I. Finite systems (Ruelle, pp. 3-4)

Recall defn. of entropy of probability vector: $\overline{p} = (p_1, \ldots, p_n)$:

$$H(\overline{p}) = -\sum_{i} p_i \log p_i$$

 $(p_i \text{ is probability of "micro-state" } i.$

Let $u_i = U(i)$ be energy contribution from state *i*.

Let μ_U be the probability vector (p_1, \ldots, p_n) defined by

$$p_i = \frac{e^{-u_i}}{Z(U)}$$

where Z is the normalization factor:

$$Z(U) = \sum_{j} e^{-u_j}.$$

Prop (from class): Let $E = E_{\mu_U}(U)$. Then

$$\max_{\overline{p}: E_{\overline{p}}U=E} H(\overline{p}) = \log Z(U) + E$$

and achieved uniquely by μ_U .

Interpretation: Given energy function U and expected value of energy, you get a well-defined "most likely state" μ_U

Prop (Ruelle, bottom of p. 3):

$$\max_{\overline{p}} H(\overline{p}) - E_{\overline{p}}(U) = \log Z(U)$$

and achieved uniquely by μ_U .

Proof of Ruelle Prop:

$$H(\overline{p}) - E_{\overline{p}}(U) = \sum_{i} p_{i}(-\log(p_{i}) - u_{i})$$

$$=\sum_{i} p_i \log \frac{e^{-u_i}}{p_i} \le \log \sum_{i} p_i \frac{e^{-u_i}}{p_i} = \log Z(U)$$

with equality iff $\frac{e^{-u_i}}{p_i}$ is constant (Z(U))). by Jensen.

Note: class prop follows since

$$\max_{\overline{p}: \ E_{\overline{p}}U=E} \ H(\overline{p}) - E \leq \max_{\overline{p}} \ H(\overline{p}) - E_{\overline{p}}(U)$$

and LHS includes μ_U .

Observe:

max is a non-probabilistic quantity.

achieved uniquely by an explicit probability "measure", a "equilibrium state"

maximizing meassure has a certain from, a "Gibbs state"

So, Gibbs states = Equilibrium states

II. Variational Principle

Theorem 1 (Ruelle, p. 6):

Let M be a compact metric space.

Let T be a continuous Z^d -action on M and $f: M \to R$ a continuous function.

Let $\mathcal{M}(T)$ be the set of all Borel probability measures invariant under T.

For $\mu \in \mathcal{M}(T)$, let $h_{\mu}(T)$ denote the measure-theoretic entropy of T w.r.t. μ .

Let P(T, f) denote the pressure (of f, T). Then

$$P(T, f) = \sup_{\mu \in \mathcal{M}(T)} h_{\mu}(T) + \int f d\mu$$

Dictionary of notation:

These notes	Ruelle
M	Ω
T	au
f	A
μ	σ
P(T, f)	P(A)
lpha	\mathfrak{U}
$x, y \in M$	$\xi,\eta\in\Omega$
$\mathbf{m} \in Z^d$	$x \in Z^d$

Note: Under certain conditions, sup is *achieved* and under stronger conditions achieved *uniquely*.

Will now define the terms, with examples, in Theorem 1:

Compact metric space: for Ruelle, *"metrizable"* because particular quantities do not depend upon specific choice of metric.

continuous Z^d -action

Defn: group homomorphism: $Z^d :\to \operatorname{Homeo}(M, M)$

Action generated by pairwise commuting homeos T_1, \ldots, T_d of Mand for $(m_1, \ldots, m_d) \in Z^d$,

$$T^{(m_1,\ldots,m_d)}(x) = T_1^{m_1} \circ \ldots \circ T_d^{m_d}(x)$$

d = 1: $T^m(x) = T_1^m(x)$

Main Example: Full Z-shift:

 $M = F^Z$ with product topology (configurations on Z with finite alphabet F).

Metric: $d(x, y) = 2^{-k}$, where x, y agree on 2k+1 interval centered at origin but not larger k.

 $T_1 = \text{left-shift map};$

Special Class: Z-shift of finite type (SFT):"Forbid finitely many configurations on finite intervals"Examples:

Golden Mean

 $F = \{0, 1\}$: forbid 11 RLL(1,2)

 $F = \{0, 1\}$: forbid 11 and 000

Very special class: Topological Markov Chain (n.n. Z-SFT):

Defn: Let C be a square 0-1 (transition) matrix (say $m \times m$). Let $F = \{0, \ldots, m - 1\}$. Let $M_C = \{x \in F^{\mathbb{Z}} : C_{x_i, x_{i+1}} = 1 \text{ for all } i \in \mathbb{Z}\}$ "allowed" viewpoint T_C : left shift on M_C For golden mean:

$$C = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$

d = 2:

Main Example: Full Z^2 -shift:

 $M = F^{Z^2}$ with product topology (configurations on 2-dimensional integer lattice with finite alphabet F).

Metric: $d(x, y) = 2^{-k}$, where x, y agree on a $(2k + 1) \times (2k + 1)$ square centered at origin but no larger k.

 $T_1 =$ left-horizontal shift; $T_2 =$ down-vertical shift,

Special Example: Z^2 -shift of finite type (SFT):

"Forbid finitely many configurations on finite shapes"

Given finite sets $\Delta_1, \ldots, \Delta_n \subset Z^2$ and $u_1 \in F^{\Delta_1}, \ldots, u_n \in F^{\Delta_n}$,

$$M = \{ x \in F^{Z^2} : \forall \mathbf{m} \in Z^2, \ x_{\Delta_i + \mathbf{m}} \neq u_i, \ i = 1, \dots, n \}$$

Note: translation-invariant condition Ruelle: defines SFT by "allowed" configs (Ω in mid-page 7): a finite set $\Delta \subset Z^2$ (think rectangle) and set $G \subset F^{\Delta}$:

$$M = \{ x \in F^{Z^2} : \forall \mathbf{m} \in Z^2, \ x_{\Delta + \mathbf{m}} \in G \}$$

Examples:

Hard square

 $F = \{0, 1\}$: forbid 11 horizontally and vertically

 $RLL(1,2)^{\otimes 2}$

Dominos (Dimers)

 $F = \{L, R, T, B\}$: forbid horizontal configs LL, LT, LB, RR, TR, BR, and vertical configs.

Monomer-Dimers

 $Z^2\mbox{-}{\rm TMC}$ (n.n. $Z^2\mbox{-}{\rm SFT}\mbox{):}$ horizontal and vertical transition matrices

(Topological) Entropy:

Defn: For finite open cover α of M,

 $N(\alpha) =$ minimum size of subcover of α

$$H(\alpha) = \log N(\alpha).$$

Defn: for finite open covers α, β of M

 $\alpha \lor \beta = \{A_i \cap B_j : \text{ nonempty } \}$ For $\mathbf{m} \in Z^d$, $T^{-\mathbf{m}}(\alpha) = \{T^{-\mathbf{m}}(A_i)\}$ For set $\Lambda \subset Z^d$: $\alpha_\Lambda = \bigvee_{\mathbf{m} \in \Lambda} T^{-\mathbf{m}}(\alpha).$

Consider *d*-dimensional prisms $\Lambda = \Lambda(a_1, \ldots, a_d)$,

$$h(T,\alpha) = \lim_{a_1,\dots,a_d \to \infty} (1/|\Lambda|) \log N(\alpha_{\Lambda})$$

Defn:

$$h(T) = \sup_{\alpha} h(T, \alpha)$$

Theorem: If α is a top. generator (i.e., distinguishes points), then $h(T) = h(T, \alpha)$.

Here, "distinguishes points" means: letting $\alpha(x) = \bigcup_{i:x \in A_i} A_i$, if $x, y \in M$ and $x \neq y$, then for some $u \in Z^d$, $\alpha(T^u(x)) \cap \alpha(T^u(y)) = \emptyset$.

For full shift and SFT's, the standard cover:

 $\alpha = \{ \{ x \in M : x_0 = a \} : a \in F \}$ is a topological generator.

So, h(T) is a growth rate of counts.

d = 1:

 $h(T) = \lim_{n \to \infty} (1/n) \log(\# \text{ allowed n-sequences })$ Proposition: For a Z-TMC M_C ,

$$h(T_C) = \log \lambda_C$$

where λ_C is the spectral radius of C, i.e.,

 $\lambda_C = \max\{|\lambda| : \lambda \text{ eigenvalues of } C\}$

Proof:

$$h(T_C) = \lim_{n \to \infty} \left(\frac{1}{n}\right) \log \mathbf{1}(C)^{n-1} \mathbf{1}$$

Golden Mean shift: $h(T) = \log(\text{ golden mean})$

$$C = \left[\begin{array}{rr} 1 & 1 \\ 1 & 0 \end{array} \right]$$

Can deduce formula for top. entropy of any Z-SFT, d = 2:

$$h(T) = \lim_{n \to \infty} (1/n^2) \log(\#n \times n \text{ allowed arrays })$$

Hard square: ???
Dominos (Dimers): $(1/4) \int_0^1 \int_0^1 (4-2\cos(2\pi s)-2\cos(2\pi t)) \, ds dt$

— Monomer-Dimer: ???

Pressure:

Defn given in Ruelle, p. 5:

Same as top, entropy except:

For $\Lambda = \Lambda(a_1, \ldots, a_d)$, replace $N(\alpha_{\Lambda})$ by:

$$Z_{\Lambda}(f,\alpha) = \min_{\text{subcover }\beta \text{ of }\alpha_{\Lambda}} \sum_{j} \exp(\sup_{x \in B_{j}} \sum_{u \in \Lambda} f(T^{u}(x)))$$
$$\beta = \{B_{1}, B_{2}, \dots B_{n(\beta)}\}$$
So,
$$P(T, f, \alpha) = \lim_{a_{1}, \dots, a_{d} \to \infty} (1/|\Lambda|) \log Z_{\Lambda}(f, \alpha)$$

and

$$P(T,f) = \sup_{\alpha} P(T,f,\alpha)$$

Theorem: If α is a topological generator, then $P(T, f) = P(T, f, \alpha)$.

Note:

$$Z_{\Lambda}(0,\alpha) = N(\alpha_{\Lambda}).$$
$$P(T,0) = h(T).$$

Examples:

$$d = 1$$
:
 T_C is TMC:
 $f(x) = f(x_0 x_1)$

$$P(T_C, f) = \lim_{n \to \infty} (1/n) \log(\sum_{x_0 \dots x_n} \exp(f(x_0 x_1) + \dots f(x_{n-1} x_n)))$$

Note: No min and No sup.

Prop:

$$P(T_C, f) = \log \lambda(C_f)$$

where

$$(C_f)_{ij} = C_{ij}e^{f(ij)}.$$

Proof:

$$P(T_C, f) = \lim_{n \to \infty} (\frac{1}{n}) \log \mathbf{1} (C_f)^{n-1} \mathbf{1}$$

d = 2:

1. Hard square with activity.

T =Hard square SFT

Let $c \in R$ and define

$$f_c(x) = c \text{ if } x_0 = 1$$

 $f_c(x) = 0 \text{ if } x_0 = 0.$

 $P(T, f_c) =$ growth rate of number of allowed arrays, with 1's weight by e^c and 0's weighted by 1.

 $a = e^c$; activity level

No exact known formula for $P(T, f_c)$ known.

2. Ising model T =full shift on $F = \{\pm 1\}$

f: Ising model

Given constants β, J, H ,

$$f(x) = \beta(Bx_{0,0} + J(x_{0,0}x_{1,0} + x_{0,0}x_{0,1}))$$

 β : inverse temperature

J: interaction strength

B: external magnetic field strength

P(T, f): growth rate of number of allowed arrays, weighted by e^{f} , which incorporates interactions on adjacent sites (horizontal and vertical) and magnetic field (on individual sites).

Onsager: exact solution for P(T, f), when B = 0.

Measure-theoretic entropy

Let T be an MPT Z^d -action on probability space (X, \mathcal{A}, μ) . Defn: For finite, measurable *partition* α ,

$$H_{\mu}(\alpha) = -\sum_{i} \mu(A_{i}) \log \mu(A_{i})$$

where $\alpha = \{A_i\}.$

For finite set $\Lambda \subset Z^d$:

 $\alpha_{\Lambda} = \vee_{\mathbf{m} \in \Lambda} \ T^{-\mathbf{m}}(\alpha).$

Consider *d*-dimensional prisms $\Lambda = \Lambda(a_1, \ldots, a_d)$,

$$h_{\mu}(T,\alpha) = \lim_{a_1,\dots,a_d \to \infty} (1/|\Lambda|) H_{\mu}(\alpha_{\Lambda})$$

Defn:

$$h_{\mu}(T) = \sup_{\alpha} h_{\mu}(T, \alpha)$$

Theorem: If α is a meas.-theo. generator (i.e., $\alpha_{Z^d} = \mathcal{A}$ a.e.), then $h_{\mu}(T) = h_{\mu}(T, \alpha)$.

d = 1:

X is a *stationary* process with law μ and and T =left-shift, then

$$h_{\mu}(T) = h(X) = \lim_{n \to \infty} (1/n) H(X_1, \dots, X_n)$$

. where $H(X_1, \ldots, X_n)$ is the entropy of (X_1, \ldots, X_n) as a random vector.

Examples:

 $\mu = \operatorname{iid}(\overline{p})$:

$$h_{\mu}(T) = H(\overline{p})$$

 μ : stationary (first-order) Markov with probability transition matrix P with stationary vector π :

$$h_{\mu}(T) = -\sum_{ij} \pi_i P_{ij} \log P_{ij}$$

d = 2:

X is a stationary Z²-process with law μ and $T^{(m,n)}$: shift by translation (m, n). Then

$$h_{\mu}(T) = h(X) = \lim_{n \to \infty} (1/n^2) H(X_{i,j} : 1 \le i, j \le n).$$

where H is the entropy of the random vector (array):

$$X_{i,j}: \ 1 \le i, j \le n$$

Examples:

1. $\mu = iid(p)$:

$$h_{\mu}(T) = H(p)$$

2. Markov chains replaced by Gibbs measures/Markov random fields.

Few explicit results.

Back to Variational Principle:

$$P(T, f) = \sup_{\mathcal{M}(T)} h_{\mu}(T) + \int f d\mu$$

Defn: An equilibrium state for T, f is a measure $\mu \in \mathcal{M}(T)$ which achieves P(T, f).

Let $I_{T,f}$ denote the set of equilibrium states (which an be empty).

Defn: T is expansive if there exists $\delta > 0$ s.t. $\forall x \neq y \in M, \exists \mathbf{m} \in Z^d$ s.t. $dist(T^{\mathbf{m}}x, T^{\mathbf{m}}y) > \delta$.

Fact: Any Z^d -SFT is expansive.

Theorem: If T is expansive, then for every continuous $f, I_{T,f} \neq \emptyset$.

Proof uses upper semi-continuity of $\mu \mapsto h_{\mu}(T)$ Non-uniqueness corresponds to *phase transition*. d = 1:

Special case:

Theorem (Variational Principle for irreducible TMC) Let T be TMC and $f(x) = f(x_0x_1)$. Let

$$(C_f)_{ij} = C_{ij}e^{f(ij)}$$

Then

$$P(T_C, f) = \log \lambda_{C_f} = \sup_{\mu \in \mathcal{M}} h_{\mu}(T_C) + \int f d\mu$$

and the sup is achieved uniquely by an explicitly describable Markov chain:

$$P_{ij} = C_{ij} e^{f(ij)} \frac{v_j}{\lambda_{C_f} v_i}$$

where v is a right eigenvector for matrix C_f and eigenvalue λ_{C_f} .

Example: Golden mean with $f = f_c$, $(a = e^c)$.

$$C_f = \begin{bmatrix} a & 1 \\ a & 0 \end{bmatrix}$$
$$\lambda = \frac{a + \sqrt{a^2 + 4a}}{2}$$
$$v = \begin{bmatrix} \lambda \\ a \end{bmatrix}$$

No phase transition!

See lecture notes from Entropy class for proof in case c = 0.

d = 2:

1. Hard core with activity $a = e^c$: unique equilibrium state up to some critical threshold.

2. Ising model: unique equilibrium state up to some critical threshold in β , when B = 0.

Gibbs measures

Let $T: M \to M$ be a nearest neighbour Z^2 -SFT.

Let $C_1 = F$, the alphabet (a.k.a. configurations on single nodes)

Let C_2 be all *allowed* configurations on domino shapes (i.e., configurations on 1×2 and 2×1 rectangles).

Let $\Phi: C_1 \cup C_2 \to R$, (nearest-neighbour interaction).

A translation invariant (stationary) nearest-neighbour Gibbs measure on M is a T-invariant measure μ on M such that for all finite subsets $\Lambda \subset Z^d$ and a.e. $x \in M$,

$$\mu(x|_{\Lambda} \mid x|_{\Lambda^{c}}) \sim \left(\prod_{v \in \Lambda} \exp(\Phi(x_{v})) \right) \left(\prod_{i=1}^{d} \prod_{\{v \in \Lambda, v+e_{i} \in \Lambda \cup \partial\Lambda\}} \exp(\Phi((x_{v}, x_{v+e_{i}}))) \right)_{(1)}$$

In particular, $\mu(x|_{\Lambda} \mid x|_{\Lambda^c}) = \mu(x \mid x|_{\partial \Lambda}).$ Let

 $f_{\Phi}(x) = \Phi(x_{(0,0)}) + \Phi(x_{(0,0)}, x_{(1,0)}) + \Phi(x_{(0,0)}, x_{(0,1)})$

Theorem:

{ Equilibrium states for f_{Φ} } \subseteq { translation invariant Gibbs states for Φ } Assuming Condition D (a mixing condition) on the SFT M (Ruelle, p. 57), in particular, for the full shift,

{ Equilibrium states for f_{Φ} } = { translation invariant Gibbs states for Φ } There is a much more general version of this (see Buello, Theorem 2)

There is a much more general version of this (see Ruelle, Theorem 3, p.8 and Theorem 4.2, p. 58):

1. Begin with an Interaction: function Φ on allowed configurations on finite sets (see Chapter 1)

- 2. Form the Energy function: f_{Φ} , a sum of interaction values
- 3. A Gibbs measure is a measure μ that satisfies: whenever $x, y \in M$ disagree at only finitely many sites, then

$$\mu(x|_{\Lambda} \mid x|_{\Lambda^c}) = \left[\sum_{y: y_{Z^d \setminus \Lambda} = x_{Z^d \setminus \Lambda}} \prod_{u \in Z^d} \exp(f_{\Phi}(T^u(y)) - f_{\Phi}(T^u(x)))\right]^{-1}$$

(in nearest neighbour special case above, this is equivalent to (1)

In Ruelle (pp, 7-8), there is no mention of interaction Φ . Gibbs measure is defined for any function f on M that has exponentially decreasing dependence (equivalently Holder continuous). In Ruelle (chapters 3 and 4), $f = f_{\Phi}$ where Φ has satisfies a summability condition.

Equilibrium states and derivative of pressure

Let $C^{\alpha}(M, R)$ denote the set of Holder continuous functions, with exponent α from M to R.

For a topologically mixing Z-SFT $T : M \to M$, and $f, g \in C^{\alpha}(M, R)$, if μ_f is the unique equilibrium state for T, f, then

$$\frac{d}{dt}P(f+tg) = \int g d\mu_f$$

Thus, a unique equilibrium state can be viewed as a derivative of the pressure map

$$P: C^{\alpha} \to R$$

Phase transitions correspond to discontinuities in derivative of pressure (as well as non-uniqueness of equilibrium states).