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Abstract. For a class of Z? Markov Random Fields (MRFs) 1, we show that the sequence
of successive differences of entropies of induced MRFs on strips of height n converges
exponentially fast (in n) to the entropy of pu. These strip entropies can be computed
explicitly when p is a Gibbs state given by a nearest-neighbor interaction on a strongly
irreducible nearest-neighbor Z? shift of finite type X. We state this result in terms of
approximations to the (topological) pressures of certain functions on such an X, and we
show that these pressures are computable if the values taken on by the functions are
computable. Finally, we show that our results apply to the hard core model and Ising
model for certain parameter values of the corresponding interactions, as well as to the
topological entropy of certain nearest-neighbor Z? shifts of finite type, generalizing a result
in [R. Pavlov. Approximating the hard square entropy constant with probabilistic methods.
Ann. Probab. to appear].

1. Introduction
The concept of entropy is fundamental to the study of dynamical systems both in
topological dynamics, where it arises as topological entropy for continuous maps, and
in ergodic theory, where it arises as measure-theoretic entropy for measure-preserving
transformations.

Of particular interest in symbolic dynamics are dynamical systems known as shifts of
finite type. We restrict our attention to nearest neighbor Z¢ shifts of finite type (nearest
neighbor Z<-SFT); such an SFT X is specified by a finite alphabet A and a set of
translation-invariant adjacency rules: X is the subset of AZ of all configurations on Z¢
which satisfy the adjacency rules. Here, the underlying dynamics are given by the group
of translations by vectors in Z¢. The topological entropy 4 (X) is defined as the asymptotic
growth rate of the number of configurations on finite rectangles that extend to elements
of X (more precise definitions for nearest neighbor Z4-SFT, topological entropy and other
concepts used in this introduction are given in §2).
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The most prominent non-trivial example in dimension d =1 (i.e. nearest neighbor
Z-SFT) is the golden mean shift, defined as the set of all bi-infinite O—1 sequences that
do not contain two adjacent 1s. Its two-dimensional analogue, known as the hard square
shift H, is defined as the set of all 01 configurations on Z?> such that 1s are never adjacent
horizontally or vertically.

The topological entropy of a nearest neighbor Z-SFT X is easy to compute: namely,
h(X) is the logarithm of the largest eigenvalue of a non-negative integer matrix defined
by the restricted adjacency rules. The topological entropy of the golden mean shift turns
out to be the log of the golden mean (hence the name for this SFT). However, it is very
difficult in general to compute the topological entropy of a nearest neighbor Z2-SFT, and
exact values are known in only a handful of cases. Even for the hard square shift, the
topological entropy is not known.

Given a nearest neighbor Z?-SFT X, the allowed configurations on a strip of height
n form what is effectively a nearest neighbor Z-SFT X,,; here, the alphabet consists of
columns of height n that obey the vertical adjacency rules, with two adjacent columns
required to satisfy the horizontal adjacency rules. The sequence of differences A (X,+1) —
h(X,) does not always converge to h(X) (see [Pi] and [P]). However, in [P], Pavlov
proved that for the hard square shift X =, not only does this sequence converge to
h(X), but it does so exponentially fast (as a function of n). While this does not give an
exact expression for 4(X), it does show that #(X) can be approximated relatively well. In
particular, a consequence of the approximation result from [P] is that there is a polynomial
time algorithm which on input k£ produces an estimate of 4 (H) guaranteed to be accurate
within 1/k. This is in stark contrast to the main result from [HM], which implies that there
exist numbers which occur as the topological entropy of a nearest neighbor Z2-SFT and
are arbitrarily poorly computable.

While topological entropy can be viewed as a purely combinatorial object, the proof
in [P] uses measure-theoretic tools. For a translation-invariant measure (& on AZZ, there is
an analogous notion of measure-theoretic entropy /4 (w). If the support of u is contained
in a nearest neighbor Z2-SFT X, then h(u) <h(X) and there is always at least one
measure @ such that 2(u) = h(X). For X =H, there is a unique measure of maximal
entropy Mmax. TLhere is also a unique measure of maximal entropy wu, for each H,.
Using results on ‘disagreement percolation’ from [BS], it was shown that the sequence of
differences h(,+1) — h(u,) converges exponentially fast to z2(iumax), and one concludes
that h(H,,4+1) — h(H,,) converges exponentially fast to 4 (), as desired.

Of critical importance to the proof is the fact that pyax is a 7Z2-Markov random field
(MRF), which is, roughly speaking, a measure on AZ® such that for any finite subset
S C 7? the conditional probability distribution on configurations on § given a configuration
u on Z*\S depends only on the restriction of u to the boundary of S. For jimax, these
conditional probabilities are uniform over allowed configurations on S given u.

In this paper, we generalize the main result of [P] to more general translation-invariant
7?-MRFs p, with non-uniform conditional probabilities. Using results from [BM], instead
of [BS], we give, in §3, a measure-theoretic analogue for certain 72-MRFs. Namely,
our Theorem 3.22 asserts that for sufficiently large n, the MRF p induces MRFs u,
on strips of height n, with appropriate boundary conditions, such that the sequence of
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differences h(u,+1) — h () converges exponentially fast to £(w) (here, u, is viewed as
a one-dimensional stationary process on sequences of configurations of n-high columns);
this result requires the existence of suitable boundary rows for sufficiently large n» and a
condition on the probability distributions on configurations at a site in Z2, conditioned
on configurations on its four nearest neighbors. The condition (which is from [BM])
is that any two such (conditional) probability distributions should not be too different—
more precisely, the total variation distance between any such distributions should be less
than the critical value for site percolation in Z2. This condition is similar in spirit to the
classical Dobrushin uniqueness criterion. The induced MRF p,, is defined by restricting
the conditional probability specifications of w to the strip of height n, with appropriate
boundary conditions imposed on the row immediately above the top row of the strip and
the row immediately below the bottom row of the strip. We note, in particular, that u,
is not the usual marginalization of u to the strip; this latter process is typically not even
an MRF.

This all becomes more concrete when the MRF 1 is a Gibbs state for a nearest neighbor
interaction ® on a nearest neighbor Z>-SFT X which satisfies a strong irreducibility
condition (Gibbs states are discussed in §4 and the strong irreducibility condition and
consequences are discussed in §5). In this case, the induced MRFs p,, are translation-
invariant first-order Markov chains whose transition probabilities are easily computed from
the interaction (Proposition 6.3 in §6). There is a simple closed form for the entropy of
such a Markov chain, which in spirit is similar to the closed form for topological entropy
of a nearest neighbor Z-SFT.

The interaction ® defines a continuous function fg on X. The pressure Px ( fo) of such
a function is defined as the asymptotic growth rate of arrays which are, roughly speaking,
weighted by exp(fo). Using an equivalent variational formula for Py (fe), given in terms
of translation-invariant measures supported within X, one can apply Theorem 3.22 to
obtain exponentially fast approximations to pressures of such functions f¢ by differences
of pressures of induced functions on strips of height n (Theorem 7.2); these pressures
are computed as largest eigenvalues of explicit matrices. A corollary of this result is
Theorem 8.1, which expresses the computability of Py (fe) in terms of computability of
the values of ®.

Finally, examples of Gibbs states and corresponding pressures are given in §9.
We consider two classical examples: the two-dimensional hard core model, given
by an interaction parameterized by activity level a, and the two-dimensional Ising
antiferromagnet model, parameterized by inverse temperature B and external field #.
Explicit ranges of values of these parameters are given for which Theorem 7.2 applies.

When & =0, then fp =0 and Px(fe) reduces to h(X). It follows that the
approximation result for pressure (Theorem 7.2) can be used to obtain exponentially fast
approximations to (X) for certain nearest neighbor Z>-SFTs. In particular, this result
recovers the main result of [P] and extends that result to other nearest neighbor 72-SFTs,
examples of which are given in §9.

After this paper was submitted, we were informed of related work by Gamarnik and
Katz [GK] who introduced a sequence of explicit upper and lower bounds that approximate
pressure to within 1/k in time polynomial in &, specifically for a wide range of parameter
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values for the hard square and monomer-dimer model in any dimension, but can be
extended to many other models. Their work was based on methods developed in computer
science for efficiently counting the number of independent sets in finite graphs [Wei].

The techniques of [GK] are related to those of our paper. In particular, both make use
of the concept of correlation decay: configurations on sets far away from a given site have
little effect on the configuration at that site. Both their work and ours was, in part, motivated
by the observation that the more traditional approach which computes normalized sequence
of strip pressures, based on transfer matrices, appears to converge slowly (see [GK, §3.3],
which refers to Simon [Sim], and comments in the introduction of [P]).

Yet the sequences of approximations are different: the approximations in [GK] are
given by approximating a single conditional probability p, via a recursion for which p is
a fixed point; ours is a sequence of successive differences of strip pressures and makes
explicit use of transfer matrices (differences of strip pressures rather than normalized strip
pressure). While we have restricted attention to only two dimensional models, it appears
that the papers apply to different, but intersecting, classes of parameter values and models.

2. Definitions and preliminaries
An undirected graph G consists of a set of vertices (or sites) V(G) and a set of edges (or
nearest neighbors) E(G) of (unordered) pairs of distinct vertices. All graphs we consider
will be countable and locally finite. Two vertices v, w € V(G) are said to be adjacent if
{v, w} € E(G). For finite sets Uy, Uy C V(G), let E(U;, U) denote the set of all edges
in G with one vertex in U} and the other in U,.

For any d > 0, we (in a slight abuse of notation) use Z? to denote the d-dimensional
cubic lattice, the graph defined by

d
VZzY=7% and EZ% = {{u, v} Z lui — vi| = 1}.
i=1

The boundary of a set S C V(G) within a graph G, which is denoted by 9(S, G), is
the set of v € V(G)\S which are adjacent to some element of S. If we refer to simply the
boundary of a set S, or write 3, then the graph G is assumed to be Z>. In the case where
S is a singleton {v}, we call the boundary the set of neighbors NUG , which is just the set of
w € V(G) adjacent to v. Again, when no mention of G is made, it is assumed to be 72,

For any integers a < b, we use [a, b] to denote {a,a + 1, ..., b}.

An alphabet A is a finite set with at least two elements.

A configuration u on the alphabet A in the graph G is any mapping from a non-empty
subset S of V(G) to A, where S is called the shape of u. For any configuration u with
shape S and any T C §, denote by u|7 the restriction of u to T, i.e. the subconfiguration
of u occupying 7. For S, T disjoint sets, x € A5 and y € AT, xy denotes the configuration
on SUT defined by (xy)|s =x and (xy)|r =y, which we call the concatenation of x
and y. We will sometimes informally identify a configuration x on a shape S with the
corresponding configuration on a translate S + v, namely the configuration y on S+ v
defined by y, = x,—y.

For any d, we use o to denote the natural shift action on AZ‘[ defined by (o, (x))(u) =
x(u +v).
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For any alphabet A and graph G, AY(®) is a topological space when endowed with
the product topology (where A has the discrete topology), and any subsets will inherit
the induced topology. We will also frequently speak of measures on AY(®) and all
such measures in this paper will be Borel probability measures. This means that any u
is determined by its values on the sets [w]:={x € AV(@ :x|g =w)}, where w is a
configuration with arbitrary finite shape S C V(G). Such sets are called cylinder sets, and
for notational convenience, rather than referring to a cylinder set [w] within a measure or
conditional measure, we just use the configuration w. For instance, w(w N v|u) represents
the conditional measure wu([w] N [v]|[u]).

A measure u on A% is translation-invariant (or stationary) if u(A) = (o, A) for all
measurable sets A and v € Z?. A translation-invariant measure . on A% s ergodic if
whenever U C AZd is measurable and translation-invariant, then w(U) =0 or 1.

Let d be a positive integer. Let &, ..., & C A2. The nearest neighbor 7.2 shift of
finite type (nearest neighbor Zd-SFT) X, defined by &1, . .., &, istheset X of all x € AZd
such that whenever u € Z4 and 1 <i < d, we have x(u)x(u + e;) € &, where ¢; is the ith
standard basis vector. We say that X is a nearest neighbor SFT if it is a nearest neighbor
Z4-SFT for some d.

When d = 1, we write £ = £|. Any nearest neighbor Z-SFT X defined by £ has an
associated square |A| x |.A| matrix A, called the adjacency matrix, which is defined by
a; j = xg(i, j). In other words, a; ; = 1 if and only if (i, j) € £.

The language of X is

o= (J L
{Scz4,1S| <00}
where
Ls(X)={x|s:x € X}.

For a subset S C 74 = V(Zd), finite or infinite, a configuration x € AS is globally
admissible for X if x extends to a configuration on all of Z?. So, the language £(X)
is precisely the set of globally admissible configurations on finite sets.

A configuration x € A5 is locally admissible for X if for all edges e = {u, u + e;}
contained in S we have x|, € &. We note that technically there is an ambiguity here since
several choices for & could induce the same nearest neighbor SFT. For this reason, we will
always think of a nearest neighbor SFT as being ‘equipped’ with a specific choice of the
sets &;.

Example 2.1. The Z? hard square shift 7 is the nearest neighbor shift of finite type with
alphabet {0, 1} and & = & = {(0, 0), (0, 1), (1, 0)}.

Given any measure [ on AZ and any rectangular prism R =[] [, n;], we can
associate a R-higher power code u!R of 1, defined as the image of 4 under the mapping
oR AZ (AR)Z‘I defined by (¢rx) (1, - - -, Va) = X|[Jin;v;.n; (v +1)—1]- FOr any nearest
neighbor Z?-SFT X, ¢r(X) is also a nearest neighbor Z¢-SFT, which we call the R-higher
power code of X and denote by XK1,

We define a square non-negative matrix A to be primitive if some power A" has all
positive entries. This allows us to define the notion of mixing for two types of one-
dimensional dynamical systems. A nearest neighbor Z-SFT X is called mixing if and
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only if its adjacency matrix (after discarding any letters of .4 which do not actually appear
in X) is primitive, and a Markov chain is called mixing if its transition probability matrix
is primitive.

For any translation-invariant measure (. on A2 , we may define its entropy as follows.

. . L d
Definition 2.2. The measure-theoretic entropy of a translation-invariant measure . on A”
is defined by

-1
h(w = lim  ——— Y p(w) log(u(w)),

Jlo2seesjda—>00 J1J2 ** + Ja ‘
weAH;‘jzlﬂin]

where terms with u(w) = 0 are omitted.

We will also deal with measure-theoretic conditional entropy in this paper. It can be
defined more generally, but for our purposes, we will define it only for a measure on A%
and specific type of partition of .A%. For any partition £ of a set S, and for any s € S, we
use £(s) to denote the element of & which s is in. If & is a partition of an alphabet A, then
¢z is the map on AZ defined by ¢ (x) = - E(x_1)EM(x)E(x1) - - -

We note that for any measure & on AZ and any partition £ of \A, the push-forward ¢ (1)
of 1 under the map ¢¢ is a measure on & z

Definition 2.3. For any translation-invariant measure 1 on A% and any partition £ of A,
the conditional measure-theoretic entropy of u with respect to £ is

p(w) )
(P () (EW—p) - - - E(wy)) )

-1
h(ul§) = hm PR u(w) 10g<
0 2k + 1 e;w

where again terms with u(w) = 0 are omitted.

Measure-theoretic conditional entropy is most useful because of the following
decomposition formula. For a proof, see [P].

PROPOSITION 2.4. For any translation-invariant measure (L on A%, and any partition &
of A,
h(ul§) = h(p) — h(gz ().

The weak topology on the space of measures on A” is the weakest topology under which
the map 1 — [f du is continuous for every continuous function f on A%, Measure-
theoretic (and conditional measure-theoretic) entropy is not continuous in the weak
topology (though it is upper semicontinuous); see [Wal]. For this reason, we need to define
the d metric for measures, with respect to which the entropy map y — h(y1) is continuous
and in fact Holder. We first need the preliminary definition of a coupling.

Definition 2.5. For any measures i on X and v on Y, a coupling of ¢ and v is a measure
Aon X x Y for which A(A x Y) = u(A) for any u-measurable A € X and A(X x B) =
v(B) for any v-measurable B C Y. The set of couplings of u and v is denoted by C (u, v).

Definition 2.6. For any measures 1 and ' on A%,

d(u, 1’y = lim sup min / dapy1(x, y) da,

n—o0 AEC(|[—n,n] 1 ‘[ n.nl)
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where dj is the normalized k-letter Hamming distance between k-letter configurations
given by di(u, v) = 1/k Zlgfk(l — 8uiyvG))-

We briefly summarize some important properties of the d distance (for more
information, see [Rud] or [S]). We are interested only in the d metric on the space of
translation-invariant measures on A% for a fixed alphabet A. The d metric is complete and
dominates distribution distance in the sense that for any configuration w on a finite interval
of length m, |u(w) — w/(w)| < md (i, ). The following estimate implies that entropy is
Holder continuous of any exponent <1, with respect to d (see [Rud, Theorem 7.9] for a
proof of the estimate in the ergodic case; the same estimate holds in the general translation-
invariant case): letting € = d (i, i),

[h(n) — h(n)| < €log|A| —eloge — (1 —€) log(1l — €).

Finally, we define the topological pressure of a continuous function on a nearest
neighbor SFT, following [Rue].

Let X be a nearest neighbor Z¢-SFT, and let f: X — R be a continuous function.
The topological pressure of f on X can be defined in several ways; one is as the purely
topological notion of the asymptotic growth rate of the number of (locally or globally)
admissible arrays in X, ‘weighted by f’. For our purposes though, the following definition,
which is a consequence of the variational principle (see [Mi] for a short proof), is more
convenient.

Definition 2.7. Given a nearest neighbor Z2-SFT X and f e C(X), the (topological)
pressure of f on X is

P(f)=PX(f)=SHP(h(M)+/fd,u>,
n

where the supremum is taken over all translation-invariant measures p supported on X.

The supremum is always achieved and any measure which achieves the supremum is
called an equilibrium state for X and f [Wal].

In the special case when f =0, P(f) is called the topological entropy h(X) of X, and
any equilibrium state is called a measure of maximal entropy for X.

3. Exponential approximation of MRF entropies
The main measures we will study in this paper are Markov random fields (or MRFs) on
sets of configurations on a graph G.

Definition 3.1. For any graph G and finite alphabet A, a measure u on A" (@ is called
a G-Markov random field (or G-MRF) if, for any finite S C V(G), any n € AS, any finite
T C V(G) such that 3(S, G) € T € V(G)\S, and any § € AT with 1 (8) # 0,

nw( | 8lacs,6)) = m(nld).

Informally, n is a G-MREF if, for any finite S C V(G), the sites in S and the sites in
V(G)\(S U (S, G)) are u-conditionally independent given the sites on 9(S, G).

We will sometimes refer to a G-MRF simply as an MRF when G is clear from context.
We note that our definition of MRF differs slightly from the usual one, where the right-hand
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side would involve conditioning on an entire configuration on V(G)\S almost everywhere
rather than arbitrarily large finite subconfigurations of it. However, the definitions are
equivalent and the finite approach leads to simpler calculations and proofs.

Definition 3.2. For a graph G and finite alphabet A, a G-specification A is defined by a
set of finitely supported probability measures

(M) SCV(G), IS < 00,8 € AV,
where, for each A%(-), - ranges over all configurations in AS.

Technically, the notation A® should include the set S, because for general graphs, a
configuration on 9.5 need not determine S. However, in this paper we only consider graphs
for which 9§ determines S (namely, Z¢ and the strip subgraphs H,, , defined below), and
so we use the simpler notation.

Again we will sometimes refer to a G-specification simply as a specification. We say
that a Z?-specification is translation-invariant if A°® = o, A® for all § and v € Z9.

Definition 3.3. For any graph G, u a measure on A" (@) any finite set § C V(G), and any
§ € A0 with 14(8) > 0, denote by 1 the measure on A% defined by u® (1) = u(u|8).

Definition 3.4. For any graph G and finite alphabet A, and G-specification A, a G-MRF
w is associated to A if u® = A? for all finite S € V(G) and § € A?S-G) with w(8) > 0.

Note that in checking whether an MRF p is associated to a specification A, many of the
A? are totally irrelevant; namely those which correspond to § which have zero p-measure.

We say that a G-specification A is valid if there is at least one G-MRF associated to it.
If there is exactly one such MRF, we denote it by w(A).

Often a specification is required to satisfy a consistency condition; see [Ge,
Definition 1.23]. This condition is important for results that assert the existence of an
MREF associated to a given specification: the existence of an MRF pu forces certain
consistencies of specifications on the support of . However, in our work, we do not
need to require consistency: whenever we need existence, we will either assume it (i.e.,
that the specification is valid) or assume a condition that guarantees it (for instance, in
Proposition 3.13). And the consistency condition is not needed in uniqueness results such
as Theorem 3.9.

To obtain good approximations of MRF entropies, we will use a condition from [BM]
on G-specifications, which was used there to prove uniqueness of the associated MRF. We
first need some definitions.

Definition 3.5. For any finite set S and two measures p and v on S, the variational distance
between p and v is

1
du, v) =5 Y ) =v(s)l.

ses

We note that d(u, v) = 1 if and only if © and v have disjoint supports.
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Definition 3.6. For any graph G, finite alphabet A, g € V(G), and valid G-specification A,
define
ge(A):= max d(A°, AY)
5.5/ ANE

and g(A) := SUPycy () qq(N).

Definition 3.7. For any finite alphabet A, graph G, and probability distribution A on A,
P;, represents the Bernoulli (independent and identically distributed) measure on A" (%)
whose distribution on each site is A.

Definition 3.8. For any graph G, the critical probability for site percolation on G, denoted
by p.(G), is defined as the supremum of g € [0, 1] for which, given the alphabet {0, 1}
and the graph G, the P14 4)-probability that there is an infinite connected subgraph of G
with 1s at every site is zero.

We point out that percolation theory is an extremely rich area of mathematics, which
we give short shrift to here. For more information, see [Gr].

When the graph G is omitted, we understand p, to denote p.(Z?). Simulations suggest
that p. ~ 0.593, but the best-known lower bound is p. > 0.556, proved by van den Berg
and Ermakov [BE].

THEOREM 3.9. [BM, Corollary 2] If A is a valid G-specification and q(A) < p.(G), then
there is a unique G-MRF associated to A.

Theorem 3.9 is, roughly speaking, proved by showing that for a G-specification A with
q(A) < pc(G), boundary conditions on large sets (such as rectangles in 7?) exert very
little influence on sites near the center. It will be necessary for us to quantify exactly how
this influence decays, and so we will use the methods of [BM] to prove some finitistic
results.

THEOREM 3.10. For any valid 7?-specification A with q(A) < pe (with unique
associated MRF . = (t(A)), there exist K, L > 0 such that for any non-empty finite set
S C 72, for any rectangle R D S, and for any configurations 8 and 8' on d R with positive
w(A)-probability, there exists A € C(,u3|s, ,u‘y|5) such that, for any s €S, L({(x, y):
x(s) #y()} < Ke L4 where d is the distance between S and the set of t € IR for which
8(t) # 8'(t). (We take d = oo if the latter set is empty.)

Proof. Given any such A, S, R, §, and 8, [BM, Theorem 1] proves the existence of
Ve, ,u‘s/) with the following two properties. (Following [BM], we will sometimes
think of A" as a measure on ARYIR 5 ARVIR ‘\here pairs (u, u’) in the support of A’ are
thought of as equivalent to (u8, u’s’).)

(i) Define the map ¢ from (ARYIR) x (ARVIRY (o {0, 1}RYIR by (¢ (x, y))(v) =1 if
and only if x(v) # y(v). Then the measure ¢’ on {0, 1}RY?R is stochastically dominated
by P(1—4,q), Where g = g(A). (We do not define stochastic dominance in general, but can
give a simple definition which suffices for our setup. Given a finite set S and measures p,v
on {0, 1}5, u is stochastically dominated by v if for any set C of configurations which is
closed under changing zeros to ones, u(C) < v(C).)
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(i) For a set of (x, y) € (ARYIR) » (ARYIRY with A’-probability 1 and for any v € R,
x(v) # y(v) if and only if there is a path P of sites in Z? from v to dR for which

x(p) # y(p) forall p € P.
Note that for any fixed v € R, this means that

V({x, y) i x(v) # y(W)))
=) ({(x, y) : there is a path P from v to R such that x(p) # y(p) Vp € P})
= (¢A") ({there is a path P of 1s from v to dR})
< P(1—q,q) ({there is a path of 1s from v to dR}).

A classical theorem proved by Menshikov [Me] and Aizenmann and Barsky [AB] shows
that for any g < p., there exist K = K (g) and L = L(g) so that for any n, Pq_4 4) (there
is a path of 1s from O to d[—n, n]z) < Ke L This clearly implies that P4 4) (there is
a path of 1s from v to dR) < K e~ Ldv where d,, is the distance from v to the set of sites in
9 R at which § and 8’ disagree.

Therefore, if we define A = )‘/|(AS><AS)7 then for any s € S, A({(x, y) : x(s) # y(s)}) =
N{(x, y):x(s) £ y(s)}) < Ke L4 < Ke L4 where d is just the minimum value of d;
fors € S. O

We will prove a slightly more general version of Theorem 3.10 for § and 8’ on the
boundaries of possibly different rectangles.

THEOREM 3.11. For any valid Z2-speciﬁcati0n A with q(A) < p. (with unique
associated MRF (v = (7)), there exist K, L > 0 such that for any finite set S C 72,
for any rectangles R" D R D S, and for any configurations 8§ and 8’ on 9R and dR’
respectively with positive (L(A)-probability, there exists A € C(’]s, ,u‘s/|5) such that for
any s € S, A({(x, y) : x(s) Zy(s)}) < Ke L4 where d is the distance between S and the
set of t € AR for which eithert ¢ R ort € dR' and 8(r) # §'(1).

Proof. We will be using Theorem 3.10. First, let’s note that ,u‘s,| R can be written as
a weighted average of the measures ", where n ranges over all configurations on dR
which agree with 8’ on R N dR’. This means that, in particular, wls = Zn an(u]s)
for some non-negative numbers «; summing to 1. By Theorem 3.10 there exist K, L > 0
so that for any » there exists A, € C (U85, u's) with the property that for any s € S,
Ap{(x, ) 1 x(s) #y ()} < Ke L where dy is the distance from any s € S to the set
of € IR for which 8(r) # n(t). Take A =", apky,. Itis clear that A € C(1°|s, wls).
Also, clearly

A, ) x(9) # YD =D aphy({(x, y) :x(8) £ YD < Y ey Ke H,
n Ui

Note that for any 7 agreeing with 8’ on dR N dR’, d,, > d as defined in the theorem.
Therefore, clearly A({(x, y) : x(s) # y(s)}) < Ke L4 and we are done. o

Given a valid Z?-specification A with g(A) < p., we wish to define specifications
(and associated MRFs) on the maximal subgraphs H,, , of Z? induced by V(Hpun) =
Z x [m, n], yielding measures on sets of configurations on bi-infinite horizontal strips.

Of course A itself does not contain enough information to define an H,, ,-specification;
there exist sets of the form a(S, Hy, ) for some finite set S C H,, ,, but which are not
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expressible as 3T for any finite set T C Z?. (For instance, picture the ‘three-sided’
boundary of a rectangle which includes part of the top row in H, ,.) We therefore
supplement A with boundary conditions as follows. Suppose that ¢, b € A%, and we will
define a H,, ,-specification Ay, 5 1.p-

For any finite S C Z x [m, n], n € A5, and § € A?S-Hnn) | define

AD () = A5 (), (1)

where & = (tasn@x(n+1))) Olasn@x{m—1y))3, the concatenation of t|asnZx(n+1));
blasn@xim—1)), and §. In other words, a configuration on (S, H,, ) is supplemented
by symbols from ¢ and b above and below H,, ,, if necessary, to extend it to dS. The
following gives a sufficient condition on m, n, t, b for the validity of Ay .1.5-

Definition 3.12. For a Z>-specification A with alphabet A, integers m <n and ¢,
be AL, we say that m, n, t, b is compatible with A if there exists an MRF u associated
to A such that for all sufficiently large k there exists 8 € A?(ZKKIXImnD) with positive
pu-measure whose top row is ¢ | x] and whose bottom row is b|[—x k]

PROPOSITION 3.13. For a valid Z*-specification A with alphabet A, integers m < n and
t,be AL ifm, n, t, bis compatible with A, then Ay 1p is a valid Hy, ,-specification.

Proof. Let u be an associated MRF and for all sufficiently large k, §; as described in
Definition 3.12. Define the measures % . We wish to take a weak limit of a subsequence
of these measures, so they must be extended to measures on all of AZ*["-21: choose any
a € A, and for each k extend each configuration in the support of 1% to all of Z x [m, n]
by filling all unoccupied sites with as.

By definition of A, , ;5 and the fact that i is an MRF associated to A, any weak limit
of a subsequence of the measures ,u‘sk is an MRF associated to the specification A, »./.p,
and so Ay, n.1.p 1s valid. O

While the compatibility condition may be difficult to check in general, it is checkable
for certain special kinds of MRFs introduced in later sections.

We can also give a sufficient condition for uniqueness of an H,, ,-MRF associated to
Am.n.p- In fact, it requires a less restrictive bound on g (A), which will be useful for some
later discussions.

PROPOSITION 3.14. For any integers m < n and any valid H,, ,-specification A, ,.1.b
induced by a Zz—speciﬁcation A with g(A) < 1 and boundary conditions t and b, A, ,.1.b
has a unique associated MRF.

Proof. Consider any such A, m, n, t, and b for which A, ;5 is a valid specification.
For any i € V(Hy;,n) =7Z x [m, n], by the definition of Ay n¢.p, qi (Am.n.r.p) and g; (A)
are both maxima of d(A?, A‘S,) over sets of pairs 8, 8’ € ANi . However, for qi (A), one
maximizes over all such pairs, and for g; (A nr6), One may be maximizing over a
smaller set. (For instance, if i is part of the top row of Hj ,, then one only considers
configurations on the neighbors where the neighbor above i is equal to #(i + (0, 1)).)
Therefore, g; (Am nrp) < gi(A). Since i was arbitrary, g (A, n.1.0) < q(A).

It now suffices to show that p.(H, ,)=1; the proposition then follows from
Theorem 3.9. For any p < 1, if sites of Hy, , are independently taken to be open with
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probability p and closed with probability 1 — p, then the probability that an entire column
{i} x [m, n] is closed is (1 — p)”"”+l > 0. This means that with P, ,)-probability 1,
there exist closed columns arbitrarily far to the left and right, meaning that there are no
infinite open connected clusters. Therefore, since p < 1 was arbitrary, p.(H;;.») =1 and
we are done. |

Clearly, when the hypotheses of Proposition 3.14 are satisfied, p(Am n:,p) can be
thought of as a measure on the one-dimensional full shift (A""1)Z and we will interpret
W(Am ntp) in this way for further discussions about d distance and entropy. It should
always be clear from context which viewpoint is being used.

PROPOSITION 3.15. For any valid 7?-specification A with q(A) < p. (with unique
associated MRF w = uw(A)) and any t, b e AL for which there exists N such that
WAy n1p) exists foralln > N, W(A_y n1,p) approaches . weakly as n — oo.

Proof. By definition of A_, ,;p, any weak limit of a subsequence of w(A_;, ) is
clearly a Z2-MREF associated to A. (As before, we need to extend each WAy nsp)toa
measure on all of AZZ; we do this by choosing any a € A and extending each configuration
in the support of (A _; ,.;.p) to all of 72 by filling the unoccupied sites with a.) However,
the only such MRF is . O

We will now use Theorem 3.11 to derive couplings of marginalizations of (A1 ,.1.5)
and ft(A1.n11.1.5) to substrips which imply their closeness in the d metric.

THEOREM 3.16. For any valid 7*-specification A with q(A) < pe (with unique
associated MRF = w(A)), there exist K, L > 0 such that for any n and any t, b € A~
such that 1,n,t,band 1, n + 1, t, b are compatible with A, and forany 1 <i <i’ <n,

A1 D)z 11 KA 10 0)| i —1) < (@' — i) Ke H=)

and
d(W(A L) zxfi i 17 WALt e zxpie1.in) < (@ —i)Ke ™t

Proof. We begin with the first inequality. For A as in the theorem, take the K and L
guaranteed by Theorem 3.11. Fix ¢, b, n, and i < i’. For every sufficiently large &, take
ox and 6,’{ configurations on d([—k, k] x [1, n]) and 9([—k, k] x [1, n + 1]) respectively
with positive p-measure which are both equal to #|[—x ) on the top and b|[—¢ ) on
the bottom. Define S; ;7 = [—k, k] x [i, i’ — 1]. By Theorem 3.11, for any k >n — i’
and j <k — (n — i), there exists Aiirjk € C(ufsk |5“_,wj, MS]/(|Si_i’,j) for which the A; i7 ; «-
probability of disagreement at any site in S; ;7 ; is less than K e~ L= " (This is because
8 and 8, agree on their bottom row, and the distance from any site in S; ; ; to any other
site in d([—k, k] x [1, n]) U d([—k, k] x [1, n + 1]) is atleastn — i’.)

Now, for any fixed i <i’ and j, define 2; ;s ; to be any weak limit of a subsequence
of the couplings A;;’ ;« as k — oco. Note that any weak subsequence of w® approaches
an MRF on Hj ,, associated to the specification A1, p, and since (A1 ,.p) is the
unique such MRF, the sequence u® itself must weakly approach (A ,.;5). Similarly,
//L(S//\' weakly approaches (A1 ,+1.:.5)- Therefore,

Apit,j € C(U(ALn,b)Is, s WAL nt 1,018, 1 )

i,i',j ii’,j
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Also, it is clear that if we think of a configuration on §; ;7 ; as a (2j + 1)-letter word on the
alphabet of words on columns of height i’ — i, then

Ey,, (dji1 (xXli=j 1, Yi—j. ) < (@ = i)Ke En=1),

Recalling the definition of d, we then see that clearly

dA L e )| zxqii—17s WALt 1) | Zxfiir—17) < (@ — i) Ke L=,

To prove the second inequality, change the proof above by defining &; on d([—k, k] X
[2, n 4 1]) instead. Then & and &, will agree on their top rows, and the rest of the proof
goes through mostly unchanged. The distances from Z x [i, i’ — 11 and Z x [i + 1, i']
to the bottom rows of H; , and Hj 4 respectively are at least i, which is why n — i’ is
replaced by i. O

We will for now restrict our attention to translation-invariant Z>-specifications A
with g(A) < p. and constant boundary conditions ¢, b € AZ, which means that the
measures (U(Am.n.rp) (When they exist) will be translation-invariant as one-dimensional
measures. (Otherwise, their horizontal shifts would also be MRFs associated to Ay 1.5,
contradicting uniqueness of (A np).) We can then discuss the measure-theoretic
entropies A (((A1,n,r,5)) and h( (A1 pp1,0,0))-

We will decompose these into conditional measure-theoretic entropies, and then
use Theorem 3.16 and Holder continuity of entropy (with respect to d) to show that
many of these entropies are exponentially close, finally showing that A( (A1 41,.6)) —
h(w(A1,:p)) 1s exponentially close to i(u). We first need some notation for special
conditional measure-theoretic entropies.

For any a, define R, =7 x {a}. For any m <n and any interval B C [m, n], we
partition A"l by the letters appearing on B, and call this partition £z. Then, for any
translation-invariant measure (. on (.A[””'])Z and disjoint adjacent intervals B, C C [m, n],

we make the notations
hy (U Rh) = h(¢e, (W)
beB

and

hM(U R,

ceC

U Rb) = h(@gpuc (WIEB).-
beB

Also, for any translation-invariant measure ;4 on AZZ Jhy (¥ »ep Rp) will be understood
to me'an hy) Uden ko) (.U.bE g Rp) for any D.Q B; in. o'ther words, this expression i's given
meaning by marginalizing p to any substrip containing the rows whose entropy is to be
computed. It does not matter which D is used, since clearly this quantity depends only on
the restriction of 1 to ( ,.5 Rp. We willinterpret 21, (U, cc Rel Upep Rp) in an analogous
fashion.

The following is just a consequence of Proposition 2.4 for this new notation.

PROPOSITION 3.17. For any m < n, w a translation-invariant measure on (A""™MZ% or
2 . .
AL and B, C adjacent subintervals of [m, n],
U ).

hu< U Ru> =hM<U Rb> +hM<U R, U

aeBUC beB ceC
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The following theorem can both be thought of as an extension of the Markov property
in one dimension and a generalization of [P, Theorem 13].

THEOREM 3.18. Let A be a translation-invariant 7*-specification. Let n be a positive
integer, t, b € AZ be constant sequences and . be an MRF associated to A1 ;p. Then
for any integersi and k with 1 <k <i <n,

i—1
(%

U Rj) = hy,(Ri|R;-1).

j=k
Proof. We will prove the theorem for k = 1, and this suffices to prove the theorem for all
k < i, since forany 1 <k < i, conditioning on &[; ;—1] is an intermediate partition between
&[1,i—1] and &(; _1y. If the conditional entropies resulting from these two partitions are equal,
then clearly any intermediate partition gives the same value. Fix any A, n, t, b, and i as in
the statement of the theorem. For simplicity, we write it = ((A1,,.r.5). We can write

i—1
(%

U R,-) = lim (1/k)8

j=1
where
Sk = Z w(w Nv) log(M>
we AlkKIXILi=11 w(w N o)
UEA[_k‘kJX([)
(¥ wwes) o
we Al=k.kIx[Li-1]

w(w Nov)log w(w N v)). 3)

<w€A[—k,kJ><[l‘i—lJ’
ve Al-kKIx{i)

(As in the definition of measure-theoretic entropy, in each sum we omit terms coming from
configurations of p-measure zero.) We also define

Sp = > u(wﬂvﬂLﬂR)log(
we Ak KIx[Li=1]
veA[’k'k]X(i),
Le Al=k=1x[Li=1]
Re Alk+1x[1i=1]

mwNLNR)
,u(wﬂvﬂLﬁR))

< w(w N LNR)log ,u(wﬂLﬁR)) 4)
we AlKKIXLi=11

Le Al-k=1xILi=11
Re Ak+1Ix[1,i—1]

—( Z ,u(wﬂvﬂLﬂR)logM(wﬂvﬂLﬂR)). 5)

we Al-kRIXILi=1]
ve ALk}

Le Al=k=1x[Li=1],

Re A+IXILi=1]

We claim that |S; — S;{“| <4(i — 1) log|.A|. To see this, we first compare (2) and (4).
For any fixed w, consider the term w(w) log u(w) from (2). Compare this to the
corresponding terms from (4), i.e. ZL’R uwNLNR)logu(wNLNR). We make
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the simple observation that for any set of £ non-negative reals {txi}f | summing to «a,
—Z —12; log(o;) is at least —o log o, and at most —o log(ct/ k) (achieved when all «; are
equal). Therefore,

p(w) log p(w) = Y u(w N LN R) log u(w N LN R)| < p(w) log(|APD)
L,R

since the number of different pairs L, R is at most |A|*~D. By summing this over all
choices of w in (2) and (4), we see that the difference between (2) and (4) has absolute
value at most Y, u(w) log(JA[>*~1) =2(i — 1) log | A|. An analogous argument may
be made for (3) and (5), and so [y — S;| <4(i — 1) log |.A| for all k.

We can similarly write &, (R;|R;—1) = limy_ oo (1/k) T, where Ty is defined exactly as
Sk, but where w € AlKA] x[l i=11 is replaced in the summation by w’ € Al=*KD>X{i=1} 1f
we define 7" exactly as S}, again using w’ instead of w, then a trivially similar proof to the
above shows that |T; — 7| < 4(i — 1) log | A| for all k. If we can now prove that S} = T}
for all k, then

ISk — Tl < 1Sk — Sgl + 1T — T+ IS¢ — T < 8@ — 1) log | A]
for every k, which clearly shows that

(i

i—1
U Rj) = lim (1/k)Sx and h,(Ri|Ri—1) = lim (1/k)T}
k—o00 k—o00

j=1
are equal.
We claim that for any L € Al7K—IxILi=1l" R ¢ A{’H‘I}X[l’i_l], v e AKX and
w e AITRKXILI=1if we define w' = w|[—k.k)x }> then

u(wNLNR) _ y,(w NLNR)
wwNuvNLNR) wwNvNLNR)

To see this, we define w” = w|[_k k]x[1.i—2] and note that since p is an H,, ,-MRF,

p”"Nw NLNAR)  pw”"Nw NuNLNR)

ww NLNR) —  u@wNuvNLNR)
From this, it is clear that
pw' NLNR)  p@’ Nw NLNR)

ww NvNLNR)  pw Nw NvNLNR)’
which is clearly equal to w(w N L N R)/u(w Nv N LN R). Then, however, for any fixed
w’, all terms in S}’ corresponding to w with the top row w’ can be collapsed, which quickly
yields S} = T}, completing the proof. |

COROLLARY 3.19. If A is a translation-invariant Z*-specification with q(A) < pe (with
unique associated MRF p = u(A)), and t and b are constant sequences such that
—n, n, t, b is compatible with A for sufficiently large n, and k is any positive integer,

then
-1
hy (Ro

U R,) = hy(Ro|R-1).

j=—k
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Proof. Fix any such u, t, b, and N > 0 such that —n, n, ¢, b is compatible with A for
n > N. Let k be a positive integer. Then by Theorem 3.16, there exist K, L > 0 so that

—L(n—k)

A (A bl po_ Al o g <kKe

—(k—1) R;j

for any n > N and k <n, and so this sequence of marginalizations is d Cauchy and
approaches a d limit. Since the measures W(A_p n.sp) approach p weakly as n — oo by
Proposition 3.15, it must be the case that the d limit of W(A—n.ns.b) |U(;=—k R is HIU?‘:-k R’
Thus, by Theorem 3.18, translation-invariance of p, and continuity of entropy with
respect to the d metric, we conclude that for any positive integer k, i w(Rol U;:l_k Rj) =
hyu(RolR-1). O

COROLLARY 3.20. If A is a translation-invariant 7>-specification with g(A) < pe (with
unique associated MRF = u(A)), and t and b are constant sequences such that
—n, n, t, b is compatible with A for sufficiently large n, then h(u) = h, (Ro|R-1).

Proof. For any such u and positive integer k,

k k—1
hM(U Rj> = hyu(Ro) + hy(Ri|Ro) + - - - +hM<Rk U Rj>
=0 j=0

= hy(Ro) + (k — Dhy(Ro|R-1)

by translation-invariance of wu, Proposition 3.17, and Corollary 3.19. Then, however, by
dividing by k and letting k — oo, we see that h(u) = h, (Ro|R_1). O

THEOREM 3.21. For any valid translation-invariant 7*-specification A with q(A) < pe
(with unique associated MRF . = (t(A)) and any integer N and constant sequences t and
b such that 1, n, t, b is compatible with A when n > N, there exist Q, R > 0 such that
(A1 nt1.06)) = h((A1nsp)) — ()| < Qe " for anyn > N.

Proof. Proposition 3.17 and Theorem 3.18 imply that forn > N,

n
RGATn41,06) = (A1) (RD + D a1 (R411R)
=1

and
n—1

R Ln5)) = hu(ar ) (RO + Dy, (R R).
=1
We can then write 2 (i (A1 nt1.0.6)) — R(U(A1nrp)) as

P i) (RD = hy(ay 0 (R1) (6)
n/2]—1
+ Y it Rit1IR) = a0 (Ris11R))) (7
=1
+ R0 Ring21411Rng2)) ®)
n
+ ) U R+t IR = by, (RjIR-1)- ©)
j=ln/21+1
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By Theorem 3.16 and Hélder continuity of entropy with respect to d, we see that (6), (7),
and (9) are exponentially small in n, i.e. there exist constants Q and R independent of n
such that each has absolute value smaller than Qe ®”". Theorem 3.16 also implies that
the sequence (A1 n+1,:.0)] Rinj2)UR 2 41 approaches a d limit with exponential rate in n,
as n — 0o. Since 0, —n/2)—1)M(A1,n+1,1,6) approaches pu weakly by Proposition 3.15,
this d limit must be u|g_,u Ro- Then, however, again by Holder continuity of entropy with
respect to d and translation-invariance of y, (8) approaches h w(RolR_1) with exponential
rate as n — 00, which equals 2 (u) by Corollary 3.20. a

This result can be generalized to periodic boundary conditions as well. If A is a
translation-invariant Z>-specification with g(A) < p. and ¢ and b are periodic sequences
such that 1, n, ¢, b is compatible with A, then w(Aj ) exists by Propositions 3.13
and 3.14, and (M(Al,n,z,b))[p] (the p-higher power code of pw(A1,,,p)) is translation-
invariant.

THEOREM 3.22. For any valid translation-invariant 7*-specification A with q(A) < pe
(with unique associated MRF = (7)), and any integer N and sequences t and b with
period p such that 1, n, t, b is compatible with A when n > N, there exist Q, R > 0 such
that |(1/p) h(((A 1 ns1.6)P) = R(A L)Y — K| < Qe R foralln > N.

Proof. The proof is nearly identical to that of Theorem 3.21, and so we only highlight
the slight differences. Theorem 3.16 implies the exponential d closeness of relevant
marginalizations of (A1) to substrips just as before. Then, since passing to
(U (A1, »)P! multiplies the relevant d distances by at most p, we still have the necessary
exponential d closeness of marginalizations for these recoded strip measures. Since the
(M(Al,n,,,b))[l’] are translation-invariant, the same proof as in Theorem 3.21 shows that
h((A L4106 = (e (A1 006D approaches h(u!Pl) = ph(u) exponentially
fast. O

4. Interactions and Gibbs states

In [P], similar techniques were used to show that the topological entropy of the Z>
hard square shift H is exponentially well approximable by differences of consecutive
topological entropies of horizontal bi-infinite strips. It turns out that this is a corollary
of Theorem 3.21; the unique measure of maximal entropy u for H is in fact the unique
MREF associated to a translation-invariant Z>-specification A satisfying ¢(A) < pe; in this
case, for any finite set S and § € A?S A% will be uniform on configurations which are
locally admissible in S U 3S. If one takes t = b = 0, then (A1 ¢ p) exists for all n, and
is the unique measure of maximal entropy for the nearest neighbor Z-SFT composed of all
locally admissible configurations on Hj , in H.

We will use Theorem 3.22 to generalize the main result of [P] to some topological
pressures by using some classical results of Ruelle regarding the relationship between
equilibrium states and a class of Z?-MRFs called Gibbs states.

Let X be a non-empty nearest neighbor Z¢-SFT X with language £(X). We are mostly
interested in the cases d = 1, 2. An interaction on X is simply a real-valued function ¢ on
L(X). The interaction is finite-range if there exists M such that & vanishes on Lg(X) for
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any S with diameter larger than M. It is translation-invariant if it assigns the same values
to all translates of a given configuration on a finite set.
For finite S and x € Lg(X), define

Us() =US (x) = ) D(xlg).
§cs

For y € AZN\S such that xy € X, define

Ws(x, y) = WS (x, y) = > @ ((xy)l7)-

TCZ4,|T|<00: TNS#D, TNZI\S#LD

A Gibbs state for a translation-invariant finite-range interaction ¢ on X is a measure p
with support contained in X such that for any x € L5(X) and y € AZNS with xy € X,

exp(=Us(x) — Ws(x, y))
Z{x’eas(x); x'yeX} exp(=Us(x’) — Ws(x', y))

ulxly) = (10)
(note that the denominator is simply a normalization factor). The measure itself is given
as an integral with (10) as the integrand. This agrees with the classical definition of Gibbs
state (see [Rue, Ch. 1, (1.15)]) in the case of a nearest neighbor SFT. Ruelle [Rue, Ch. 1]
shows that given any such ® and X, there is at least one Gibbs state p (Ruelle’s result is
actually much more general).

An interaction is a nearest neighbor interaction if it vanishes on all configurations other
than those on vertices and edges.

We now define a specification corresponding to (10) for translation-invariant, nearest
neighbor interactions. For a finite set S C 74 and 7 € Lg(X), let

®(z, ) = Z @ (z(w)).

ues

For a finite set E of edges in E(Z4) such that U,cr e C S and z € L5(X), let
Dz, E)=)_ ®(zle).

ecE

The Gibbs Z%-specification determined by ® and X, denoted by Ao x, is defined as
follows. For any finite S C 74, x € AS,and § € Lys(X),
exp(—P(x, S) — d(xs, E(S, S) U E(S, 35)))
Y (e AS: seLsps (X)) EXP(— (. S) — ®(x'8, E(S. S)U E(S., 95)))

Ay x(0) = (1)

if x8 € Lsups(X), and Ad , (x) = 0 otherwise. For § € A%$\Ly5(X), set AY , =A%
for some arbitrary 8’ € Ly5(X) (note that L5(X) is non-empty since X is non-empty). In
this case g (Ao, x) is determined only by {Afb,x}éeﬁ(x)-

Ifx € £5(X) and y € AZ\S with xy € X and 8 = s, then
Us(x) =®(x, S) + ®(x, E(S, S)),
Ws(x, y) = ®(x8, E(S, 99)),

and so for any Gibbs state p for ® on X the conditional probabilities (10) reduce to
u(x|y) = Afb y (x). Since u is supported in X, all other conditional probabilities w(x|y)
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are spurious, and so u is a Z4-MRF associated to Ao x. Since there always exists a Gibbs
state for ® and X (by Ruelle’s result above), Ag x is valid. We also note that since ¢ was
assumed to be translation-invariant, A ¢, y is translation-invariant as well.

Given a translation-invariant nearest neighbor interaction ® on a nearest neighbor
7*-SFT X, we will find it useful to represent a corresponding Gibbs state as a Gibbs
state for an interaction which is non-zero on a single finite set, namely the set A =
{(0, 0), (0, 1), (1, 0)}. Specifically, define

P(x) = D (xl0,0)) + Px1(0,0),0.1)) + PX(0,09.(1,0))) (12)
for x € LA(X).
PROPOSITION 4.1. Any Gibbs state for ® on X is a Gibbs state for ® on X.

Proof. For a horizontal edge e = {u, u + (1, 0)} let el ={u,u+ (0, 1)}. For a vertical
edge e = {u, u + (0, 1)} let e~ = {u, u + (1, 0)}. For a finite set S, let D(S) = {edges e :
eNS=@and et € E(S, 35)).

Forxe AS,ye AZd\S, if xy € X, then letting § = y|ys, we have

US(x) + Wo(x, y) = D(x, S) + D8, E(S, S) U E(S. 3S)) + d(xy, D(S)).

Note that the last term in this expression is the same if we replace x by any x’ € AS
such that x'8 € Lgus(X). It follows that for a Gibbs state for ® on X, the conditional
probabilities (10) reduce to the specification determined by ® and X. a

We conclude this section by presenting two interactions on nearest neighbor Z2-SFTs
which define historically important Gibbs measures. We will return to these examples later
in the paper to demonstrate how later results apply to them.

(1) The Z? hard-core model with activity a is given by X equal to the Z? hard square
shift H and translation-invariant nearest neighbor interaction ¢ defined by ®(u) =
au(v) for u a configuration on a vertex v and ®(u) = 0 for u a configuration on an
edge. In this model, a can be thought of as the ‘weight’ given to the symbol 1.

(2) The Z? Ising antiferromagnet with external magnetic field 4 and temperature 7 =
1/B is defined by X = {:I:l}Zz and translation-invariant nearest neighbor interaction
® defined by ®(u) = —phu(v) for u a configuration on a vertex v and ®(u) =
Bu(vy)u(vy) for u a configuration on an edge {vy, va}. In this model, # is an external
influence which gives individual sites a preference between 1 and —1, and B can be
thought of as the ‘penalty’ imposed to aligned adjacent sites; when S is very large,
adjacent sites are more likely to differ.

5. Strongly irreducible SFTs
We from now on restrict our attention to a specific class of nearest neighbor Z2-SFTs with
very strong topological mixing properties.

Definition 5.1. A nearest neighbor Z>-SFT X is strongly irreducible (with filling distance
L) if for any finite S, T C Z? with d(S, T) > L, and any x € L5(X), y € Lr(X), it is
always the case that xy € Lsur (X).
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Our first use of strong irreducibility is to present a sufficient condition for a Z2-MRF to
be fully supported within an SFT.

PROPOSITION 5.2. If X is a strongly irreducible nearest neighbor Z*-SFT and A is
a valid 7?-specification such that x8 € L(X) implies A®(x) >0, then any 7?>-MRF
associated to A whose support is contained in X is fully supported on X.

Proof. Denote by L the filling distance of X. Let 1 be any Z>-MRF associated to A whose
support is contained in X. Fix any w € £;_,, ,;2(X) and any § € AD=n=Ln+LP) gych that
3 has positive p-measure. Since the support of u is contained in X, § € £(X). Therefore,
by strong irreducibility of X, there exists x € £;_,,_; ,4pp(X) with x|_, ,o =w and
x8 € L(X). By the assumption on A, A%(x) > 0, and since J is associated to A, this
means that 1% (x) > 0. Then, however, since 11(8) is positive, ;(x) is as well. Since w is a
subconfiguration of x, u(w) > 0. O

From this, we can conclude a fact about certain valid Z?-specifications supported on
strongly irreducible nearest neighbor Z2-SFTs that will be useful later.

PROPOSITION 5.3. Let X be a strongly irreducible nearest neighbor 7Z2-SFT and A be a
valid Zz-speciﬁcation such that x5 € L(X) implies A%(x) > 0. Assume that there exists a
Z2-MRF associated to A whose support is contained in X and that q(A) < 1. Then for
any rectangle R and 8, 8’ € Lygr(X), there exists u € AR such that Su, 8'u € L(X).

Proof. Consider such X, A, R, 8, and &', and let u be a 72-MRF associated to A with
support contained in X. By Proposition 5.2, u is fully supported on X.

Without loss of generality, we assume R = [0, m] x [0, n] for some non-negative m, n.
We begin by proving the proposition for m =n =0, i.e. R ={(0, 0)}. Consider any
¢, ¢" € Ly (X). Then by full support of 1 on X, u(¢), u(¢’) > 0. Since g(A) < 1,
there exists a € A{Q0) such that A¢ (a), Ag/(a) > 0, and since p is associated to A,
wé(a), ;ﬁ/(a) > 0. Therefore, u(¢a), w(¢’a) > 0, and since the support of u is contained
inX,¢a, ¢'ae L(X).

We will use this fact to deal with general R. Define by ry, r, .. ., ry, the elements
of R, listed in lexicographic order (i.e. the bottom row from left to right, then the next row
from left to right, etc.) For each k € [0, mn], define Ry = {ri}f.‘zl. We define u letter by
letter, on the sites r; in order. Suppose that for some k € [0, mn), we have defined uy, € AR«
such that Suy, 8'u € £(X). We must define u;, 1 € AR+ such that ui+1|r, =ux and
Sury1, 8'upy1 € L(X).

Define C = N, \(Rx U 9R), the set of neighbors of ryy; which do not have letters
assigned to them in §, &', or uy. Clearly, since Suy and §'uj are globally admissible in
X, there exist n, n’ € Lc(X) such that Snuy, 8'n'u € L(X). Define { = Gnuiln, and
= (3/77/Mk)|Nrk+] ; clearly ¢, ¢ € L(X).

Then by the proof of the proposition for R consisting of a single site, there exists
a € L,y (X) such that ¢a, {’a € L(X). Then from the facts that X is a nearest neighbor
SFT, that ¢, ¢’ € AV%+1, and that 8nuy and 8'n/uy, are globally admissible in X, we can
conclude that dnuga and 8'n'ura are globally admissible in X as well. Then, however,
trivially Sua, 8'uxa € L(X), and so we can take uy1 = uga.
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This inductive process eventually yields uy,;, € AR for which Suyp, 8 tmn € L(X), and
so by taking u = u,,,, we are done. O

Our main application of strong irreducibility is, for any Gibbs specification Ag x, to
guarantee the existence of periodic rows ¢, b such that (Ae, x)m.n.r.p 1s valid for n —m
large (recall that this is an induced specification on the strip subgraph Hy, ).

We first recall the result of Ward [War] that any strongly irreducible nearest neighbor
7Z2-SFT X has a globally admissible periodic row (i.e., a periodic configuration on Z x {0}
which extends to an element of X); in fact, every such SFT has a doubly periodic element,
though we will not need this fact here.

For integers m < n and globally admissible periodic rows ¢, b, let X, » . be the set of
all configurations x € AZ*""1 guch that txb is locally admissible. Note that all elements
of Xy n.t.p are in fact globally admissible.

PROPOSITION 5.4. Let X be a strongly irreducible nearest neighbor Z*-SFT and ® be a
translation-invariant nearest neighbor interaction on X. Let t and b be periodic rows
which are globally admissible in X (which always exist by [War]). If n —m exceeds
the filling distance of X, then m,n,t, b is compatible with Ae x (and therefore by
Proposition 3.13 (Ao x)m.n.1.p s valid).

Moreover, there is an MRF associated to (Ao, x)m n.t.p Supported in Xm n t.b-

Proof. Let t and b be such rows. Since A, x is Gibbs, it is valid, and so has an associated
MRF p supported in X. Let m, n be chosen so that n — m exceeds the filling distance
of X. Then for all k, there exists wy € Li—k k]x[m—1,n+1](X) whose top row is #|[—x ]
and bottom row is b|[—k k). Proposition 5.2 applies to wu, and so u(wg) > 0. Thus,
m, n, t, bis compatible with A, x (by taking 8 = W|y(—k+1,k—1]x[m,n]) 1D the definition
of compatibility).

The measure obtained as in Proposition 3.13 from the §; is clearly supported in
Xm,n,t,b~ O

For any translation-invariant nearest neighbor interaction &, strongly irreducible nearest
neighbor Z2-SFT X with filling distance L, globally admissible periodic 7 and b, and m, n
with n —m > L, for notational convenience we denote by A¢, x m.n.r.p the specification
(MA@, X)m.n.r.p Which by Proposition 5.4 is valid. If additionally g(A) <1, then by
Proposition 3.14 there is a unique Hy, n,-MRF (Ao x m n.t.p) associated to Ao, X m.n.t.bs
which we call the induced Gibbs state for ® and X, and which, again for convenience, we
denote by (e x.m.n.r.b- By Proposition 5.4 e x m n.t.p 1s supported in X, .1 5.

6. Induced Gibbs states as one-dimensional Markov chains
Our eventual goal is to use the results of §§3, 4, and 5 to give an algorithm for
approximating certain topological pressures by means of induced Gibbs states on strips.
For this procedure to be useful though, it must be the case that these induced Gibbs states
are tractable measures to deal with. Under some elementary assumptions, this does turn
out to be the case; in fact the induced Gibbs states turn out to be Markov chains.

Let X be a strongly irreducible nearest neighbor Z>-SFT with filling distance L, ® a
translation-invariant nearest neighbor interaction on X such that g(A¢ x) < 1, and let u
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be any Gibbs state for ® on X. Let ¢ and b be globally admissible periodic rows for X,
which for now we assume to be constant (though such rows may not exist in general):
t= tgo, b= bgo. Let m, n be integers such thatn —m > L.

Let Cyy. n.r. b denote the set of all ‘locally admissible columns compatible with ¢ and b on
Hp op,ie., all x, ... x, such that x;x;41 € & fori =m, ..., n — 1, and boxy,, xpto € .
Let &u.nrp denote the set of all locally admissible (n —m + 1) x 2 rectangles, i.e.,
ordered pairs of columns (X, ... Xp, Vi - .- Yn) € (Cm,,,,,,b)2 such that x; y; € £ for each
i=m,...,n.

Observe that X, » ;.5 (defined near the end of §5) is the nearest neighbor Z-SFT on
the alphabet Cy, ./ » defined by € = &, 1. Here, we are identifying a configuration on
a finite interval of Z over the alphabet Cy, ,, ; » With the corresponding configuration on a
finite rectangle in Z x [m, n] over the alphabet .A. Recall that since ¢ and b are globally
admissible and X is a nearest neighbor 72-SFT, we have L Xmn1.p) CLX).

Denote by KQ X.m.n.t.b the restriction of the specification A, x m.n.r,b to configurations
8 of the form o(F x [m, n], Hy, ,) for finite sets F. We think of qu,m,n,,,b as a Z-
specification over the alphabet A1,

COROLLARY 6.1. If X is a strongly irreducible nearest neighbor 7>-SFT, ® is a
translation-invariant nearest neighbor interaction for which q(Ae.x) <1, t, b are
globally admissible constant sequences, and n — m exceeds the filling distance of X, then
q(KCD,X,m,n,t,b) <1

Proof. To show that q(KQx’m,,,,,,b) <1, it suffices to show that for any c,c €
Li—1y(Xmnep) and d, d’ € L11y(Xm n,e,5) such that cd, ¢’d’ € L(Xy n,,p), there exists
e € L10y(Xm,n,,p) such that ced, c’ed’ € L(Xy np). (This is sufficient since Ao, x, being
a Gibbs specification, has the property that Afp,x(”) > 0ifué € L(X).)

However, note that this is equivalent to showing that for any &, 8’ € L0} [m,n]) (X)
with 19 at the top and by at the bottom, there exists u € A1 (X) such that Su, 8'u €
L(X). This is a straightforward consequence of Proposition 5.3, which can be applied
since Ag x is the Gibbs specification determined by ® and X and g(Ae x) < 1. O

COROLLARY 6.2. If X is a strongly irreducible nearest neighbor 7*>-SFT, ® is a
translation-invariant nearest neighbor interaction for which q(Ae.x) <1, t, b are
globally admissible constant sequences, and n — m exceeds the filling distance of X, then
X ontp IS a mixing Z-SFT.

Proof. By Corollary 6.1, (Ao x.m.nrp) < 1. We prove that X, ;. is mixing by using
some well-known facts about the structure of nearest neighbor Z-SFTs. In particular,
we show that X, ,;p is irreducible and aperiodic; for more details on these properties
see [LM].

We first show that X, , ;p is irreducible. Assume for a contradiction that it is not.
Then there exist at least two non-trivial irreducible components C, D € C,, .15 Then,
however, we clearly have a contradiction to ¢(A e x.m.n.1.5) < 1; a boundary configuration
consisting of two letters from C can only be filled in a globally admissible way with a
letter from C, and the same is true for D. Since C and D were non-trivial components,
there exist such boundary configurations 8, 8" which are globally admissible, and,
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since CND =@ and Ag x is supported on X, d(Ki’X’m’n’,,b, Xfl;,x,m,n,t,b) =1
Therefore, our original assumption was wrong and X, , ; » is irreducible.

It remains to show that X, , ;5 is aperiodic, which is done in the same way. Suppose
for a contradiction that X,, , ; , can be partitioned into period classes P, ..., Py, k > 1.
Then if we take § to be a globally admissible boundary configuration in X, , ; » consisting
of a letter from Py on the left and a letter from P, on the right, and & to be a globally
admissible boundary configuration in X, , ; » consisting of a letter from P; on the left and
a letter from P3 (mod k) on the right, then § and 8’ can only be filled with letters from P;
and P, respectively. Again, since P; N P, = &, this contradicts q(Kq), X.mnitb) <1, s0
Xm.n.t.p 1s aperiodic and irreducible, therefore mixing. O

The induced Gibbs state it x m.n:p can be viewed as a measure on (C,,,,,,,,’b)Z
supported in X,, ,:p, and when viewed in this way, it is a Z-MRF associated to
KQ X.m.nt.b- We will show that when viewed in this way (o X m.nr.b 1S @ translation-
invariant irreducible first-order Markov chain, with a transition probability matrix defined
explicitly in terms of .

We first describe KQ X.m.n.t.b €Xxplicitly in terms of ®. For a configuration z on a finite

set U C Z x {n} let
iz U)=) d)(to).

uel Zu
For a configuration z on a finite set U C Z x {m} let
Zu
b _(z,U)= ) .
=Y o)
uelU
Let R = [—k, k] x [m, n], x € AR, § € A2®R-Hn.n) quch that x8 € L(X,n.n.1.5). From (11)
and (1), we have
exp(—A(x, 9))

—35
T _ 13
@ Xm0 ) Z{wGAR: wdEL (X n,1.6)} exp(—A(w, ) "
where
A(z,8) = ®(z, R) + ®(z8, E(R, R)U E(R, 3(R, Hp »)))
+ @4 (z, RN(Z x {n})) + P_(z. RN (Z x {m})). (14)

We claim that ch, X.m.n,t,b can be expressed as a Z-specification determined by a
nearest neighbor interaction 5,,,7,,,,,;, on X, n.r.b- We define 5,,,,,,, ¢.b to vanish on all finite
configurations other than those on edges in &, .1 », and on such edges, it is defined by

n n—1 .
Bt b (o« s Y- V) = ((;,, <I>(xl->> + q)(’;'g) + (Z <I><x:1))

i=m
o &
+ d>< ) + (Z D (xi, yl-))). (15)
Xn i=m
Let R =[—k, k] x [m, n], x € AR, § € A¥R-Hn.n) guch that x§ € L(Xmntp). Observe

that
5 exp(—B(x, §))

Af (_x) =
D (weAR: wSeL(Xpn 1)} SXP(—=BW, 8))

(16)

(bm‘n,l‘bsxm,n‘l,h
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where
k—1 .
B(z,8) = Z (Pon,n,1,6 I (jyxm,n]s 2 j+1)x[m,n])
j=—k
+ 6m,n,t,b(Z|{k}><[m,n]’ 8|{k+1}><[m,n])) + 5m,n,t,b(8|{—k—1}><[m,n]9 Z|{—k}><[m,n])
= A(z,8) + C(6), (17)
where

) = (Z dS(—k—1, i))) + @(3(_kb_01’ m))

il s(—k—1,i+ 1) o
+(,.:qu>< S~k —1,i) >>+q’(8<—k—1,n>>‘
Comparing (13), (14), (16) and (17), we see that

5 -6

pa— = A
<I)m,n,t,bs Xm,n,t,h @, X,m,n,t,b

forall § € Ea(R,H,,,,n)(Xm,n,z,bl Since (o, x.m.n.r,b 18 supported in Xy, 5 1.5, it follows that
W, X.m.n.t.b» When viewed as a Z-MREF, is a Gibbs state for the interaction Em,n,,,b on
Xm,n,t,b'

Let Ao x m.n.1.b be the square matrix indexed by Cy, ., » and defined by

—Puneplcd)
(Avxmntided =1 e D E Ennt (1)
0 otherwise.
We will frequently suppress the dependence of A on ®, X, m, n, t, b when it causes no
confusion.

By Corollary 6.2, we may assume (by deleting elements of Cp, ,:p» Which do not
actually appear in X, ,p) that A is a primitive matrix. Let A(A) represent the Perron
(i.e., largest) eigenvalue of A. By the Perron—Frobenius theory, there are unique (up to
scalar multiples) right and left (positive) eigenvectors u = u e X m.n.r.p AV = Vo X m.n.t.b
corresponding to A(A).

Let 11 =TIlo xmn:p (again, dependence will frequently be suppressed) be the
(primitive) probability transition matrix indexed by C,, » ;.5 defined by

_ Acqv(d)
T A(A)v(e)’

PROPOSITION 6.3. Let ® be a translation-invariant nearest neighbor interaction on a

19)

c,d

strongly irreducible nearest neighbor 7Z>-SFT X. Let t and b be globally admissible
constant rows and assume that n —m exceeds the filling distance of X. Assume that
q(Ao,x) < 1. Then the induced Gibbs state (Lo, X m n,t.b Jor ® and X is a one-dimensional
translation-invariant mixing first-order Markov chain with probability transition matrix
H(b,X,m,n,t,b~

Proof. This is a special case of a much more general result [Ge, Theorem 10.25]. However,
the proof in our case is much simpler, as follows.
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Write u = K, X m,ntb, U =UD X mntb V=VD X mn,tb and A = )\(AQD,X,m,n,t,b)- We
assume that # and v are normalized so that u - v = 1. Fix any k > 0.
Since w is a Gibbs state for the interaction @, ¢ » on X, 5 1.5, fOr any positive integers

k,€andany x_g, ..., x_1, X0 € C.n.1.b>
mxolx—1, ..., x—)

= Z mwxelx—1, ..., x_p)ulxolxe, x—1, ..., X—k)
X¢

= ZM(WILL ce Xg) Z w(xo, X1, . ooy Xo—1lxe, X1, ..., Xk)
Xy X geens X¢—1

=Y wCelxor, x> (X X1, XX Xp)
R XlyeeesXp—1

Ax—lonxom e AM-]X{

=Y nlelxop, . ox) Y — <

) Xl Xo—1 Zx(/) XXy PrxorxgPagxy T g x

Ax_1xo (A xo,
=) uxelx—1, ..., xf)——Fr—.
Z (Al+1)x_|x2

Since A is primitive, by [LM, Theorem 4.5.12] we have that

lim (ADe.d =vcU
=00 )‘4[ cUd-
Thus, given € > 0, for sufficiently large €, p(xolx—1, ..., X—¢) is within € of
Ax,lxo UxoUx, Ax,lx()vxo
Z mxelx—1, ..., Xx—x) =
o Ux_ Ux, A Vx_ A
Thus,
Ax,lxo Uxo
Pl . xog) = S
Uy A
In particular, p is a translation-invariant mixing first-order Markov chain. o

7. Pressure and equilibrium states
We now turn to our main application of Theorem 3.22: the approximation of certain
topological pressures on strongly irreducible nearest neighbor Z2-SFTs.

We recall that for any nearest neighbor Z¢-SFT X and f € C(X), an equilibrium state
is a translation-invariant measure 4 on X for which h(u) + [ f dp is maximized, and that
this maximum P ( f) is called the topological pressure of f on X. Our main tool is [Rue,
Theorem 4.2], which proves that any equilibrium state is a Gibbs state.

Let X be a strongly irreducible nearest neighbor Z>-SFT X and & be a translation-
invariant nearest neighbor interaction such that (A, x) < p.. Define ® as in (12). Let
fo : X —> Rbedefined by fo(x) = —&D(x|A). In this case, [Rue, Theorem 4.2] shows that
any equilibrium state for fg is a Gibbs state for ®. (In fact, this is the reason for defining P:
technically [Rue, Theorem 4.2] applies only to interactions supported on configurations on
a single shape.) According to our Proposition 4.1, any equilibrium state for f¢ is a Gibbs
state for @ as well.
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Since X is strongly irreducible, there exist ¢, b globally admissible periodic rows in X.
We for now assume that ¢, b are constant, and deal with the general periodic case later. For
any n which exceeds the filling distance of X, let A, = A(A® x.1.n.1.0)-

THEOREM 7.1. Let X be a strongly irreducible nearest neighbor Z*-SFT and ® be a
translation-invariant nearest neighbor interaction on X such that q(Ao.x) < pe. Let t
and b be globally admissible constant rows. Then there exist constants Q, R > 0 such
that, for sufficiently large n,

|log Ant1 — log Ay — P(fo)| < Qe K.

Proof. Let u be an equilibrium state for fg, i.e., P(fo)=h(u) + f fo dp. By the
discussion above, w is a Gibbs state for ® on X and, by Theorem 3.9, is the unique
7Z2-MRF associated to the Zz-speciﬁcation A=Aox.

Recalling the definition of the interaction 51,,,,,,;, (15), we see that 51,,1,,,;, defines a
function on the Z-SFT X1, by 2+ 51,,!,,,1,(20, z1). With a slight abuse of notation,
we let @, ;. denote this function.

Combining Proposition 6.3 with the well-known characterization of unique equilibrium
states of locally constant functions as Markov chains (see [Kr, p. 99], [Bl]), we see that
for any n larger than the filling distance of X, e, x,1,4..6 1 the unique equilibrium state
for @y ;.5 on the Z-SFT X1 ,; 5, and

log Ay = P(®@1 np) = h(fhao X, 1,0,06) + / Db AU X, 1nt,b-

By Theorem 3.21 and Proposition 5.4, there exist constants 5, R such that, for
sufficiently large n,

(o, X 1n+1.06) — (o X 1006) — h(1)]| < Qe R

It remains to show that
/51,n+1,z,b A, X,1,n+1,1,b —/51,n,z,h A, X, 1,n,1,b
converges exponentially fast to f fo du. From the definition of 51, n.t.b, it follows that

/q)l,n+1,t,b diwe X 1,041,010 — / Db A, X, 1,n,1,b

can be decomposed into a sum of the form

Z(/ F(x) de>,X,l,n+l,t,b_/F(x) du¢,x,1,n,t,b)

X

+ Z(/ F(o0,nx) d,U«<D‘X,],n+],t,b_/F(x/) duq>,x,1,n,z,b>
X/

+ /(f@ 0 0(0,~n/2))) e, X, 1,n+1,1,b> (20

where each x in the first sum is a configuration with shape a vertex or edge contained in
{0, 1} x [1, |n/2]], each x’ in the second sum is a configuration with shape a vertex or
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edge contained in {0, 1} x [|n/2], n], and F(x) represents any one of the functions ®(x),
CD(;O), or @(t)?), as appropriate. (Clearly, in the latter two cases, x must be a configuration
on a single site contained in the bottom or top row respectively.)

Since distribution distance is dominated by d distance, by Theorem 3.16 there exist
K, L > 0 such that, for any configuration x with shape a vertex or edge contained in
{0, 1} x [1, [n/2]1,

@ X 141,05 (X) — Lo X, 1006 (X)] < Ke /2, (21)

Similarly, for any configuration x with shape a vertex or edge contained in {0, 1} x
[Ln/2], nl,
o, X, 1,n41,6,6(00,1)X) — 1, X,1,n,6,6(X)| < Ke Ln/2, (22)
By (21) and (22), if we take Q' = K max, |® (x)|, then each of the first two sums in (20)
is less than 5n Q' e~ L"/2,
The third term of (20) converges to | fo dp by Proposition 3.15, and is exponentially
Cauchy by (21) and (22). Therefore, there exists Q” such that for sufficiently large n,

< Q//e—Ln/Z.

‘f(fcp 00(0,~|n/2))) Add, X, 1,n+1,t,b — / fodu

Therefore, (20) is exponentially close to [ fo dpu. O

We now consider the general case where ¢ and b are globally admissible periodic (but
not necessarily constant) rows with common period p and generalize Theorem 7.1 to this
case. Since such ¢ and b always exist, this will yield a way to efficiently approximate
P( fo) for any translation-invariant nearest neighbor interaction ® on a strongly irreducible
nearest neighbor Z>-SFT X for which ¢(A¢ x) < pe.

Let XP1 denote X[0-P=11>{01 the ([0, p — 1] x {0})-higher power code of X, which
is a nearest neighbor Z2-SFT over the alphabet AP! := Ljo ,—1)x(0;(X). Define a new
translation-invariant nearest neighbor interaction ®'7! on X1 as follows.

° On vertices,
p—1
P ([xo ... xpii ) =D D).
i=0
° On horizontal edges,

P ([xo ..oy xp 110 - -+ Yp—i1]) = @ (x0x1) 4 - - - + D(xp—10)-

° On vertical edges,

[xo...,xp-1] X0 Xp—1
ol e o).
[Yo...,yp-1] Yo Yp—1
Let ¢[P1, pIP1 be the constant rows (tl[ogp_l])Z, (b|[0,p_1])Z € (APHZ_ Then P!, plP! are
globally admissible in X1,
If g(Agin xim) < pe, we can simply apply Theorem 7.1 to achieve exponentially

converging approximations to P(fgip1), and it is fairly easy to see that P(fpip) =
pP(fo), so we would be done. However, by examining the definitions, we see that it
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could be the case that q(Aq)[,,]’X[,,]) > q(Ao,x), and so we must take a more circuitous
route.

As earlier, we can define Wm’n,,[pl,bm on (X[f"])m’n’t[m’b[p] and the corresponding
matrix Aq,[m’X[m’m’n’lmyb[p]. For fixed X, ®, ¢, b, p and any n greater than the filling
distance of X1, we make the notation A,[f] = Aglpl xIp) 1 n. 401 pip) and )le] = )L(Aﬁp]),
the largest eigenvalue of AlPl

THEOREM 7.2. Let X be a strongly irreducible nearest neighbor Z>-SFT and ® a
translation-invariant nearest neighbor interaction on X. Let t and b be globally admissible
periodic rows, with common period p. Assume that q(Ae x) < pc. Then there exist
constants Q, R > 0 such that for sufficiently large n,

1(1/p)og 27| —log 1) — P(fo)| < Qe R

Proof. Define AlPl = Agipl xipl- We will now verify that q(A[P]) < 1. Any
boundary configurations 871, 871 e Ly 0.0 (X [P1) correspond to configurations 8, §' €
L0, p—17x{op (X). By Proposition 5.3 (which we may use because q(Ao x) < p. < 1),
any such 8,8 have a common globally admissible filling in X, which implies that
8171, /1P have a common globally admissible filling in X'P!, which has positive (A[P1)3""
(AP yalues since AP is a Gibbs specification.

Therefore, by Proposition 3.14, for large enough #n, there is a unique induced Gibbs
state fqlpl xIpl 1.5, 401 plp) fOT X[P1 and ®!P1. By again using Proposition 6.3 and (see [Kr,
p- 99] and [BI]), pois xir1 1 5101 pip) i8 the unique equilibrium state for CI>[1’]1’,1’,[p1’b[p1 on
(X[p])Ln,,Ip],b[pl and

log MPY = P(dJ[P]ln,[ (1) = h(Lalpl x1p1 1 54101 pir))

+ / (D[pll,n 101 plpl dgplpl X1p1 1 . elp) plp)- (23)

We now must show that the differences of the right-hand sides of (23) for n and n + 1
in fact converge exponentially fast to p P(fe), which is done in much the same way as in
the proof of Theorem 7.1. We again take an equilibrium state u for fg and X, which is a
Gibbs state for ® on X and is the unique Z>-MRF associated to the Z>-specification Ao x.
Since (Ao, x) < 1, we may define the unique MRF po,x,1,n.1.6 associated to Ag x 1.n.1,b-

We claim that pweip xisl 1 40 plrt = (U X, 1,n,z, »)P1. This follows from Proposi-
tion 3.14 and the fact that q(A[p ) < 1 once one verifies that (uqxx,l,,,,,,b)[p] is associated
to (AP MN.onalp = Aglpl x1p1 1 pn.ir) pip1- This is straightforward (but a bit tedious), and
we leave the detalls to the reader. Thus, (23) becomes

log 17 = Ao 1as )P + / T, o i (o x e ).

By Theorem 3.22, h((u¢,x,1,n+1,,,b)[p]) — h((,uq,,x,l’n,[,b)[p]) converges exponentially to
ph(w). Arguing the same way as in the proof of Theorem 7.1, we see that

/q)[p]l)nJr])t[pJ,b[PJ d((1o.x, 1041067 — / P i i d (oo, X, 1.m,0.6)' )
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converges exponentially to

p—1
/fq)[p] du=/2(f<1> OG(i,()))d,u:P/fcb du,
i=0

where the latter equality comes from translation-invariance of .

Thus, (1/p)(log )»Eﬂ | — log AEIP ]) converges exponentially to P (fg), as desired. O

We will make a brief aside here to consider the utility of this theorem. For a
nearest neighbor Z?-SFT X and translation-invariant nearest neighbor interaction ® with
associated Gibbs specification A, x, recall that A‘Eb x is defined by a formula involving

X and @ for every § € £N(0<0) (X), and then, for any other §’ € ANo.0) | Afl;’ x 1s just
defined to match one of the existing Afb x (see the definition of Afb, x in §4). This means

that g(A g, x) is, in reality, a minimum variational distance between Afb y and A‘fj; x for
globally admissible 8, §" only. ’ ’

It is well known [Be] that checking whether or not a given configuration is
globally admissible in a nearest neighbor Z2-SFT can be undecidable, and so certainly
algorithmically impossible. However, it is shown in [HM, Corollary 3.5] that for a
strongly irreducible nearest neighbor Z2-SFT, global admissibility of a configuration is
algorithmically checkable.

In practice, however, this checking process can be very time-consuming, and so it is
often easier to consider a ‘simpler’ version of g(Ag, x). Assume that ¢ is defined on all
of AUE&| U&,. Say that a configuration § € AN is fillable if there exists x € A0}
such that x§ is locally admissible. For fillable , the formula (11) makes sense and we can
define

G(Aox) =maxd(A} y. A} x)

where the max is taken over only fillable configurations 8, 8’ € ANO.9. Then g(Ag, x) <
q(Ag.x), and s0 if (A x) < pc then g(Ag x) < pc as well. Since computing (A, x)
only requires finding the set of locally admissible configurations in X with shape {(0, 0)} U
No,0), it is a far easier quantity to find.

8.  Computability

We now address the issue of how efficiently our methods can be used to approximate
P(fe) for a function fp induced by a nearest neighbor interaction ® on a strongly
irreducible nearest neighbor SFT X.

We define « € R to be a computable number if there exists a Turing machine T which,
on input n, outputs a number p, /g, € Q such that |@ — p,/q,| <27". For any sequence
of positive integers {r,}, we say that « is {r,}-computable if there exists such a Turing
machine 7" which computes p,/g, in less than r, steps for all sufficiently large n. (For
more information on computability theory, see [Ko].)

We say that @ is {r,}-computable if each value ®(w) in the range of & is {r,}-
computable.

THEOREM 8.1. For any {r,}-computable nearest neighbor ® and strongly irreducible
nearest neighbor 72-SFT X for which q(Ao,x) < pc, there exist constants B, C, and J
such that P(fo) is {J" + Brcy}-computable.
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Proof. We will not include every detail of the argument, but just describe the algorithm
for approximating P (f¢) and summarize the most computationally intensive steps. For a
similar argument with more details included, see [P].

Some preprocessing must be done before any approximations. Firstly, a globally
admissible periodic row ¢ for X must be found; a careful reading of the proof in [War]
shows that this can be done algorithmically. Denote by p the period of . Also, we invest a
finite number of steps to find explicit integers L and U which bound all & (w) from below
and above respectively. This finite amount of computation is negligible compared to the
computation times in the theorem, and so it can be absorbed in the constant J.

Then, by Theorem 7.2, there exists R > 0 such that for sufficiently large n,

11/ p(log A(Agin xip1 1 pi1.400401) — 108 A(Aglo xipl 1 p e 1)) — P(fo)| < 0.2~ R".

To approximate P (fg) to within 27", it then clearly suffices to approximate

MAgtr, xt01, 1k e 1) a0 ACAqir) X111 k1,10 1101

to within 0.4 - 27", where k = n[log 2/R]. It obviously suffices to describe the procedure
for A(Aq)[,,],x[,;]’]’k’l[p]y,[p]). ‘We from now on refer to ACD[,,]’X[,,],lyk’t[p]‘,[p] simply as A for
ease of reading.

The entries of A, indexed by legal columns ¢ and d, are all of the form e~ z cb(w),
where the sum is always over a set of at most 4kp configurations w on single sites or
pairs of adjacent sites; these are easily computed in polynomial (negligible) time in k,
given ¢, ¢, and d. Therefore, the smallest non-zero entry of A is at least e~ *rU and the
largest entry is at most e~*PL. We now wish to approximate each entry of A to within
a tolerance of 0.2 A|*Pe=%rU8kpLy—n  We first approximate each individual & (w)
to within 1/40kp|.A|~*Pe=4PU 8kPLo—n  Since k is linear in n, this expression is only
exponentially small in n. Since each ®(w) is {r, }-computable, there exists C so that such
an approximation can be found for each ®(w) in fewer than r¢, steps for sufficiently
large n, and so a collection of such approximations for all ®(w) can be found in fewer
than Brc,, steps, where B is the constant number of configurations w for which ® (w) # 0.
For each entry A g =e" 2 ®w) of A, we then have an approximation to —Y_ ®(w)
within a tolerance of 0.1|A| %P e=#PU 8kPL2 =" wwhich yields an approximation to A. 4 =
e~ 22 to within a tolerance of 0.2|.A|kPe~*PU#%PL2=" for Jarge enough n since
Acad < e~ ¥rL

We then have a matrix A in which each entry is within 0.2 A| %P e=4PU g#kpLo—n of
the corresponding entry of A. Since this matrix has only exponentially many entries (the

size of A = Aglpl xIp1 1 k.g1p) 4p] is at most the size of the alphabet of XE’)’IEWJJM, which is
at most | A|*?), and since each approximation only involves summing previously recorded
approximations to ® (w) and exponentiating, there exists F so that A can be computed in
fewer than F" + Br¢,, steps for sufficiently large n.

Then
(1 — 02| A P PLo=my A < A < (1 + 0.2 A] *Pe¥rLy—my A,
and by monotonicity of the Perron eigenvalue,

(1 — 0.2]A]*P*PLo=my) (A) < A(A) < (1 + 0.2]A| *Pe*PLo—)5 (A).
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Since clearly A(A) is bounded from above by the maximum row sum of A, which itself is
less than | A|Pe=4PL this means that [A(A) — A(A)| < 0.2 - 27"

All that remains is to approximate A(Z) to within a tolerance of 0.2 - 27" Since A and
A have the same non-zero entries, and since A is primitive, there exists N = N (k) such
that AV has all positive entries. We assume that N is the smallest such integer, which is
called the index of primitivity of A. It is well known [HorJ, Corollary 8.5.9] that the index
of primitivity is at most quadratic in the size of the matrix, so there exists G independent
of n so that N < G*. Let € denote the smallest entry of AN Then € > (e kPUYN - (We
changed 4kpU to SkpU to account for the fact that the smallest entry of A could be slightly
smaller than the smallest entry of A.)

The reader can verify that for any M and k,

k k
(e Z(ZM)c,d) <) (AN 4 < (Z(ZM“V)M) :

By taking logs, dividing by k(M + N), and letting k — oo, we see that

loge  log Y(AM) 4 i <o S(AMANY
M+ N M+ N M+ N

If we write -
_log Y (AM) 4

fm M

k]

then, for every M > N,
N A(X) loge

M M
For f) to approximate A(K) to within 0.2 - 27", it is therefore sufficient to take M >
5.2" (N)L(X) — log €), which is less than H" for some constant H and large enough n. The
calculation of fy» entails taking an exponentially large power of an exponentially large
matrix, which can be done in exponentially many computations. Therefore, there exists /
so that A(Z) can be approximated to within 0.2 - 27" in fewer than /" computations.

By collecting all of these facts and taking J =max(I, F)+ 1, we see that, for
sufficiently large n, we may approximate P (fe) to within 27" by performing fewer than
J" 4+ Brc, steps for some uniform constants B, C, and J. O

MA) < fu < M(A) +

9. Examples
We now give some applications of the results from §§7 and 8 to specific Gibbs states
and pressures, beginning with the hard-core and Ising antiferromagnetic models presented
earlier. We note that these models have strongly irreducible underlying SFTs (the hard
square shift and full shift on %1 respectively), and so checking whether our results apply
to them boils down to checking which parameter values give g(A¢, x) < pe.

(1) Hard-core model. We wish to know which activity levels a give g(A¢, x) < pc. By
the definition of @, it is easy to check that for § = oNoo

1
ifb=0,
P 1+a !
Acp,H(b): 4 ’
= ifb=1,
a
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which we abbreviate by A‘é H= (1/(1 +a), a/(1 + a)). For any other § € {0, 1}Noo)
A‘EI;H = (1, 0), i.e. it is concentrated entirely on the 0 symbol. (This is because, if
8" # 0N | the only locally admissible way to fill § in H is with a 0.) Therefore,

(hor=d [~ 2 ). a.0)=-2
q @,H - 1+a7 1+a ’ ’ _— l+a’

which is less than p. if and only if a < p./(1 — p.). We note that this computation was
already done in [BM].

(2) Ising antiferromagnet. Again, we wish to know which parameters ki, § give
q(Ao.x) < pe. Again, it is reasonably straightforward to check that for any § € {£1}V0.0

with ZveN(o,O) S(v) =n,

exp(=p(h —n))
exp(B(h —n)) + exp(=B(h —n))
exp(B(h —n))
exp(B(h —n)) + exp(—B(h —n))

It is then fairly easy to see that

q(Ao,x) = d((Aq)’X)(lN‘O‘O)), (Acp,X)(‘]N(O'O)))
= XD =) _ exp(B(h +4))
= exp(B(h —4)) +exp(—B(h —4))  exp(B(h + 4)) +exp(—B(h + )
It was shown in [BM] that g (A¢,x) < p. as long as

ifb=-—1,

Ay x(b) =

ifb=1.

264~ |hl) <log<1 - )

though this condition is certainly not necessary.

In both models, the results of [BM] imply that there is a unique Gibbs measure u for
the described parameters. Theorem 7.2 implies that in addition, the pressure P(fg) is
exponentially well approximable by

1/p(og A(Agin xir1 1 nt1,60) ple1) — 10g A(Agip) X101 1 p 101 pir1))

for any boundary conditions ¢, b periodic with period p. (Of course, for these two
models, there exist globally admissible constant rows, and so we could take p =1.) By
Theorem 8.1, a bound on the computability of these pressures can also be given in terms
of the computability of the relevant parameter values.

We conclude by giving applications to topological entropy, in the same spirit as [P].

Definition 9.1. Let X be a nearest neighbor Z>-SFT. Define the specification A = Ao, x by

0 if né ¢ L(X),
A=y 1
W if né € L(X),
when § € L(X) (here N (8) is just the normalization factor |{n € AS né € L(X)}]), and by
A% = A% when &' ¢ L(X), where §p is any fixed globally admissible boundary with the
same shape as §'.
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Note that since a measure of maximal entropy is clearly an equilibrium state for the
function f = fy =0, any measure of maximal entropy is a Z>-MRF associated to the
specification A x.

We now exhibit two classes of strongly irreducible nearest neighbor Z2-SFTs for
which g(A) < p, for this specification, implying that the topological entropy (topological
pressure for f = fy = 0) is exponentially well approximable via strips, and therefore {J" }-
computable for some J. For the first, we need a definition.

Definition 9.2. In a nearest neighbor Z¢-SFT X with alphabet A, a € A is a safe symbol if
forall b € A, (a, b), (b, a) € & for 1 <i <d. In other words, a is a safe symbol if it may
legally appear next to any letter of the alphabet in any direction.

PROPOSITION 9.3. Any nearest neighbor 7>-SFT with alphabet A containing a subset A’
of safe symbols for which |A'|/|A| > 1 — p. has a unique measure of maximal entropy |
which is an MRF associated to a translation-invariant 7*-specification A satisfying
q(A) < pe. The topological entropy of any such SFT is {J"}-computable for some J.

Proof. Consider any such Z2-SFT X and any u a measure of maximal entropy on X with
72-specification A. Clearly, since X contains a safe symbol, any § € AV0.0 isin £(X) and
X is strongly irreducible. For any § € AN©.0), the probability distribution A? is uniform
over some subset of A, call it S5, which contains A". Clearly, |Ss| = N(8). Choose any
8, 8’ € AN0.o | and assume without loss of generality that N (8) > N (8'). Then,

AN, AY) = 2 37 1A% ) — A% (e
( ) =3 EGZA| (€) — A’ (o)l
A1 1 N@©) —|A]  N(@©)—|A|
-2 (N(S/) B N((S)) 2N (5) 2N ()
|A'| |A'|
=Nve = e
Therefore, g(A) < p., implying by Theorem 3.9 that u was unique. The fact that
h(X) = P(fp) implies that 4 (X) is {J"}-computable for some J by Theorem 8.1. O

We note that since p. > 0.556 > 0.5 by [BE], clearly the 72 hard square shift H satisfies
the conditions of Proposition 9.3.

We recall that the {J”}-computability of the topological entropy of such SFTs followed
from the exponentially good approximations given by differences of topological entropies
of constrained strips, i.e. strips with boundary conditions #, b. For SFTs with at least one
safe symbol a (such as those to which Proposition 9.3 applies), one can take 7, b = a? and
then the topological entropies of the approximating ‘constrained’ strips are equal to those
of unconstrained strips as were treated in [P].

PROPOSITION 9.4. Let X be a nearest neighbor Z>-SFT with alphabet A with the
property that for all a € A, and for any direction, the set of legal neighbors of a in that
direction has cardinality greater than (1 — (p:/4(1 + pc))|A|. Then X has a unique
measure of maximal entropy i which is an MRF associated to a 7?*-specification A
satisfying q(A) < pe. The topological entropy of any such SFT is {J"}-computable for
some J.
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Proof. Consider any such nearest neighbor Z?-SFT X and any x4 a measure of maximal
entropy on X with Z2-speciﬁcati0n A. Since 1 — (p./4(1 + p¢)) > %, at any site v, the
presence of a symbol at an adjacent site rules out fewer than (1/4)|.4| of the symbols at
v; thus, any § € ANOO can be extended to a locally admissible configuration with shape
N.0y U {0}. It follows that, any locally admissible configuration x on a subset .S of 77 can
be extended to a locally admissible configuration on S U {v} for any site v ¢ S. Therefore,
any locally admissible configuration is globally admissible. This implies both that any
8 € ANOO isin £(X) and that X is strongly irreducible (with filling distance 1). Therefore,
for any 8§ € AN©.0, the probability distribution A? is uniform over some non-empty subset
of A, call it S5. Clearly |Ss| = N(8). Define « := p./(1 4+ p.). Then it is clear that
|S5] > (1 — a)|.A| for any 8 € A. Choose any 8, 8’ € AN00, and assume without loss
of generality that N(8) > N(8'). Define m :=|Ss N Sy| and note that m > N(§) — a|A|.
Then,

d(A°, A) = % Y 1A% (e) — AV (o)l

ec A
<ﬂ< 1 _ 1 >+N(5)—m N@)—m
— 2\N(@) N(@©) 2N (6) 2N (&)
m N@) —alAl oA o
=] —— <1- = < = Pc.
N(5) N(5) NG 11—«

Therefore, g(A) < p., implying by Theorem 3.9 that u was unique. The fact that
h(X) = P(fp) again implies that 4 (X) is {J"}-computable for some J by Theorem 8.1. O

By [BE],
Pe 0.556 5
> > —.
41+ pe) ~ 4(1+0.556) ~ 56
It follows that the usual k-checkerboard Z*-SFT, with alphabet {1, ..., k} and forbidden

list consisting of all pairs of adjacent identical letters, satisfies the conditions of
Proposition 9.4 when k > 12. (It may also satisfy these conditions for smaller k£ depending
on the exact value of p..)
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