z) implies that in one of the configurations, all entries on tathpvill be “out

of phase” with respect tw(©), i.e. that all entries along the path will have 1 at every odd
site and O at every even site rather than the opposite aliegnaattern ofw(©. Then, if

we denote by7, the event that there is a path T frdn0 0, S, with 1 at every odd site
and 0 at every even site, it is clear that:

(8.34)  Pny;(3 apath of disagreement frofx8 4;S,) < nﬁ’g (Th) + Tlf/‘i’;)z(%).

Sincey,z > 1n are arbitrary (in particulay andz can be chosen to b}, it suffices to
prove that sup,. 1, T[;’g?z( In) decays exponentially with. Define the set:

. We do not need the structure By,

(8.35) ©y,={0€{0, 1}§§~Z : O is feasible and(9*S,;) = w(°)(d*sy,z)}.

For any @ € ©y,, we defineZy(6) to be the connected componentzgy,z(e,w(o))
(= {x€ Sz 0(x) # w©(x)}) containing the origird0 Since.Zp C {Zo(0) N ;S # 0},
our proof will then be complete if we can show that there eRigt > 0 so that for anyn
andy, z > 1n, the following holds:

(8.36) ns) (Zo(6) N9, # 0) < Ce ™

To prove this, we use a Peierls argument, similal@.

Fix anyy,z> 1n and for anyf € ©y,, defineXy(6) as above, and ld{(0) to be the
connected component dk € QZZ :0(x) = w(x)} containingd*S,;. Clearly, Zo(6)
andK (6) are disjointK (8) # 0 and, provided(0) = 0, Zo(8) # 0. Then, definé (8) :=
>0(0)NIK(0) C S,z We note that for ang € ©y, with 6(0) =0, we have thal ("' (8)) =
0", since adjacent sites By(6) andK(8) must have the same letter by definition of
3o(0), and adjacent 1 symbols are forbidden in the hard-core mobtetrefore, every
xer(0)iseven.

We need the concept ainer external boundarfor a connected sét € Z2. The inner
external boundary of is defined to be the inner boundary of the simply lattice-@mted
set consisting of the union & and the union of all the finite componentsZ#\ Z. Intu-
itively, the inner external boundary @f is the inner boundary of the s&tobtained after
“filling in the holes” ofZ. Notice that the sdt(6) corresponds exactly to the inner external
boundary ofzg(6). In addition, by L2, Lemma 2.1 (i)], we know that the inner external
boundary of a finite connected set (more generally a firitennected set) is-connected.
Thus,I'(8) C S, is ax-connected set Cthat consists only of even sites and contains the
origin 0, for any@ € Oy, with 6(0) = 0.
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Then, for C C S, we define the evetic- := {6 € ©y,: () = C*}, and will bound
from abovenf,j’g,)z(EC*), for every C such thatEc- is nonempty. We make some more
notation: for every such a set @efineO(C*) (for ‘outside’) as the connected component
of (C*)€ containingd*S;;, and defind (C*) (for ‘inside’) asS,;\ (C*UO(C*)). Then C,
[(C*), andO(C*) form a partition of?fxz. We note that there cannot be a pair of adjacent
sites froml (C*) andO(C*) respectively, since they would then be in the same connected
component of(C*)¢. We also note that for ever§ € Ecx, C* C Z9(0) C C*UI(C*)
andK(8) C O(C*) though the sets need not be equal, sibggd) or K(6) could contain
“holes” which are “filled in” inl (C*) andO(C*), respectively.

o
o
o

— oo~ 0O —0C —

FIGURE 2. A configurationd € Ec«. On the left, the associated sets
Zo(0) andK(0). On the right, the set§C*) andO(C*) for ['(6) = C*~.

Choose any set'Guch thaEc- # 0. For eachd € Ec- andx € C*, using the definition
of C* and the fact thalt (6) C O(C*), there existgg € {e1, —e1, e, —ex} forwhichx—xg €
O(C*). Fix anxg which is associated to at led&*|/4 of the sites in €in this way. Then,
we define a functios: Ec — {0, 1}§;2 that, givenf € Ec+, defines a new configuration
s(0) as follows:

B(x—xp) ifxel(Cr),

e if xe O(C*),
(8.37) (s(6))(x) = 1 if x e C* andx—xo € O(C*),
0 if x € C* andx—xg € | (C*).

Informally, we move all 1 symbols insidéC*) in the xo-direction by 1 unit (even if
those symbols were not part B§(0)), add new 1 symbols at some sites ih, @nd leave
everything inO(C*) unchanged.

It should be clear that6) has at leasiC*|/4 more 1 symbols thaé did. We make the
following two claims:sis injective onEc+, and for everyd € Ecx, S(8) € ©y,. If these
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claims are true, then clearig{z’g?z(s(Eo)) > MC*V“TL;“”SZ(EC*), implying that:

(8.38) néy (Ec:) <y V2.

Firstly, we show thasis injective. Suppose th& # 6,, for 61,6, € Ec<. Then there is
a sitexat which 6y (x) # 82(x). If xe O(C*), then(s(61))(X) = 61(x) # 62(X) = (S(62))(X)
and sos(61) # s(62). If xe 1(C*), then(s(61)) (X+Xo) = O1(X) # 62(X) = (S(62)) (X+Xo),
and agairs(6;) # s(6,). Finally, we note thak cannot be in €, since at all sites in ©
both8; and6, must have 0 symbols.

Secondly, we show that for ary € Ec+, s(0) is feasible. All that must be shown is
thats(8) does not contain adjacent 1 symbols. We break 1 symbadéahinto three
categories:

(1) shifted meaning that the 1 symbol came from shifting a 1 symbol atsrsl (C*)
in the xg-direction,

(2) new meaning that the 1 symbol was placed at a siteC* such thatx— xg €
O(C*), or

(3) untouchedmeaning that the 1 symbol was at a sit&ifC*) (2 9*S;,).

Note that untouched 1 symbols cannot be adjacenttofGontains all 0 symbols on
C*, and so since €C Zy(0), a 1 symbol adjacent to a symbol irf @ould be inZy(6) as
well, a contradiction sincgq(6) C C*UI(C*), and saXg(08) andO(C*) are disjoint.

Clearly shifted 1 symbols cannot be adjacent to each otinee there were no adjacent
1 symbols ing. All new 1's were placed at sites in“Cand all sites in €are even, so new
1 symbols can't be adjacent to each other. Untouched 1'¢ baradjacent for the same
reason as shifted 1's. We now address the possibility ofcadjal symbols irs(8) from
different categories. A shifted or new 1$(0) is at a site in CUI(C*), and an untouched
1 can’t be adjacent to a site in@s explained above, and also cannot be adjacent to a site
in 1(C*) sincel (C*) andO(C*) do not contain adjacent sites. Therefore, shifted or new 1's
can’t be adjacent to untouched 1's. The only remaining casehwe need to rule out is a
new 1 adjacent to a shifted 1. Suppose flséf))(x) is a new 1 ands(0))(X) is a shifted
1. Then by definitionX' — xp € I (C*) andx — X € O(C*). We know that (C*) andO(C*)
do not contain adjacent sites, 86 xg andx’ — xg are not adjacent, implying thatandx’
are not adjacent. We've then shown tlsgf) is feasible and then, sine&'S,; C O(C*),
S(0) € ©yz, completing the proof ofg.39.

Recall that every set’Gwhich we are considering is-connected, occupies only even
sites, and contains the orighh 0rhen, giverk € N, it is direct to see that the number of
such C with |C*| = k is less than or equal th-t(k), wheret(k) denotes the number of
site animalgsee P9 for the definition) of sizek (the firstk factor comes from the fact that
site animals are defined up to translation, and here giveteasimal of sizek, exactly
k translations of it will contain the origi®)0 We know that for everg > 0 there exists
Ce > 0 such that(k) < C¢(5 + €)X for everyk, whered := limy_ (t(k))l/k < 4.649551
(see PY)).

If Z(0) N 0;S, # 0, thenXy(6) has to intersect the left, top or right boundarySyf
W.l.o.g., we may assume thag(6) intersects the right boundary 8f. Then, every verti-
cal segment in the right half &, must intersecEq(6) and, therefore, at least one element
of its inner external boundary, namdly8). Then:

(8.39) 30(0)NSH#0 = |[F(6)] >n.
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Therefore, taking an arbitrarg > 0, we may boundg‘,j’gz(zo(e) No;S # 0) from
above: o

(840) 1Y% (5o(0)NASH£D < T yf\c*\/zlgikcg((; N
- Cx:|C*|>n k=n

which decays exponentially imas long ag/ > (& + €)*, independently of andz. Sinceg
was arbitraryy > 468> &* suffices for justifying 8.36), completing the proof.

Partll: y<y; =248, Itis known (see39]) that whend = 2 andy < 2.48, 1i/'C satisfies
exponential SSM. Then, by applying Propositiad, we conclude. O

9. POLY-TIME APPROXIMATION FOR PRESSURE O? LATTICE MODELS

By apoly-time approximation algorithito compute a number we mean an algorithm
that, givenN € N, produces an estimatf such thatr —ry| < % and the time to compute
rn is polynomial inN.

Theorem 9.1. Let ® be a n.n. interaction for a set of restrictiors and suppose that
Q(&) satisfies the square block D-condition. et Q(&) be a periodic point such that
cn(v®) > 0. In addition, suppose that there existsotC> 0 such that, for every,g > 1n:

(9.1) |Th(w) — T,z(w)| < Ce " overw € O(®).
Then:
1 N
(9.2) R®) = Wweo@)ln(@ + Ao (W),

and there is a poly-time approximation algorithm to compR(@®), when d= 2.

Proof. Notice that supfv®) = O(@) C Q(&), sinceQ(&) is shift-invariantando € Q(&).

Now, since|m(w) — 7,2(w)| < Ce 9" overw € supgv®), we can easily conclude that

liMy,z—se0 T8,,(0) = 71(w) uniformly overw € supgv®). This, combined wit(&") satis-

fying the square block D-condition ang(@®) > 0, gives us
N o 1

WESUpEV@)

IAT[(O‘)) + A‘:D(w)a

thanks to Theorer.3

For the algorithm, it suffices to show that there is a polyetilgorithm to compute
m(w), for anyw € O().

By Equation9.1, there exisC, a > 0 such thatm(w) — 7(w)| < Ce 9", Since|dS|
is linear inn whend = 2, by a modified transfer matrix approach (s&#& [Lemma 4.8]),
we can computenr(w) in exponential timeKe”" for someK, p > 0. Combining the ex-
ponential time to computa,(w) for the exponential decay off,(w) — fi{w)|, we get a
poly-time algorithm to compute(®): namely, giverN € N, let n be the smallest integer
such thaCe ™D < L. Thenm,1(w) is within & of 7(w) and since} < Ce ", the
time to computet,. 1(w) is at most:

(9.4) KeP(Ml) — (KepCp/")W < (KePCP/O)NP/a
which is a polynomial irN. O

Corollary 2. The following holds:
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(1) For theZ? Potts model with g types and inverse temperafiire O:

(9.5) R®p) = I7(cy) +2B.
(2) For the Z? Widom-Rowlinson model with q types and activity= (0,A1(q)) U
(A2(q),0):
(9.6) R®;) = 7 (ey) +10gA,

whereAs(q) := ¢ (lf’Cpc) andA,(q) :=¢® (lf’—Cpc).
(3) For theZ? hard-core model with activity € (0, 1) U (s, ):

©.7) R®y) = 51K(@) + 5 logy

wherey; = 2.48andy, = 468

Moreover, for the three models in the corresponding regi@xsept in the case when
B = B:(q) in the Potts model), the pressure can be approximated in-tholg, where the
polynomial involved depends on the parameters of the models

Proof. The representation of the pressure given in the previotsrsent for theZ? Potts
model withq types and inverse temperatye# B(q), the Z? Widom-Rowlinson model
with g types and activitp € (0,A1(q))U(A2(q), ) and theZ? hard-core model with activ-
ity y € (0,y1) U (y»,), is a direct consequence of Theor8ri, by virtue of the following
facts:

e Recall that the corresponding n.n. SEX &) for the Potts, Widom-Rowlinson
and hard-core model has a safe symbol, respectivel,(89 satisfies the square
block D-condition ana,(v) > 0, for any shift-invariant with supv) C Q(¢&),
in each case.

e If we consider the delta-measuve= v = §,,,, both in the Potts and Widom-

Rowlinson cases (in a slight abuse of notation, since thts Rodd Widom-Row-

linson o-algebras are defined in different alphabets), or the measurv®” =

%60)(9) + %60)(0) in the hard-core case, we have that in all three models, ®r th
range of parameters specified, except for when 3:(q) in the Potts model, there

existsC, o > 0 such that, for every,z> 1n:
(9.8) | Th(w) — Tz(w)| <Ce ", overw € supgv),

thanks to TheorerB.1, TheorenB.3and Theoren8.5, respectively. (Notice that
(w®) = Ap(w®) =0.)
This proves 9.5, (9.6) and 0.7), except in the Potts case whn= .. To establish
this case, first note that it is easy to prove thg®p) is continuous with respect 8.

Second, ifB3; < By, thennfl(wq) < nfz(wq). This follows by the Edwards-Sokal coupling
(see Theorerd.2) and the comparison inequalities for the bond random-etusbdel P,
Theorem 4.1].

As an exercise in analysis, it is not difficult to prove thadif, > 0, and eackam; 1 <
amn andamp1 < amn, then limylimpamp = limplimyamn = a, for somea > 0.

Now, consider the sequenagn := rﬁdq)ﬂ% (wy). By stochastic dominance (see Propo-
sition7.7), amn is decreasing im. By the previous discussion (Edwards-Sokal coupling),
it is also decreasing im. Therefore, and sincay, > 0, we conclude that liglimp amn =
limplimmamn = a, for somea.
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Then, we have that:

(9.9) P(@p(q) = ImP(®y 0 1)

(9.10) = lim — loglim rlgc(qH#‘(qu)—FZ(Bc(q)Jr%)
(9.11) = —loglimlim B () + 2B5(0)

(9.12) = —loglimim B () + 286(0)

(9.13) = —loglim 76" () + 2Bo()

(9.14) = i (c2) + 2Bo(0)-

(To prove that liny, rﬁC(qH”l‘(wq) = nﬁcm)(wq) is straightforward.)

Finally, the algorithmic implications are also a direct bgggtion of Theoren®.1. [
Remark 5. The algorithm given in Theore®i1 seems to require explicit bounds on the
constants C and, so that given Ne N, we can find an explicit n such that CE™1) < 5.
Without such bounds, while there exists a poly-time algorjtwe do not always know how
to exhibit an explicit algorithm. However, for all three nedsl, for regions sufficiently deep
within the supercritical region (i.ef3, A or y sufficiently large), one can find crude, but
adequate, estimates on C anchnd thus can exhibit a poly-time algorithm. This is the case
for the hard-core model, where our proof does allow an exjpdistimate of the constants
for any y > 468 On the other hand, in the regions specified in Coroll@rwithin the
subcritical region, all three models satisfy exponenti@sand then using31, Corollary
4.7], one can, in principle, exhibit a poly-time algoritheven without estimates on C and
a).
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