I. Finite systems (Ruelle, pp. 3-4)

Recall defn. of entropy of probability vector: $\bar{p}=\left(p_{1}, \ldots, p_{n}\right)$:

$$
H(\bar{p})=-\sum_{i} p_{i} \log p_{i}
$$

(p_{i} is probability of "micro-state" i.
Let $u_{i}=U(i)$ be energy contribution from state i.
Let μ_{U} be the probability vector $\left(p_{1}, \ldots, p_{n}\right)$ defined by

$$
p_{i}=\frac{e^{-u_{i}}}{Z(U)}
$$

where Z is the normalization factor:

$$
Z(U)=\sum_{j} e^{-u_{j}}
$$

Prop (from class): Let $E=E_{\mu_{U}}(U)$. Then

$$
\max _{\bar{p}:} H(\bar{p})=\log Z(U)+E
$$

and achieved uniquely by μ_{U}.
Interpretation: Given energy function U and expected value of energy, you get a well-defined "most likely state" μ_{U}

Prop (Ruelle, bottom of p. 3):

$$
\max _{\bar{p}} H(\bar{p})-E_{\bar{p}}(U)=\log Z(U)
$$

and achieved uniquely by μ_{U}.
Proof of Ruelle Prop:

$$
H(\bar{p})-E_{\bar{p}}(U)=\sum_{i} p_{i}\left(-\log \left(p_{i}\right)-u_{i}\right)
$$

$$
=\sum_{i} p_{i} \log \frac{e^{-u_{i}}}{p_{i}} \leq \log \sum_{i} p_{i} \frac{e^{-u_{i}}}{p_{i}}=\log Z(U)
$$

with equality iff $\frac{e^{-u_{i}}}{p_{i}}$ is constant $\left.(Z(U))\right)$. by Jensen.
Note: class prop follows since

$$
\max _{E_{\bar{p}} U=E} H(\bar{p})-E \leq \max _{\bar{p}} H(\bar{p})-E_{\bar{p}}(U)
$$

and LHS includes μ_{U}.
Observe:
max is a non-probabilistic quantity.
achieved uniquely by an explicit probability "measure", a "equilibrium state"
maximizing meassure has a certain from, a "Gibbs state"
So, Gibbs states $=$ Equilibrium states

II. Variational Principle

Theorem 1 (Ruelle, p. 6):
Let M be a compact metric space.
Let T be a continuous Z^{d}-action on M and $f: M \rightarrow R$ a continuous function.

Let $\mathcal{M}(T)$ be the set of all Borel probability measures invariant under T.

For $\mu \in \mathcal{M}(T)$, let $h_{\mu}(T)$ denote the measure-theoretic entropy of T w.r.t. μ.

Let $P(T, f)$ denote the pressure (of $f, T)$. Then

$$
P(T, f)=\sup _{\mu \in \mathcal{M}(T)} h_{\mu}(T)+\int f d \mu
$$

Dictionary of notation:

These notes	Ruelle
M	Ω
T	τ
f	A
μ	σ
$P(T, f)$	$P(A)$
α	\mathfrak{U}
$x, y \in M$	$\xi, \eta \in \Omega$
$\mathbf{m} \in Z^{d}$	$x \in Z^{d}$

Note: Under certain conditions, sup is achieved and under stronger conditions achieved uniquely.

Will now define the terms, with examples, in Theorem 1:
Compact metric space: for Ruelle, "metrizable" because particular quantities do not depend upon specific choice of metric.
continuous Z^{d}-action
Defn: group homomorphism: $Z^{d}: \rightarrow \operatorname{Homeo}(M, M)$
Action generated by pairwise commuting homeos T_{1}, \ldots, T_{d} of M and for $\left(m_{1}, \ldots, m_{d}\right) \in Z^{d}$,

$$
T^{\left(m_{1}, \ldots, m_{d}\right)}(x)=T_{1}^{m_{1}} \circ \ldots \circ T_{d}^{m_{d}}(x)
$$

$d=1$:
$T^{m}(x)=T_{1}^{m}(x)$
Main Example: Full Z-shift:
$M=F^{Z}$ with product topology (configurations on Z with finite alphabet F).

Metric: $d(x, y)=2^{-k}$, where x, y agree on $2 k+1$ interval centered at origin but not larger k.
$T_{1}=$ left-shift map;
Special Class: Z-shift of finite type (SFT):
"Forbid finitely many configurations on finite intervals"
Examples:
Golden Mean
$F=\{0,1\}$: forbid 11
RLL(1,2)
$F=\{0,1\}$: forbid 11 and 000
Very special class: Topological Markov Chain (n.n. Z-SFT):

Defn: Let C be a square 0-1 (transition) matrix (say $m \times m$).
Let $F=\{0, \ldots, m-1\}$.
Let $M_{C}=\left\{x \in F^{\mathbb{Z}}: C_{x_{i}, x_{i+1}}=1\right.$ for all $\left.i \in \mathbb{Z}\right\}$
"allowed" viewpoint
T_{C} : left shift on M_{C}
For golden mean:

$$
C=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]
$$

$d=2:$
Main Example: Full Z^{2}-shift:
$M=F^{Z^{2}}$ with product topology (configurations on 2-dimensional integer lattice with finite alphabet F).

Metric: $d(x, y)=2^{-k}$, where x, y agree on a $(2 k+1) \times(2 k+1)$ square centered at origin but no larger k.
$T_{1}=$ left-horizontal shift; $T_{2}=$ down-vertical shift,

Special Example: Z^{2}-shift of finite type (SFT):
"Forbid finitely many configurations on finite shapes"
Given finite sets $\Delta_{1}, \ldots, \Delta_{n} \subset Z^{2}$ and $u_{1} \in F^{\Delta_{1}}, \ldots, u_{n} \in F^{\Delta_{n}}$,

$$
M=\left\{x \in F^{Z^{2}}: \forall \mathbf{m} \in Z^{2}, x_{\Delta_{i}+\mathbf{m}} \neq u_{i}, i=1, \ldots, n\right\}
$$

Note: translation-invariant condition
Ruelle: defines SFT by "allowed" configs (Ω in mid-page 7):
a finite set $\Delta \subset Z^{2}$ (think rectangle) and set $G \subset F^{\Delta}$:

$$
M=\left\{x \in F^{Z^{2}}: \forall \mathbf{m} \in Z^{2}, x_{\Delta+\mathbf{m}} \in G\right\}
$$

Examples:
Hard square
$F=\{0,1\}$: forbid 11 horizontally and vertically
$R L L(1,2)^{\otimes 2}$
Dominos (Dimers)
$F=\{L, R, T, B\}$: forbid horizontal configs LL, LT, $\mathrm{LB}, \mathrm{RR}, \mathrm{TR}$, BR , and vertical configs.

Monomer-Dimers
Z^{2}-TMC (n.n. Z^{2}-SFT): horizontal and vertical transition matrices

(Topological) Entropy:

Defn: For finite open cover α of M,

$$
\begin{gathered}
N(\alpha)=\text { minimum size of subcover of } \alpha \\
H(\alpha)=\log N(\alpha) .
\end{gathered}
$$

Defn: for finite open covers α, β of M
$\alpha \vee \beta=\left\{A_{i} \cap B_{j}\right.$: nonempty $\}$
For $\mathbf{m} \in Z^{d}, T^{-\mathbf{m}}(\alpha)=\left\{T^{-\mathbf{m}}\left(A_{i}\right)\right\}$
For set $\Lambda \subset Z^{d}$:
$\alpha_{\Lambda}=\vee_{\mathbf{m} \in \Lambda} T^{-\mathbf{m}}(\alpha)$.
Consider d-dimensional prisms $\Lambda=\Lambda\left(a_{1}, \ldots, a_{d}\right)$,

$$
h(T, \alpha)=\lim _{a_{1}, \ldots, a_{d} \rightarrow \infty}(1 /|\Lambda|) \log N\left(\alpha_{\Lambda}\right)
$$

Defn:

$$
h(T)=\sup _{\alpha} h(T, \alpha)
$$

Theorem: If α is a top. generator (i.e., distinguishes points), then $h(T)=h(T, \alpha)$.

Here, "distinguishes points" means: letting $\alpha(x)=\cup_{i: x \in A_{i}} A_{i}$, if $x, y \in M$ and $x \neq y$, then for some $u \in Z^{d}, \alpha\left(T^{u}(x)\right) \cap \alpha\left(T^{u}(y)\right)=$ \emptyset.

For full shift and SFT's, the standard cover:
$\alpha=\left\{\left\{x \in M: x_{0}=a\right\}: a \in F\right\}$ is a topological generator.
So, $h(T)$ is a growth rate of counts.
$d=1$:

$$
h(T)=\lim _{n \rightarrow \infty}(1 / n) \log (\# \text { allowed n-sequences })
$$

Proposition: For a $Z-\mathrm{TMC} M_{C}$,

$$
h\left(T_{C}\right)=\log \lambda_{C}
$$

where λ_{C} is the spectral radius of C, i.e.,

$$
\lambda_{C}=\max \{|\lambda|: \lambda \text { eigenvalues of } C\}
$$

Proof:

$$
h\left(T_{C}\right)=\lim _{n \rightarrow \infty}\left(\frac{1}{n}\right) \log \mathbf{1}(C)^{n-1} \mathbf{1}
$$

Golden Mean shift: $h(T)=\log$ (golden mean)

$$
C=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]
$$

Can deduce formula for top. entropy of any Z-SFT, $d=2$:

$$
h(T)=\lim _{n \rightarrow \infty}\left(1 / n^{2}\right) \log (\# n \times n \text { allowed arrays })
$$

Hard square: ???
Dominos (Dimers): $(1 / 4) \int_{0}^{1} \int_{0}^{1}(4-2 \cos (2 \pi s)-2 \cos (2 \pi t)) d s d t$

- Monomer-Dimer: ???

Pressure:

Defn given in Ruelle, p. 5:
Same as top, entropy except:
For $\Lambda=\Lambda\left(a_{1}, \ldots, a_{d}\right)$, replace $N\left(\alpha_{\Lambda}\right)$ by:

$$
\begin{aligned}
& \quad Z_{\Lambda}(f, \alpha)=\min _{\text {subcover } \beta \text { of } \alpha_{\Lambda}} \sum_{j} \exp \left(\sup _{x \in B_{j}} \sum_{u \in \Lambda} f\left(T^{u}(x)\right)\right) \\
& \beta=\left\{B_{1}, B_{2}, \ldots B_{n(\beta)}\right\}
\end{aligned}
$$

So,

$$
P(T, f, \alpha)=\lim _{a_{1}, \ldots, a_{d} \rightarrow \infty}(1 /|\Lambda|) \log Z_{\Lambda}(f, \alpha)
$$

and

$$
P(T, f)=\sup _{\alpha} P(T, f, \alpha)
$$

Theorem: If α is a topological generator, then $P(T, f)=P(T, f, \alpha)$.

Note:

$$
\begin{gathered}
Z_{\Lambda}(0, \alpha)=N\left(\alpha_{\Lambda}\right) . \\
P(T, 0)=h(T) .
\end{gathered}
$$

Examples:
$d=1$:
T_{C} is TMC:

$$
f(x)=f\left(x_{0} x_{1}\right)
$$

$P\left(T_{C}, f\right)=\lim _{n \rightarrow \infty}(1 / n) \log \left(\sum_{x_{0} \ldots x_{n}} \exp \left(f\left(x_{0} x_{1}\right)+\ldots f\left(x_{n-1} x_{n}\right)\right)\right)$
Note: No min and No sup.
Prop:

$$
P\left(T_{C}, f\right)=\log \lambda\left(C_{f}\right)
$$

where

$$
\left(C_{f}\right)_{i j}=C_{i j} e^{f(i j)} .
$$

Proof:

$$
P\left(T_{C}, f\right)=\lim _{n \rightarrow \infty}\left(\frac{1}{n}\right) \log \mathbf{1}\left(C_{f}\right)^{n-1} \mathbf{1}
$$

$d=2$:

1. Hard square with activity.
$T=$ Hard square SFT
Let $c \in R$ and define
$f_{c}(x)=c$ if $x_{0}=1$
$f_{c}(x)=0$ if $x_{0}=0$.
$P\left(T, f_{c}\right)=$ growth rate of number of allowed arrays, with 1's weight by e^{c} and 0's weighted by 1.
$a=e^{c} ;$ activity level
No exact known formula for $P\left(T, f_{c}\right)$ known.
2. Ising model
$T=$ full shift on $F=\{ \pm 1\}$
f : Ising model
Given constants β, J, H,

$$
f(x)=\beta\left(B x_{0,0}+J\left(x_{0,0} x_{1,0}+x_{0,0} x_{0,1}\right)\right)
$$

β : inverse temperature
J : interaction strength
B : external magnetic field strength
$P(T, f)$: growth rate of number of allowed arrays, weighted by e^{f}, which incorporates interactions on adjacent sites (horizontal and vertical) and magnetic field (on individual sites) .

Onsager: exact solution for $P(T, f)$, when $B=0$.

Measure-theoretic entropy

Let T be an MPT Z^{d}-action on probability space (X, \mathcal{A}, μ).
Defn: For finite, measurable partition α,

$$
H_{\mu}(\alpha)=-\sum_{i} \mu\left(A_{i}\right) \log \mu\left(A_{i}\right)
$$

where $\alpha=\left\{A_{i}\right\}$.
For finite set $\Lambda \subset Z^{d}$:
$\alpha_{\Lambda}=V_{\mathbf{m} \in \Lambda} T^{-\mathbf{m}}(\alpha)$.
Consider d-dimensional prisms $\Lambda=\Lambda\left(a_{1}, \ldots, a_{d}\right)$,

$$
h_{\mu}(T, \alpha)=\lim _{a_{1}, \ldots, a_{d} \rightarrow \infty}(1 /|\Lambda|) H_{\mu}\left(\alpha_{\Lambda}\right)
$$

Defn:

$$
h_{\mu}(T)=\sup _{\alpha} h_{\mu}(T, \alpha)
$$

Theorem: If α is a meas.-theo. generator (i.e., $\alpha_{Z^{d}}=\mathcal{A}$ a.e.), then $h_{\mu}(T)=h_{\mu}(T, \alpha)$.

$$
d=1:
$$

X is a stationary process with law μ and and $T=$ left-shift, then

$$
h_{\mu}(T)=h(X)=\lim _{n \rightarrow \infty}(1 / n) H\left(X_{1}, \ldots, X_{n}\right)
$$

. where $H\left(X_{1}, \ldots, X_{n}\right)$ is the entropy of $\left(X_{1}, \ldots, X_{n}\right)$ as a random vector.

Examples:

$$
\mu=\operatorname{iid}(\bar{p}):
$$

$$
h_{\mu}(T)=H(\bar{p})
$$

μ : stationary (first-order) Markov with probability transition matrix P with stationary vector π :

$$
h_{\mu}(T)=-\sum_{i j} \pi_{i} P_{i j} \log P_{i j}
$$

$$
d=2
$$

X is a stationary Z^{2}-process with law μ and $T^{(m, n)}$: shift by translation (m, n). Then

$$
h_{\mu}(T)=h(X)=\lim _{n \rightarrow \infty}\left(1 / n^{2}\right) H\left(X_{i, j}: 1 \leq i, j \leq n\right)
$$

where H is the entropy of the random vector (array):

$$
X_{i, j}: 1 \leq i, j \leq n
$$

Examples:

1. $\mu=\operatorname{iid}(p)$:

$$
h_{\mu}(T)=H(p)
$$

2. Markov chains replaced by Gibbs measures/Markov random fields.

Few explicit results.
Back to Variational Principle:

$$
P(T, f)=\sup _{\mathcal{M}(T)} h_{\mu}(T)+\int f d \mu
$$

Defn: An equilibrium state for T, f is a measure $\mu \in \mathcal{M}(T)$ which achieves $P(T, f)$.

Let $I_{T, f}$ denote the set of equilibrium states (which an be empty).

Defn: T is expansive if there exists $\delta>0$ s.t. $\forall x \neq y \in M, \exists \mathbf{m} \in$ Z^{d} s.t. $\operatorname{dist}\left(T^{\mathrm{m}} x, T^{\mathrm{m}} y\right)>\delta$.

Fact: Any Z^{d}-SFT is expansive.
Theorem: If T is expansive, then for every continuous $f, I_{T, f} \neq \emptyset$.

Proof uses upper semi-continuity of $\mu \mapsto h_{\mu}(T)$
Non-uniqueness corresponds to phase transition.
$d=1$:
Special case:

Theorem (Variational Principle for irreducible TMC) Let T be TMC and $f(x)=f\left(x_{0} x_{1}\right)$. Let

$$
\left(C_{f}\right)_{i j}=C_{i j} e^{f(i j)}
$$

Then

$$
P\left(T_{C}, f\right)=\log \lambda_{C_{f}}=\sup _{\mu \in \mathcal{M}} h_{\mu}\left(T_{C}\right)+\int f d \mu
$$

and the sup is achieved uniquely by an explicitly describable Markov chain:

$$
P_{i j}=C_{i j} e^{f(i j)} \frac{v_{j}}{\lambda_{C_{f}} v_{i}}
$$

where v is a right eigenvector for matrix C_{f} and eigenvalue $\lambda_{C_{f}}$.
Example: Golden mean with $f=f_{c},\left(a=e^{c}\right)$.

$$
\begin{gathered}
C_{f}=\left[\begin{array}{ll}
a & 1 \\
a & 0
\end{array}\right] \\
\lambda=\frac{a+\sqrt{a^{2}+4 a}}{2} \\
v=\left[\begin{array}{l}
\lambda \\
a
\end{array}\right]
\end{gathered}
$$

No phase transition!
See lecture notes from Entropy class for proof in case $c=0$.
$d=2$:

1. Hard core with activity $a=e^{c}$: unique equilibrium state up to some critical threshold.
2. Ising model: unique equilibrium state up to some critical threshold in β, when $B=0$.

Gibbs measures

Let $T: M \rightarrow M$ be a nearest neighbour Z^{2}-SFT.
Let $C_{1}=F$, the alphabet (a.k.a. configurations on single nodes)
Let C_{2} be all allowed configurations on domino shapes (i.e., configurations on 1×2 and 2×1 rectangles).

Let $\Phi: C_{1} \cup C_{2} \rightarrow R$, (nearest-neighbour interaction).
A translation invariant (stationary) nearest-neighbour Gibbs measure on M is a T-invariant measure μ on M such that for all finite subsets $\Lambda \subset Z^{d}$ and a.e. $x \in M$,

$$
\mu\left(\left.x\right|_{\Lambda}|x|_{\Lambda^{c}}\right) \sim
$$

$$
\begin{equation*}
\left(\prod_{v \in \Lambda} \exp \left(\Phi\left(x_{v}\right)\right)\right)\left(\prod_{i=1}^{d} \prod_{\{v \in \Lambda,} \exp \left(\Phi\left(\left(x_{v}, x_{v+e_{i}}\right)\right)\right)\right) \tag{1}
\end{equation*}
$$

In particular, $\mu\left(\left.x\right|_{\Lambda}|x|_{\Lambda^{c}}\right)=\mu\left(x|x|_{\partial \Lambda}\right)$.
Let

$$
f_{\Phi}(x)=\Phi\left(x_{(0,0)}\right)+\Phi\left(x_{(0,0)}, x_{(1,0)}\right)+\Phi\left(x_{(0,0)}, x_{(0,1)}\right)
$$

Theorem:
$\left\{\right.$ Equilibirum states for $\left.f_{\Phi}\right\} \subseteq\{$ translation invariant Gibbs states for $\Phi\}$ Assuming Condition D (a mixing condition) on the SFT M (Ruelle, p. 57), in particular, for the full shift,
\{ Equilibirum states for $\left.f_{\Phi}\right\}=\{$ translation invariant Gibbs states for $\Phi\}$ There is a much more general version of this (see Ruelle, Theorem 3, p. 8 and Theorem 4.2, p. 58):

1. Begin with an Interaction: function Φ on allowed configurations on finite sets (see Chapter 1)
2. Form the Energy function: f_{Φ}, a sum of interaction values
3. A Gibbs measure is a measure μ that satisfies: whenever $x, y \in$ M disagree at only finitely many sites, then

$$
\mu\left(\left.x\right|_{\Lambda}|x|_{\Lambda^{c}}\right)=\left[\sum_{y: y_{Z^{d} \backslash \Lambda}=x_{Z^{d} \backslash \Lambda}} \prod_{u \in Z^{d}} \exp \left(f_{\Phi}\left(T^{u}(y)\right)-f_{\Phi}\left(T^{u}(x)\right)\right)\right]^{-1}
$$

(in nearest neighbour special case above, this is equivalent to (1)

In Ruelle (pp, 7-8), there is no mention of interaction Φ. Gibbs measure is defined for any function f on M that has exponentially decreasing dependence (equivalently Holder continuous). In Ruelle (chapters 3 and 4), $f=f_{\Phi}$ where Φ has satisfies a summability condition.

Equilibrium states and derivative of pressure

Let $C^{\alpha}(M, R)$ denote the set of Holder continuous functions, with exponent α from M to R.

For a topologically mixing Z-SFT $T: M \rightarrow M$, and $f, g \in$ $C^{\alpha}(M, R)$, if μ_{f} is the unique equilibrium state for T, f, then

$$
\frac{d}{d t} P(f+t g)=\int g d \mu_{f}
$$

Thus, a unique equilibrium state can be viewed as a derivative of the pressure map

$$
P: C^{\alpha} \rightarrow R
$$

Phase transitions correspond to discontinuities in derivative of pressure (as well as non-uniqueness of equilibrium states).

