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Abstract

We consider a memoryless channel with an input Markov process supported on
a mixing finite-type constraint. We continue the development of asymptotics for the
entropy rate of the output hidden Markov chain and deduce that, at high signal-to-noise
ratio (SNR), the mutual information rate of such a channel is concave with respect to
“almost” all input Markov chains of a given order.

Index Terms–concavity, entropy rate, hidden Markov chain, mutual information rate

1 Channel Model

In this paper, we show that for certain input-restricted memoryless channels, the mutual
information rate, at high signal-to-noise ratio, is concave with respect to almost all input
Markov chains, in the following sense: let M0 denote the set of all allowed (by the input
constraint) first-order Markov processes; at a given noise level, the mutual information rate
is strictly concave on a subset of M0 which increases to the entire M0 as the noise level
approaches zero. Here, we remark that M0 will be defined precisely immediately following
Example 2.1 below, and a corresponding result holds for input Markov chains for any fixed
given order.

This partially establishes a very special case of a conjecture of Vontobel et al. [17].
Namely, part of Conjecture 74 of that paper states that for a very general class of finite-
state joint source/channel models, the mutual information rate is concave. A proof of the
full conjecture (together with other mild assumptions) would imply global convergence of
the generalized Blahut-Arimoto algorithm developed in that paper. Our results apply only
to certain input-restricted discrete memoryless channels, only at high SNR, with a mild
restriction on the class of Markov input processes.

Our approach depends heavily on results regarding asymptotics and smoothness of the
entropy rate in special parameterized families of hidden Markov chains, such as those devel-
oped in [9], [13], [6], [7], [19], [14], [16] and continued here. The new results along these
lines in our paper are of interest, independent of the application to concavity.

We first discuss the nature of the constraints on the input. Let X be a finite alphabet.
Let X n denote the set of words over X of length n and let X ∗ = ∪nX n. We use the notation
wn2
n1

to denote a sequence wn1 . . . wn2 .
A finite-type constraint S is a subset of X ∗ defined by a finite list F of forbidden words [11,

12]; equivalently, S is the set of words over X that do not contain any element in F as a
contiguous subsequence. We define Sn = S ∩ X n. The constraint S is said to be mixing if
there exists a non-negative integer N such that, for any u, v ∈ S and any n ≥ N , there is a
w ∈ Sn such that uwv ∈ S. To avoid trivial cases, we do not allow S to consist entirely of
constant sequences a . . . a for some symbol a.

In magnetic recording, input sequences are required to satisfy certain constraints in order
to eliminate the most damaging error events [12]. The constraints are often mixing finite-
type constraints. The most well known example is the (d, k)-RLL constraint S(d, k), which
forbids any sequence with fewer than d or more than k consecutive zeros in between two
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successive 1’s. For S(d, k) with k <∞, a forbidden set F is

F = {1 0 · · · 0︸ ︷︷ ︸
l

1 : 0 ≤ l < d} ∪ {0 · · · 0︸ ︷︷ ︸
k+1

}.

When k =∞, one can choose F to be

F = {1 0 · · · 0︸ ︷︷ ︸
l

1 : 0 ≤ l < d};

in particular when d = 1, k =∞, F can be chosen to be {11}.
The maximal length of a forbidden list F is the length of the longest word in F . In

general, there can be many forbidden lists F which define the same finite type constraint S.
However, we may always choose a list with smallest maximal length. The (topological) order
of S is defined to be m̃ = m̃(S) where m̃+ 1 is the smallest maximal length of any forbidden
list that defines S (the order of the trivial constraint X ∗ is taken to be 0). It is easy to see
that the order of S(d, k) is k when k < ∞, and is d when k = ∞; S(d, k) is mixing when
d < k.

For a stationary stochastic process X over X , the set of allowed words with respect to X
is defined as

A(X) = {wn2
n1
∈ X ∗ : n1 ≤ n2, p(X

n2
n1

= wn2
n1

) > 0};
that is, the allowed words are those that occur with strictly positive probability.

Note that for any m-th order stationary Markov process X, the constraint S = A(X) is
necessarily of finite type with order m̃ ≤ m, and we say that X is supported on S. Also, X
is mixing iff S is mixing (recall that a Markov chain is mixing if its transition probability
matrix, obtained by appropriately enlarging the state space, is irreducible and aperiodic).
Note that a Markov chain with support contained in a finite-type constraint S may have
order m < m̃.

Now, consider a memoryless channel with inputs x ∈ X , outputs z ∈ Z and input
sequences restricted to a mixing finite-type constraint S. Any stationary input process X
must satisfy A(X) ⊆ S. Let Z denote the stationary output process corresponding to X;
then at any time slot, the channel is characterized by the conditional probability

p(z|x) = p(Z = z|X = x).

We are actually interested in families of channels, as above, parameterized by ε ≥ 0 such
that for each x and z, p(z|x)(ε) is an analytic function of ε ≥ 0. Recall that an analytic
function is one that can be “locally” expressed as a convergent power series (p. 182 of [3]).

We assume that for all x and z, the probability p(z|x)(ε) is not identically 0 as a function
of ε. By a standard result in complex analysis (p. 240 of [3]), this means that for sufficiently
small ε > 0, p(z|x)(ε) 6= 0; it follows that for any input x and sufficiently small ε > 0,
any output z can occur. We also assume that there is a one-to-one (not necessarily onto)
mapping from X into Z, z = z(x), such that for any x ∈ X , p(z(x)|x)(0) = 1; so, ε can be
regarded as a parameter that quantifies noise, and z(x) is the noiseless output corresponding
to input x. The regime of “small ε” corresponds to high SNR.

Note that the output process Z = Z(X, ε) depends on the input process X and the
parameter value ε; we will often suppress the notational dependence on ε or X, when it is
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clear from the context. Prominent examples of such families include input-restricted versions
of the binary symmetric channel with crossover probability ε (denoted by BSC(ε)), and the
binary erasure channel with erasure rate ε (denoted by BEC(ε)).

Recall that the entropy rate of Z = Z(X, ε) is, as usual, defined as

H(Z) = lim
n→∞

Hn(Z),

where
Hn(Z) = H(Z0|Z−1−n) = −

∑
z0−n

p(z0−n) log p(z0|z−1−n).

The mutual information rate between Z and X can be defined as

I(Z;X) = lim
n→∞

In(Z;X),

where

In(Z;X) = Hn(Z)− 1

n+ 1
H(Z0

−n|X0
−n).

Given the memoryless assumption, one can check that the second term above is simply
H(Z0|X0) and in particular does not depend on n.

Under our assumptions, if X is a Markov chain, then for each ε ≥ 0, the output process
Z = Z(X, ε) is a hidden Markov chain and in fact satisfies the “weak Black Hole” assumption
of [7], where an asymptotic formula for H(Z) is developed; the asymptotics are given as an
expansion in ε around ε = 0. In Section 2, we further develop these ideas to establish
smoothness properties of H(Z) as a function of ε and the input Markov chain X of a fixed
order. In particular, we show that for small ε > 0, H(Z) can be expressed as G(X, ε) +
F (X, ε) log(ε), where G(X, ε) and F (X, ε) are smooth (i.e., infinitely differentiable) functions
of ε and of the parameters of the first-order Markov chain X supported on S (Theorem 2.18).
The log(ε) term arises from the fact that the support of X will be contained in a non-trivial
finite-type constraint and so X will necessarily have some zero transition probabilities; this
prevents H(Z) from being smooth in ε at 0. It is natural to ask if F (X, ε) and G(X, ε) are
in fact analytic; we are only able to show that F (X, ε) is analytic.

It is well known that for a discrete input random variable over a memoryless channel, mu-
tual information is concave as a function of the input probability distribution (see Theorem
2.7.4 of [4]). In Section 3, we apply the above smoothness results to show that for a mixing
finite-type constraint of order 1, and sufficiently small ε0 > 0, for each 0 ≤ ε ≤ ε0, both
In(Z(ε,X);X) and the mutual information rate I(Z(X, ε);X) are strictly concave on the set
of all first-order Markov chains X whose non-zero transition probabilities are not “too small”
(here, the input processes are parameterized by their joint probability distributions). This
implies that there are unique first-order Markov chains Xn = Xn(ε), X∞ = X∞(ε) such that
Xn maximizes In(Z(X, ε), X) and X∞ maximizes I(Z(X, ε), X). It also follows that Xn(ε)
converges exponentially to X∞(ε) uniformly over 0 ≤ ε ≤ ε0. These results are contained
in Theorem 3.1. The restriction to first-order constraints and first-order Markov chains is
for simplicity only. By a simple recoding via enlarging the state spaces, the results apply to
arbitrary mixing finite-type constraints and Markov chains of arbitrary fixed order m. As
m→∞, the maxima converge to channel capacity [1].
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2 Asymptotics of the Entropy Rate

2.1 Key Ideas and Lemmas

For simplicity, we consider only mixing finite-type constraints S of order 1, and correspond-
ingly only first-order input Markov processes X with transition probability matrix Π such
that A(X) ⊆ S (the higher order case is easily reduced to this). For any z ∈ Z, define the
matrix Ωz with entries

Ωz(x, y) = Πx,yp(z|y). (1)

Note that Ωz implicitly depends on ε through p(z|y). One checks that∑
z∈Z

Ωz = Π,

and
p(z0−n) = πΩz−nΩz−n+1 · · ·Ωz01, (2)

where π is the stationary vector of Π and 1 is the all 1’s column vector.
For a given analytic function f(ε) around ε = 0, let ord (f(ε)) denote its order with

respect to ε, i.e., the degree of the first non-zero term of its Taylor series expansion around
ε = 0. Thus, the orders ord (p(z|x)) determine the orders ord (p(z0−n)) and similarly the
orders of conditional probabilities ord (p(z0|z−1−n)).

Example 2.1. Consider a binary symmetric channel with crossover probability ε and a
binary input Markov chain X supported on the (1,∞)-RLL constraint with transition prob-
ability matrix

Π =

[
1− p p

1 0

]
,

where 0 < p < 1. The channel is characterized by the conditional probability

p(z|x) = p(z|x)(ε) =

{
1− ε if z = x
ε if z 6= x

Let Z be the corresponding output binary hidden Markov chain. Now we have

Ω0 =

[
(1− p)(1− ε) pε

1− ε 0

]
, Ω1 =

[
(1− p)ε p(1− ε)

ε 0

]
.

The stationary vector is π = (1/(p+ 1), p/(p+ 1)), and one computes, for instance,

p(z−2z−1z0 = 110) = πΩ1Ω1Ω01 =
2p− p2

1 + p
ε+O(ε2),

which has order 1 with respect to ε.

LetM denote the set of all first-order stationary Markov chains X satisfying A(X) ⊆ S.
Let Mδ, δ ≥ 0, denote the set of all X ∈ M such that p(w0

−1) > δ for all w0
−1 ∈ S2. Note

that whenever X ∈M0, i.e., A(X) = S, X is mixing (thus its transition probability matrix
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Π is primitive) since S is mixing, so X is completely determined by its transition probability
matrix Π. For the purposes of this paper, however, we find it convenient to identify each
X ∈M0 with its vector of joint probabilities ~p = ~pX on words of length 2 instead:

~p = ~pX = (p(X0
−1 = w0

−1) : w0
−1 ∈ S2);

sometimes we write X = X(~p). This is the same parameterization of Markov chains as in
Definition 33 of [17].

In the following, for any parameterized sequence of functions fn,λ(ε) (ε is real or complex)
with λ ranging within a parameter space Λ, we use

fn,λ(ε) = Ô(εn) on Λ

to mean that there exist constants C, β1, β2 > 0, ε0 > 0 such that for all n, all λ ∈ Λ and all
0 ≤ |ε| ≤ ε0,

|fn,λ(ε)| ≤ nβ1(C|ε|β2)n.

Note that fn,λ(ε) = Ô(εn) on Λ implies that there exists ε0 > 0 and 0 < ρ < 1 such that

|fn,λ(ε)| < ρn for all |ε| ≤ ε0, all λ ∈ Λ and large enough n. One also checks that a Ô(εn)-
term is unaffected by multiplication by an exponential function in n (and thus a polynomial
function in n, since, roughly speaking, a polynomial function does not grow as fast as an
exponential function as n tends to infinity) and a polynomial function in 1/ε; in particular,
note that

Remark 2.2. For any given fn,λ(ε) = Ô(εn), there exists ε0 > 0 and 0 < ρ < 1 such that
|g1(n)g2(1/ε)fn,λ(ε)| ≤ ρn, for all |ε| ≤ ε0, all λ ∈ Λ, all polynomial functions g1(n), g2(1/ε)
and large enough n.

Of course, the output joint probabilities p(z0−n) and conditional probabilities p(z0|z−1−n)
implicitly depend on ~p ∈ M0 and ε. The following result asserts that for small ε, the total
probability of output sequences with “large” order is exponentially small, uniformly over all
input processes.

Lemma 2.3. For any fixed 0 < α < 1,∑
z−1
−n: ord (p(z−1

−n))≥αn

p(z−1−n) = Ô(εn) on M0.

Proof. Note that for any hidden Markov chain sequence z−1−n, we have

p(z−1−n) =
∑
x−1
−n

p(x−1−n)
−1∏
i=−n

p(zi|xi). (3)

Now consider z−1−n with k = ord (p(z−1−n)) ≥ αn. One checks that for ε small enough there
exists a positive constant C such that p(z|x) ≤ Cε for all x, z with ord (p(z|x)) ≥ 1, and
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thus the term
∏−1

i=−n p(zi|xi) as in (3) is upper bounded by Ckεk, which is upper bounded
by Cαnεαn for ε < 1/C. Noticing that

∑
x−1
−n
p(x−1−n) = 1, we then have, for ε small enough,∑

z−1
−n: ord (p(z−1

−n))≥αn

p(z−1−n) ≤
∑
z−1
−n

∑
x−1
−n

p(x−1−n)Cαnεαn ≤ |Z|nCαnεαn,

which immediately implies the lemma.

Remark 2.4. Note that for any z−1−n with ord (p(z−1−n)) ≥ αn, one immediately has

p(z−1−n) ≤ Kεαn, (4)

for a suitable K and small enough ε. However, this K may depend on z−1−n and n, so (4)
does not imply Lemma 2.3.

By Lemma 2.3 the probability measure is concentrated mainly on the set of output
sequences with relatively small order, and so we can focus on those sequences. For a fixed
positive α, a sequence z−1−n ∈ Zn is said to be α-typical if ord (p(z−1−n)) ≤ αn; let Tαn denote
the set of all α-typical Z-sequences with length n. Note that this definition is independent
of ~p ∈M0.

For a smooth mapping f(~x) from Rk to R and a nonnegative integer `, D`
~xf denotes the

`-th total derivative with respect to ~x; for instance,

D~xf =

(
∂f

∂xi

)
i

and D2
~xf =

(
∂2f

∂xi∂xj

)
i,j

.

In particular, if ~x = ~p ∈ M0 or ~x = (~p, ε) ∈ M0 × [0, 1], this defines the derivatives
D`
~pp(z0|z

−1
−n) or D`

~p,εp(z0|z
−1
−n). We shall use | · | to denote the Euclidean norm of a vector or a

matrix (for a matrix A = (aij), |A| =
√∑

i,j a
2
ij), and we shall use ‖A‖ to denote the matrix

norm, that is,

‖A‖ = sup
x 6=~0

|Ax|
|x|

.

It is well known that ‖A‖ ≤ |A|.
In this paper, we are interested in functions of ~q = (~p, ε). For any ~n = (n1, n2, . . . , n|S2|+1) ∈

Z|S2|+1
+ and any smooth function f of ~q, define

f (~n) =
∂|~n|f

∂qn1
1 ∂q

n2
2 · · · ∂q

n|S2|+1

|S2|+1

,

here |~n| denotes the order of the ~n-th derivative of f with respect to ~q, and is defined as

|~n| = n1 + n2 + · · ·+ n|S2|+1.

The next result shows, in a precise form, that for α-typical sequences z0−n, the derivatives,
of all orders, of the difference between p(z0|z−1−n) and p(z0|z−1−n−1) converge exponentially in
n, uniformly in ~p and ε. For n ≤ m, m̂ ≤ 2n, define

Tαn,m,m̂ = {(z0−m, ẑ0−m̂) ∈ Zm+1 ×Zm̂+1|z−1−n = ẑ−1−n is α-typical}.

We then have the following proposition, whose proof is deferred to Section 2.2.
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Proposition 2.5. Assume n ≤ m, m̂ ≤ 2n. Given δ0 > 0, there exists α > 0 such that for
any `

|D`
~p,εp(z0|z−1−m)−D`

~p,εp(ẑ0|ẑ−1−m̂)| = Ô(εn) on Mδ0 × Tαn,m,m̂.

The proof of Proposition 2.5 depends on estimates of derivatives of certain induced maps
on a simplex, which we now describe. Let W denote the unit simplex in R|X |, i.e., the set
of nonnegative vectors, which sum to 1, indexed by the joint input-state space X . For any
z ∈ Z, Ωz induces a mapping fz defined on W by

fz(w) =
wΩz

wΩz1
. (5)

Note that Ωz implicitly depends on the input Markov chain ~p ∈M0 and ε, and thus so does
fz. While wΩz1 can vanish at ε = 0, it is easy to check that for all w ∈ W , limε→0 fz(w)
exists, and so fz can be defined at ε = 0. Let Omax denote the largest order of all entries of
Ωz (with respect to ε) for all z ∈ Z, or equivalently, the largest order of p(z|x)(ε) over all
possible x, z.

For ε0, δ0 > 0, let
Uδ0,ε0 = {~p ∈Mδ0 , ε ∈ [0, ε0]}.

Lemma 2.6. Given δ0 > 0, there exists ε0 > 0 and Ca > 0 such that on Uδ0,ε0 for all z ∈ Z,
|Dwfz| ≤ Ca/ε

2Omax on the entire simplex W.

Proof. Given δ0 > 0, there exist ε0 > 0 and C > 0 such that for any z ∈ Z, w ∈ W , we
have, for all 0 ≤ ε ≤ ε0,

|wΩz1| ≥ CεOmax .

We then apply the quotient rule for derivatives to establish the lemma.

For any sequence z−1−N ∈ ZN , define

Ωz−1
−N

= Ωz−NΩz−N+1
· · ·Ωz−1 .

Similar to (5), Ωz−1
−N

induces a mapping fz−1
−N

on W by:

fz−1
−N

(w) =
wΩz−1

−N

wΩz−1
−N

1
.

By the chain rule, Lemma 2.6 gives upper bounds on derivatives of fz−1
−N

. However, these

bounds can be improved considerably in certain cases, as we now describe. A sequence
z−1−N ∈ ZN is Z-allowed if there exists x−1−N ∈ A(X) such that

z−1−N = z(x−1−N).

where z(x−1−N) = (z(x−N), z(x−N+1), . . . , z(x−1)). Note that z−1−N is Z-allowed iff ord (p(z−1−N)) =
0. So, the Z-allowed sequences are those output sequences resulting from noiseless transmis-
sion of input sequences that satisfy the constraint.

Since Π is a primitive matrix, by definition there exists a positive integer e such that
Πe > 0 (i.e., all entries of the matrix power are strictly positive). We then have the following
lemma.
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Lemma 2.7. Assume that X ∈ M0. For any Z-allowed sequence z−1−N = z(x−1−N) ∈ ZN
(here x−1−N ∈ S), if N ≥ 2eOmax, we have

ord (Ωz−1
−N

(x̂−N−1, x−1)) < ord (Ωz−1
−N

(x̂−N−1, x̃−1)),

for any x̂−N−1 ∈ X and any x̃−1 with x̃−1 6= x−1.

Proof. The rough idea is that to minimize the order, a sequence must match x−1−N as closely
as possible. Given the restrictions on initial and terminal states, the length N must be
sufficiently long to overwhelm edge effects.

For any x̂−N−1, x̂−1 ∈ X , we have

Ωz−1
−N

(x̂−N−1, x̂−1) = p(X−1 = x̂−1, Z
−1
−N = z−1−N |X−N−1 = x̂−N−1) = p(x̂−1, z

−1
−N |x̂−N−1).

It then follows that

ord (Ωz−1
−N

(x̂−N−1, x̂−1)) = ord (p(x̂−1, z
−1
−N |x̂−N−1)) = ord (p(x̂−N−1, z

−1
−N , x̂−1)).

Since
p(x̂−N−1, z

−1
−N , x̂−1) =

∑
x̂−2
−N

p(x̂−1−N−1, z
−1
−N),

we have

ord (Ωz−1
−N

(x̂−N−1, x̂−1)) = min
−1∑

i=−N

ord (p(zi|x̂i)),

where the minimization is over all sequences x̂−2−N such that x̂−1−N−1 ∈ S.

Since Πe > 0, there exists some x̂−N−1+e−N such that x̂−N−1+e = x−N−1+e and p(x̂−N−1+e−N−1 ) >
0, and there exists some x̂−2−e such that x̂−e = x−e and p(x̂−1−e) > 0. It then follows from
ord (p(z|x)) ≤ Omax that, as long as N ≥ 2eOmax, for any fixed x̂−1 and any choice of order
minimizing sequence x̂−2−N(x̂−1), there exist 0 ≤ i0 = i0(x̂−1), j0 = j0(x̂−1) ≤ eOmax such that

z(x̂ji (x̂−1)) = zji if and only if i ≥ −N − 1 + i0(x̂−1) and j ≤ −1 − j0(x̂−1). One further
checks that, for any choice of order minimizing sequences corresponding to x̂−1, x̂

−2
−N(x̂−1),

−N−1+i0(x̂−1)∑
i=−N

ord (p(zi|x̂i(x̂−1))),

does not depend on x̂−1, whereas j0(x̂−1) = 0 if and only if x̂−1 = x−1. This immediately
implies the lemma.

Example 2.8. (continuation of Example 2.1)
Recall that

Ω0 =

[
(1− p)(1− ε) pε

1− ε 0

]
, Ω1 =

[
(1− p)ε p(1− ε)

ε 0

]
.
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First, observe that the only Z-allowed sequences are 00, 01, 10; then straightforward compu-
tations show that

Ω0Ω0 =

[
(1− p)2(1− ε)2 + pε(1− ε) p(1− p)ε(1− ε)

(1− p)(1− ε)2 pε(1− ε)

]
,

Ω0Ω1 =

[
(1− p)2ε(1− ε) + pε2 p(1− p)(1− ε)2

(1− p)ε(1− ε) p(1− ε)2
]
,

Ω1Ω0 =

[
(1− p)2ε(1− ε) + p(1− ε)2 p(1− p)ε2

(1− p)ε(1− ε) pε2

]
.

One checks that for each of these three matrices, there is a unique column, each of whose
entries minimizes the orders over all the entries in the same row. Note that, putting this
example in the context of Lemma 2.7, we have N = 2, which is smaller than 2eOmax =
2× 2× 1 = 4.

Now fix N ≥ 2eOmax. Note that the mapping fz−1
−N

implicitly depends on ε, so for any

w ∈ W , v = fz−1
−N

(w) is in fact a function of ε. Let q(z) ∈ W be the point defined by

q(z)x = 1 for x with z(x) = z and 0 otherwise. If z−1−N is Z-allowed, then by Lemma 2.7, we
have

lim
ε→0

fz−1
−N

(w) = q(z−1);

thus, in this limiting sense, at ε = 0, fz−1
−N

maps the entire simplex W to a single point

q(z−1). The following lemma says that if z−1−N−1 is Z-allowed, then in a small neighbourhood
of q(z−N−1), the derivative of fz−1

−N
is much smaller than what would be given by repeated

application of Lemma 2.6.

Lemma 2.9. Given δ0 > 0, there exists ε0 > 0 and Cb > 0 such that on Uδ0,ε0, if z−1−N−1 is
Z-allowed, then |Dwfz−1

−N
| ≤ Cbε on some neighbourhood of q(z−N−1).

Proof. By the observations above, for all w ∈ W , we have

fz−1
−N

(w) = q(z−1) + εr(w),

where r(w) is a rational vector-valued function with common denominator of order 0 (in ε)
and leading coefficient uniformly bounded away from 0 near w = q(z−N−1) over all ~p ∈Mδ0 .
The lemma then immediately follows.

2.2 Proof of Proposition 2.5

Before giving the detailed proof of Proposition 2.5, let us roughly explain the proof only for
the special case ` = 0, i.e., convergence of the difference between p(z0|z−1−n) and p(z0|z−1−n−1).
Let N be as above and for simplicity consider only output sequences of length a multiple N :
n = n0N . We can compute an estimate of Dwfz0−n by using the chain rule (with appropriate

care at ε = 0) and multiplying the estimates on |Dwfz(−i+1)N
−iN

| given by Lemmas 2.6 and 2.9.

This yields an estimate of the form, |Dwfz0−n| ≤ (Aε1−Bα)n for some constants A and B, on
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the entire simplex W . If α is sufficiently small and z−1−n is α-typical, then the estimate from
Lemma 2.9 applies enough of the time that fz0−n exponentially contracts the simplex. Then,

interpreting elements of the simplex as conditional probabilities p(Xi = ·|zi−m), we obtain
exponential convergence of the difference |p(z0|z−1−n)− p(z0|z−1−n−1)| in n, as desired.

Proof of Proposition 2.5. For simplicity, we only consider the special case that n = n0N,m =
m0N, m̂ = m̂0N for a fixed N ≥ 2eOmax; the general case can be easily reduced to this special
case. For the sequences z−1−m, ẑ

−1
−m̂, define their “blocked” versions [z]−1−m0

, [ẑ]−1−m̂0
by setting

[z]i = z
(i+1)N−1
iN , i = −m0,−m0 + 1, . . . ,−1, [ẑ]j = ẑ

(j+1)N−1
jN , j = −m̂0,−m̂0 + 1, . . . ,−1.

We first consider the case ` = 0.
Let

wi,−m = wi,−m(zi−m) = p(Xi = · |zi−m),

where · denotes the possible states of the Markov chain X. Then one checks that

p(z0|z−1−m) = w−1,−mΩz01 (6)

and wi,−m satisfies the following iteration

wi+1,−m = fzi+1
(wi,−m) − n ≤ i ≤ −1,

and the following iteration (corresponding to the blocked chain [z]−1−m0
)

w(i+1)N−1,−m = f[z]i(wiN−1,−m) − n0 ≤ i ≤ −1, (7)

starting with
w−n−1,−m = p(X−n−1 = · |z−n−1−m ).

Similarly let
ŵi,−m̂ = ŵi,−m̂(ẑi−m̂) = p(Xi = · |ẑi−m̂),

which also satisfies the same iterations as above, however starting with

ŵ−n−1,−m̂ = p(X−n−1 = · |ẑ−n−1−m̂ ).

For any −n0 < i ≤ −1, we say [z]−1−n0
continues between [z]i−1 and [z]i if [z]ii−1 is

Z-allowed; on the other hand, we say [z]−1−n0
breaks between [z]i−1 and [z]i if it does not

continue between [z]i−1 and [z]i, namely, if any one of the following occurs:

1. [z]i−1 is not Z-allowed;

2. [z]i is not Z-allowed;

3. both [z]i−1 and [z]i are Z-allowed, however [z]ii−1 is not Z-allowed.

11



Iteratively applying Lemma 2.6, there is a positive constant Ca such that

|Dwf[z]i| ≤ CN
a /ε

2NOmax , (8)

on the entire simplex W . In particular, this holds when [z]−1−n0
“breaks” between [z]i−1 and

[z]i. When [z]−1−n0
“continues” between [z]i−1 and [z]i, by Lemma 2.9, we have that if ε is

small enough, there is a constant Cb > 0 such that

|Dwf[z]i| ≤ Cbε (9)

on f[z]i−1
(W).

Now, applying the mean value theorem, we deduce that there exist ξi, −n0 ≤ i ≤ −1,
(here ξi is a convex combination of w−iN−1,−m and ŵ−iN−1,−m̂) such that

|w−1,−m − ŵ−1,−m̂| = |f[z]−1
−n0

(w−n0N−1,−m)− f[z]−1
−n0

(ŵ−n0N−1,−m̂)|

≤
−1∏

i=−n0

‖Dwf[z]i(ξi)‖ · |w−n0N−1,−m − ŵ−n0N−1,−m̂|.

If z−1−n satisfies the hypothesis of Proposition 2.5, then it is α-typical (recall the definition
of Tαn,m,m̂). It follows that [z]−1−n0

breaks for at most 2αn values of i (since, roughly speaking,
each non-Z-allowed block [z]i contributes at most twice to the number of breakings); in
other words, there are at least (1/N − 2α)n i’s corresponding to (9) and at most 2αn i’s
corresponding to (8). We then have

−1∏
i=−n0

‖Dwf[z]i(ξi)‖ ≤ C
(1/N−2α)n
b C2αNn

a ε(1/N−2α−4NOmaxα)n. (10)

Let α0 = 1/(N(2 + 4NOmax)). Evidently, when α < α0, 1/N − 2α − 4NOmaxα is strictly
positive. We then have

|w−1,−m − ŵ−1,−m̂| = Ô(εn) on Mδ0 × Tαn,m,m̂. (11)

It then follows from (6) that

|p(z0|z−1−m)− p(ẑ0|ẑ−1−m̂)| = Ô(εn) on Mδ0 × Tαn,m,m̂.
This completes the proof for the special case ` = 0.

The general case ` > 0 follows along the same lines as in the special case, together with
the following lemmas, whose proofs are deferred to the appendix.

Lemma 2.10. For each ~k, there is a positive constant C|~k| such that

|w(~k)
i,−m|, |ŵ

(~k)
i,−m̂| ≤ n|

~k|C|~k|/ε
|~k|;

here, the superscript (~k) denotes the ~k-th order derivative with respect to ~q = (~p, ε). In fact,

the partial derivatives with respect to ~p are upper bounded in norm by n|
~k|C|~k|.

Lemma 2.11. For each ~k,

|w(~k)
−1,−m − ŵ

(~k)
−1,−m̂| = Ô(εn) on Mδ0 × Tαn,m,m̂.

Note that Proposition 2.5 in full generality does indeed follow from (6) and Lemma 2.11.
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2.3 Asymptotic Behavior of the Entropy Rate

The parameterization of Z as a function of ε fits in the framework of [7] in a more general
setting. Consequently, we have the following three propositions.

Proposition 2.12. Assume that ~p ∈ M0. For any sequence z0−n ∈ Zn+1, p(X−1 = · z−1−n)
and p(z0|z−1−n) are analytic around ε = 0. Moreover, ord (p(z0|z−1−n)) ≤ Omax.

Proof. Analyticity of p(X−1 = · |z−1−n) follows from Proposition 2.4 in [7]. It then follows
from p(z0|z−1−n) = p(X−1 = · |z−1−n)Ωz01 and the fact that any row sum of Ωz0 is non-zero
when ε > 0 that p(z0|z−1−n) is analytic with ord (p(z0|z−1−n)) ≤ Omax.

Proposition 2.13. (see Proposition 2.7 in [7]) Assume that ~p ∈M0. For two fixed hidden
Markov chain sequences z0−m, ẑ

0
−m̂ such that

z0−n = ẑ0−n, ord (p(z−1−n|z−n−1−m )), ord (p(ẑ−1−n|ẑ−n−1−m̂ )) ≤ k

for some n ≤ m, m̂ and some k, we have for j with 0 ≤ j ≤ n− 4k − 1,

p(j)(z0|z−1−m)(0) = p(j)(ẑ0|ẑ−1−m̂)(0),

where the derivatives are taken with respect to ε.

Remark 2.14. It follows from Proposition 2.13 that for any α-typical sequence z−1−n with α
small enough and n large enough, ord (p(z0|z−1−n)) = ord (p(z0|z−1−n−1))

Proposition 2.15. (see Theorem 2.8 in [7]) Assume that ~p ∈M0. For any k ≥ 0,

H(Z) = H(Z)|ε=0 +
k∑
j=1

gjε
j +

k+1∑
j=1

fjε
j log ε+O(εk+1), (12)

where fj’s and gj’s depend on Π (but not on ε), the transition probability matrix of X.

For any δ > 0, consider a first-order Markov chain X ∈ Mδ with transition probability
matrix Π (note that X is necessarily mixing). We will need the following complexified version
of Π.

Let ΠC denote a complex “transition probability matrix” obtained by perturbing all
entries of Π to complex numbers, while satisfying

∑
y ΠC

xy = 1 for all x in X . Then through
solving the following system of equations

πCΠC = πC,
∑
y

πC
y = 1,

one can obtain a complex “stationary probability” πC, which is uniquely defined if the
perturbation of Π is small enough. It then follows that under a complex perturbation of Π,
for any Markov chain sequence x0−n, one can obtain a complex version of p(x0−n) through
complexifying all terms in the following expression:

p(x0−n) = πx−nΠx−n,x−n+1 · · ·Πx−1,x0 ,

13



namely,
pC(x0−n) = πC

x−nΠC
x−n,x−n+1

· · ·ΠC
x−1,x0

;

in particular, the joint probability vector ~p can be complexified to ~p C as well. We then use
MC

δ (η), η > 0, to denote the η-perturbed complex version of Mδ; more precisely,

MC
δ (η) = {(~p C(w0

−1) : w0
−1 ∈ S2) : |~p C − ~p| ≤ η for some ~p ∈Mδ},

which is well-defined if η is small enough. Furthermore, together with a small complex
perturbation of ε, one can obtain a well-defined complex version pC(z0−n) of p(z0−n) through
complexifying (1) and (2).

Using the same argument as in Lemma 2.3 and applying the triangle inequality to the
absolute value of (3), we have

Lemma 2.16. For any δ > 0, there exists η > 0 such that for any fixed 0 < α < 1,∑
z−1
−n: ord (pC(z−1

−n))≥αn

|pC(z−1−n)| = Ô(|ε|n) on MC
δ (η).

We will also need the following result, which may be well-known. We give a proof for
completeness.

Lemma 2.17. Fix ε0 > 0. As n tends to infinity, Hn(Z) converges to H(Z) uniformly over
all (~p, ε) ∈M× [0, ε0].

Proof. Let H̃n(Z) = H(Z0|Z−1−n, X−n) and fix (~p, ε) ∈ M× [0, ε0]. By Theorem 4.4.1 of [4],
we have for any n

H̃n(Z) ≤ H(Z) ≤ Hn(Z), (13)

and
lim
n→∞

H̃n(Z) = H(Z) = lim
n→∞

Hn(Z). (14)

Moreover, Hn(Z) is monotonically decreasing in n, and H̃n(Z) is monotonically increasing
in n. It then follows from (13) and (14) that, for any δ > 0, there exists n0 such that

0 ≤ Hn0(Z)− H̃n0(Z) ≤ δ

2
.

Since Hn(Z), H̃n(Z) are continuous functions of (~p, ε), there exists a neighborhood N~p,ε of
(~p, ε) such that on N~p,ε

0 ≤ Hn0(Z)− H̃n0(Z) ≤ δ.

which, together with (13) and the monotonicity of Hn(Z) and H̃n(Z), implies that for all
n ≥ n0

0 ≤ Hn(Z)−H(Z) ≤ Hn(Z)− H̃n(Z) ≤ δ

on N~p,ε. The lemma then follows from the compactness of M× [0, ε0].
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The following theorem strengthens Proposition 2.15 in the sense that it describes how
the coefficients fj’s and gj’s vary with respect to the input Markov chain. We first introduce
some necessary notation. We shall break Hn(Z) into a sum of Gn(Z) and Fn(Z) log(ε) where
Gn(Z) = Gn(~p, ε) and Fn(Z) = Fn(~p, ε) are smooth; precisely, we have

Hn(Z) = Gn(~p, ε) + Fn(~p, ε) log ε

where
Fn(~p, ε) = −

∑
z0−n

ord (p(z0|z−1−n))p(z0−n) (15)

and
Gn(~p, ε) = −

∑
z0−n

p(z0−n) log p◦(z0|z−1−n), (16)

and
p◦(z0|z−1−n) = p(z0|z−1−n)/εord (p(z0|z−1

−n)).

(note that ord (p(z0|z−1−n)) is well-defined since p(z0|z−1−n) is analytic with respect to ε; see
Proposition 2.12; note also that ord (p◦(z0|z−1−n)) = 0).

Theorem 2.18. Let δ0 > 0. For sufficiently small ε0 > 0, we have:

1. On Uδ0,ε0, there is an analytic function F (~p, ε) and a smooth (i.e., infinitely differen-
tiable) function G(~p, ε) such that

H(Z(~p, ε)) = G(~p, ε) + F (~p, ε) log ε. (17)

Moreover,

G(~p, ε) = H(Z)|ε=0 +
k∑
j=1

gj(~p)ε
j +O(εk+1), F (~p, ε) =

k∑
j=1

fj(~p)ε
j +O(εk+1),

here fj’s and gj’s are the corresponding functions as in Proposition 2.15.

2. Define F̂ (~p, ε) = F (~p, ε)/ε. Then F̂ (~p, ε) is analytic on Uδ0,ε0.

3. For any `, there exists 0 < ρ < 1 (possibly depending on `) such that on Uδ0,ε0

|D`
~p,εFn(~p, ε)−D`

~p,εF (~p, ε)| < ρn,

|D`
~p,εF̂n(~p, ε)−D`

~p,εF̂ (~p, ε)| < ρn,

and
|D`

~p,εGn(~p, ε)−D`
~p,εG(~p, ε)| < ρn,

for sufficiently large n.
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Proof. Part 1. Recall that

Hn(Z) = −
∑
z0−n

p(z0−n) log p(z0|z−1−n).

We now define
Hα
n (Z) = −

∑
z−1
−n∈Tαn , z0

p(z0−n) log p(z0|z−1−n);

here recall that Tαn denotes the set of all α-typical Z-sequences with length n. It follows
from a compactness argument as in Lemma 2.17 that Hn(Z) uniformly converges to H(Z) on
the parameter space Uδ0,ε0 for any positive ε0; applying Lemma 2.3, we deduce that Hα

n (Z)
uniformly converges to H(Z) on Uδ0,ε0 as well.

By Proposition 2.12, p(z0|z−1−n) is analytic with ord (p(z0|z−1−n)) ≤ Omax. It then follows
that for any α with 0 < α < 1 (we will choose α to be smaller later if necessary),

Hα
n (Z) = Gα

n(~p, ε) + Fα
n (~p, ε) log ε,

where
Fα
n (~p, ε) = −

∑
z−1
−n∈Tαn , z0

ord (p(z0|z−1−n))p(z0−n),

and
Gα
n(~p, ε) = −

∑
z−1
−n∈Tαn , z0

p(z0−n) log p◦(z0|z−1−n).

The idea of the proof is as follows. We first show that Fα
n (~p, ε) uniformly converges to a

real analytic function F (~p, ε). We then prove that Gα
n(~p, ε) and its derivatives with respect

to (~p, ε) also uniformly converge to a smooth function G(~p, ε). Since Hα
n (Z) uniformly

converges to H(Z), F (~p, ε), G(~p, ε) satisfy (17). The “Moreover” part then immediately
follows by equating (12) and (17) to compare the coefficients.

We now show that Fα
n (~p, ε) uniformly converges to a real analytic function F (~p, ε). Note

that

|Fα
n (~p, ε)−Fα

n+1(~p, ε)| =

∣∣∣∣∣∣
∑

z−1
−n∈Tαn , z0

ord (p(z0|z−1−n))p(z0−n)−
∑

z−1
−n−1∈Tαn+1, z0

ord (p(z0|z−1−n−1))p(z0−n−1)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
 ∑
z−1
−n∈Tαn ,z

−1
−n−1∈Tαn+1, z0

+
∑

z−1
−n∈Tαn ,z

−1
−n−1 6∈Tαn+1, z0

 ord (p(z0|z−1−n))p(z0−n−1)

−

 ∑
z−1
−n∈Tαn , z

−1
−n−1∈Tαn+1, z0

+
∑

z−1
−n 6∈Tαn , z

−1
−n−1∈Tαn+1, z0

 ord (p(z0|z−1−n−1))p(z0−n−1)

∣∣∣∣∣∣ .
By Remark 2.14, we have

|Fα
n (~p, ε)− Fα

n+1(~p, ε)| =

∣∣∣∣∣∣
∑

z−1
−n∈Tαn , z

−1
−n−1 6∈Tαn+1, z0

ord (p(z0|z−1−n))p(z0−n−1)
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−
∑

z−1
−n 6∈Tαn , z

−1
−n−1∈Tαn+1, z0

ord (p(z0|z−1−n−1))p(z0−n−1)

∣∣∣∣∣∣ .
Applying Lemma 2.3, we have

|Fα
n (~p, ε)− Fα

n+1(~p, ε)| = Ô(εn) on Mδ0 , (18)

which implies that there exists ε0 > 0 such that Fα
n (~p, ε) is exponentially Cauchy (i.e., the

difference between two successive terms in the sequence is exponentially small) and thus
uniformly converges on Uδ0,ε0 to a continuous function F (~p, ε).

Let Fα,C
n (~p, ε) denote the complexified Fα

n (~p, ε) on (~p, ε) with ~p ∈ MC
δ0

(η0) and |ε| ≤ ε0.
Then, using Lemma 2.16 and a similar argument as above, we can prove that

|Fα,C
n (~p, ε)− Fα,C

n+1(~p, ε)| = Ô(|ε|n) on MC
δ0

(η0), (19)

and hence for a complex analytic function FC(~p, ε) (which is necessarily the complexified
version of F (~p, ε))

|Fα,C
n (~p, ε)− FC(~p, ε)| = Ô(|ε|n) on MC

δ0
(η0). (20)

In other words, for some η0, ε0 > 0, Fα,C
n (~p, ε) is exponentially Cauchy and thus uniformly

converges to FC(~p, ε) on all (~p, ε) with ~p ∈ MC
δ0

(η0) and |ε| ≤ ε0. Therefore, F (~p, ε) is
analytic with respect to (~p, ε) on Uδ0,ε0 .

We now prove that Gα
n(~p, ε) and its derivatives with respect to (~p, ε) uniformly converge

to a smooth function Gα(~p, ε) and its derivatives.
Although the convergence of Gα

n(~p, ε) and its derivatives can be proven through the same
argument at once, we first prove the convergence of Gα

n(~p, ε) only for illustrative purposes.
For any α, β > 0, we have

| logα− log β| ≤ max{|(α− β)/β|, |(α− β)/α|}. (21)

Note that the following is contained in Proposition 2.5 (` = 0)

|p◦(z0|z−1−n)− p◦(z0|z−1−n−1)| = Ô(εn) on Mδ0 × Tαn,n,n+1. (22)

One further checks that by Proposition 2.12, there exists a positive constant C such that for
ε small enough and for any sequence z−1−n,

p(z0|z−1−n) ≥ CεOmax ,

and thus,
p◦(z0|z−1−n) ≥ CεOmax . (23)

Using (21), (22), (23) and Lemma 2.3, we have

|Gα
n(~p, ε)−Gα

n+1(~p, ε)| =

∣∣∣∣∣∣
∑

z−1
−n∈Tαn , z0

p(z0−n) log p◦(z0|z−1−n)−
∑

z−1
−n−1∈Tαn+1, z0

p(z0−n−1) log p◦(z0|z−1−n−1)

∣∣∣∣∣∣
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=

∣∣∣∣∣∣
 ∑
z−1
−n∈Tαn , z

−1
−n−1∈Tαn+1, z0

+
∑

z−1
−n∈Tαn , z

−1
−n−1 6∈Tαn+1, z0

 p(z0−n−1) log p◦(z0|z−1−n)

−

 ∑
z−1
−n∈Tαn , z

−1
−n−1∈Tαn+1, z0

+
∑

z−1
−n 6∈Tαn , z

−1
−n−1∈Tαn+1, z0

 p(z0−n−1) log p◦(z0|z−1−n−1)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

z−1
−n∈Tαn , z

−1
−n−1∈Tαn+1, z0

p(z0−n−1)(log p◦(z0|z−1−n)− log p◦(z0|z−1−n−1))

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

z−1
−n∈Tαn , z

−1
−n−1 6∈Tαn+1, z0

p(z0−n−1) log p◦(z0|z−1−n)

∣∣∣∣∣∣+
∣∣∣∣∣∣

∑
z−1
−n 6∈Tαn , z

−1
−n−1∈Tαn+1, z0

p(z0−n−1) log p◦(z0|z−1−n−1)

∣∣∣∣∣∣
≤

∑
z−1
−n∈Tαn , z

−1
−n−1∈Tαn+1, z0

p(z0−n−1) max

{∣∣∣∣p◦(z0|z−1−n)− p◦(z0|z−1−n−1)
p◦(z0|z−1−n−1)

∣∣∣∣ , ∣∣∣∣p◦(z0|z−1−n)− p◦(z0|z−1−n−1)
p◦(z0|z−1−n)

∣∣∣∣}

+

∣∣∣∣∣∣
∑

z−1
−n∈Tαn , z

−1
−n−1 6∈Tαn+1, z0

p(z0−n−1) log p◦(z0|z−1−n)

∣∣∣∣∣∣+
∣∣∣∣∣∣

∑
z−1
−n 6∈Tαn , z

−1
−n−1∈Tαn+1, z0

p(z0−n−1) log p◦(z0|z−1−n−1)

∣∣∣∣∣∣ = Ô(εn) on Mδ0 ,

(24)
which implies that there exists ε0 > 0 such that Gα

n(~p, ε) uniformly converges on Uδ0,ε0 . With
this, the existence of G(~p, ε) immediately follows.

Applying the multivariate Faa Di Bruno formula [2, 10] to the function f(y) = log y, we

have for ~̀ with |~̀| 6= 0,

f(y)(
~̀) =

∑
D(~a1,~a2, . . . ,~ak)(y

(~a1)/y)(y(~a2)/y) · · · (y(~ak)/y),

where the summation is over the set of unordered sequences of non-negative vectors ~a1,~a2, . . . ,~ak
with ~a1 + ~a2 + · · · + ~ak = ~̀ and D(~a1,~a2, . . . ,~ak) is the corresponding coefficient. Then for
any ~m, applying the multivariate Leibniz rule, we have

(Gα
n)(~m)(~p, ε) = −

∑
z−1
−n∈Tαn , z0

∑
~̀�~m

C
~̀

~mp
(~m−~̀)(z0−n)(log p◦(z0|z−1−n))(

~̀)

= −
∑

z−1
−n∈Tαn , z0

∑
|~̀|6=0,~̀�~m

∑
~a1+~a2+···+~ak=~̀

C
~̀

~mD(~a1, . . . ,~ak)p
(~m−~̀)(z0−n)

p◦(z0|z−1−n)(~a1)

p◦(z0|z−1−n)
· · · p

◦(z0|z−1−n)(~ak)

p◦(z0|z−1−n)

−
∑

z−1
−n∈Tαn , z0

p(~m)(z0−n) log p◦(z0|z−1−n). (25)

We tackle the last term of (25) first. Using (21) and (22) and with a parallel argument
obtained through replacing p(z0−n), p(z0−n−1) in (24) by p(~m)(z0−n), p(~m)(z0−n−1), respectively,
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we can show that∣∣∣∣∣∣
∑

z−1
−n∈Tαn , z0

p(~m)(z0−n) log p◦(z0|z−1−n)−
∑

z−1
−n−1∈Tαn+1, z0

p(~m)(z0−n−1) log p◦(z0|z−1−n−1)

∣∣∣∣∣∣ = Ô(εn) on Mδ0×Tαn,n,n+1,

where we used the fact that for any z0−n and ~m, p(~m)(z0−n)/p(z0−n) is O(n|~m|/ε|~m|) (see (40)).
And using the identity

α1α2 · · ·αn−β1β2 · · · βn = (α1−β1)α2 · · ·αn+β1(α2−β2)α3 · · ·αn+· · ·+β1 · · · βn−1(αn−βn),

we have ∣∣∣∣p◦(z0|z−1−n)(~a1)

p◦(z0|z−1−n)
· · · p

◦(z0|z−1−n)(~ak)

p◦(z0|z−1−n)
−
p◦(z0|z−1−n−1)(~a1)

p◦(z0|z−1−n−1)
· · ·

p◦(z0|z−1−n−1)(~ak)

p◦(z0|z−1−n−1)

∣∣∣∣
≤
∣∣∣∣(p◦(z0|z−1−n)(~a1)

p◦(z0|z−1−n)
−
p◦(z0|z−1−n−1)(~a1)

p◦(z0|z−1−n−1)

)
p◦(z0|z−1−n)(~a2)

p◦(z0|z−1−n)
· · · p

◦(z0|z−1−n)(~ak)

p◦(z0|z−1−n)

∣∣∣∣
+

∣∣∣∣p◦(z0|z−1−n−1)(~a1)p◦(z0|z−1−n−1)

(
p◦(z0|z−1−n)(~a2)

p◦(z0|z−1−n)
−
p◦(z0|z−1−n−1)(~a2)

p◦(z0|z−1−n−1)

)
p◦(z0|z−1−n)(~a3)

p◦(z0|z−1−n)
· · · p

◦(z0|z−1−n)(~ak)

p◦(z0|z−1−n)

∣∣∣∣+ · · ·
+

∣∣∣∣p◦(z0|z−1−n−1)(~a1)p◦(z0|z−1−n−1)
· · ·

p◦(z0|z−1−n−1)(~ak−1)

p◦(z0|z−1−n−1)

(
p◦(z0|z−1−n)(~ak)

p◦(z0|z−1−n)
−
p◦(z0|z−1−n−1)(~ak)

p◦(z0|z−1−n−1)

)∣∣∣∣ .
Now applying the inequality∣∣∣∣β1α1

− β2
α2

∣∣∣∣ =

∣∣∣∣β1α1

− β1
α2

+
β1
α2

− β2
α2

∣∣∣∣ ≤ |β1/(α1α2)||α1 − α2|+ |1/α2||β1 − β2|,

we have for any 1 ≤ i ≤ k, ∣∣∣∣p◦(z0|z−1−n)(~ai)

p◦(z0|z−1−n)
−
p◦(z0|z−1−n−1)(~ai)

p◦(z0|z−1−n−1)

∣∣∣∣
≤
∣∣∣∣ p◦(z0|z−1−n)(~ai)

p◦(z0|z−1−n)p◦(z0|z−1−n−1)

∣∣∣∣ |p◦(z0|z−1−n)−p◦(z0|z−1−n−1)|+
∣∣∣∣ 1

p◦(z0|z−1−n−1)

∣∣∣∣ |p◦(z0|z−1−n)(~ai)−p◦(z0|z−1−n−1)(~ai)|.

It follows from multivariate Leibniz rule and Lemma 2.10 that there exists a positive
constant C~a such that for sufficiently small ε and and for any z−1−n ∈ Zn,

|p(z0|z−1−n)(~a)| = |(w−1,−nΩz01)(~a)| ≤ n|~a|C~a/ε
|~a|, (26)

and furthermore there exists a positive constant C◦~a such that for sufficiently small ε and for
any z−1−n ∈ Zn,

p◦(z0|z−1−n)(~a) ≤ n|~a|C◦~a/ε
|~a|+Omax . (27)

Combining (23), (25), (26), (27) and Proposition 2.5 gives us

|(Gα
n)(~m)(~p, ε)− (Gα

n+1)
(~m)(~p, ε)| = Ô(εn) on Mδ0 . (28)
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This implies that there exists ε0 > 0 such that Gα
n(~p, ε) and its derivatives with respect

to (~p, ε) uniformly converge on Uδ0,ε0 to a smooth function G(~p, ε) and correspondingly its
derivatives (here, by Remark 2.2, ε0 does not depend on ~m).

Part 2. This statement immediately follows from the analyticity of F (~p, ε) and the fact
that ord (F (~p, ε)) ≥ 1.

Part 3. Note that

Fn(~p, ε)− Fα
n (~p, ε) = −

∑
z−1
−n 6∈Tαn , z0

ord (p(z0|z−1−n))p(z0−n).

Applying the multivariate Leibniz rule, then by Proposition 2.12, (26), (40) and Lemma 2.3,
we have for any `,

∣∣D`
~p,εFn(~p, ε)−D`

~p,εF
α
n (~p, ε)

∣∣ =

∣∣∣∣∣∣
∑

z−1
−n 6∈Tαn , z0

ord (p(z0|z−1−n))D`
~p,ε(p(z0|z−1−n)p(z−1−n))

∣∣∣∣∣∣ = Ô(εn) on Mδ0 .

(29)
It follows from (19), (20) and the Cauchy integral formula (p. 157 of [3]) that∣∣D`

~p,εF
α
n+1(~p, ε)−D`

~p,εF
α
n (~p, ε)

∣∣ = Ô(εn) on Mδ0 ,

and ∣∣D`
~p,εF

α
n (~p, ε)−D`

~p,εF (~p, ε)
∣∣ = Ô(εn) on Mδ0 ,

which, together with (29), implies that∣∣D`
~p,εFn(~p, ε)−D`

~p,εF (~p, ε)
∣∣ = Ô(εn) on Mδ0 .

It then follows that there exists ε0 > 0 such that, for any `, there exists 0 < ρ < 1 (here ρ
depends on `) such that on Uδ0,ε0

|D`
~p,εFn(~p, ε)−D`

~p,εF (~p, ε)| < ρn,

and further
|D`

~p,εF̂n(~p, ε)−D`
~p,εF̂ (~p, ε)| < ρn,

for sufficiently large n.
Similarly note that

Gn(~p, ε)−Gα
n(~p, ε) = −

∑
z−1
−n 6∈Tαn , z0

p(z0−n) log p◦(z0|z−1−n).

Then by (26), (27), (23) and Lemma 2.3, we have for any `,∣∣D`
~p,εGn(~p, ε)−D`

~p,εG
α
n(~p, ε)

∣∣
=

∣∣∣∣∣∣
∑

z−1
−n 6∈Tαn , z0

D`
~p,ε(p(z

−1
−n)p(z0|z−1−n) log p◦(z0|z−1−n))

∣∣∣∣∣∣ = Ô(εn) on Mδ0 ,
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which, together with (28), implies that there exists ε0 > 0 such that for any `, there exists
0 < ρ < 1 such that on Uδ0,ε0

|D`
~p,εGn(~p, ε)−D`

~p,εG(~p, ε)| < ρn,

for sufficiently large n.

3 Concavity of the Mutual Information

Recall that we are considering a parameterized family of finite-state memoryless channels
with inputs restricted to a mixing finite-type constraint S. Again for simplicity, we assume
that S has order 1.

For parameter value ε, the channel capacity is the supremum of the mutual information of
Z(X, ε) and X over all stationary input processes X such that A(X) ⊆ S. Here, we use only
first-order Markov input processes. While this will typically not achieve the true capacity,
one can approach the true capacity by using Markov input processes of higher order. As
in Section 2, we identify a first-order input Markov process X with its joint probability
vector ~p = ~pX ∈ M, and we write Z = Z(~p, ε), thereby sometimes notationally suppressing
dependence on X and ε.

Precisely, the first-order capacity is

C1(ε) = sup
~p∈M

I(Z;X) = sup
~p∈M

(H(Z)−H(Z|X)) (30)

and its n-th approximation is

C1
n(ε) = sup

~p∈M
In(Z;X) = sup

~p∈M

(
Hn(Z)− 1

n+ 1
H(Z0

−n|X0
−n)

)
. (31)

As mentioned earlier, since the channel is memoryless, the second terms in (30) and (31)
both reduce to H(Z0|X0), which can be written as:

−
∑

x∈X , z∈Z

p(x)p(z|x) log p(z|x).

Note that this expression is a linear function of ~p and for all ~p it vanishes when ε = 0. Using
this and the fact that for a mixing finite-type constraint there is a unique Markov chain of
maximal entropy supported on the constraint (see [15] or Section 13.3 of [11]), one can show
that for sufficiently small ε1 > 0, δ1 > 0 and all 0 ≤ ε ≤ ε1,

C1
n(ε) = sup

~p∈Mδ1

(Hn(Z)−H(Z0|X0)) > sup
~p∈M\Mδ1

(Hn(Z)−H(Z0|X0)), (32)

C1(ε) = sup
~p∈Mδ1

(H(Z)−H(Z0|X0)) > sup
~p∈M\Mδ1

(H(Z)−H(Z0|X0)). (33)

For instance, to see (33), we argue as follows.
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First, it follows from the fact that for any n, Hn(Z) is a continuous function of (~p, ε)
and uniform convergence (Lemma 2.17) that H(Z) is a continuous function of (~p, ε) (the
continuity was also noted in [8]). Let Xmax denote the unique Markov chain of maximal
entropy for the constraint. It is well known that Xmax ∈M0 and H(Xmax) > 0 (see Section
13.3 of [11]). Thus, there exists δ0 > 0 and 0 < η < 1 such that

sup
~p∈M\Mδ0

H(Z)|ε=0 = sup
~p∈M\Mδ0

H(X) < ηH(Xmax);

here, note that H(Z)|ε=0 = H(X), since we assumed that there is a one-to-one mapping
from X into Z, z = z(x), such that for any x ∈ X , p(z(x)|x)(0) = 1.

Thus, there exists ε0 > 0 such that for all 0 ≤ ε ≤ ε0,

sup
~p∈M\Mδ0

H(Z) < (1/2 + η/2)H(Xmax)

and
sup
~p∈Mδ0

H(Z) > (1/2 + η/2)H(Xmax).

This gives the inequality (33) without the conditional entropy term. In order to incorporate
the latter, notice that H(Z0|X0) vanishes at ε = 0 and simply replace δ0 and ε0 with
appropriate smaller numbers δ1 and ε1.

Theorem 3.1. Let δ1 be as in (32) and (33). For any 0 < δ0 < δ1, there exist ε0 > 0 such
that for all 0 ≤ ε ≤ ε0,

1. the functions In(Z(~p, ε);X(~p)) and I(Z(~p, ε);X(~p)) are strictly concave on Mδ0, with
unique maximizing ~pn(ε) and ~p∞(ε);

2. the functions In(Z(~p, ε);X(~p)) and I(Z(~p, ε);X(~p)) uniquely achieve their maxima on
all of M at ~pn(ε) and ~p∞(ε);

3. there exists 0 < ρ < 1 such that

|~pn(ε)− ~p∞(ε)| ≤ ρn.

Proof. Part 1: Recall that

H(Z(~p, ε)) = G(~p, ε) + F̂ (~p, ε)(ε log ε).

By Part 1 of Theorem 2.18, for any given δ0 > 0, there exists ε0 > 0, such that G(~p, ε) and
F̂ (~p, ε) are smooth on Uδ0,ε0 , and moreover

lim
ε→0

D2
~pG(~p, ε) = D2

~pG(~p, 0), lim
ε→0

D2
~pF̂ (~p, ε) = D2

~pF̂ (~p, 0),

uniformly on ~p ∈Mδ0 . Thus,

lim
ε→0

D2
~pH(Z(~p, ε)) = D2

~pG(~p, 0) = D2
~pH(Z(~p, 0)), (34)
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again uniformly onMδ0 . Since D2
~pH(Z(~p, 0)) is negative definite onMδ0 (see [6]), it follows

from (34) that for sufficiently small ε, D2
~pH(Z(~p, ε)) is also negative definite on Mδ0 , and

thus H(Z(~p, ε)) is also strictly concave on Mδ0 .
Since for all ε ≥ 0, H(Z0|X0) is a linear function of ~p, I(Z(~p, ε);X(~p)) is strictly concave

on Mδ0 . This establishes Part 1 for I(Z(~p, ε);X(~p)). By Part 3 of Theorem 2.18, for
sufficiently large n (n ≥ N1), we obtain the same result (with the same ε0 and δ0) for
In(Z(~p, ε);X(~p)). For each 1 ≤ n < N1, one can easily establish strict concavity on Uδ(n),ε(n)

for some δ(n), ε(n) > 0, and then replace δ0 by min{δ0, δ(n)} and replace ε0 by min{ε0, ε(n)}.
Part 2: Choose δ0 < δ1 and further ε0 < ε1, where ε1 is as in (32) and (33). Part 2 then

follows from Part 1 and (32) and (33).
Part 3: For notational simplicity, for fixed 0 ≤ ε ≤ ε0, we rewrite I(Z(~p, ε);X(~p)), In(Z(~p, ε);X(~p))

as function f(~p), fn(~p), respectively. By the Taylor formula with remainder, there exist
η1, η2 ∈Mδ0 such that

f(~pn(ε)) = f(~p∞(ε)) +D~pf(~p∞(ε))(~pn(ε)− ~p∞(ε))

+ (~pn(ε)− ~p∞(ε))TD2
~pf(η1)(~pn(ε)− ~p∞(ε)), (35)

fn(~p∞(ε)) = fn(~pn(ε)) +D~pfn(~pn(ε))(~p∞(ε)− ~pn(ε))

+ (~pn(ε)− ~p∞(ε))TD2
~pfn(η2)(~pn(ε)− ~p∞(ε)), (36)

here the superscript T denotes the transpose.
By Part 2 of Theorem 3.1

D~pf(~p∞(ε)) = 0, D~pfn(~pn(ε)) = 0. (37)

By Part 3 of Theorem 2.18, with ` = 0, there exists 0 < ρ0 < 1 such that

|f(~p∞(ε))− fn(~p∞(ε))| ≤ ρn0 , |f(~pn(ε))− fn(~pn(ε))| ≤ ρn0 . (38)

Combining (35), (36), (37), (38), we have

|(~pn(ε)− ~p∞(ε))T (D2
~pf(η1) +D2

~pfn(η2))(~pn(ε)− ~p∞(ε))| ≤ 2ρn0 .

Since f and fn are strictly concave onMδ0 (see Part 1), D2
~pf(η1), D

2
~pfn(η2) are both negative

definite. Thus there exists some positive constant K such that

K|~pn(ε)− ~p∞(ε)|2 ≤ 2ρn0 ,

which implies the existence of ρ.

Example 3.2. Consider Example 2.1. For sufficiently small ε and p bounded away from 0
and 1, Part 1 of Theorem 2.18 gives an expression for H(Z(~p, ε)) and Part 1 of Theorem 3.1
shows that I(Z(~p, ε)) is strictly concave and thus has negative second derivative. In this
case, the results boil down to the strict concavity of the binary entropy function; that is,
when ε = 0, H(Z) = H(X) = −p log p−(1−p) log(1−p), and one computes with the second
derivative with respect to p

H ′′(Z)|ε=0 = −1

p
− 1

1− p
≤ −4.

So, there is an ε0 such that whenever 0 ≤ ε ≤ ε0, H
′′(Z) < 0.
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Appendices

A Proof of Lemma 2.10

To illustrate the idea behind the proof, we first prove the lemma for |~k| = 1. Recall that

wi,−m = p(Xi = · |zi−m) =
p(Xi = · , zi−m)

p(zi−m)
.

Let q be a component of ~q = (~p, ε). Then,∣∣∣∣ ∂∂q
(
p(xi, z

i
−m)

p(zi−m)

)∣∣∣∣ =

∣∣∣∣∣p(xi, zi−m)

p(zi−m)

(
∂
∂q
p(xi, z

i
−m)

p(xi, zi−m)
−

∂
∂q
p(zi−m)

p(zi−m)

)∣∣∣∣∣
≤
∣∣∣∣p(Xi = · , zi−m)

p(zi−m)

∣∣∣∣
(∣∣∣∣∣

∂
∂q
p(Xi = · , zi−m)

p(Xi = · , zi−m)

∣∣∣∣∣+

∣∣∣∣∣
∂
∂q
p(zi−m)

p(zi−m)

∣∣∣∣∣
)
.

We first consider the partial derivative with respect to ε, i.e., q = ε. Since the first factor is
bounded above by 1, it suffices to show that both terms of the second factor are mO(1/ε)
(applying the argument to both zi−m and ẑi−m̂ and recalling that n ≤ m, m̂ ≤ 2n). We will
prove this only for

∣∣ ∂
∂ε
p(zi−m)/p(zi−m)

∣∣, with the proof for the other term being similar. Now

p(zi−m) =
∑
x−1
−m

g(x−1−m), (39)

where

g(x−1−m) = p(x−m)
i−1∏
j=−m

p(xj+1|xj)
i∏

j=−m

p(zj|xj).

Clearly, ∂
∂ε
p(zj|xj)/p(zj|xj) is O(1/ε). Thus each ∂

∂ε
g(x−1−m) is mO(1/ε). Each g(x−1−m) is lower

bounded by a positive constant, uniformly over all p ∈ Mδ0 . Thus, each ∂
∂ε
g(x−1−m)/g(x−1−m)

is mO(1/ε). It then follows from (39) that ∂
∂q
p(zi−m)/p(zi−m) = mO(1/ε), as desired.

For the partial derivatives with respect to ~p, we observe that ∂
∂q
p(x−m)/p(x−m) and

∂
∂q
p(xj+1|xj)/p(xj+1|xj) (here, q is a component of ~p) are O(1), with uniform constant over

all p ∈Mδ0 . We then immediately establish the lemma for |~k| = 1.

We now prove the lemma for a generic ~k.
Applying the multivariate Faa Di Bruno formula (for the derivatives of a composite

function) [2, 10] to the function f(y) = 1/y (here, y is a function), we have for ~̀with |~̀| 6= 0,

f(y)(
~̀) =

∑
D(~a1,~a2, . . . ,~at)(1/y)(y(~a1)/y)(y(~a2)/y) · · · (y(~at)/y),

where the summation is over the set of unordered sequences of non-negative vectors ~a1,~a2, . . . ,~at
with ~a1 + ~a2 + · · · + ~at = ~̀ and D(~a1,~a2, . . . ,~at) is the corresponding coefficient. For any
~̀, define ~̀! =

∏|S2|+1
i=1 li!; and for any ~̀ � ~k (every component of ~̀ is less than or equal
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to the corresponding one of ~k), define C
~̀
~k

= ~k!/(~̀!(~k − ~̀)!). Then for any ~k, applying the
multivariate Leibniz rule, we have(

p(xi, z
i
−m)

p(zi−m)

)(~k)

=
∑
~̀�~k

C
~̀
~k
(p(xi, z

i
−m))(

~k−~̀)(1/p(zi−m))(
~̀)

=
∑
~̀�~k

∑
~a1+~a2+···+~at=~̀

C
~̀
~k
D(~a1, . . . ,~at)

p(xi, z
i
−m)

p(zi−m)

p(xi, z
i
−m)(

~k−~̀)

p(xi, zi−m)

p(zi−m)(~a1)

p(zi−m)
· · ·

p(zi−m)(~at)

p(zi−m)
.

Then, similarly as above, one can show that

p(zi−m)(~a)/p(zi−m) = m|~a|O(1/ε|~a|), p(xi, z
i
−m)(~a)/p(xi, z

i
−m) = m|~a|O(1/ε|~a|), (40)

which implies that there is a positive constant C|~k| such that

|w(~k)
i,−m| ≤ n|

~k|C|~k|/ε
|~k|.

Obviously, the same argument can be applied to upper bound |ŵ(~k)
i,−m̂|.

B Proof of Lemma 2.11

We first prove this for |~k| = 1. Again, let q be a component of ~q = (~p, ε). Then, for
i = −1,−2, . . . ,−n0, we have

∂

∂q
w(i+1)N−1,−m =

∂f[z]i
∂w

(~q, wiN−1,−m)
∂

∂q
wiN−1,−m +

∂f[z]i
∂q

(~q, wiN−1,−m), (41)

and
∂

∂q
ŵ(i+1)N−1,−m̂ =

∂f[z]i
∂w

(~q, ŵiN−1,−m̂)
∂

∂q
ŵiN−1,−m̂ +

∂f[z]i
∂q

(~q, ŵiN−1,−m̂). (42)

Taking the difference, we then have

∂

∂q
w(i+1)N−1,−m −

∂

∂q
ŵ(i+1)N−1,−m̂ =

∂f[z]i
∂q

(~q, wiN−1,−m)−
∂f[z]i
∂q

(~q, ŵiN−1,−m̂)

+
∂f[z]i
∂w

(~q, wiN−1,−m)
∂

∂q
wiN−1,−m −

∂f[z]i
∂w

(~q, ŵiN−1,−m̂)
∂

∂q
ŵiN−1,−m̂

=

(
∂f[z]i
∂q

(~q, wiN−1,−m)−
∂f[z]i
∂q

(~q, ŵiN−1,−m̂)

)
+

(
∂f[z]i
∂w

(~q, wiN−1,−m)
∂

∂q
wiN−1,−m −

∂f[z]i
∂w

(q, ŵiN−1,−m̂)
∂

∂q
wiN−1,−m

)
+

(
∂f[z]i
∂w

(~q, ŵiN−1,−m̂)
∂

∂q
wiN−1,−m −

∂f[z]i
∂w

(~q, ŵiN−1,−m̂)
∂

∂q
ŵiN−1,−m̂

)
.
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This last expression is the sum of three terms, which we will refer to as Ti,1, Ti,2 and Ti,3.
From Lemma 2.6, one checks that for all [z]i ∈ ZN , w ∈ W and ~q ∈ Uδ0,ε0 ,∣∣∣∣∂2f[z]i∂~q∂w

(~q, w)

∣∣∣∣ , ∣∣∣∣∂2f[z]i∂w∂w
(~q, w)

∣∣∣∣ ≤ C/ε4NOmax .

(Here, we remark that there are many different constants in this proof, which we will often
refer to using the same notation C, making sure that the dependence of these constants
on various parameters is clear.) It then follows from the mean value theorem that for each
i = −1,−2, . . . ,−n0

Ti,1 ≤ (C/ε4NOmax)|wiN−1,−m − ŵiN−1,−m̂|.

By the mean value theorem and Lemma 2.10,

Ti,2 ≤ (C/ε4NOmax)(nC1/ε)|wiN−1,−m − ŵiN−1,−m̂|.

And finally

Ti,3 ≤
∥∥∥∥∂f[z]i∂w

(~q, ŵiN−1,−m̂)

∥∥∥∥ · | ∂∂qwiN−1,−m − ∂

∂q
ŵiN−1,−m̂|.

Thus,

| ∂
∂q
w(i+1)N−1,−m −

∂

∂q
ŵ(i+1)N−1,−m̂| ≤

∥∥∥∥∂f[z]i∂w
(~q, ŵiN−1,−m̂)

∥∥∥∥ · | ∂∂qwiN−1,−m − ∂

∂q
ŵiN−1,−m̂|

+(1 + nC1/ε)Cε
−4NOmax |wiN−1,−m − ŵiN−1,−m̂|.

Iteratively apply this inequality to obtain

| ∂
∂q
w−1,−m −

∂

∂q
ŵ−1,−m̂| ≤

−1∏
i=−n0

∥∥∥∥∂f[z]i∂w
(~q, ŵiN−1,−m̂)

∥∥∥∥ · | ∂∂qw−n0N−1,−m −
∂

∂q
ŵ−n0N−1,−m̂|

+
−1∏

i=−n0+1

∥∥∥∥∂f[z]i∂w
(~q, ŵiN−1,−m̂)

∥∥∥∥ (1 + nC1/ε)Cε
−4NOmax |w−n0N−1,−m − ŵ−n0N−1,−m̂|

+ · · ·+
−1∏
i=−j

∥∥∥∥∂f[z]i∂w
(~q, ŵiN−1,−m̂)

∥∥∥∥ (1 + nC1/ε)Cε
−4NOmax|w(−j−1)N−1,−m − ŵ(−j−1)N−1,−m̂|+

+ · · ·+
∥∥∥∥∂f[z]−1

∂w
(~q, ŵ−N−1,−m̂)

∥∥∥∥ (1 + nC1/ε)Cε
−4NOmax |w−2N−1,−m − ŵ−2N−1,−m̂|

+ (1 + nC1/ε)Cε
−4NOmax|w−N−1,−m − ŵ−N−1,−m̂|. (43)

Now, applying the mean value theorem, we deduce that there exist ξi, −n0 ≤ i ≤ −j− 2
(here ξi is a convex combination of w−iN−1,−m and ŵ−iN−1,−m̂) such that

|w(−j−1)N−1,−m − ŵ(−j−1)N−1,−m̂| = |f[z]−j−2
−n0

(w−n0N−1,−m)− f[z]−j−2
−n0

(ŵ−n0N−1,−m̂)|
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≤
−j−2∏
i=−n0

‖Dwf[z]i(ξi)‖ · |w−n0N−1,−m − ŵ−n0N−1,−m̂|.

Then, recall that an α-typical sequence z−1−n breaks at most 2αn times. Thus there are at
least (1− 2α)n i’s where we can use the estimate (9) and at most 2αn i’s where we can only
use the weaker estimates (8). Similar to the derivation of (10), with Remark 2.2, we derive
that for any α < α0, every term on the right-hand side of (43) is Ô(εn) onMδ0 ×Tαn,m,m̂ (we
use Lemma 2.10 to upper bound the first term). Again, with Remark 2.2, we conclude that∣∣∣∣∂w−1,−m∂~q

− ∂ŵ−1,−m̂
∂~q

∣∣∣∣ = Ô(εn) on Mδ0 × Tαn,m,m̂,

which, by (6), implies the proposition for |~k| = 1, as desired.

The proof of the lemma for a generic ~k is rather similar, however very tedious. We next
briefly illustrate the idea of the proof. Note that (compare the following two equations with

(41), (42) for |~k| = 1)

w
(~k)
(i+1)N−1,−m =

∂f[z]i
∂w

(~q, wiN−1,−m)w
(~k)
iN−1,−m + others

and

ŵ
(~k)
(i+1)N−1,−m̂ =

∂f[z]i
∂w

(~q, ŵiN−1,−m̂)ŵ
(~k)
iN−1,−m̂ + others,

where the first “others” is a linear combination of terms taking the following forms (below, t
can be 0, which corresponds to the partial derivatives of f with respect to the first argument
~q):

f
(~k′)
[z]i

(~q, wiN−1,−m)w
(~a1)
iN−1,−m · · ·w

(~at)
iN−1,−m,

and the second “others” is a linear combination of terms taking the following forms:

f
(~k′)
[z]i

(~q, ŵiN−1,−m̂)ŵ
(~a1)
iN−1,−m̂ · · · ŵ

(~at)
iN−1,−m̂,

here ~k′ � ~k, t ≤ |~k| and |~ai| < |~k| for all i. Using Lemma 2.10 and the fact that there exists
a constant C (by Lemma 2.6) such that

|f (~k′)
[z]i

(~q, wiN−1,−m)| ≤ C/ε4NOmax|~k′|,

we then can establish (compare the following inequality with (43) for |~k| = 1)∣∣∣w(k)
(i+1)N−1,−m − ŵ

(k)
(i+1)N−1,−m̂

∣∣∣ ≤ ∥∥∥∥∂f[z]i∂w
(~q, ŵiN−1,−m̂)

∥∥∥∥ · ∣∣∣w~kiN−1,−m − ŵ(~k)
iN−1,−m̂

∣∣∣+ others,

where “others” is the sum of finitely many terms, each of which takes the following form (see

the j-th term of (43) for |~k| = 1)

nD~k′O(1/εD~k′ )
−1∏
i=−j

∥∥∥∥∂f[z]i∂w
(~q, ŵiN−1,−m̂)

∥∥∥∥ · ∣∣∣w(~a)
(−j−1)N−1,−m − ŵ

(~a)
(−j−1)N−1,−m̂

∣∣∣ , (44)
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where |~a| < |~k|, D~k′ is a constant dependent on ~k′. Then inductively, one can use the similar

approach to establish that (44) is Ô(εn) on Mδ0 × Tαn,m,m̂, which implies the lemma for a

generic ~k.
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