I. Finite systems (Ruelle, pp. 3-4)
Recall defn. of entropy of probability vector: p = (p1, ..., pn):

H(p)=—) pilogp,

(p; is probability of “micro-state” i.
Let u; = U(i) be energy contribution from state i.

Let py be the probability vector (py, ..., p,) defined by

where Z is the normalization factor:
Z(U) = Z e .
J

Prop (from class): Let £ = E, (U). Then

and achieved uniquely by .
Interpretation: Given energy function U and expected value of
energy, you get a well-defined “most likely state” g

Prop (Ruelle, bottom of p. 3):
max H(p) — E5(U) = log Z(U)
D

and achieved uniquely by .
Proof of Ruelle Prop:

H(p) — E3(U) = Z pi(—log(pi) — w;)
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with equality iff & is constant (Z (U ))). by Jensen.

= log Z(U)

Note: class prop follows since

e H(p) — E < max H(p) — Ex{U)
and LHS includes uy.
Observe:

max is a non-probabilistic quantity.

achieved uniquely by an explicit probability “measure”, a “equi-
librium state”

maximizing meassure has a certain from, a “Gibbs state”

So, Gibbs states = Equilibrium states

I1I. Variational Principle
Theorem 1 (Ruelle, p. 6):

Let M be a compact metric space.

Let T be a continuous Z%action on M and f : M — R a contin-
uous function.

Let M(T') be the set of all Borel probability measures invariant
under 1.

For p € M(T), let h,(T) denote the measure-theoretic entropy
of T"w.rt. u.

Let P(T, f) denote the pressure (of f,T). Then
PT.f) = s h(T)+ [ fan
peM(T)

Dictionary of notation:



These notes Ruelle
M Q)
T T
f A
[ o
P(T.f) | P(A)
o) i
x,ye M & ne)
m € Z¢ r € 71

Note: Under certain conditions, sup is achieved and under stronger
conditions achieved uniquely.

Will now define the terms, with examples, in Theorem 1:

Compact metric space: for Ruelle, “metrizable” because particu-
lar quantities do not depend upon specific choice of metric.

continuous Z%-action
Defn: group homomorphism: Z¢ :— Homeo(M, M)

Action generated by pairwise commuting homeos 17, ..., Ty of M
and for (myq,...,my) € Z°,

d=1:
T(x) = T7"(x)
Main Example: Full Z-shift:

M = FZ with product topology (configurations on Z with finite
alphabet F).

Metric: d(z,y) = 27%, where x, y agree on 2k +1 interval centered
at origin but not larger k.



11 = left-shift map;
Special Class: Z-shift of finite type (SFT):
“Forbid finitely many configurations on finite intervals”
Examples:
Golden Mean
F ={0,1}: forbid 11
RLL(1,2)
F ={0,1}: forbid 11 and 000
Very special class: Topological Markov Chain (n.n. Z-SFT):

Defn: Let C' be a square 0-1 (transition) matrix (say m x m).
Let F ={0,...,m—1}.
Let Mo ={x € FZ: C

T, X417

= 1foralli € Z}
“allowed” viewpoint
Te: left shift on Mg

For golden mean:
11
°=[1s)
d=2:

Main Example: Full Z?-shift:

M = FZ with product topology (configurations on 2-dimensional
integer lattice with finite alphabet F).

Metric: d(z,y) = 27%, where x,y agree on a (2k +1) x (2k + 1)
square centered at origin but no larger k.

17 = left-horizontal shift; T, = down-vertical shift,
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Special Example: Z%-shift of finite type (SFT):
“Forbid finitely many configurations on finite shapes”

Given finite sets Ay, ..., A, C Z?2 and uy € F?1, ..., u, € F®,
2 .
M:{xEFZ . VYm € Z°, TA4m F# Wi, 1 =1,...,n}
Note: translation-invariant condition

Ruelle: defines SF'T by “allowed” configs (€2 in mid-page 7):
a finite set A C Z? (think rectangle) and set G C F':

M:{SEEFZQ: Vm € 7%, za.m € G}

Examples:
Hard square

F = {0,1}: forbid 11 horizontally and vertically
RLL(1,2)%?

Dominos (Dimers)

F ={L,R,T, B}: forbid horizontal configs LL, LT, LB, RR, TR,
BR, and vertical configs.

Monomer-Dimers

Z2TMC (nn. Z2SFT): horizontal and vertical transition
matrices

(Topological) Entropy:
Defn: For finite open cover o of M,
N(a) = minimum size of subcover of «
H(a) =log N(«).
Defn: for finite open covers a, 8 of M
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aV §={A;N B;: nonempty }
Form e Z¢, T ™(a) = {T7™(A)}
For set A C Z¢:

ap = Vmer T ™(a).

Consider d-dimensional prisms A = A(aq, ..., aq),

h(T,a) = lim (1/|A])log N(ayp)
Defn:
h(T) = sup (T, «)
Theorem: If «v is a top. generator (i.e., distinguishes points), then
h(T)=h(T, ).

Here, “distinguishes points” means: letting o) = Ujpea, A4, if
x,y € M and z # y, then for some u € Z¢, o(T%x)) Na(T(y)) =
0.

For full shift and SFT’s, the standard cover:

a={{r €M :xy=a}:a€ F} is a topological generator.
So, h(T') is a growth rate of counts.

d=1:

hT) = 7}1_{1;10 (1/n)log(# allowed n-sequences )
Proposition: For a Z-TMC M,
MTe) = log Ac
where Ao is the spectral radius of C i.e.,

Ao = max{|A| : A eigenvalues of C'}
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Proof: {
h(Tp) = lim (—)log1(C)"'1

n—oo n

Golden Mean shift: h(T') = log( golden mean)

°=[10)

Can deduce formula for top. entropy of any Z-SF'T
d=2:

h(T) = lim (1/n*)log(#n x n allowed arrays )
n—oo

Hard square: 777
Dominos (Dimers): (1/4) fol f01(4—2 cos(2ms)—2 cos(2mt)) dsdt

— Monomer-Dimer: 777
Pressure:

Defn given in Ruelle, p. 5:
Same as top, entropy except:

For A = A(ay, ..., aq), replace N(ay) by:

Za(f,a) = min exp(su T (x
w7, @) subcover g of ay zj: p(xel%% AT))
B8 =A{B1,Bs,... By}
S0,

and



Theorem: If «v is a topological generator, then P(T', f) = P(T, f, «).

Note:
ZA(0,a) = N(ap)
P(T,0)=h(T)
Examples:
d=1:
Te is TMC:

f(z) = f(xow)

P(Tc, f) = lim (1/n)log( }  exp(f(zoz1) + ... f(an-120))

Note: No min and No sup.

Prop:
P(Te, ) = log A(C))
where
(Cy)ij = Ciye .
Proof: |
P(Te, f) = lim (=)log1(Cy)" 1
d=2:

1. Hard square with activity.
T = Hard square SF'T
Let ¢ € R and define

felx)=cifxg=1
fe(x) =0if zp = 0.



P(T, f.) = growth rate of number of allowed arrays, with 1’s
weight by e“ and 0’s weighted by 1.

a = e activity level
No exact known formula for P(T', f.) known.

2. Ising model
T = full shift on F' = {£1}

f: Ising model
Given constants 3, J, H,

f(x) = B(Bxoog+ J(zo0r10 + 200%0,1))

[ : inverse temperature
J: interaction strength
B: external magnetic field strength

P(T, f): growth rate of number of allowed arrays, weighted by
e/, which incorporates interactions on adjacent sites (horizontal and
vertical) and magnetic field (on individual sites) .

Onsager: exact solution for P(T), f), when B = 0.

Measure-theoretic entropy
Let T be an MPT Z%action on probability space (X, A, ).

Defn: For finite, measurable partition «.

Zu ) log p(A;)

where av = {4;}.
For finite set A ¢ Z¢:



A = VimeA T_m<a>.

Consider d-dimensional prisms A = A(aq, ..., aq),

h(Toa)= lim(1/|ADH, ()

Defn:
h,(T') = sup h, (T, o)

Theorem: If o is a meas.-theo. generator (i.e., aya = A a.e.),
then h,(T) = h,(T, o).

d=1:

X is a stationary process with law p and and 7" = left-shift, then

hp(T) = h(X) = lim (1/n)H(X), ..., X,)

. where H(X1,...,X,) is the entropy of (X1,...,X,) as a random
vector.
Examples:

po = 1id(p):

h(T) = H(p)

(@ stationary (first-order) Markov with probability transition ma-
trix P with stationary vector m:

h(T) == mPijlog P
ij
d=2:
X is a stationary Z2-process with law g and T0"™): shift by
translation (m,n). Then

ho(T)=h(X)= lim (1/n*)H(X;,;: 1<1i,j <n).

n—o0
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where H is the entropy of the random vector (array):
Xij:1<4,73<n
Examples:
1. p=1id(p):

h(T) = H(p)
2. Markov chains replaced by Gibbs measures/Markov random

fields.

Few explicit results.

Back to Variational Principle:

PT.1)= sup Ml 1)+ [ fan

Defn:  An equilibrium state for T, f is a measure p € M(T)
which achieves P(T, f).

Let I7 s denote the set of equilibrium states (which an be empty).

Defn: T is expansive if there exists 0 > 0s.t. Vo #y € M,dm €
Z4st. dist(T™x, T™y) > 4.
Fact: Any Z9-SFT is expansive.

Theorem: If T" is expansive, then for every continuous f, I s # ().

Proof uses upper semi-continuity of p +— h,(T)
Non-uniqueness corresponds to phase transition.
d=1:

Special case:
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Theorem (Variational Principle for irreducible TMC) Let T be
TMC and f(x) = f(zoz1). Let

(Cy)ij = Cye!™)
Then

P(Tc, f) =log Ac, = sup h,(Tc) + /fd,u
pneM
and the sup is achieved uniquely by an explicitly describable Markov
chain:
P = Cyefin i
1] — i )\Cf'Uz
where v is a right eigenvector for matrix C'y and eigenvalue A¢ ;-

Example: Golden mean with f = f., (a = €°).

a 1
= |0
)\_a+\/a2—|—4a

B 2

No phase transition!
See lecture notes from Entropy class for proof in case ¢ = 0.
d=2:

1. Hard core with activity a = e unique equilibrium state up to
some critical threshold.

2. Ising model: unique equilibrium state up to some critical thresh-

old in 8, when B = 0.

Gibbs measures
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Let T': M — M be a nearest neighbour Z%-SFT.
Let C7 = F, the alphabet (a.k.a. configurations on single nodes)

Let Cy be all allowed configurations on domino shapes (i.e., con-
figurations on 1 x 2 and 2 x 1 rectangles).

Let @ : C1 U Cy — R, (nearest-neighbour interaction).

A translation invariant (stationary) nearest-neighbour Gibbs
measure on M is a T-invariant measure 4 on M such that for all
finite subsets A C Z% and a.e. x € M,

p(xla | xfpc) ~

(H eXp(CD(:EU))> H H exp(P((zv, Tyte;)))

veEA =1 {veA, v+e;€AUOA}
(1)

In particular, u(x|s | |ac) = p(x | z|on).
Let

fo(z) = D(z(0,0)) + P(2(0,0) T(1,0)) + P(2(0,0)> T(0,1))
Theorem:

{ Equilibirum states for f} C { translation invariant Gibbs states for ®}

Assuming Condition D (a mixing condition) on the SFT M (Ruelle,
p. 57), in particular, for the full shift,

{ Equilibirum states for fp} = { translation invariant Gibbs states for ¢}

There is a much more general version of this (see Ruelle, Theorem 3,
p.8 and Theorem 4.2, p. 58):

1. Begin with an Interaction: function ® on allowed configurations
on finite sets (see Chapter 1)
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2. Form the Energy function: fp, a sum of interaction values

3. A Gibbs measure is a measure p that satisfies: whenever x,y €
M disagree at only finitely many sites, then

pla | @lac) = > 1 ew(fa(T"(y) = fo(T"(x)))

Y- Y gd\ A\ zd\ 5 ueZzd

(in nearest neighbour special case above, this is equivalent to (1)

In Ruelle (pp, 7-8), there is no mention of interaction ®. Gibbs
measure is defined for any function f on M that has exponentially
decreasing dependence (equivalently Holder continuous). In Ruelle
(chapters 3 and 4), f = f¢ where ® has satisfies a summability
condition.

Equilibrium states and derivative of pressure

Let C*(M, R) denote the set of Holder continuous functions, with
exponent « from M to R.

For a topologically mixing Z-SF'T T : M — M, and f,g €
C*(M, R), if pis is the unique equilibrium state for 7', f, then

d
@P(fﬂfg) =/gduf

Thus, a unique equilibrium state can be viewed as a derivative of the
pressure map

P:C“—R
Phase transitions correspond to discontinuities in derivative of pres-
sure (as well as non-uniqueness of equilibrium states).
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