Computing the entropy of two-dimensional shifts of finite type

Brian Marcus
University of British Columbia www.math.ubc.ca/~marcus

November 11, 2009, Texas A\&M University

Collaborators

Erez Louidor (PhD student):

Collaborators

Erez Louidor (PhD student):

Collaborators

Erez Louidor (PhD student):

Ronnie Pavlov (Postdoctoral Fellow):

Collaborators

Erez Louidor (PhD student):

Ronnie Pavlov (Postdoctoral Fellow):

1-dimensional Shifts of finite type

- A 1-dimensional shift of finite type (SFT) is defined by:

1-dimensional Shifts of finite type

- A 1-dimensional shift of finite type (SFT) is defined by:
- A finite alphabet A.

1-dimensional Shifts of finite type

- A 1-dimensional shift of finite type (SFT) is defined by:
- A finite alphabet A.
- A finite set \mathcal{F} of finite words,

1-dimensional Shifts of finite type

- A 1-dimensional shift of finite type (SFT) is defined by:
- A finite alphabet A.
- A finite set \mathcal{F} of finite words,
- The SFT X is the set of all elements of $A^{\mathbb{Z}}$ (bi-infinite sequences) which do not contain any of the words from \mathcal{F}.

1-dimensional Shifts of finite type

- A 1-dimensional shift of finite type (SFT) is defined by:
- A finite alphabet A.
- A finite set \mathcal{F} of finite words,
- The SFT X is the set of all elements of $A^{\mathbb{Z}}$ (bi-infinite sequences) which do not contain any of the words from \mathcal{F}.
- An SFT is a "constraint" on the set of allowable words.

Examples

- Example 1: the golden mean shift, $\left(G^{(1)}\right), A=\{0,1\}$:

$$
\mathcal{F}=\{11\}
$$

Typical allowed sequence: ... $01000101000010 \ldots$

Examples

- Example 1: the golden mean shift, $\left(G^{(1)}\right), A=\{0,1\}$:

$$
\mathcal{F}=\{11\}
$$

Typical allowed sequence: ... $01000101000010 \ldots$

- Example 2: the run-length-limited shift $(\operatorname{RLL}(d, k))$, $A=\{0,1\}$

$$
\mathcal{F}=\left\{11,101,1001, \ldots, 10^{d-1} 1,0^{k+1}\right\}
$$

Motivation for 1-dimensional SFT's: Constraints on data sequences recorded in storage devices

- Magnetic recording:

Motivation for 1-dimensional SFT's: Constraints on data sequences recorded in storage devices

- Magnetic recording:

Motivation for 1-dimensional SFT's: Constraints on data sequences recorded in storage devices

- Magnetic recording:

- Intersymbol interference:

Motivation for 1-dimensional SFT's: Constraints on data sequences recorded in storage devices

- Magnetic recording:

- Intersymbol interference:

Magnetic track $N=N / N S$

Motivation for 1-dimensional SFT's: Constraints on data sequences recorded in storage devices

- Magnetic recording:

- Intersymbol interference:

Magnetic track | | N | S | N | N | S |
| :--- | :--- | :--- | :--- | :--- | :--- |

- Hence an RLL constraint on allowed stored sequences.

Encoding

- Modulation encoder: encodes arbitrary data sequences into X.

Encoding

- Modulation encoder: encodes arbitrary data sequences into X.

Topological entropy of 1-D SFT's (a.k.a. entropy, noiseless capacity)

- A word w is admissible if it contains no sub-word from \mathcal{F}.

Topological entropy of 1-D SFT's (a.k.a. entropy, noiseless capacity)

- A word w is admissible if it contains no sub-word from \mathcal{F}.
- Let $B_{n}(X)$ be the set of admissible words of length n.

Topological entropy of 1-D SFT's (a.k.a. entropy, noiseless capacity)

- A word w is admissible if it contains no sub-word from \mathcal{F}.
- Let $B_{n}(X)$ be the set of admissible words of length n.
- Define the entropy: $h(X)=\lim _{n \rightarrow \infty} \frac{\log \left|B_{n}(X)\right|}{n}$

Topological entropy of 1-D SFT's (a.k.a. entropy, noiseless capacity)

- A word w is admissible if it contains no sub-word from \mathcal{F}.
- Let $B_{n}(X)$ be the set of admissible words of length n.
- Define the entropy: $h(X)=\lim _{n \rightarrow \infty} \frac{\log \left|B_{n}(X)\right|}{n}$
- The entropy is the maximal rate of encoder from the set of all arbitrary data sequences into X.

Computation of entropy

- At the expense of enlarging the alphabet, we can assume that \mathcal{F} consists of words of length 2 , and so the SFT is defined by nearest neighbours.

Computation of entropy

- At the expense of enlarging the alphabet, we can assume that \mathcal{F} consists of words of length 2 , and so the SFT is defined by nearest neighbours.
- In this case, one constructs a 0-1 transition matrix M which determines the allowed neighbours and $h(X)=\log \lambda(M)$, where $\lambda(M)$ is the largest eigenvalue of M.

Computation of entropy

- At the expense of enlarging the alphabet, we can assume that \mathcal{F} consists of words of length 2 , and so the SFT is defined by nearest neighbours.
- In this case, one constructs a 0-1 transition matrix M which determines the allowed neighbours and $h(X)=\log \lambda(M)$, where $\lambda(M)$ is the largest eigenvalue of M.
- Example:

Computation of entropy

- At the expense of enlarging the alphabet, we can assume that \mathcal{F} consists of words of length 2 , and so the SFT is defined by nearest neighbours.
- In this case, one constructs a 0-1 transition matrix M which determines the allowed neighbours and $h(X)=\log \lambda(M)$, where $\lambda(M)$ is the largest eigenvalue of M.
- Example:
- X : the golden mean shift,

Computation of entropy

- At the expense of enlarging the alphabet, we can assume that \mathcal{F} consists of words of length 2 , and so the SFT is defined by nearest neighbours.
- In this case, one constructs a 0-1 transition matrix M which determines the allowed neighbours and $h(X)=\log \lambda(M)$, where $\lambda(M)$ is the largest eigenvalue of M.
- Example:
- X : the golden mean shift,
- $M=\left[\begin{array}{c}11 \\ 10\end{array}\right], \lambda=\frac{1+\sqrt{5}}{2}$, and $h(X)=\log \frac{1+\sqrt{5}}{2} \approx .69$.

Computation of entropy

- At the expense of enlarging the alphabet, we can assume that \mathcal{F} consists of words of length 2 , and so the SFT is defined by nearest neighbours.
- In this case, one constructs a 0-1 transition matrix M which determines the allowed neighbours and $h(X)=\log \lambda(M)$, where $\lambda(M)$ is the largest eigenvalue of M.
- Example:
- X : the golden mean shift,

$$
\text { - } M=\left[\begin{array}{c}
11 \\
10
\end{array}\right], \lambda=\frac{1+\sqrt{5}}{2}, \text { and } h(X)=\log \frac{1+\sqrt{5}}{2} \approx .69 .
$$

- So, we can compute entropies of 1-dimensional SFT's.

Computation of entropy

- At the expense of enlarging the alphabet, we can assume that \mathcal{F} consists of words of length 2 , and so the SFT is defined by nearest neighbours.
- In this case, one constructs a 0-1 transition matrix M which determines the allowed neighbours and $h(X)=\log \lambda(M)$, where $\lambda(M)$ is the largest eigenvalue of M.
- Example:
- X : the golden mean shift,
- $M=\left[\begin{array}{c}11 \\ 10\end{array}\right], \lambda=\frac{1+\sqrt{5}}{2}$, and $h(X)=\log \frac{1+\sqrt{5}}{2} \approx .69$.
- So, we can compute entropies of 1-dimensional SFT's.
- And we can characterize the set of numbers that occur as entropies of 1-dimensional SFT's:

Computation of entropy

- At the expense of enlarging the alphabet, we can assume that \mathcal{F} consists of words of length 2 , and so the SFT is defined by nearest neighbours.
- In this case, one constructs a 0-1 transition matrix M which determines the allowed neighbours and $h(X)=\log \lambda(M)$, where $\lambda(M)$ is the largest eigenvalue of M.
- Example:
- X : the golden mean shift,
- $M=\left[\begin{array}{c}11 \\ 10\end{array}\right], \lambda=\frac{1+\sqrt{5}}{2}$, and $h(X)=\log \frac{1+\sqrt{5}}{2} \approx .69$.
- So, we can compute entropies of 1-dimensional SFT's.
- And we can characterize the set of numbers that occur as entropies of 1-dimensional SFT's:
- Theorem (Lind, 1983)): A number h is the entropy of a one-dimensional SFT if and only if h is the log of a root of a Perron number (special kind of algebraic integer).

2-dimensional Shifts of finite type

- A 2-dimensional shift of finite type (SFT) is defined by:

2-dimensional Shifts of finite type

- A 2-dimensional shift of finite type (SFT) is defined by: - A finite alphabet A.

2-dimensional Shifts of finite type

- A 2-dimensional shift of finite type (SFT) is defined by:
- A finite alphabet A.
- A finite set \mathcal{F} of finite patterns on rectangles.

2-dimensional Shifts of finite type

- A 2-dimensional shift of finite type (SFT) is defined by:
- A finite alphabet A.
- A finite set \mathcal{F} of finite patterns on rectangles.
- The SFT X is defined to be all elements of $A^{\mathbb{Z}^{2}}$ (i.e., configurations on the entire Z^{2} lattice) which do not contain any of the words from \mathcal{F}.

2-dimensional Shifts of finite type

- A 2-dimensional shift of finite type (SFT) is defined by:
- A finite alphabet A.
- A finite set \mathcal{F} of finite patterns on rectangles.
- The SFT X is defined to be all elements of $A^{\mathbb{Z}^{2}}$ (i.e., configurations on the entire Z^{2} lattice) which do not contain any of the words from \mathcal{F}.
- Example 1: the two-dimensional golden mean shift $G^{(2)}$: $A=\{0,1\}, \mathcal{F}=\left\{\right.$ any pair of adjacent $\left.1^{\prime} s\right\}=\left\{11, \frac{1}{1}\right\}$.

2-dimensional Shifts of finite type

- A 2-dimensional shift of finite type (SFT) is defined by:
- A finite alphabet A.
- A finite set \mathcal{F} of finite patterns on rectangles.
- The SFT X is defined to be all elements of $A^{\mathbb{Z}^{2}}$ (i.e., configurations on the entire Z^{2} lattice) which do not contain any of the words from \mathcal{F}.
- Example 1: the two-dimensional golden mean shift $G^{(2)}$: $A=\{0,1\}, \mathcal{F}=\left\{\right.$ any pair of adjacent $\left.1^{\prime} s\right\}=\left\{11,{ }_{1}^{1}\right\}$.
- Typical allowed configuration:

.	0	1	0	0	0	0	0	0	1	0	0	0	1	0	.
.	0	0	1	0	0	1	0	1	0	0	1	0	0	0	.
.	0	0	0	1	0	0	0	0	0	1	0	1	0	0	.
.	0	1	0	0	0	1	0	1	0	0	0	0	1	0	.

Motivation for 2-dimensional SFT's: Holographic storage

More examples of 2-dimensional SFT's

- NAK (Non-attacking kings): $\mathcal{F}=\left\{11,{ }_{1}^{1},{ }^{1}{ }_{1}, 1_{1}{ }^{1}\right\}$.

More examples of 2-dimensional SFT's

- NAK (Non-attacking kings): $\mathcal{F}=\left\{11,{ }_{1}^{1},{ }^{1}{ }_{1},{ }_{1}{ }^{1}\right\}$.
-

.	0	1	0	0	0	0	0	0	0	0	0	0	1	0	.
.	0	0	0	0	0	1	0	1	0	0	0	0	0	0	.
.	0	0	0	1	0	0	0	0	0	1	0	1	0	0	.
.	0	1	0	0	0	1	0	1	0	0	0	0	0	0	.

More examples of 2-dimensional SFT's

- RWIM (Read/Write Isolated Memory): $\mathcal{F}=\left\{\begin{array}{lll}11, & { }_{1}, & \left.1^{1}\right\}\end{array}\right\}$.

More examples of 2-dimensional SFT's

- RWIM (Read/Write Isolated Memory): $\mathcal{F}=\left\{\begin{array}{lll}11 & { }^{1}{ }_{1}, & \left.1^{1}\right\} .\end{array}\right.$
- $0 \begin{array}{lllllllllllllll} & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & .\end{array}$
- $0 \begin{array}{lllllllllllllll} & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & .\end{array}$
- $000 \begin{array}{llllllllllllll} & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & .\end{array}$
- $0 \begin{array}{llllllllllllll} & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0\end{array}$.

Entropy of 2-dimensional SFT's

- A pattern w on a rectangle of any size is admissible if it contains no sub-pattern from \mathcal{F}.

Entropy of 2-dimensional SFT's

- A pattern w on a rectangle of any size is admissible if it contains no sub-pattern from \mathcal{F}.
- Let $B_{n \times n}(X)$ be the set of admissible patterns of size $n \times n$.

Entropy of 2-dimensional SFT's

- A pattern w on a rectangle of any size is admissible if it contains no sub-pattern from \mathcal{F}.
- Let $B_{n \times n}(X)$ be the set of admissible patterns of size $n \times n$.
- Define the entropy $h(X)=\lim _{n \rightarrow \infty} \frac{\log \left|B_{n \times n}(X)\right|}{n^{2}}$

Entropy of 2-dimensional SFT's

- A pattern w on a rectangle of any size is admissible if it contains no sub-pattern from \mathcal{F}.
- Let $B_{n \times n}(X)$ be the set of admissible patterns of size $n \times n$.
- Define the entropy $h(X)=\lim _{n \rightarrow \infty} \frac{\log \left|B_{n \times n}(X)\right|}{n^{2}}$
- At the expense of enlarging the alphabet, we can assume that \mathcal{F} consists of patterns on 1×2 and 2×1 rectangles, i.e. nearest neighbours.

Entropy of 2-dimensional SFT's

- A pattern w on a rectangle of any size is admissible if it contains no sub-pattern from \mathcal{F}.
- Let $B_{n \times n}(X)$ be the set of admissible patterns of size $n \times n$.
- Define the entropy $h(X)=\lim _{n \rightarrow \infty} \frac{\log \left|B_{n \times n}(X)\right|}{n^{2}}$
- At the expense of enlarging the alphabet, we can assume that \mathcal{F} consists of patterns on 1×2 and 2×1 rectangles, i.e. nearest neighbours.
- This yields horizontal and vertical transition matrices.

Entropy of 2-dimensional SFT's

- A pattern w on a rectangle of any size is admissible if it contains no sub-pattern from \mathcal{F}.
- Let $B_{n \times n}(X)$ be the set of admissible patterns of size $n \times n$.
- Define the entropy $h(X)=\lim _{n \rightarrow \infty} \frac{\log \left|B_{n \times n}(X)\right|}{n^{2}}$
- At the expense of enlarging the alphabet, we can assume that \mathcal{F} consists of patterns on 1×2 and 2×1 rectangles, i.e. nearest neighbours.
- This yields horizontal and vertical transition matrices.
- However, there is no known way to compute entropy from these matrices.

Entropy of 2-dimensional SFT's

- A pattern w on a rectangle of any size is admissible if it contains no sub-pattern from \mathcal{F}.
- Let $B_{n \times n}(X)$ be the set of admissible patterns of size $n \times n$.
- Define the entropy $h(X)=\lim _{n \rightarrow \infty} \frac{\log \left|B_{n \times n}(X)\right|}{n^{2}}$
- At the expense of enlarging the alphabet, we can assume that \mathcal{F} consists of patterns on 1×2 and 2×1 rectangles, i.e. nearest neighbours.
- This yields horizontal and vertical transition matrices.
- However, there is no known way to compute entropy from these matrices.
- exact value of entropy is known for only a handful of 2-D SFT's (unknown even for $G^{(2)}$).

Entropy of 2-dimensional SFT's

- A pattern w on a rectangle of any size is admissible if it contains no sub-pattern from \mathcal{F}.
- Let $B_{n \times n}(X)$ be the set of admissible patterns of size $n \times n$.
- Define the entropy $h(X)=\lim _{n \rightarrow \infty} \frac{\log \left|B_{n \times n}(X)\right|}{n^{2}}$
- At the expense of enlarging the alphabet, we can assume that \mathcal{F} consists of patterns on 1×2 and 2×1 rectangles, i.e. nearest neighbours.
- This yields horizontal and vertical transition matrices.
- However, there is no known way to compute entropy from these matrices.
- exact value of entropy is known for only a handful of 2-D SFT's (unknown even for $G^{(2)}$).
- Even worse: given \mathcal{F}, it is algorithmically undecidable whether or not $X=\varnothing$!

Computing entropy

- Holy Grail: an exact formula for the entropy of a 2-dimensional SFT, in particular $G^{(2)}$.

Computing entropy

- Holy Grail: an exact formula for the entropy of a 2-dimensional SFT, in particular $G^{(2)}$.
- If not an exact formula, try to efficiently estimate $h\left(G^{(2)}\right)$.

Computing entropy

- Holy Grail: an exact formula for the entropy of a 2-dimensional SFT, in particular $G^{(2)}$.
- If not an exact formula, try to efficiently estimate $h\left(G^{(2)}\right)$.
- Current best estimates (Friedland, 2007):
$0.58789116177534 \leq h\left(G^{(2)}\right) \leq 0.58789116177535$.

Strip systems

- Define H_{n} to be the set of configurations on an n-high strip which do not include any of the forbidden neighbours in \mathcal{F}.

\uparrow	\ldots	0	1	0	0	0	0	0	0	1	0	0	0	1	0	\ldots
n	\ldots	0	0	1	0	0	1	0	1	0	0	1	0	0	0	\ldots
\mid	\ldots	0	0	0	1	0	0	0	0	0	1	0	1	0	0	\ldots
\downarrow	\ldots	0	1	0	0	0	1	0	1	0	0	0	0	1	0	\ldots
.	

Strip systems

- Define H_{n} to be the set of configurations on an n-high strip which do not include any of the forbidden neighbours in \mathcal{F}.

\uparrow	\ldots	0	1	0	0	0	0	0	0	1	0	0	0	1	0	\ldots
n	\ldots	0	0	1	0	0	1	0	1	0	0	1	0	0	0	\ldots
\mid	\ldots	0	0	0	1	0	0	0	0	0	1	0	1	0	0	\ldots
\downarrow	\ldots	0	1	0	0	0	1	0	1	0	0	0	0	1	0	\ldots
.	

- Then H_{n} itself can be thought of as a 1-dimensional SFT:

Strip systems

- Define H_{n} to be the set of configurations on an n-high strip which do not include any of the forbidden neighbours in \mathcal{F}.

\uparrow	\ldots	0	1	0	0	0	0	0	0	1	0	0	0	1	0	\ldots
n	\ldots	0	0	1	0	0	1	0	1	0	0	1	0	0	0	\ldots
\mid	\ldots	0	0	0	1	0	0	0	0	0	1	0	1	0	0	\ldots
\downarrow	\ldots	0	1	0	0	0	1	0	1	0	0	0	0	1	0	\ldots
..	

- Then H_{n} itself can be thought of as a $\underset{a_{n}}{1 \text { dimensional SFT: }}$
- Alphabet A_{n} : set of n-letter columns $\underset{\substack{a_{2} \\ a_{1}}}{\vdots}$ such that each $\frac{a_{i}}{a_{i-1}}$ is admissible.

Strip systems

- Define H_{n} to be the set of configurations on an n-high strip which do not include any of the forbidden neighbours in \mathcal{F}.

\uparrow	\ldots	0	1	0	0	0	0	0	0	1	0	0	0	1	0	\ldots
n	\ldots	0	0	1	0	0	1	0	1	0	0	1	0	0	0	\ldots
\mid	\ldots	0	0	0	1	0	0	0	0	0	1	0	1	0	0	\ldots
\downarrow	\ldots	0	1	0	0	0	1	0	1	0	0	0	0	1	0	\ldots
..	

- Then H_{n} itself can be thought of as a 1 -dimensional SFT:
- Alphabet A_{n} : set of n-letter columns $\underset{\substack{a_{2} \\ a_{1}}}{\vdots}$ such that each $\frac{a_{i}}{a_{i-1}}$ is admissible.

$$
\begin{array}{ll}
a_{n} & b_{n}
\end{array}
$$

- The pair $\begin{array}{ccc}\vdots & \vdots \\ a_{2} & b_{2} \\ a_{1} & b_{1}\end{array}$ may appear if and only if each $a_{i} b_{i}$ is admissible.

Lower Bounds on Entropy, via strip systems

- For any n, define $h_{n}=h\left(H_{n}\right)$.

Lower Bounds on Entropy, via strip systems

- For any n, define $h_{n}=h\left(H_{n}\right)$.
- Fact: $h(X)=\lim _{n \rightarrow \infty} \frac{h_{n}}{n}$.

Lower Bounds on Entropy, via strip systems

- For any n, define $h_{n}=h\left(H_{n}\right)$.
- Fact: $h(X)=\lim _{n \rightarrow \infty} \frac{h_{n}}{n}$.
- Assume horizontal constraint is symmetric: $a b$ is allowed if and only if ba is allowed.

Lower Bounds on Entropy, via strip systems

- For any n, define $h_{n}=h\left(H_{n}\right)$.
- Fact: $h(X)=\lim _{n \rightarrow \infty} \frac{h_{n}}{n}$.
- Assume horizontal constraint is symmetric: $a b$ is allowed if and only if ba is allowed.
- Transition matrix M_{n}, for H_{n}, is symmetric.

Lower Bounds on Entropy, via strip systems

- For any n, define $h_{n}=h\left(H_{n}\right)$.
- Fact: $h(X)=\lim _{n \rightarrow \infty} \frac{h_{n}}{n}$.
- Assume horizontal constraint is symmetric: $a b$ is allowed if and only if ba is allowed.
- Transition matrix M_{n}, for H_{n}, is symmetric.
- $h_{n}=\log \left(\lambda\left(M_{n}\right)\right)$

Lower Bounds on Entropy, via strip systems

- For any n, define $h_{n}=h\left(H_{n}\right)$.
- Fact: $h(X)=\lim _{n \rightarrow \infty} \frac{h_{n}}{n}$.
- Assume horizontal constraint is symmetric: $a b$ is allowed if and only if ba is allowed.
- Transition matrix M_{n}, for H_{n}, is symmetric.
- $h_{n}=\log \left(\lambda\left(M_{n}\right)\right)$
- $\lambda\left(M_{n}\right)$ is lower bounded by Rayleigh quotient:

Let $\mathbf{1}_{n}$ denote the vector of all 1 's. For any p

$$
\lambda\left(\left(M_{n}\right)^{p}\right) \geq \frac{\mathbf{1}_{n}\left(M_{n}\right)^{p} \mathbf{1}_{n}^{\mathrm{t}}}{\mathbf{1}_{n} \cdot \mathbf{1}_{n}^{\mathrm{t}}}
$$

where numerator is a count of admissible $n \times p$ patterns.

- (Markley and Paul, 1981)

$$
h(X)=\lim _{n \rightarrow \infty} \frac{h_{n}}{n}=\lim _{n \rightarrow \infty} \frac{\log \left(\lambda\left(M_{n}\right)\right)}{n} \geq \lim _{n \rightarrow \infty} \frac{1}{p n} \log \frac{\mathbf{1}_{n}\left(M_{n}\right)^{p} \mathbf{1}_{n}^{\mathrm{t}}}{\mathbf{1}_{n} \cdot \mathbf{1}_{n}^{\mathrm{t}}}
$$

- (Markley and Paul, 1981)

$$
h(X)=\lim _{n \rightarrow \infty} \frac{h_{n}}{n}=\lim _{n \rightarrow \infty} \frac{\log \left(\lambda\left(M_{n}\right)\right)}{n} \geq \lim _{n \rightarrow \infty} \frac{1}{p n} \log \frac{\mathbf{1}_{n}\left(M_{n}\right)^{p} \mathbf{1}_{n}^{\mathrm{t}}}{\mathbf{1}_{n} \cdot \mathbf{1}_{n}^{\mathrm{t}}}
$$

\uparrow	\ldots	0	1	0	0	0	0	0	0	1	0	0	0	1	0	\ldots
n	\ldots	0	0	1	0	0	1	0	1	0	0	1	0	0	0	\ldots
\mid	\ldots	0	0	0	1	0	0	0	0	0	1	0	1	0	0	\ldots
\downarrow	\ldots	0	1	0	0	0	1	0	1	0	0	0	0	1	0	\ldots

- (Markley and Paul, 1981)

$$
h(X)=\lim _{n \rightarrow \infty} \frac{h_{n}}{n}=\lim _{n \rightarrow \infty} \frac{\log \left(\lambda\left(M_{n}\right)\right)}{n} \geq \lim _{n \rightarrow \infty} \frac{1}{p n} \log \frac{\mathbf{1}_{n}\left(M_{n}\right)^{p} \mathbf{1}_{n}^{\mathrm{t}}}{\mathbf{1}_{n} \cdot \mathbf{1}_{n}^{\mathrm{t}}}
$$

	\leftarrow	-	-	-	-	p	-	-	-	-	\longrightarrow	
\uparrow	1	0	0	0	0	0	0	1	0	0	0	
n	0	1	0	0	1	0	1	0	0	1	0	
\mid	0	0	1	0	0	0	0	0	1	0	1	
\downarrow	1	0	0	0	1	0	1	0	0	0	0	

- (Markley and Paul, 1981)

$$
h(X)=\lim _{n \rightarrow \infty} \frac{h_{n}}{n}=\lim _{n \rightarrow \infty} \frac{\log \left(\lambda\left(M_{n}\right)\right)}{n} \geq \lim _{n \rightarrow \infty} \frac{1}{p n} \log \frac{\mathbf{1}_{n}\left(M_{n}\right)^{p} \mathbf{1}_{n}^{\mathrm{t}}}{\mathbf{1}_{n} \cdot \mathbf{1}_{n}^{\mathrm{t}}}
$$

-

	\leftarrow	-	-	-	-	p	-	-	-	-	\longrightarrow	
\uparrow	1	0	0	0	0	0	0	1	0	0	0	
n	0	1	0	0	1	0	1	0	0	1	0	
\mid	0	0	1	0	0	0	0	0	1	0	1	
\downarrow	1	0	0	0	1	0	1	0	0	0	0	

- Letting V_{p} denote a vertical transition matrix of width p,

$$
\mathbf{1}_{n}\left(M_{n}\right)^{p} \mathbf{1}_{n}^{\mathrm{t}}=\mathbf{1}_{p}\left(V_{p}\right)^{n} \mathbf{1}_{\rho}^{\mathrm{t}}
$$

(can count patterns generated from left to right or patterns generated from bottom to top)

- (Markley and Paul, 1981)

$$
h(X)=\lim _{n \rightarrow \infty} \frac{h_{n}}{n}=\lim _{n \rightarrow \infty} \frac{\log \left(\lambda\left(M_{n}\right)\right)}{n} \geq \lim _{n \rightarrow \infty} \frac{1}{p n} \log \frac{\mathbf{1}_{n}\left(M_{n}\right)^{p} \mathbf{1}_{n}^{\mathrm{t}}}{\mathbf{1}_{n} \cdot \mathbf{1}_{n}^{\mathrm{t}}}
$$

-

	\leftarrow	-	-	-	-	p	-	-	-	-	\longrightarrow	
\uparrow	1	0	0	0	0	0	0	1	0	0	0	
n	0	1	0	0	1	0	1	0	0	1	0	
\mid	0	0	1	0	0	0	0	0	1	0	1	
\downarrow	1	0	0	0	1	0	1	0	0	0	0	

- Letting V_{p} denote a vertical transition matrix of width p,

$$
\mathbf{1}_{n}\left(M_{n}\right)^{p} \mathbf{1}_{n}^{\mathrm{t}}=\mathbf{1}_{p}\left(V_{p}\right)^{n} \mathbf{1}_{p}^{\mathrm{t}}
$$

(can count patterns generated from left to right or patterns generated from bottom to top)

- Thus,

$$
h(X) \geq(1 / p)\left(\log \left(\lambda\left(V_{p}\right)\right)-\log \left(\lambda\left(V_{0}\right)\right)\right)
$$

- (Calkin and Wilf, 1999)

$$
h(X) \geq \lim _{m \rightarrow \infty} \frac{1}{p n} \log \frac{\mathbf{1}_{n}\left(M_{n}\right)^{p+2 q} \mathbf{1}_{n}^{\mathrm{t}}}{\mathbf{1}_{n}\left(M_{n}\right)^{2 q} \mathbf{1}_{n}^{\mathrm{t}}}
$$

- (Calkin and Wilf, 1999)

$$
h(X) \geq \lim _{m \rightarrow \infty} \frac{1}{p n} \log \frac{\mathbf{1}_{n}\left(M_{n}\right)^{p+2 q} \mathbf{1}_{n}^{\mathrm{t}}}{\mathbf{1}_{n}\left(M_{n}\right)^{2 q} \mathbf{1}_{n}^{\mathrm{t}}}
$$

- Thus,

$$
h(X) \geq(1 / p)\left(\log \left(\lambda\left(V_{p+2 q}\right)\right)-\log \left(\lambda\left(V_{2 q}\right)\right)\right)
$$

- (Calkin and Wilf, 1999)

$$
h(X) \geq \lim _{m \rightarrow \infty} \frac{1}{p n} \log \frac{\mathbf{1}_{n}\left(M_{n}\right)^{p+2 q} \mathbf{1}_{n}^{\mathrm{t}}}{\mathbf{1}_{n}\left(M_{n}\right)^{2 q} \mathbf{1}_{n}^{\mathrm{t}}}
$$

- Thus,

$$
h(X) \geq(1 / p)\left(\log \left(\lambda\left(V_{p+2 q}\right)\right)-\log \left(\lambda\left(V_{2 q}\right)\right)\right)
$$

- Led to Friedland's (2007) lower bound for $h\left(G^{(2)}\right)$.
- (Calkin and Wilf, 1999)

$$
h(X) \geq \lim _{m \rightarrow \infty} \frac{1}{p n} \log \frac{\mathbf{1}_{n}\left(M_{n}\right)^{p+2 q} \mathbf{1}_{n}^{\mathrm{t}}}{\mathbf{1}_{n}\left(M_{n}\right)^{2 q} \mathbf{1}_{n}^{\mathrm{t}}}
$$

- Thus,

$$
h(X) \geq(1 / p)\left(\log \left(\lambda\left(V_{p+2 q}\right)\right)-\log \left(\lambda\left(V_{2 q}\right)\right)\right)
$$

- Led to Friedland's (2007) lower bound for $h\left(G^{(2)}\right)$.
- All above used $\mathbf{1}_{n}$ so that the limit above may be computed as the log of largest eigenvalue of a vertical transition matrix.

Improved Lower bounds

- (Louidor and Marcus, 2009) Improved Rayleigh Method: Replace $\mathbf{1}_{n}$ with sequence of vectors \mathbf{y}_{n} such that $\mathbf{y}_{n}\left(M_{n}\right)^{p} \mathbf{y}_{n}^{\mathrm{t}}$ represents weighted counts of patterns; incorporate \mathbf{y}_{n} into a vertical transition matrix \tilde{V}_{p} and find x_{p} such that

$$
\mathbf{y}_{n}\left(M_{n}\right)^{p} \mathbf{y}_{n}^{\mathrm{t}}=\mathbf{x}_{p}\left(\tilde{V}_{p}\right)^{n} \mathbf{x}_{p}^{\mathrm{t}}
$$

Improved Lower bounds

- (Louidor and Marcus, 2009) Improved Rayleigh Method: Replace $\mathbf{1}_{n}$ with sequence of vectors \mathbf{y}_{n} such that $\mathbf{y}_{n}\left(M_{n}\right)^{p} \mathbf{y}_{n}^{\mathrm{t}}$ represents weighted counts of patterns; incorporate \mathbf{y}_{n} into a vertical transition matrix \tilde{V}_{p} and find x_{p} such that

$$
\mathbf{y}_{n}\left(M_{n}\right)^{p} \mathbf{y}_{n}^{\mathrm{t}}=\mathbf{x}_{p}\left(\tilde{V}_{p}\right)^{n} \mathbf{x}_{p}^{\mathrm{t}}
$$

Constraint	Old lower bound	New lower bound	Upper bound
NAK	0.4250636891	0.4250767745	0.4250767997
RWIM	0.5350150	0.5350151497	0.5350428519

Convergence of entropy approximations

- For $G^{(2)}, h_{n} / n$ convergence appears to have error $\Theta\left(\frac{1}{n}\right)$.

Convergence of entropy approximations

- For $G^{(2)}, h_{n} / n$ convergence appears to have error $\Theta\left(\frac{1}{n}\right)$.
- Computation of h_{n} takes exponential time.

Convergence of entropy approximations

- For $G^{(2)}, h_{n} / n$ convergence appears to have error $\Theta\left(\frac{1}{n}\right)$.
- Computation of h_{n} takes exponential time.
- In the 80's and 90's, data suggested that $\lim _{n \rightarrow \infty} h_{n+1}-h_{n}=h\left(G^{(2)}\right)$, and that the error is exponentially small.

Convergence of entropy approximations

- For $G^{(2)}, h_{n} / n$ convergence appears to have error $\Theta\left(\frac{1}{n}\right)$.
- Computation of h_{n} takes exponential time.
- In the 80's and 90's, data suggested that $\lim _{n \rightarrow \infty} h_{n+1}-h_{n}=h\left(G^{(2)}\right)$, and that the error is exponentially small.
- However, a proof of convergence of $h_{n+1}-h_{n}$ for any nondegenerate \mathbb{Z}^{2} SFT has been an open problem.

An excellent approximation (but not quite the Holy Grail)

- Theorem (Pavlov, 2009): There exist positive constants A and B so that $\left|h_{n+1}-h_{n}-h\left(G^{(2)}\right)\right|<A e^{-B n}$ for any n.

An excellent approximation (but not quite the Holy Grail)

- Theorem (Pavlov, 2009): There exist positive constants A and B so that $\left|h_{n+1}-h_{n}-h\left(G^{(2)}\right)\right|<A e^{-B n}$ for any n.
- Corollary (Pavlov, 2009): \exists a polynomial $p(n)$ so that $h\left(G^{(2)}\right)$ can be approximated to within $\frac{1}{n}$ in $p(n)$ steps.

An excellent approximation (but not quite the Holy Grail)

- Theorem (Pavlov, 2009): There exist positive constants A and B so that $\left|h_{n+1}-h_{n}-h\left(G^{(2)}\right)\right|<A e^{-B n}$ for any n.
- Corollary (Pavlov, 2009): \exists a polynomial $p(n)$ so that $h\left(G^{(2)}\right)$ can be approximated to within $\frac{1}{n}$ in $p(n)$ steps.
- 2-dimensional characterization of set of entropies:

An excellent approximation (but not quite the Holy Grail)

- Theorem (Pavlov, 2009): There exist positive constants A and B so that $\left|h_{n+1}-h_{n}-h\left(G^{(2)}\right)\right|<A e^{-B n}$ for any n.
- Corollary (Pavlov, 2009): \exists a polynomial $p(n)$ so that $h\left(G^{(2)}\right)$ can be approximated to within $\frac{1}{n}$ in $p(n)$ steps.
- 2-dimensional characterization of set of entropies:
- Theorem (Hochman and Meyerovitch, 2007): A number h is the entropy of a 2-dimensional SFT if and only if there is a Turing machine that can generate a list of rationals $\frac{p_{n}}{q_{n}}$ which approach h from above.

An excellent approximation (but not quite the Holy Grail)

- Theorem (Pavlov, 2009): There exist positive constants A and B so that $\left|h_{n+1}-h_{n}-h\left(G^{(2)}\right)\right|<A e^{-B n}$ for any n.
- Corollary (Pavlov, 2009): \exists a polynomial $p(n)$ so that $h\left(G^{(2)}\right)$ can be approximated to within $\frac{1}{n}$ in $p(n)$ steps.
- 2-dimensional characterization of set of entropies:
- Theorem (Hochman and Meyerovitch, 2007): A number h is the entropy of a 2-dimensional SFT if and only if there is a Turing machine that can generate a list of rationals $\frac{p_{n}}{q_{n}}$ which approach h from above.
- Strikingly different from Lind's 1-dimensional characterization.

An excellent approximation (but not quite the Holy Grail)

- Theorem (Pavlov, 2009): There exist positive constants A and B so that $\left|h_{n+1}-h_{n}-h\left(G^{(2)}\right)\right|<A e^{-B n}$ for any n.
- Corollary (Pavlov, 2009): \exists a polynomial $p(n)$ so that $h\left(G^{(2)}\right)$ can be approximated to within $\frac{1}{n}$ in $p(n)$ steps.
- 2-dimensional characterization of set of entropies:
- Theorem (Hochman and Meyerovitch, 2007): A number h is the entropy of a 2-dimensional SFT if and only if there is a Turing machine that can generate a list of rationals $\frac{p_{n}}{q_{n}}$ which approach h from above.
- Strikingly different from Lind's 1-dimensional characterization.
- For a typical such entropy, $p_{n} / q_{n} \rightarrow h$ very slowly and there is no indication of error size, $\left(p_{n} / q_{n}-h\right)$.

An excellent approximation (but not quite the Holy Grail)

- Theorem (Pavlov, 2009): There exist positive constants A and B so that $\left|h_{n+1}-h_{n}-h\left(G^{(2)}\right)\right|<A e^{-B n}$ for any n.
- Corollary (Pavlov, 2009): \exists a polynomial $p(n)$ so that $h\left(G^{(2)}\right)$ can be approximated to within $\frac{1}{n}$ in $p(n)$ steps.
- 2-dimensional characterization of set of entropies:
- Theorem (Hochman and Meyerovitch, 2007): A number h is the entropy of a 2-dimensional SFT if and only if there is a Turing machine that can generate a list of rationals $\frac{p_{n}}{q_{n}}$ which approach h from above.
- Strikingly different from Lind's 1-dimensional characterization.
- For a typical such entropy, $p_{n} / q_{n} \rightarrow h$ very slowly and there is no indication of error size, $\left(p_{n} / q_{n}-h\right)$.
- Thus, $h\left(G^{(2)}\right)$ is much "nicer" than the typical entropy.

Outline of Pavlov's Proof

- Introduce a stationary process μ_{n} on each H_{n} of maximal measure-theoretic (Shannon) entropy: $h_{\mu_{n}}=h\left(H_{n}\right)$.

Outline of Pavlov's Proof

- Introduce a stationary process μ_{n} on each H_{n} of maximal measure-theoretic (Shannon) entropy: $h_{\mu_{n}}=h\left(H_{n}\right)$.
- Decompose $h_{\mu_{n}}$ into a sum of n conditional measure-theoretic entropies, row by row.

Outline of Pavlov's Proof

- Introduce a stationary process μ_{n} on each H_{n} of maximal measure-theoretic (Shannon) entropy: $h_{\mu_{n}}=h\left(H_{n}\right)$.
- Decompose $h_{\mu_{n}}$ into a sum of n conditional measure-theoretic entropies, row by row.
- Pair off:

Outline of Pavlov's Proof

- Introduce a stationary process μ_{n} on each H_{n} of maximal measure-theoretic (Shannon) entropy: $h_{\mu_{n}}=h\left(H_{n}\right)$.
- Decompose $h_{\mu_{n}}$ into a sum of n conditional measure-theoretic entropies, row by row.
- Pair off:
- top $n / 2$ rows of $h_{\mu_{n+1}}$ and $h_{\mu_{n}}$

Outline of Pavlov's Proof

- Introduce a stationary process μ_{n} on each H_{n} of maximal measure-theoretic (Shannon) entropy: $h_{\mu_{n}}=h\left(H_{n}\right)$.
- Decompose $h_{\mu_{n}}$ into a sum of n conditional measure-theoretic entropies, row by row.
- Pair off:
- top $n / 2$ rows of $h_{\mu_{n+1}}$ and $h_{\mu_{n}}$
- bottom $n / 2$ rows of $h_{\mu_{n+1}}$ and $h_{\mu_{n}}$

Outline of Pavlov's Proof

- Introduce a stationary process μ_{n} on each H_{n} of maximal measure-theoretic (Shannon) entropy: $h_{\mu_{n}}=h\left(H_{n}\right)$.
- Decompose $h_{\mu_{n}}$ into a sum of n conditional measure-theoretic entropies, row by row.
- Pair off:
- top $n / 2$ rows of $h_{\mu_{n+1}}$ and $h_{\mu_{n}}$
- bottom $n / 2$ rows of $h_{\mu_{n+1}}$ and $h_{\mu_{n}}$
- the middle row of $h_{\mu_{n+1}}$ remains.

Outline of Pavlov's Proof

- Introduce a stationary process μ_{n} on each H_{n} of maximal measure-theoretic (Shannon) entropy: $h_{\mu_{n}}=h\left(H_{n}\right)$.
- Decompose $h_{\mu_{n}}$ into a sum of n conditional measure-theoretic entropies, row by row.
- Pair off:
- top $n / 2$ rows of $h_{\mu_{n+1}}$ and $h_{\mu_{n}}$
- bottom $n / 2$ rows of $h_{\mu_{n+1}}$ and $h_{\mu_{n}}$
- the middle row of $h_{\mu_{n+1}}$ remains.

Percolation Model

- differences between corresponding rows decay exponentially

Percolation Model

- differences between corresponding rows decay exponentially
- middle row converges exponentially

Percolation Model

- differences between corresponding rows decay exponentially
- middle row converges exponentially
- All exponential decay/convergence statements come from comparison with an associated percolation process (vandenBerg-Maes (1994)):

Percolation Model

- differences between corresponding rows decay exponentially
- middle row converges exponentially
- All exponential decay/convergence statements come from comparison with an associated percolation process (vandenBerg-Maes (1994)):
- On the Z^{2} lattice, a site is "open" with probability p and closed with probability $1-p$, independent from site to site.

Percolation Model

- differences between corresponding rows decay exponentially
- middle row converges exponentially
- All exponential decay/convergence statements come from comparison with an associated percolation process (vandenBerg-Maes (1994)):
- On the Z^{2} lattice, a site is "open" with probability p and closed with probability $1-p$, independent from site to site.
- For $p<p_{c}$, the critical probability, the probability of an "open" path from the origin to the boundary of an $n \times n$ square decays exponentially fast in n.

Generalizations

Theorem (Marcus and Pavlov, 2009):

- Exponential approximations (differences of strip entropies) to entropy for a class of 2-dimensional SFT's (generalizing Pavlov's result for $\left.G^{(2)}\right)$.

Generalizations

Theorem (Marcus and Pavlov, 2009):

- Exponential approximations (differences of strip entropies) to entropy for a class of 2-dimensional SFT's (generalizing Pavlov's result for $\left.G^{(2)}\right)$.
- Exponential approximations (differences of strip entropies) to measure-theoretic entropy for a class of Markov Random Fields (2-dimensional analogue of 1-dimensional Markov chain and probabilistic analogue of 2-dimensional SFT)

1-dimensional sofic shifts

- A 1 dimensional sofic shift is the set of all bi-infinite sequences obtained from a labelled finite directed graph.

1-dimensional sofic shifts

- A 1 dimensional sofic shift is the set of all bi-infinite sequences obtained from a labelled finite directed graph.
- Examples: All 1-dimensional SFT's.

1-dimensional sofic shifts

- A 1 dimensional sofic shift is the set of all bi-infinite sequences obtained from a labelled finite directed graph.
- Examples: All 1-dimensional SFT's.
- Example: (a sofic, non-SFT shift) The EVEN Shift $A=\{0,1\}$:

More examples of 1-dimensional sofic, non-SFT, shifts

- The ODD Shift $A=\{0,1\}$:

More examples of 1-dimensional sofic, non-SFT, shifts

- The ODD Shift $A=\{0,1\}$:

- The $\mathrm{CHG}(b)$ shift $\bar{A}=\{+1,-1\}$:

$w_{1} \ldots w_{m} \in B_{m}(X) \Longleftrightarrow$ for all $1 \leq s \leq t \leq m,\left|\sum_{i=s}^{t} w_{i}\right| \leq b$

2-dimensional sofic shifts

- A 2-dimensional sofic shift is the set of all configurations on the entire \mathbb{Z}^{2} lattice obtained from two (one horizontal and one vertical) finite directed labelled graphs with the same set of edges.

2-dimensional sofic shifts

- A 2-dimensional sofic shift is the set of all configurations on the entire \mathbb{Z}^{2} lattice obtained from two (one horizontal and one vertical) finite directed labelled graphs with the same set of edges.
- Examples:

2-dimensional sofic shifts

- A 2-dimensional sofic shift is the set of all configurations on the entire \mathbb{Z}^{2} lattice obtained from two (one horizontal and one vertical) finite directed labelled graphs with the same set of edges.
- Examples:
- All 2-dimensional SFT's.

2-dimensional sofic shifts

- A 2-dimensional sofic shift is the set of all configurations on the entire \mathbb{Z}^{2} lattice obtained from two (one horizontal and one vertical) finite directed labelled graphs with the same set of edges.
- Examples:
- All 2-dimensional SFT's.
- $\mathrm{EVEN}^{\otimes^{2}}$: all rows and columns satisfy the 1-dimensional EVEN shift.

2-dimensional sofic shifts

- A 2-dimensional sofic shift is the set of all configurations on the entire \mathbb{Z}^{2} lattice obtained from two (one horizontal and one vertical) finite directed labelled graphs with the same set of edges.
- Examples:
- All 2-dimensional SFT's.
- $\mathrm{EVEN}^{\otimes^{2}}$: all rows and columns satisfy the 1-dimensional EVEN shift.
- $\operatorname{CHG}(b)^{\otimes^{2}}$: all rows and columns satisfy the 1-dimensional CHG(b) shift.

Computing entropy of 2-dimensional sofic shifts

- (Louidor and Marcus, 2009): applied improved Rayleigh method to estimate entropies of sofic shifts EVEN ${ }^{\otimes 2}$ and CHG(3) $)^{\otimes^{2}}$:

Constraint	Old lower bound	New lower bound	Upper bound
EVEN $^{\otimes 2}$	0.4385027973	0.4402086447	0.4452873312
CHG $(3)^{\otimes 2}$	0.4210209862	0.4222689819	0.5328488954

Computing entropy of 2-dimensional sofic shifts

- (Louidor and Marcus, 2009): applied improved Rayleigh method to estimate entropies of sofic shifts EVEN ${ }^{\otimes^{2}}$ and CHG(3) $)^{\otimes^{2}}$:

Constraint	Old lower bound	New lower bound	Upper bound
EVEN $^{\otimes 2}$	0.4385027973	0.4402086447	0.4452873312
CHG $\left.^{(3)}\right)^{\otimes 2}$	0.4210209862	0.4222689819	0.5328488954

- Theorem (Louidor and Marcus, 2009): For all dimensions D,

Computing entropy of 2-dimensional sofic shifts

- (Louidor and Marcus, 2009): applied improved Rayleigh method to estimate entropies of sofic shifts EVEN ${ }^{\otimes^{2}}$ and CHG(3) ${ }^{\otimes^{2} \text { : }}$

Constraint	Old lower bound	New lower bound	Upper bound
EVEN $^{\otimes 2}$	0.4385027973	0.4402086447	0.4452873312
CHG $\left.^{(3)}\right)^{\otimes 2}$	0.4210209862	0.4222689819	0.5328488954

- Theorem (Louidor and Marcus, 2009): For all dimensions D,
- $h\left(\mathrm{ODD}^{\otimes^{D}}\right)=1 / 2$.

Computing entropy of 2-dimensional sofic shifts

- (Louidor and Marcus, 2009): applied improved Rayleigh method to estimate entropies of sofic shifts EVEN ${ }^{\otimes^{2}}$ and CHG(3) $)^{\otimes^{2}}$:

Constraint	Old lower bound	New lower bound	Upper bound
EVEN $^{\otimes 2}$	0.4385027973	0.4402086447	0.4452873312
CHG $\left.^{(3)}\right)^{\otimes 2}$	0.4210209862	0.4222689819	0.5328488954

- Theorem (Louidor and Marcus, 2009): For all dimensions D,
- $h\left(\mathrm{ODD}^{\otimes^{D}}\right)=1 / 2$.
- $h\left(\operatorname{CHG}(2)^{\otimes^{D}}\right)=1 / 2^{d}$.

Why is $h\left(\mathrm{CHG}(2)^{\otimes D}\right) \geq 1 / 2^{D} ?$

- $X=\mathrm{CHG}(2)^{\otimes D}$.
- $D=2$. Consider the two "checkerboard" 2×2 arrays, $\Gamma^{(0)}, \Gamma^{(1)}$

$$
\Gamma^{(0)}=\left(\begin{array}{cc}
+ & - \\
- & +
\end{array}\right) \quad \Gamma^{(1)}=\left(\begin{array}{cc}
- & + \\
+ & -
\end{array}\right)
$$

- Any tiling consisting of $n \times n$ copies of $\Gamma^{(0)}$ or $\Gamma^{(1)}$ is a $2 n \times 2 n$ array that satisfies X.

$$
\left(\begin{array}{cccc}
\Gamma^{\left(i_{1,1}\right)} & \Gamma^{\left(i_{1,2}\right)} & \ldots & \Gamma^{\left(i_{1, n}\right)} \\
\Gamma^{\left(i_{2,1}\right)} & \Gamma^{\left(i_{2,2}\right)} & \ldots & \Gamma^{\left(i_{2, n}\right)} \\
\vdots & \vdots & \ddots & \vdots \\
\Gamma^{\left(i_{n, 1}\right)} & \Gamma^{\left(i_{n, 2}\right)} & \ldots & \Gamma^{\left(i_{n, n}\right)}
\end{array}\right), i_{s, t} \in\{0,1\}
$$

Why is $h\left(\mathrm{CHG}(2)^{\otimes D}\right) \geq 1 / 2^{D}$? (cont.)

- Generally, for arbitrary D, consider the two $2 \times 2 \times \ldots \times 2$ checkerboard arrays:

$$
\Gamma_{i_{1}, \ldots, i_{D}}^{(0)}=(-1)^{\sum i_{j}} \quad \Gamma_{i_{1}, \ldots, i_{D}}^{(1)}=(-1)^{1+\sum i_{j}}
$$

- Any tiling of $n \times n \times \ldots \times n$ copies of $\Gamma^{(0)}$ or $\Gamma^{(1)}$ is a $2 n \times 2 n \times \ldots \times 2 n$ array that satisfies X.

$$
\begin{aligned}
& \Longrightarrow\left|B_{2 n \times 2 n \times \ldots \times 2 n}(X)\right| \geq 2^{n^{D}} \\
& \Longrightarrow \frac{\log \left|B_{2 n \times 2 n \times \ldots \times 2 n}(X)\right|}{(2 n)^{D}} \geq \frac{n^{D}}{(2 n)^{D}} \\
& \Longrightarrow h(X) \geq \frac{1}{2^{D}} .
\end{aligned}
$$

Why is $h\left(\mathrm{CHG}(2)^{\otimes D}\right) \leq 1 / 2^{D}$?

- For $D=1$ every legal word of X is essentially such a tiling of checkerboard arrays:

Lemma

$x_{0} \ldots x_{n-1}$ satisfies CHG(2), iff
$x_{i}=-x_{i+1}$ for all even $i \in\{0, \ldots, n-2\}$ or
$x_{i}=-x_{i+1}$ for all odd $i \in\{0, \ldots, n-2\}$.

x_{0}	x_{1}	x_{2}	x_{3}	x_{4}	\ldots	x_{n-3}	x_{n-2}
x_{n-1}							

Why is $h\left(\mathrm{CHG}(2)^{\otimes D}\right) \leq 1 / 2^{D}$?

- For $D=1$ every legal word of X is essentially such a tiling of checkerboard arrays:

Lemma

$x_{0} \ldots x_{n-1}$ satisfies CHG(2), iff
$x_{i}=-x_{i+1}$ for all even $i \in\{0, \ldots, n-2\}$ or
$x_{i}=-x_{i+1}$ for all odd $i \in\{0, \ldots, n-2\}$.

| x_{0} | x_{1} | x_{2} | x_{3} | x_{4} | \ldots | x_{n-3} | x_{n-2} | x_{n-1} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Why is $h\left(\mathrm{CHG}(2)^{\otimes D}\right) \leq 1 / 2^{D}$?

- For $D=1$ every legal word of X is essentially such a tiling of checkerboard arrays:

Lemma

$x_{0} \ldots x_{n-1}$ satisfies CHG(2), iff
$x_{i}=-x_{i+1}$ for all even $i \in\{0, \ldots, n-2\}$ or
$x_{i}=-x_{i+1}$ for all odd $i \in\{0, \ldots, n-2\}$.

x_{0}	x_{1}	x_{2}	x_{3}	x_{4}	\ldots	x_{n-3}	x_{n-2}	x_{n-1}

Why is $h\left(\mathrm{CHG}(2)^{\otimes D}\right) \leq 1 / 2^{D}$?

- For $D=1$ every legal word of X is essentially such a tiling of checkerboard arrays:

Lemma

$x_{0} \ldots x_{n-1}$ satisfies CHG(2), iff
$x_{i}=-x_{i+1}$ for all even $i \in\{0, \ldots, n-2\}$ or
$x_{i}=-x_{i+1}$ for all odd $i \in\{0, \ldots, n-2\}$.

x_{0}	x_{1}	x_{2}	x_{3}	x_{4}	\ldots	x_{n-3}	x_{n-2}	x_{n-1}
0	${ }_{0}$	x_{0}	0					

Why is $h\left(\mathrm{CHG}(2)^{\otimes D}\right) \leq 1 / 2^{D}$?

- For $D=1$ every legal word of X is essentially such a tiling of checkerboard arrays:

Lemma

$x_{0} \ldots x_{n-1}$ satisfies CHG(2), iff
$x_{i}=-x_{i+1}$ for all even $i \in\{0, \ldots, n-2\}$ or
$x_{i}=-x_{i+1}$ for all odd $i \in\{0, \ldots, n-2\}$.

x_{0}	x_{1}	x_{2}	x_{0}	x_{4}	\ldots	x_{0}	x_{n-3}	x_{n-2}
0	x_{n-1}	x_{0}						

Phase-0 sequence $\quad T_{0}(i)= \begin{cases}i+1 & \text { if } i \text { is even } \\ i-1 & \text { if } i \text { is odd }\end{cases}$

Why is $h\left(\mathrm{CHG}(2)^{\otimes D}\right) \leq 1 / 2^{D}$?

- For $D=1$ every legal word of X is essentially such a tiling of checkerboard arrays:

Lemma

$x_{0} \ldots x_{n-1}$ satisfies CHG(2), iff
$x_{i}=-x_{i+1}$ for all even $i \in\{0, \ldots, n-2\}$ or
$x_{i}=-x_{i+1}$ for all odd $i \in\{0, \ldots, n-2\}$.

x_{0}	x_{1}	x_{2}	x_{3}	x_{4}	\cdots	x_{n-3}	x_{n-2}	x_{n-1}
0								

Phase-1 sequence

$$
T_{1}(i)= \begin{cases}i-1 & \text { if } i \text { is even } \\ i+1 & \text { if } i \text { is odd }\end{cases}
$$

Why is $h\left(\mathrm{CHG}(2)^{\otimes D}\right) \leq 1 / 2^{D}$?

- Proof:

Why is $h\left(\mathrm{CHG}(2)^{\otimes D}\right) \leq 1 / 2^{D}$?

- Proof:

- Unfortunately, the previous Lemma does not generalize to larger dimension:

$$
\begin{array}{|c|c|c|c|}
\hline+ & - & - & + \\
\hline+ & + & - & - \\
\hline- & + & + & - \\
\hline- & - & + & + \\
\hline
\end{array}
$$

Why is $h\left(\mathrm{CHG}(2)^{\otimes D}\right) \leq 1 / 2^{D}$? (cont.)

- $\Gamma \in B_{n \times n \times \ldots \times n}(X)$ iff every row of Γ is either a phase- 0 or a phase-1 sequence.
- $\mathbf{r}=\left(r_{i}\right)$: binary vector with an entry for each row of $\{0, \ldots, n-1\}^{D}$.
- $A(\mathbf{r})=\left\{\Gamma \in B_{n \times n \times \ldots \times n}(X)\right.$: row i of Γ has phase $\left.r_{i}\right\}$

$$
\stackrel{\text { Lemma }}{\Longrightarrow} B_{n \times n \times \ldots \times n}(X)=\bigcup_{\mathbf{r}} A(\mathbf{r}) .
$$

Why is $h\left(\mathrm{CHG}(2)^{\otimes D}\right) \leq 1 / 2^{D}$? (cont.)

- Example. $D=2$:

Why is $h\left(\mathrm{CHG}(2)^{\otimes D}\right) \leq 1 / 2^{D}$? (cont.)

- Example. $D=2$:

Why is $h\left(\mathrm{CHG}(2)^{\otimes D}\right) \leq 1 / 2^{D}$? (cont.)

- Example. $D=2$:

Why is $h\left(\mathrm{CHG}(2)^{\otimes D}\right) \leq 1 / 2^{D}$? (cont.)

- Example. $D=2$:

Why is $h\left(\mathrm{CHG}(2)^{\otimes D}\right) \leq 1 / 2^{D}$? (cont.)

- Example. $D=2$:

Why is $h\left(\mathrm{CHG}(2)^{\otimes D}\right) \leq 1 / 2^{D}$? (cont.)

- Example. $D=2$:

Why is $h\left(\mathrm{CHG}(2)^{\otimes D}\right) \leq 1 / 2^{D}$? (cont.)

- Example. $D=2$:

Why is $h\left(\mathrm{CHG}(2)^{\otimes D}\right) \leq 1 / 2^{D}$? (cont.)

- Example. $D=2$:

Why is $h\left(\mathrm{CHG}(2)^{\otimes D}\right) \leq 1 / 2^{D}$? (cont.)

- Example. $D=2$:

Why is $h\left(\mathrm{CHG}(2)^{\otimes D}\right) \leq 1 / 2^{D}$? (cont.)

- Example. $D=2$:

Why is $h\left(\mathrm{CHG}(2)^{\otimes D}\right) \leq 1 / 2^{D}$? (cont.)

- Example. $D=2$:

Why is $h\left(\mathrm{CHG}(2)^{\otimes D}\right) \leq 1 / 2^{D}$? (cont.)

- Example. $D=2$:

Why is $h\left(\mathrm{CHG}(2)^{\otimes D}\right) \leq 1 / 2^{D}$? (cont.)

- Example. $D=2$:

Why is $h\left(\mathrm{CHG}(2)^{\otimes D}\right) \leq 1 / 2^{D}$? (cont.)

- Example. $D=2$:

Why is $h\left(\mathrm{CHG}(2)^{\otimes D}\right) \leq 1 / 2^{D}$? (cont.)

- Example. $D=2$:

Why is $h\left(\mathrm{CHG}(2)^{\otimes D}\right) \leq 1 / 2^{D}$? (cont.)

- Example. $D=2$:

Why is $h\left(\mathrm{CHG}(2)^{\otimes D}\right) \leq 1 / 2^{D}$? (cont.)

- Example. $D=2$:

Why is $h\left(\mathrm{CHG}(2)^{\otimes D}\right) \leq 1 / 2^{D}$? (cont.)

- Example. $D=2$:

Why is $h\left(\mathrm{CHG}(2)^{\otimes D}\right) \leq 1 / 2^{D}$? (cont.)

- Example. $D=2$:

Why is $h\left(\mathrm{CHG}(2)^{\otimes D}\right) \leq 1 / 2^{D}$? (cont.)

- Example. $D=2$:

Why is $h\left(\mathrm{CHG}(2)^{\otimes D}\right) \leq 1 / 2^{D}$? (cont.)

- Example. $D=2$:

Why is $h\left(\mathrm{CHG}(2)^{\otimes D}\right) \leq 1 / 2^{D}$? (cont.)

- Example.D $=2$:
- For a site $\mathbf{x} \in\{0,1, \ldots, n-1\}^{D}$:

- $\phi(\mathbf{r}, i, \mathbf{x})=$ "phase of row passing through \mathbf{x} in direction i."

Why is $h\left(\mathrm{CHG}(2)^{\otimes D}\right) \leq 1 / 2^{D}$? (cont.)

- Example. $D=2$:
- For a site $\mathbf{x} \in\{0,1, \ldots, n-1\}^{D}$:

- $\phi(\mathbf{r}, i, \mathbf{x})=$ "phase of row passing through \mathbf{x} in direction i."
- D "match" functions $M_{\mathbf{r}, 1}, \ldots, M_{\mathbf{r}, D}$.

$$
M_{\mathbf{r}, i}:\{0,1, \ldots, n-1\}^{D} \rightarrow \mathbb{Z}^{D} .
$$

$$
\begin{gathered}
M_{\mathbf{r}, i}(\mathbf{x})=\left(x_{1}, \ldots, x_{i-1}, T_{\phi(\mathbf{r}, i, \mathbf{x})}\left(x_{i}\right), x_{i+1}, \ldots, x_{D}\right) \\
\mathbf{x}=\left(x_{1}, \ldots, x_{D}\right)
\end{gathered}
$$

Why is $h\left(\mathrm{CHG}(2)^{\otimes D}\right) \leq 1 / 2^{D}$? (cont.)

- Example. $D=2$:

- For a site $\mathbf{x} \in\{0,1, \ldots, n-1\}^{D}$:
- $\phi(\mathbf{r}, i, \mathbf{x})=$ "phase of row passing through x in direction i."
- D "match" functions $M_{r, 1}, \ldots, M_{r, D}$. $M_{\mathrm{r}, i}:\{0,1, \ldots, n-1\}^{D} \rightarrow \mathbb{Z}^{D}$.

$$
\begin{gathered}
M_{\mathbf{r}, i}(\mathbf{x})=\left(x_{1}, \ldots, x_{i-1}, T_{\phi(\mathbf{r}, i, \mathbf{x})}\left(x_{i}\right), x_{i+1}, \ldots, x_{D}\right) \\
\mathbf{x}=\left(x_{1}, \ldots, x_{D}\right)
\end{gathered}
$$

- $G_{r}=\left(V=\{0,1, \ldots, n-1\}^{D}, E\right)$. $\mathbf{u}-\mathbf{v} \in E$ iff $\mathbf{v}=M_{\mathbf{r}, i}(\mathbf{u})$.

Why is $h\left(\mathrm{CHG}(2)^{\otimes D}\right) \leq 1 / 2^{D}$? (cont.)

- Example. $D=2$:

- For a site $\mathbf{x} \in\{0,1, \ldots, n-1\}^{D}$:
- $\phi(\mathbf{r}, i, \mathbf{x})=$ "phase of row passing through x in direction i."
- D "match" functions $M_{r, 1}, \ldots, M_{r, D}$. $M_{\mathrm{r}, i}:\{0,1, \ldots, n-1\}^{D} \rightarrow \mathbb{Z}^{D}$.

$$
\begin{gathered}
M_{\mathbf{r}, i}(\mathbf{x})=\left(x_{1}, \ldots, x_{i-1}, T_{\phi(\mathbf{r}, i, \mathbf{x})}\left(x_{i}\right), x_{i+1}, \ldots, x_{D}\right) \\
\mathbf{x}=\left(x_{1}, \ldots, x_{D}\right)
\end{gathered}
$$

- $G_{r}=\left(V=\{0,1, \ldots, n-1\}^{D}, E\right)$. \mathbf{u} - $\mathbf{v} \in E$ iff $\mathbf{v}=M_{\mathbf{r}, i}(\mathbf{u})$.
- $|A(\mathbf{r})|=2^{\left(\# \text { of connected components of } G_{r}\right)}$.

Max \# of Connected Components in G_{r}.

- $D=2$.

Max \# of Connected Components in G_{r}.

- $D=2$.
- For $(x, y) \in\{1,2, \ldots, n-2\}^{2}$ (not on the "border"):

$$
(x, y), M_{\mathbf{r}, 1}(x, y), M_{\mathbf{r}, 2}(x, y), M_{\mathbf{r}, 1}\left(M_{\mathbf{r}, 2}(x, y)\right)
$$

Max \# of Connected Components in G_{r}.

- $D=2$.
- For $(x, y) \in\{1,2, \ldots, n-2\}^{2}$ (not on the "border"):

$$
(x, y), M_{\mathbf{r}, 1}(x, y), M_{\mathbf{r}, 2}(x, y), M_{\mathbf{r}, 1}\left(M_{\mathbf{r}, 2}(x, y)\right)
$$

- Are all in the connected component of (x, y).

Max \# of Connected Components in G_{r}.

- $D=2$.
- For $(x, y) \in\{1,2, \ldots, n-2\}^{2}$ (not on the "border"):

$$
(x, y), M_{\mathbf{r}, 1}(x, y), M_{\mathbf{r}, 2}(x, y), M_{\mathbf{r}, 1}\left(M_{\mathbf{r}, 2}(x, y)\right)
$$

- Are all in the connected component of (x, y).
- Are all distinct.

Max \# of Connected Components in G_{r}.

- $D=2$.
- For $(x, y) \in\{1,2, \ldots, n-2\}^{2}$ (not on the "border"):

$$
(x, y), M_{\mathbf{r}, 1}(x, y), M_{\mathbf{r}, 2}(x, y), M_{\mathbf{r}, 1}\left(M_{\mathbf{r}, 2}(x, y)\right)
$$

- Are all in the connected component of (x, y).
- Are all distinct.
- For general D :
- For $\mathbf{x} \in\{1,2, \ldots, n-2\}^{D}$ (not on the "border"), the 2^{D} entries:

$$
M_{\mathbf{r}, i_{1}}\left(M_{\mathbf{r}, i_{2}}\left(\ldots\left(M_{\mathbf{r}, i_{s}}(\mathbf{x})\right) \ldots\right)\right),
$$

For each $\left\{i_{1}, \ldots, i_{s}\right\} \subseteq\{1,2, \ldots, D\}, 1 \leq i_{1}<i_{2}<\ldots<i_{s} \leq D$

Max \# of Connected Components in G_{r}.

- $D=2$.
- For $(x, y) \in\{1,2, \ldots, n-2\}^{2}$ (not on the "border"):

$$
(x, y), M_{\mathbf{r}, 1}(x, y), M_{\mathbf{r}, 2}(x, y), M_{\mathbf{r}, 1}\left(M_{\mathbf{r}, 2}(x, y)\right)
$$

- Are all in the connected component of (x, y).
- Are all distinct.
- For general D :
- For $\mathbf{x} \in\{1,2, \ldots, n-2\}^{D}$ (not on the "border"), the 2^{D} entries:

$$
\begin{aligned}
& M_{\mathbf{r}, i_{1}}\left(M_{\mathbf{r}, i_{2}}\left(\ldots\left(M_{\mathbf{r}, i_{s}}(\mathbf{x})\right) \ldots\right)\right) \\
& \text { For each }\left\{i_{1}, \ldots, i_{s}\right\} \subseteq\{1,2, \ldots, D\}, \quad 1 \leq i_{1}<i_{2}<\ldots<i_{s} \leq D
\end{aligned}
$$

- Are all in the connected component of \mathbf{x}.

Max \# of Connected Components in G_{r}.

- $D=2$.
- For $(x, y) \in\{1,2, \ldots, n-2\}^{2}$ (not on the "border"):

$$
(x, y), M_{\mathbf{r}, 1}(x, y), M_{\mathbf{r}, 2}(x, y), M_{\mathbf{r}, 1}\left(M_{\mathbf{r}, 2}(x, y)\right)
$$

- Are all in the connected component of (x, y).
- Are all distinct.
- For general D :
- For $\mathbf{x} \in\{1,2, \ldots, n-2\}^{D}$ (not on the "border"), the 2^{D} entries:

$$
\begin{aligned}
& M_{\mathbf{r}, i_{1}}\left(M_{\mathbf{r}, i_{2}}\left(\ldots\left(M_{\mathbf{r}, i_{s}}(\mathbf{x})\right) \ldots\right)\right) \\
& \text { For each }\left\{i_{1}, \ldots, i_{s}\right\} \subseteq\{1,2, \ldots, D\}, \quad 1 \leq i_{1}<i_{2}<\ldots<i_{s} \leq D
\end{aligned}
$$

- Are all in the connected component of \mathbf{x}.
- Are all distinct.

Max \# of Connected Components in G_{r}.

- $D=2$.
- For $(x, y) \in\{1,2, \ldots, n-2\}^{2}$ (not on the "border"):

$$
(x, y), M_{\mathbf{r}, 1}(x, y), M_{\mathbf{r}, 2}(x, y), M_{\mathbf{r}, 1}\left(M_{\mathbf{r}, 2}(x, y)\right)
$$

- Are all in the connected component of (x, y).
- Are all distinct.
- For general D :
- For $\mathbf{x} \in\{1,2, \ldots, n-2\}^{D}$ (not on the "border"), the 2^{D} entries:

$$
\begin{aligned}
& M_{\mathbf{r}, i_{1}}\left(M_{\mathbf{r}, i_{2}}\left(\ldots\left(M_{\mathbf{r}, i_{s}}(\mathbf{x})\right) \ldots\right)\right) \\
& \text { For each }\left\{i_{1}, \ldots, i_{s}\right\} \subseteq\{1,2, \ldots, D\}, \quad 1 \leq i_{1}<i_{2}<\ldots<i_{s} \leq D
\end{aligned}
$$

- Are all in the connected component of \mathbf{x}.
- Are all distinct.
- \Longrightarrow Any component having a vertex in the interior has at least 2^{D} vertices.

Max \# of Connected Components in G_{r}.

- $D=2$.
- For $(x, y) \in\{1,2, \ldots, n-2\}^{2}$ (not on the "border"):

$$
(x, y), M_{\mathbf{r}, 1}(x, y), M_{\mathbf{r}, 2}(x, y), M_{\mathbf{r}, 1}\left(M_{\mathbf{r}, 2}(x, y)\right)
$$

- Are all in the connected component of (x, y).
- Are all distinct.
- For general D :
- For $\mathbf{x} \in\{1,2, \ldots, n-2\}^{D}$ (not on the "border"), the 2^{D} entries:

$$
\begin{aligned}
& M_{\mathbf{r}, i_{1}}\left(M_{\mathbf{r}, i_{2}}\left(\ldots\left(M_{\mathbf{r}, i_{s}}(\mathbf{x})\right) \ldots\right)\right) \\
& \text { For each }\left\{i_{1}, \ldots, i_{s}\right\} \subseteq\{1,2, \ldots, D\}, \quad 1 \leq i_{1}<i_{2}<\ldots<i_{s} \leq D
\end{aligned}
$$

- Are all in the connected component of \mathbf{x}.
- Are all distinct.
- \Longrightarrow Any component having a vertex in the interior has at least 2^{D} vertices.
- \Longrightarrow There are at most $n^{D} / 2^{D}$ such components.

Max \# of Connected Components in G_{r} (cont.).

$\Longrightarrow\left(\begin{array}{llrl}\# & \text { of } & \text { components } \\ \text { having } & \text { a } & \text { vertex } & \text { in } \\ \{1,2, \ldots, n-2\}^{D}\end{array}\right) \leq n^{D} / 2^{D}$

Max \# of Connected Components in G_{r} (cont.).

$$
\begin{aligned}
& \Longrightarrow\left(\begin{array}{llr}
\# & \text { of } & \text { components } \\
\text { having } & \text { a } & \text { vertex } \\
\text { in }
\end{array}\right) \leq n^{D} / 2^{D} \\
& \left(\begin{array}{l}
\# \text { of components } \\
\text { not having a vertex } \\
\text { in }\{1,2, \ldots, n-2\}^{D}
\end{array}\right) \leq\binom{ \# \text { of vertices not in }}{\{1,2, \ldots, n-2\}^{D}}=n^{D}-(n-2)^{D}
\end{aligned}
$$

Max \# of Connected Components in G_{r} (cont.).

$\Longrightarrow\left(\begin{array}{llr}\# & \text { of } & \text { components } \\ \text { having } & \text { a } & \text { vertex } \\ \text { in }\end{array}\right) \leq n^{D} / 2^{D}$
$\left(\begin{array}{l}\# \text { of components } \\ \text { not having a vertex } \\ \text { in }\{1,2, \ldots, n-2\}^{D}\end{array}\right) \leq\binom{ \#$ of vertices not in }{$\{1,2, \ldots, n-2\}^{D}}=n^{D}-(n-2)^{D}$
$\Longrightarrow($ Total \# of components $) \leq n^{D} / 2^{D}+n^{D}-(n-2)^{D}$.

Max \# of Connected Components in G_{r} (cont.).

$\Longrightarrow\left(\begin{array}{llll}\# & \text { of } & \text { components } \\ \text { having } & \text { a } & \text { vertex } & \text { in } \\ \{1,2, \ldots, n-2\}^{D}\end{array}\right) \leq n^{D} / 2^{D}$
$\left(\begin{array}{l}\# \text { of components } \\ \text { not having a vertex } \\ \text { in }\{1,2, \ldots, n-2\}^{D}\end{array}\right) \leq\binom{ \#$ of vertices not in }{$\{1,2, \ldots, n-2\}^{D}}=n^{D}-(n-2)^{D}$
\Longrightarrow (Total \# of components) $\leq n^{D} / 2^{D}+n^{D}-(n-2)^{D}$.
$\Longrightarrow|A(\mathbf{r})|=2^{(\text {Total } \# \text { of components) }} \leq 2^{n^{D} / 2^{D}+n^{D}-(n-2)^{D}}$

Max \# of Connected Components in G_{r} (cont.).

$\Longrightarrow\left(\begin{array}{llll}\# & \text { of } & \text { components } \\ \text { having } & \text { a } & \text { vertex } & \text { in } \\ \{1,2, \ldots, n-2\}^{D}\end{array}\right) \leq n^{D} / 2^{D}$
$\left(\begin{array}{l}\# \text { of components } \\ \text { not having a vertex } \\ \text { in }\{1,2, \ldots, n-2\}^{D}\end{array}\right) \leq\binom{ \#$ of vertices not in }{$\{1,2, \ldots, n-2\}^{D}}=n^{D}-(n-2)^{D}$
\Longrightarrow (Total \# of components) $\leq n^{D} / 2^{D}+n^{D}-(n-2)^{D}$.
$\Longrightarrow|A(\mathbf{r})|=2^{(\text {Total } \# \text { of components) }} \leq 2^{n^{D} / 2^{D}+n^{D}-(n-2)^{D}}$
$\Longrightarrow\left|B_{n \times n \times \ldots \times n}(X)\right| \leq \sum_{\mathbf{r}}|A(\mathbf{r})| \leq 2^{D^{D-1}} 2^{n^{D} / 2^{D}+n^{D}-(n-2)^{D}}$

Max \# of Connected Components in G_{r} (cont.).

$\Longrightarrow\left(\begin{array}{lll}\# & \text { of } & \text { components } \\ \text { having } & \text { a } & \text { vertex } \\ \{1,2, \ldots, & \text { in }\end{array}\right) \leq n^{D} / 2^{D}$
$\left(\begin{array}{l}\# \text { of components } \\ \text { not having a vertex } \\ \text { in }\{1,2, \ldots, n-2\}^{D}\end{array}\right) \leq\binom{ \#$ of vertices not in }{$\{1,2, \ldots, n-2\}^{D}}=n^{D}-(n-2)^{D}$
\Longrightarrow (Total \# of components) $\leq n^{D} / 2^{D}+n^{D}-(n-2)^{D}$.
$\Longrightarrow|A(\mathbf{r})|=2^{(\text {Total } \# \text { of components) }} \leq 2^{n^{D} / 2^{D}+n^{D}-(n-2)^{D}}$
$\Longrightarrow\left|B_{n \times n \times \ldots \times n}(X)\right| \leq \sum_{\mathbf{r}}|A(\mathbf{r})| \leq 2^{D^{D-1}} 2^{n^{D} / 2^{D}+n^{D}-(n-2)^{D}}$
$\Longrightarrow\left|B_{n \times n \times \ldots \times n}(X)\right| \leq 2^{n^{D} / 2^{D}+O\left(n^{D-1}\right)}$

Max \# of Connected Components in G_{r} (cont.).

$\Longrightarrow\left(\begin{array}{lll}\# & \text { of } & \text { components } \\ \text { having } & \text { a } & \text { vertex } \\ \{1,2, \ldots, n-2\}^{D} & \text { in }\end{array}\right) \leq n^{D} / 2^{D}$
$\left(\begin{array}{l}\# \text { of components } \\ \text { not having a vertex } \\ \text { in }\{1,2, \ldots, n-2\}^{D}\end{array}\right) \leq\binom{ \#$ of vertices not in }{$\{1,2, \ldots, n-2\}^{D}}=n^{D}-(n-2)^{D}$
\Longrightarrow (Total \# of components) $\leq n^{D} / 2^{D}+n^{D}-(n-2)^{D}$.

$\Longrightarrow\left|B_{n \times n \times \ldots \times n}(X)\right| \leq \sum_{\mathbf{r}}|A(\mathbf{r})| \leq 2^{D^{D-1}} 2^{n^{D} / 2^{D}+n^{D}-(n-2)^{D}}$
$\Longrightarrow\left|B_{n \times n \times \ldots \times n}(X)\right| \leq 2^{n^{D} / 2^{D}+O\left(n^{D-1}\right)}$
$\Longrightarrow h(X) \leq 1 / 2^{D} \quad \square$

Motivation for 1-dimensional SFT's: Modelling dynamical systems

Motivation for 1-dimensional SFT's: Modelling dynamical systems

- Represent $x \in \Omega$ by binary itinerary sequence:

Motivation for 1-dimensional SFT's: Modelling dynamical systems

- Represent $x \in \Omega$ by binary itinerary sequence:

Motivation for 1-dimensional SFT's: Modelling dynamical systems

- Represent $x \in \Omega$ by binary itinerary sequence:

Ω replaced by an SFT X

Motivation for 1-dimensional SFT's: Modelling dynamical

 systems$$
T: \Omega \rightarrow \Omega:
$$

- Represent $x \in \Omega$ by binary itinerary sequence:

Ω replaced by an SFT X
T replaced by the shift mapping.

