
I. Finite systems (Ruelle, pp. 3-4)

Recall defn. of entropy of probability vector: p = (p1, . . . , pn):

H(p) = −
∑
i

pi log pi

(pi is probability of “micro-state” i.

Let ui = U(i) be energy contribution from state i.

Let µU be the probability vector (p1, . . . , pn) defined by

pi =
e−ui

Z(U)

where Z is the normalization factor:

Z(U) =
∑
j

e−uj .

Prop (from class): Let E = EµU (U). Then

max
p: EpU=E

H(p) = logZ(U) + E

and achieved uniquely by µU .

Interpretation: Given energy function U and expected value of

energy, you get a well-defined “most likely state” µU

Prop (Ruelle, bottom of p. 3):

max
p

H(p)− Ep(U) = logZ(U)

and achieved uniquely by µU .

Proof of Ruelle Prop:

H(p)− Ep(U) =
∑
i

pi(− log(pi)− ui)
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=
∑
i

pi log
e−ui

pi
≤ log

∑
i

pi
e−ui

pi
= logZ(U)

with equality iff e−ui
pi

is constant (Z(U))). by Jensen.

Note: class prop follows since

max
p: EpU=E

H(p)− E ≤ max
p

H(p)− Ep(U)

and LHS includes µU .

Observe:

max is a non-probabilistic quantity.

achieved uniquely by an explicit probability “measure”, a “equi-

librium state”

maximizing meassure has a certain from, a “Gibbs state”

So, Gibbs states = Equilibrium states

II. Variational Principle

Theorem 1 (Ruelle, p. 6):

Let M be a compact metric space.

Let T be a continuous Zd-action on M and f : M → R a contin-

uous function.

Let M(T ) be the set of all Borel probability measures invariant

under T .

For µ ∈ M(T ), let hµ(T ) denote the measure-theoretic entropy

of T w.r.t. µ.

Let P (T, f ) denote the pressure (of f, T ). Then

P (T, f ) = sup
µ∈M(T )

hµ(T ) +

∫
fdµ

Dictionary of notation:
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These notes Ruelle

M Ω

T τ

f A

µ σ

P (T, f ) P (A)

α U

x, y ∈M ξ, η ∈ Ω

m ∈ Zd x ∈ Zd

Note: Under certain conditions, sup is achieved and under stronger

conditions achieved uniquely.

Will now define the terms, with examples, in Theorem 1:

Compact metric space: for Ruelle, “metrizable” because particu-

lar quantities do not depend upon specific choice of metric.

continuous Zd-action

Defn: group homomorphism: Zd :→ Homeo(M,M)

Action generated by pairwise commuting homeos T1, . . . , Td of M

and for (m1, . . . ,md) ∈ Zd,

T (m1,...,md)(x) = Tm1
1 ◦ . . . ◦ Tmd

d (x)

d = 1:

Tm(x) = Tm1 (x)

Main Example: Full Z-shift:

M = FZ with product topology (configurations on Z with finite

alphabet F ).

Metric: d(x, y) = 2−k, where x, y agree on 2k+1 interval centered

at origin but not larger k.
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T1 = left-shift map;

Special Class: Z-shift of finite type (SFT):

“Forbid finitely many configurations on finite intervals”

Examples:

Golden Mean

F = {0, 1}: forbid 11

RLL(1,2)

F = {0, 1}: forbid 11 and 000

Very special class: Topological Markov Chain (n.n. Z-SFT):

Defn: Let C be a square 0-1 (transition) matrix (say m×m).

Let F = {0, . . . ,m− 1}.
Let MC = {x ∈ FZ : Cxi,xi+1

= 1 for all i ∈ Z}
“allowed” viewpoint

TC : left shift on MC

For golden mean:

C =

[
1 1

1 0

]
d = 2:

Main Example: Full Z2-shift:

M = FZ2
with product topology (configurations on 2-dimensional

integer lattice with finite alphabet F ).

Metric: d(x, y) = 2−k, where x, y agree on a (2k + 1)× (2k + 1)

square centered at origin but no larger k.

T1 = left-horizontal shift; T2 = down-vertical shift,
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Special Example: Z2-shift of finite type (SFT):

“Forbid finitely many configurations on finite shapes”

Given finite sets ∆1, . . . ,∆n ⊂ Z2 and u1 ∈ F∆1, . . . , un ∈ F∆n,

M = {x ∈ FZ2
: ∀m ∈ Z2, x∆i+m 6= ui, i = 1, . . . , n}

Note: translation-invariant condition

Ruelle: defines SFT by “allowed” configs (Ω in mid-page 7):

a finite set ∆ ⊂ Z2 (think rectangle) and set G ⊂ F∆:

M = {x ∈ FZ2
: ∀m ∈ Z2, x∆+m ∈ G}

Examples:

Hard square

F = {0, 1}: forbid 11 horizontally and vertically

RLL(1, 2)⊗2

Dominos (Dimers)

F = {L,R, T,B}: forbid horizontal configs LL, LT, LB, RR, TR,

BR, and vertical configs.

Monomer-Dimers

Z2-TMC (n.n. Z2-SFT): horizontal and vertical transition

matrices

(Topological) Entropy:

Defn: For finite open cover α of M ,

N(α) = minimum size of subcover of α

H(α) = logN(α).

Defn: for finite open covers α, β of M
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α ∨ β = {Ai ∩Bj : nonempty }
For m ∈ Zd, T−m(α) = {T−m(Ai)}
For set Λ ⊂ Zd:

αΛ = ∨m∈Λ T
−m(α).

Consider d-dimensional prisms Λ = Λ(a1, . . . , ad),

h(T, α) = lim
a1,...,ad→∞

(1/|Λ|) logN(αΛ)

Defn:

h(T ) = sup
α
h(T, α)

Theorem: If α is a top. generator (i.e., distinguishes points), then

h(T ) = h(T, α).

Here, “distinguishes points” means: letting α(x) = ∪i:x∈Ai
Ai, if

x, y ∈M and x 6= y, then for some u ∈ Zd, α(T u(x))∩α(T u(y)) =

∅.
For full shift and SFT’s, the standard cover:

α = {{x ∈M : x0 = a} : a ∈ F} is a topological generator.

So, h(T ) is a growth rate of counts.

d = 1:

h(T ) = lim
n→∞

(1/n) log(# allowed n-sequences )

Proposition: For a Z-TMC MC ,

h(TC) = log λC

where λC is the spectral radius of C, i.e.,

λC = max{|λ| : λ eigenvalues of C}
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Proof:

h(TC) = lim
n→∞

(
1

n
) log 1(C)n−11

Golden Mean shift: h(T ) = log( golden mean)

C =

[
1 1

1 0

]
Can deduce formula for top. entropy of any Z-SFT,

d = 2:

h(T ) = lim
n→∞

(1/n2) log(#n× n allowed arrays )

Hard square: ???

Dominos (Dimers): (1/4)
∫ 1

0

∫ 1

0 (4−2 cos(2πs)−2 cos(2πt)) dsdt

— Monomer-Dimer: ???

Pressure:

Defn given in Ruelle, p. 5:

Same as top, entropy except:

For Λ = Λ(a1, . . . , ad), replace N(αΛ) by:

ZΛ(f, α) = min
subcover β of αΛ

∑
j

exp( sup
x∈Bj

∑
u∈Λ

f (T u(x)))

β = {B1, B2, . . . Bn(β)}
So,

P (T, f, α) = lim
a1,...,ad→∞

(1/|Λ|) logZΛ(f, α)

and

P (T, f ) = sup
α
P (T, f, α)
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Theorem: If α is a topological generator, then P (T, f ) = P (T, f, α).

Note:

ZΛ(0, α) = N(αΛ).

P (T, 0) = h(T ).

Examples:

d = 1:

TC is TMC:

f (x) = f (x0x1)

P (TC, f ) = lim
n→∞

(1/n) log(
∑
x0...xn

exp(f (x0x1) + . . . f (xn−1xn)))

Note: No min and No sup.

Prop:

P (TC, f ) = log λ(Cf)

where

(Cf)ij = Cije
f(ij).

Proof:

P (TC, f ) = lim
n→∞

(
1

n
) log 1(Cf)n−11

d = 2:

1. Hard square with activity.

T = Hard square SFT

Let c ∈ R and define

fc(x) = c if x0 = 1

fc(x) = 0 if x0 = 0.
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P (T, fc) = growth rate of number of allowed arrays, with 1’s

weight by ec and 0’s weighted by 1.

a = ec; activity level

No exact known formula for P (T, fc) known.

2. Ising model

T = full shift on F = {±1}

f : Ising model

Given constants β, J,H ,

f (x) = β(Bx0,0 + J(x0,0x1,0 + x0,0x0,1))

β : inverse temperature

J : interaction strength

B: external magnetic field strength

P (T, f ): growth rate of number of allowed arrays, weighted by

ef , which incorporates interactions on adjacent sites (horizontal and

vertical) and magnetic field (on individual sites) .

Onsager: exact solution for P (T, f ), when B = 0.

Measure-theoretic entropy

Let T be an MPT Zd-action on probability space (X,A, µ).

Defn: For finite, measurable partition α,

Hµ(α) = −
∑
i

µ(Ai) log µ(Ai)

where α = {Ai}.
For finite set Λ ⊂ Zd:
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αΛ = ∨m∈Λ T
−m(α).

Consider d-dimensional prisms Λ = Λ(a1, . . . , ad),

hµ(T, α) = lim
a1,...,ad→∞

(1/|Λ|)Hµ(αΛ)

Defn:

hµ(T ) = sup
α
hµ(T, α)

Theorem: If α is a meas.-theo. generator (i.e., αZd = A a.e.),

then hµ(T ) = hµ(T, α).

d = 1:

X is a stationary process with law µ and and T = left-shift, then

hµ(T ) = h(X) = lim
n→∞

(1/n)H(X1, . . . , Xn)

. where H(X1, . . . , Xn) is the entropy of (X1, . . . , Xn) as a random

vector.

Examples:

µ = iid(p):

hµ(T ) = H(p)

µ : stationary (first-order) Markov with probability transition ma-

trix P with stationary vector π:

hµ(T ) = −
∑
ij

πiPij logPij

d = 2:

X is a stationary Z2-process with law µ and T (m,n): shift by

translation (m,n). Then

hµ(T ) = h(X) = lim
n→∞

(1/n2)H(Xi,j : 1 ≤ i, j ≤ n).
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where H is the entropy of the random vector (array):

Xi,j : 1 ≤ i, j ≤ n

Examples:

1. µ = iid(p):

hµ(T ) = H(p)

2. Markov chains replaced by Gibbs measures/Markov random

fields.

Few explicit results.

Back to Variational Principle:

P (T, f ) = sup
M(T )

hµ(T ) +

∫
fdµ

Defn: An equilibrium state for T, f is a measure µ ∈ M(T )

which achieves P (T, f ).

Let IT,f denote the set of equilibrium states (which an be empty).

Defn: T is expansive if there exists δ > 0 s.t. ∀x 6= y ∈M, ∃m ∈
Zd s.t. dist(Tmx, Tmy) > δ.

Fact: Any Zd-SFT is expansive.

Theorem: If T is expansive, then for every continuous f , IT,f 6= ∅.

Proof uses upper semi-continuity of µ 7→ hµ(T )

Non-uniqueness corresponds to phase transition.

d = 1:

Special case:
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Theorem (Variational Principle for irreducible TMC) Let T be

TMC and f (x) = f (x0x1). Let

(Cf)ij = Cije
f(ij)

Then

P (TC, f ) = log λCf
= sup

µ∈M
hµ(TC) +

∫
fdµ

and the sup is achieved uniquely by an explicitly describable Markov

chain:

Pij = Cije
f(ij) vj

λCf
vi

where v is a right eigenvector for matrix Cf and eigenvalue λCf
.

Example: Golden mean with f = fc, (a = ec).

Cf =

[
a 1

a 0

]

λ =
a +
√
a2 + 4a

2

v =

[
λ

a

]
No phase transition!

See lecture notes from Entropy class for proof in case c = 0.

d = 2:

1. Hard core with activity a = ec: unique equilibrium state up to

some critical threshold.

2. Ising model: unique equilibrium state up to some critical thresh-

old in β, when B = 0.

Gibbs measures
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Let T : M →M be a nearest neighbour Z2-SFT.

Let C1 = F, the alphabet (a.k.a. configurations on single nodes)

Let C2 be all allowed configurations on domino shapes (i.e., con-

figurations on 1× 2 and 2× 1 rectangles).

Let Φ : C1 ∪ C2 → R, (nearest-neighbour interaction).

A translation invariant (stationary) nearest-neighbour Gibbs

measure on M is a T -invariant measure µ on M such that for all

finite subsets Λ ⊂ Zd and a.e. x ∈M ,

µ(x|Λ | x|Λc) ∼(∏
v∈Λ

exp(Φ(xv))

)  d∏
i=1

∏
{v∈Λ, v+ei∈Λ∪∂Λ}

exp(Φ((xv, xv+ei)))

 .

(1)

In particular, µ(x|Λ | x|Λc) = µ(x | x|∂Λ).

Let

fΦ(x) = Φ(x(0,0)) + Φ(x(0,0), x(1,0)) + Φ(x(0,0), x(0,1))

Theorem:

{ Equilibirum states for fΦ} ⊆ { translation invariant Gibbs states for Φ}

Assuming Condition D (a mixing condition) on the SFT M (Ruelle,

p. 57), in particular, for the full shift,

{ Equilibirum states for fΦ} = { translation invariant Gibbs states for Φ}

There is a much more general version of this (see Ruelle, Theorem 3,

p.8 and Theorem 4.2, p. 58):

1. Begin with an Interaction: function Φ on allowed configurations

on finite sets (see Chapter 1)
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2. Form the Energy function: fΦ, a sum of interaction values

3. A Gibbs measure is a measure µ that satisfies: whenever x, y ∈
M disagree at only finitely many sites, then

µ(x|Λ | x|Λc) =

 ∑
y: y

Zd\Λ=x
Zd\Λ

∏
u∈Zd

exp(fΦ(T u(y))− fΦ(T u(x)))


−1

(in nearest neighbour special case above, this is equivalent to (1)

In Ruelle (pp, 7-8), there is no mention of interaction Φ. Gibbs

measure is defined for any function f on M that has exponentially

decreasing dependence (equivalently Holder continuous). In Ruelle

(chapters 3 and 4), f = fΦ where Φ has satisfies a summability

condition.

Equilibrium states and derivative of pressure

Let Cα(M,R) denote the set of Holder continuous functions, with

exponent α from M to R.

For a topologically mixing Z-SFT T : M → M , and f, g ∈
Cα(M,R), if µf is the unique equilibrium state for T, f , then

d

dt
P (f + tg) =

∫
gdµf

Thus, a unique equilibrium state can be viewed as a derivative of the

pressure map

P : Cα → R

Phase transitions correspond to discontinuities in derivative of pres-

sure (as well as non-uniqueness of equilibrium states).
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