Chapter 7

Complexity of Encoders

7.1 Complexity criteria

There are various criteria that are used to measure the performance and complexity of
encoders, and their corresponding decoders. We list here the predominant factors that are
usually taken into account while designing rate p : ¢ finite-state encoders.

The values of p and ¢. Typically, the rate p/q is chosen to be as close to cap(S) as pos-
sible, subject to having p and ¢ small enough: The reason for the latter requirement
is minimizing the number of outgoing edges, 2P, from each state in the encoder and
keeping to a minimum the number of input—-output connections of the encoder.

Number of states in an encoder. In both hardware and software implementation of en-
coders &, we will need [log|Vg|| bits in order to represent the current state of £. This
motivates an encoder design with a relatively small number of states [Koh78, Ch. 9].

Gate complexity. In addition to representing the state of a finite-state encoder, we need,
in hardware implementation, to realize the next-state function and the output function
as a gate circuit. Hardware complexity is usually measured in terms of the number of
required gates (e.g., NAND gates), and this number also includes the implementation
of the memory bit cells that represent the encoder state (each memory bit cell can be
realized by a fixed number of gates).

The number of states in hardware implementation becomes more significant in applica-
tions where we run several encoders in parallel with a common circuit for the next-state
and output functions, but with duplicated hardware for representing the state of each
encoder.

Time and space complexity of a RAM program. When the finite-state encoder is to
be implemented as a computer program on a random-access machine (RAM) [AHU74,
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Ch. 1], the complexity is usually measured by the space requirements and the running
time of the program.

Encoder anticipation. One way to implement a decoder for an encoder £ with finite
anticipation A(€) is by accumulating the past A(E) symbols (in 3(S?)) that were
generated by £; these symbols, with the current symbol, allow the decoder to simulate
the state transitions of £ and, hence, to reconstruct the sequence of input tags (see
Section 4.1). The size of the required buffer thus depends on A(E).

Window length of sliding-block decodable encoders. A typical decoder of an (m, a)-
sliding-block decodable encoder consists of a buffer that accumulates the past m+a
symbols (in ¥(S7%)) that were generated by the encoder. A decoding function D :
(B(89))(m+a+1) 5 £0,1,...,2P—1} is then applied to the current symbol and to the
contents of the buffer to reconstruct an input tag in {0,1}? (see Section 4.3). From
a complexity point-of-view, the window length, m+a+1, determines the size of the
required buffer.

In order to establish a general framework for comparing the complexity of encoders gen-
erated by different methods of encoder synthesis, we need to set some canonical presentation
of the constrained system S, in terms of which the complexity will be measured. We adopt
the Shannon cover of S as such a distinguished presentation.

7.2 Number of states in the encoder

In this section we present upper and lower bounds on the smallest number of states in any
(S,n)-encoder for a given constrained system S and integer n.

Let G be a deterministic presentation of S. As was described in Chapter 5, the state-
splitting algorithm [ACHS83] starts with an (Ag, n)-approximate eigenvector x = (z)yevy,
which guides the splitting of the states in G until we obtain an (S, n)-encoder with at most
Y veve To = ||x[|1 states. Hence, we have the following.

Theorem 7.1 Let S be a constrained system presented by a deterministic graph G and
let n be a positive integer. Assume that cap(S) > logn. Then, there exists an (S, n)-encoder
E such that

Vel < mi .
Vel < min - x[lx

On the other hand, the following lower bound on the number of states of any (S, n)-
encoder was obtained in [MRI1].
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Theorem 7.2 Let S be a constrained system presented by a deterministic graph G and
let n be a positive integer. Assume that cap(S) > logn. Then, for any (S,n)-encoder &,

Vel > mi .
Vel > min Il

Proof: Let £ be an (S, n)-encoder and let ¥ = X(S). The following construction effectively
provides an (Ag, n)-approximate eigenvector x which satisfies the inequality |Ve| > ||x||o-

(a) Construct a deterministic graph H = H (&) which presents S' = S(E).
This can be done using the determinizing graph of Section 2.2.1.
(b) For an irreducible sink H' of H, define a vector & # 0 such that Agp € = nk.

Let H' be an irreducible sink of H. Recall that each state Z € Vi (g VH) is a subset
Te(w,v) of states of £ that can be reached in £ from a given state v € Vg by paths that
generate a given word w. Let £; = |Z| denote the number of states of £ in Z and let & be
the positive integer vector defined by & = (£2)zev,,. We now claim that

A€ =né .

Consider a state Z € V. Since £ has out-degree n, the number of edges in £ outgoing from
the set of states Z C Vg is n|Z|. Now, let E, denote the set of edges in £ labeled a that start
at the states of £ in Z and let Z, denote the set of terminal states, in £, of these edges. Note
that the sets E,, for a € X, induce a partition on the edges of £ outgoing from Z. Clearly,
if Z, # (), there is an edge Z = Z, in H and, since H' is an irreducible sink, this edge is
also contained in H'. We now claim that any state u € Z, is accessible in £ by exactly one
edge labeled a whose initial state is in Z; otherwise, if 7 = T¢(w, v), the word wa could be
generated in £ by two distinct paths which start at v and terminate in u, contradicting the
losslessness of €. Hence, |E,| = |Z,| and, so, the entry of Ag:& corresponding to the state Z
in H' satisfies

(Ap€)z = > (Am)zyvéy = >, (Ag)zy|Y]

YeVy YeVy
= Z | Z| = Z \Eq| =n|Z| =néz,
acY a€Y

as desired.
(¢) Construct an (Ag,n)-approzimate eigenvector x = x(E) from €.

As G and H' comply with the conditions of Lemma 2.13, each follower set of a state in
H' is contained in a follower set of some state in G. Let x = (zy)ucv, be the nonnegative
integer vector defined by

zy=max{&; : Z € Vyand Fy(Z) C Fg(u)}, uw€Vg,
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and denote by Z(u) some particular state Z in H' for which the maximum is attained. In
case there is no state Z € Vi such that Fy(Z) C Fg(u), define z,, = 0 and Z(u) = 0.
We claim that x is an (Ag,n)-approximate eigenvector. First, since Vi is nonempty, we
have x # 0. Now, let u be a state in G; if z, = 0 then, trivially, (Agx), > nz, and, so,
we can assume that z, # 0. Let Z,(u) be the terminal state in H' for an edge labeled a
outgoing from Z(u). Since Fp (Z (u)) C Fe(u), there exists an edge labeled @ in G from
u which terminates in some state u, in G; and, since G and H' are both deterministic, we
have ]—"H,( o(u )) C Fa(uq). Furthermore, by the way x was defined, we have ., > £, ()
and, so, letting ¥ () denote the set of labels of edges in H' outgoing from Z(u), we have

AGX Z Ty, > Z fZa AH’S) Z(u) = né-Z(u) = NIy ,

aEEZ(u) G'EEZ(u)
where we have used the equality Ag& = n&. Hence, Agx > nx.

The theorem now follows from the fact that each entry in x is a size of a subset of states
of Vg. U]

The bound of Theorem 7.2 can be effectively computed by the Franaszek algorithm which
was described in Section 5.2.2. The upper bound of Theorem 7.1 is at most |Vg| times the
lower bound of Theorem 7.2, which amounts to an additive term of log|V| in the number
of bits required to represent the current state of the encoder.

There are examples of sequences of labeled graphs G' for which the lower bound of The-
orem 7.2 is exponential in the number of states of G [Ash88], [MR91]. We give here such an
example, which appears in [AMR95] and [MR91].

Example 7.1 Let r be a positive integer and let 3 denote the alphabet of size r2+r+1
given by {a} U {b;}"1"~" U {c}. Consider the constrained systems Sj that are presented by
the graphs G of Figure 7.1 (from each state u < k there are r2+r—1 parallel outgoing edges
labeled by the b;’s to state k+u). It is easy to verify that A(Ag,) = A = r+1 and that every
(Ag,, \)-approximate eigenvector is a multiple of (A A% ... A¥ 1 X ... A~1)T. Hence, by
Theorem 7.2, every (S, 7+1)-encoder must have at least (r+1)F = exp{O(|Vg,|)} states.

On the other hand, note that the vector x = (z,),, whose nonzero components are z; = r
and zo, = 1, is an (Ag,, r)-approximate eigenvector. Hence, if we can compromise on the
rate and construct (S, r)-encoders instead, then the state-splitting algorithm provides such
encoders with at most r+1 states. L]

The bound of Theorem 7.2 is based on the existence of an approximate eigenvector
x = x(&), where each of the entries in x is a size of a subset of Vg. The improvements on
this bound, given in [MR91], are obtained by observing that some of these subsets might be
disjoint. One such improvement (with proof left to the reader) is as follows.
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Figure 7.1: Labeled graph G} for Example 7.1.

Theorem 7.3 Let S be a constrained system presented by a deterministic graph G and
let n be a positive integer. Assume that cap(S) > logn. Then, for any (S, n)-encoder &,

Vel > i
‘ 5‘ - xE}fI(lzlélIcl;,n) ml?,X ;]xu:

where the mazimum is taken over all subsets U C Vg such that Fg(u) N Fg(u') = O for every
distinct states u and v’ in U.

In fact, the preceding result can be generalized further to obtain the best general lower bound
known on the number of states in any (5, n)-encoder, as it is stated in [MR91]. In order to
state this result, we need the following definitions.

Let S be a constrained system presented by a deterministic graph G. For a state u € Vg
and a word w € Fg(u), let 7¢(w, u) be the terminal state of the path in G that starts at u
and generates w. (Using the notations of Section 2.2.1, we thus have Tg(w,u) = {7g(w, u)}.)
For a word w & Fg(u), define 7g(w,u) = 0.

Let n be a positive integer and x = (z,)uev, be an (Ag, n)-approximate eigenvector. For
a word w and a subset U C Vg, let Ig(x,w,U) denote a state u € U such that Trg(wyu) 18
maximal (for the case where 7¢(w,u) = (), we define 2y = 0).

Let U be a subset of V. A list C of words is U-complete in G, if every word in U,y Fa(u)
either has a prefix in C or is a prefix of a word in C. Let C;(U) denote the set of all finite
U-complete lists in G. For example, the list F7(U) of all words of length m that can be
generated in G from states of U, belongs to Cq(U).

Finally, given an integer n, an (Ag, n)-approximate eigenvector x, a subset U of Vi, and
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a list C' of words, we define pg(x,n,U,C) by

MG(Xv n, U, C) = Z Lu — Z n_é(W) Z Lrg(wu)

uelU wel ueU—{Ig(x,w,U)}

(recall that ¢(w) is the length of the word w).

Theorem 7.4 Let S be a constrained system presented by a deterministic graph G and
let n be a positive integer. Assume that cap(S) > logn. Then, for any (S,n)-encoder &,

Vel > min max su ,n,UC).
Vel > yeBiD A sup pa(y )

In particular, for all U C Vg and m,

‘V£| 2 min MG(Y7 n, UaFgL(U)) .

Example 7.2 Figure 4.6 depicts a rate 2 : 3 four-state encoder for the (1,7)-RLL con-
strained system. The example therein is due to Weathers and Wolf [WW91]|, whereas the
example of an encoder used in practice is due to Adler, Hassner, and Moussouris [AHM82]
and has five states (see also [How89]). Using Theorem 7.4, a lower bound of 4 on the number
of states of any such encoder is presented in [MR91]. Thus, the Weathers—Wolf encoder has
the smallest possible number of encoder states. L]

Example 7.3 Figure 4.4 depicts a rate 1 : 2 six-state encoder for the (2,7)-RLL con-
strained system. This encoder is used in practice and is due to Franaszek [Fra72] (see
also [EH78|, [How89]). On the other hand, the encoder shown in Figure 4.5, which is due
to Howell [How89], has only five states. Using Theorem 7.4, it can be shown that 5 is a
lower bound on the number of encoder states for this system; thus, the Howell encoder has
the smallest possible number of encoder states (note, however, that the anticipation of the
Howell encoder is larger than Franaszek’s). L]

7.3 Values of p and ¢

When cap(S) is a rational number p/q, we can attain the bound of Theorem 4.2 by a rate
p : q finite-state encoder for S: Taking a deterministic presentation G of S, we have in this
case an (AL, 2P)-approximate eigenvector which yields, by the state-splitting algorithm, an
(59, 2P)-encoder.

On the other hand, when cap(S) is not a rational number, we cannot attain the bound
of Theorem 4.2 by a rate p : ¢ finite-state encoder for S. Still, we can approach the bound
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cap(S) from below by a sequence of rate p,, : ¢, finite-state encoders &,,. In fact, as stated
in Theorem 4.3, we can approach capacity from below even by block encoders. It can be
shown that in this way we obtain a sequence of rate p,, : ¢,, block encoders &, for S such
that
<P

dm
for some constant § = 3(G). However, the constant 3 might be very large (e.g., exponential)
in terms of the number of states of G. This means that ¢, might need to be extremely large
in order to have rates p,,/q. close to capacity.

P _ cap(s)

m

Obviously, for every sequence of rate p,, : ¢, finite-state encoders &,, for S, the number
of edges in &,, is increasing exponentially with p,,. The question is whether convergence of
Pm/@m to cap(S) that is faster than O(1/g,,) might force the number of states in &, to blow
up as well. The answer is given in the following result, which is proved in [MR91] using
Theorem 7.2.

Theorem 7.5 Let S be a constrained system with cap(S) = log A.

(a) If X = k°/* for some positive integers k, s, and t, then there exists an integer N
such that for any two positive integers p, q, where p/q < log X and t divides q, there is an
(S, 2P)-encoder with at most N states.

(b) If X is not a rational power of an integer and, in addition,

. Pm _
T&l_r)%o<q—m—log/\> “Qm =10,

then for any sequence of (S, 2Pm)-encoders Enm,

A |Ve,,| = oo

Sketch of proof. Case (a): Let G be a deterministic presentation of S. Since \ = k*/¢,
the matrix (A¢)® has an integer largest eigenvalue and an associated integer nonnegative right
eigenvector x. An (S'™ k*™)-encoder &,, can therefore be obtained by the state-splitting
algorithm for every m, with number of states which is at most N = ||x||;. Write ¢ = tm; we
have 2P < k*™ and, so, an (S?,2P)-encoder can be obtained by deleting excess edges from

Em-

Case (b): It can be shown that if the values p,,/¢, approach log A faster than O(1/g,,),
then the respective ((Ag)?,2P™)-approximate eigenvectors x (when scaled to have a fixed
norm) approach a right eigenvector which must contain an irrational entry. Therefore, the
largest components in such approximate eigenvectors tend to infinity. The result then follows
from Theorem 7.2. []
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If we choose p,, and g, to be the continued fraction approximants of log A, we get

p—m—log)\ <ii

for some constant . So, in case (b), the fastest approach to capacity necessarily forces the
number of states to grow without bound.

7.4 Encoder anticipation

7.4.1 Deciding upon existence of encoders with a given anticipa-
tion

We start with the following theorem, taken from [AMR96], which shows that checking
whether there is an (S, n)-encoder with anticipation ¢ is a decidable problem. A special
case of this theorem, for t = 0, was alluded to in Section 4.4. Recall that Ff(u) stands for
the set of words of length ¢ that can be generated from a state u in a labeled graph G.

Theorem 7.6 Let S be an irreducible constrained system with a Shannon cover G, let n
and t be positive integers, and, for every state u in G, let N(u,t) = |FL(u)|. If there exists
an (S,n)-encoder with anticipation t, then there exists an (S,n) encoder with anticipation
<t and at most Yyey, (2N™D — 1) states.

By Lemma 2.9, we may assume that there is an irreducible (S, n)-encoder £ with antici-
pation at most ¢. The proof of Theorem 7.6 is carried out by effectively constructing from &
an (S, n)-encoder £ with anticipation < ¢ and with a number of states which is at most the
bound stated in the theorem. We describe the construction of £ below, and the theorem
will follow from the next two lemmas.

For a state u € Vg and a nonempty subset F of Fg(u), let I'(u, F) denote the set of all
states v in € for which F¢(v) C Fg(u) and Fi(v) = F. Whenever ['(u, F) is nonempty we
designate a specific such state v € I'(u, F) and call it v(u, F). By Lemma 2.13, at least one
I'(u, F) is nonempty.

We now define the labeled graph £’ as follows. The states of £’ are the pairs (u, F) such
that T'(u, F) is nonempty. We draw an edge (u, F) - (4, F) in &' if and only if there is an
edge u = 1 in G and an edge v(u, F) = ¥ in &€ for some 9 € (4, F).

Lemma 7.7 For every { < t+1,
]’f,((u, .7-')) = F} (v(u, .7-')) .
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Proof. We prove that fe,((u,]:)) C Ft (v(u, .7:)) by induction on ¢. We leave the
reverse inclusion (which is not used here) to the reader.

The result is immediate for £ = 0. Assume now that the result is true for some fixed
{ < t. Let wowy...wp € ffﬁl((u,f)), which implies that there is in £ a path of the
form (u, F) & (uy, F1) B (ug, Fo) — ... = (ug, Fo) = (ups1, Feq1). By the inductive
hypothesis, there is a path v(u;, Fi) 2 vy B3 v3 — ... = vy =% vp4, in E. Therefore, the
word w = wyws . .. we belongs to Fg (v(ul, .7:1)) and, since £ < t, we can extend w to form a
word ww’ of length ¢ that belongs to F;. Now, by definition of the edges in &', there is an
edge v(u, F) B ¥ in £ for some © € I'(uy, F1). Since ww’ € Fy, there is a path labeled w
outgoing from ¥ in € and, so, there is a path labeled wow; . .. w, outgoing from v(u, F) in €.
Hence, Fg?l((u, .7-')) - Tf“(v(u, .7-")), as desired. m

The next lemma shows that £ is an (S, n)-encoder with anticipation < ¢.

Lemma 7.8 The following three conditions hold:
(a) The out-degree of each state in &' is n;

(b) S(E") C S; and —

(c) &' has anticipation < t.

Proof. Part (a): It suffices to show that there is a one-to-one correspondence between
the outgoing edges of (u, F) in £ and those of v(u,F) in £. Consider the mapping ® from
outgoing edges of (u, F) to outgoing edges of v(u, F) defined by

®((u, F) & (@, F)) = (v(u, F) % 7)

where 7 € ['(4i, F). To see that ® is well-defined, observe that since £ has anticipation at
most ¢, there cannot be two distinct edges v(u, F) - o and v(u, F) = o' with ¢ and o'
both belonging to the same I'(, .7?) To see that ® is onto, first consider an outgoing edge
v(u, F) = ¥ from v(u, F), and note that since 7 C Fg(u), there is in G' an outgoing edge
u % 1 for some . Let F = FL(7). We claim that o € T'(@, F). Of course FL(7) = F; and
since Fe(v(u, F)) C Fe(u) and G is deterministic, F¢(9) C Fg(u). Thus, by definition of &’
there is an edge (u, F) % (i, F). We thus conclude that ® is onto. Since u and a determine
@ and since ¥ determines F, it follows that ® is 1-1. This completes the proof of (a).

Part (b): By definition of £, we see that whenever there is a path (ug, F) =% (uy, F) =
(ug, F) = ... = (ug_1, F) 5" (ug, F) in &', there is also a path ug 2 uy B ... = up g =3

ug in G. Thus S(&') C S(G) = S, as desired.

Part (c): We must show that the initial edge of any path v of length ¢t+1 in &' is
determined by its label wow . .. w; and its initial state (u, F). Write the initial edge of v as:
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(u, F) = (a, .7?) By Lemma 7.7, there is a path in £ with label wyw, ... w; that begins at
state v(u, F). Since £ has anticipation at most ¢, the label sequence wowy . .. w; and v(u, F)
determine the initial edge v(u, F) =3 ¥ of this path. So, it suffices to show that u, wy, and &
determine @ and F; for then (u, F) and wow; . ..w, will determine the initial edge of 7.

Indeed, by definition of £, there must be an edge v =3 @ in G such that ¥ € F(@,]A:).
Since G is deterministic, u and wy determine 4. Furthermore, for any fixed 4, the sets I'(4, G)
are disjoint for distinct G, and, so, U determines F. It follows that u, wy, and ¥ determine
4 and F, as desired, thus proving (c). O

Now, for every state u € Vg, the number of distinct nonempty subsets I'(u, F) is bounded
from above by 2V (@ —1. This yields the desired upper bound of Theorem 7.6 on the number
of states of £'.

It follows by Theorem 7.6 that in order to verify whether there exists an (S, n)-encoder
with anticipation £, we can exhaustively check all irreducible graphs £ with labeling over
X(S5), with out-degree n, and with number of states |V¢| which is at most the bound of
Theorem 7.6. Checking that such a labeled graph £ is an (S, n)-encoder can be done by the
following finite procedure: Construct the determinizing graph H of £ as in Section 2.2.1.
Since & is irreducible, the states of any irreducible sink H' of H, as subsets of Vg, must
contain all the states of £. Hence, we must have S(£) = S(H'). Then, we verify that
S(G = H") = S(H'); to this end, it suffices, by Lemma 2.9, to check that S(H') is presented
by an irreducible (deterministic) component G’ of G %« H'. The equality S(H') = S(G’), in
turn, can be checked by Theorem 2.12, using the Moore algorithm of Section 2.6.2.

Finally, testing whether £ has anticipation < ¢ can be done by the efficient algorithm
described in Section 2.7.2.

By the Moore co-form construction of Section 2.2.7, the existence of such an encoder
implies the existence of an (S, n)-encoder with anticipation ezactly t.

7.4.2 Upper bounds on the anticipation

Continuing the discussion of Section 7.4.1, we now obtain more tractable upper and lower
bounds on the smallest attainable anticipation of (S, n)-encoders in terms of n and a deter-
ministic presentation of the constrained system S.

Let G be a deterministic presentation of S. The anticipation of an encoder obtained by the
state-splitting algorithm [ACHS83] is bounded from above by the number of splitting rounds.
This, in turn, yields the following result, which is, so far, the best general upper bound
known for the anticipation obtained by direct application of the state-splitting algorithm.

Theorem 7.9 Let S be a constrained system presented by a deterministic graph G and
let n be a positive integer. Assume that cap(S) > logn. Then, there exists an (S, n)-encoder
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E, obtained by the state-splitting algorithm, such that,

AE) < min {lIxli —w(x)},

- XEX(A(;,TL)

where w(x) is the number of nonzero components in x. Furthermore, if G has finite memory,

then & is (M(G), A(E))-definite.

This bound is quite poor, since it may be exponential in |V, as is, indeed, the case for
the constrained systems of Example 7.1. On the other hand, if G’ has finite memory, then
the encoder £ obtained by the state-splitting algorithm is guaranteed to be definite.

Now, suppose that G can be split fully in one round; that is, the splitting yields a labeled
graph &£, with out-degree > n' at each state. By deleting excess edges, £ can be made an
(S?, n)-encoder & with anticipation 1 over 3(S*). Let & be the Moore co-form of & as
in Section 2.2.7. Then &3 is an (S, n')-encoder with anticipation 2. If we replace the n'
outgoing edges from each state in £3 by an n-ary tree of depth ¢, we obtain an (S, n)-encoder
&4 with anticipation < 3t—1. Therefore, we have the following.

Theorem 7.10 Let S be a constrained system presented by a deterministic graph G and
let n and t be positive integers. Suppose that Gt can be split in one round, yielding a labeled
graph with minimum out-degree at least n'. Then, there is an (S, n)-encoder with anticipation
< 3t—1.

In [Ash87b] and [Ash88], Ashley shows that for t = O(|V|), G* can be split in one round,
yielding a labeled graph with minimum out-degree at least n'; moreover, the splitting can
be chosen to be x-consistent with respect to any (Ag,n)-approximate eigenvector x. This
provides encoders with anticipation which is at most linear in |Vg|. The following theorem
is a statement of Ashley’s result.

Theorem 7.11 Let S be a constrained system presented by a deterministic graph G and
let n be a positive integer. Assume that cap(S) > logn. Then, there exists an (S, n)-encoder
E such that,

(a) when n = \(Ag),

A(€) <9|Vg| + 6[log, [Val] —1;

(b) when n < A(Ag),

A(€) < 15|Vg| + 3[log, [Vg|] — 1.
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Note, however, that the encoders obtained by splitting the tth power of G are typically
not sliding-block decodable when ¢ > 1, even when G has finite memory.

A further improvement on the upper bound of the smallest attainable anticipation is
presented in [AMR95], using the stethering method which, in turn, is based on an earlier
result by Adler, Goodwyn, and Weiss [AGWT77] (see Chapter 6). The following result applies
to the case where n < A\(Ag) — 1.

Theorem 7.12 Let S be a constrained system presented by a deterministic graph G and
let n be a positive integer < A\(Ag) — 1. Then, there is an (S,n)-encoder £, obtained by the
(punctured) stethering method, such that

AE€) <1+ min {[log, [x]l] } -

x€EX(Ag,n+1)

Furthermore, if G has finite memory, then £ is (M(G), A(E))-definite, and hence any tagged
(S,n)-encoder based on & is (M(G), A(E))-sliding-block decodable.

In particular, when n < A(Ag) — 1, there always exists an (Ag, n+1)-approximate eigen-
vector x such that ||x|[o < (n+1)%"e! [Ash87a], [Ash88]. Hence, we have the following.

Corollary 7.13 Let S be a constrained system presented by a deterministic graph G and
let n be a positive integer < M\(Ag) — 1. Then, there is an (S, n)-encoder &€, obtained by the
(punctured) stethering method, such that

AE) <2|Vg| +1.

Furthermore, if G has finite memory, then &€ is (M(QG),2|Vg|+1)-definite, and hence any
tagged (S, n)-encoder based on & is (M(G),2|Vg|+1)-sliding block decodable.

In terms of rate p : ¢ finite-state encoders, the requirement n < A(Ag) — 1 is implied by

1

b
Y < S)— ———:
q_cap() 2rqlog, 2’

namely, we need a margin between the rate and capacity which decreases exponentially with
-
Applying the stethering method on a power of (G, the following result is obtained
in [AMR95].
Theorem 7.14 Let S be a constrained system presented by a deterministic graph G and
let n be a positive integer smaller than A(Ag). Then, there is an (S, n)-encoder € such that
AE) < 12[Vg| -1 .

Theorem 7.14 improves on Theorem 7.11, but it does not cover the case n = A(Ag).
Also, the encoders guaranteed by Theorem 7.14 are typically not sliding-block decodable.
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7.4.3 Lower bounds on the anticipation

The next theorem, taken from [MR91], provides a lower bound on the anticipation of any
(S,n)-encoder. A special case of this bound appears in [Fra89].

Theorem 7.15 Let S be a constrained system presented by a deterministic graph G and
let n be a positive integer. Assume that cap(S) > logn. Then, for any (S,n)-encoder &,

AE)> min {log, [Ix]le } -

B XEX(AG 1”)

Proof. The theorem trivially holds if A(€) = oo, so we assume that £ has finite antici-
pation A. Let x = x(€) = (Z4)uev, be as in the proof of Theorem 7.2. We recall that by the
way x was constructed, each nonzero component of x is a size of some subset Z = Tg(w,v)
of states in £ which are accessible from v € Vg by paths labeled w.

Let T¢(w,v) be such a subset whose size equals the largest component of x and let
¢ = f(w) (i.e., the length of w). Since the out-degree of £ is n, we have n’ paths of length /
starting at v in £ and, so,

¢
> =
n > |Te(w,v)| Max Ty ,

implying

o (yu)uren)g?AG’n){ Ogn (maX Vg Y )}

Therefore, when A > £, we are done.

Assume now that £ > A. Since £ has finite anticipation A, the first /—A edges of any
path in £ labeled w are uniquely determined, once we know the initial state v. It thus follows
that the paths from v to T¢(w,v) labeled w may differ only in their last A edges. Hence,
we can have at most n”* such paths. Recalling that the number of such paths is |Tg(w,v)],
we have B

o M =2 ) i BRS

as claimed. O

There is some resemblance between the lower bound of Theorem 7.15 and the upper
bound of Theorem 7.12. And, indeed, there are many cases where the difference between
these bounds is at most 1. Note, however, that for the constrained systems Sy = S(Gy,) of
Example 7.1, we obtain, by Theorem 7.12, an upper bound of 1 + $|Vg, | on the smallest
anticipation of any (Sk,r)-encoder, where the lower bound of Theorem 7.15 equals 2. In
fact, this lower bound is tight [AMR95].

The following bound, proved in [AMRO96] is, in a way, a converse of Theorem 7.10.



CHAPTER 7. COMPLEXITY OF ENCODERS 199

Theorem 7.16 Let S be an irreducible constrained system presented by an irreducible
deterministic graph G and let n and t be positive integers. If there is an (S, n)-encoder with
anticipation t, then Gt can be split in one round, yielding a graph with minimum out-degree
at least n'.

Proof. Let £ be an (S, n)-encoder with anticipation ¢, let ¥ = X(S), and let H be the
determinizing graph constructed from £ as in Section 2.2.1. Recall that each state Z € Vg is
a subset Tg(w,v) of states of £ that can be reached in £ from a given state v € V¢ by paths
that generate a given word w. Let H' be an irreducible sink of H and let x = (x,)4ev, be
the nonnegative integer vector defined in the proof of Theorem 7.2:

zy, =max{|Z| : Z € Vg and Fg:(Z) C Fg(u)}, uweVg;

in case there is no state Z € Vy such that Fg(Z) C Fg(u), define z, = 0. Then, as in the
proof of Theorem 7.2, x is an (Ag, n)-approximate eigenvector.

Let Z = T¢(w,v) be a state in H' and suppose that Z contains two distinct states, z
and 2/, of £. First, we claim that there is no word w’ of length ¢ that can be generated in £
from both z and 2z’. Otherwise, we would have in £ two paths of length ¢(w) + ¢, starting
at the same state v, with the same labeling ww’, that do not agree in at least one of their
first ¢(w) edges. This, however, contradicts the fact that £ has anticipation t.

For w' € FL.(Z), denote by Zy, the terminal state in H' of a path labeled w’ starting
at Z. As we have just shown, a word w' € F%,(Z) can be generated in £ from exactly one
state z € Z. Therefore, the sets Fi(z), z € Z, form a partition of F,(Z). Furthermore, by
the losslessness of £, the number of paths in € that start at z € Z and generate w' € FE(u)

equals |Te (W', z)| = |Zw|- Since € is an (S, n)-encoder, we conclude:
> |Zw|=n" foreveryz€ Z. (7.1)
w/eFL(z)

For each state u € Vi such that x, # 0, select some Z = Z(u) € Vi such that |Z| = z,
and Fg/(Z) C Fg(u). Now, the partition {Fi(z) : 2 € Z} of Fi(Z) may be regarded as a
partition of F%(u) by appending the complement Ff(u) \ Fi:(Z) to one of the atoms FE(z),
z € Z. Since G" is deterministic, this defines a partition Pgt(u) = {Eqt(u, 2)}.ez) of the
outgoing edges from v in G' into |Z(u)| = z, atoms. For w' € Fg(z), let v’ denote the
terminal state of the edge in G* that begins at u and is labeled w'. Now, if w” € Fy:(Zw),
then w'w” € Fy(Z) C Fg(u). Since G is deterministic, this implies that w” € Fg(u').
Thus Fyr(Zw) C Fe(vw') and, so, |Zw| < 2. This, together with Equation (7.1), shows
that the splitting of G* defined by the partition Pg:(u) satisfies the following inequality:

Z Tr(e) > n' for every u € Vg and z € Z(u) .
e€Eqt (u,2)

Hence, the split graph has minimum out-degree at least n'. (]
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Theorem 7.16 may be regarded as a lower bound on the anticipation of an encoder. This
result, together with Theorem 7.10, shows that by one round of splitting of some power of GG,
one can obtain an encoder whose anticipation is within a constant factor from the smallest
anticipation possible.

There are examples which show that neither of the lower bounds in Theorems 7.15, 7.16
implies the other. On the other hand, when cap(S) = log n, we claim that for irreducible
constrained systems the lower bound of Theorem 7.16 implies that of Theorem 7.15. Indeed,
let ¢ denote the bound of Theorem 7.16. Then for each state u € Vi there is a partition
{Eqgt(u, 1)}, of the outgoing edges from u in G* such that the vector x = (), is a positive
(Ag, n)-approximate eigenvector and

> xye >n' for each (u,i) . (7.2)

e€Eqt (u,i)

We now claim that (7.2) holds in our case with equality for every (u,i). Otherwise, the
corresponding splitting would yield an irreducible, lossless presentation of S* with minimum
out-degree at least n' and at least one state with out-degree greater than n'—contradicting
the equality cap(S) = log n.

Let umax be a state in G for which z,_, = ||X||c- Also, let v be a state with an outgoing
edge, in G, 10 Umax.- Then any edge e from v t0 Upax in G* belongs to some Egt(v,7) and so
the equality Ycep,, (v,i) Ti(e) = n' implies

‘/‘Eumax S nt

—ice., t > 10g, [X]loe > minyex(aqm { 10, [[¥lloo }-

We end this section by mentioning without proof the improvements on Theorems 7.15
and 7.16 that have been obtained in [Ru96] and [RuR01].

Recall that Theorem 5.10 in Section 5.6.2 provides a necessary and sufficient condition for
having (S, n)-encoders with anticipation ¢ Such a characterization also implies a lower bound
on the anticipation of (S, n)-encoders: given S and n, the anticipation any (S, n)-encoder is
at least the smallest nonnegative integer ¢ for which there exists a presentation G' of S and
an (Ag,n)-approximate eigenvector x that satisfy conditions (a)—(e) of Theorem 5.10.

The following is another result obtained in [Ru96] and [RuR01].

Theorem 7.17 Let S be an irreducible constraint, let n be a positive integer where
cap(S) > logn, and let G be any irreducible deterministic presentation of S. Suppose there
exists some irreducible (S, n)-encoder with anticipation t < oo. Then there exists an (Ag,n)-
approximate eigenvector x such that the following holds:

(@) [Ix[loo < n.
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(b) For every k = 1,2,...,t, the states of G* can be split in one round consistently with
the (A%, nF)-approzimate eigenvector x, such that the induced approzimate eigenvector x'
satisfies ||X||co < n'7F, and each of the states in G* is split into no more than nF states.

While Theorem 5.10 gives a necessary and sufficient condition on the existence of (S, n)-
encoders with a given anticipation ¢, Theorem 7.17 gives only a necessary condition on the
existence of such encoders. On the other hand, Theorem 7.17 allows to obtain a lower
bound on the anticipation using any irreducible deterministic presentation of S—in partic-
ular the Shannon cover of S. Therefore, it will typically be easier to compute bounds using
Theorem 7.17.

Note that Theorem 7.15 is equivalent to Theorem 7.17(a), while Theorem 7.16 is equiv-
alent to Theorem 7.17(b) for the special case k = ¢t. Examples in [RuR01] show that Theo-
rem 7.17 (and hence Theorem 5.10) yields stronger bounds than these two former results.

The results in [RuR01] also imply tight lower bounds in certain practical cases. For
example, it is shown therein that any rate 2 : 3 finite-state encoder for the (1,7)-RLL
constraint must have anticipation at least 2, and the Weathers-Wolf encoder in 4.6 does
attain this bound (and so does the encoder of Adler Coppersmith, and Hassner in [ACH83]).
Similarly, any rate 1 : 2 encoder for the (2, 7)-RLL constraint must have anticipation at least
3, and this bound is attained by the Franaszek encoder in Figure 4.4. A lower bound of 3
applies also to the anticipation of any rate 2 : 5 encoder for the (2,18,2)-RLL constraint
(see Figure 1.12); this bound is tight due to the constructions by Weigandt [Weig88] and
Hollmann [Holl95].

7.5 Sliding-block decodability

The following is the analog of Theorem 7.6 for sliding-block decodable encoders. The special
case of block decodable encoders was treated in Section 4.4.

Theorem 7.18 Let S be an irreducible constrained system with a Shannon cover G, and
let n be a positive integer and m and a be nonnegative integers. For every state u in G, let
N(u,a) = |Fa(u)| and let P(u,m) be the number of words of length m that can be generated
in G by paths that terminate in state u. If there exists an (m,a)-sliding-block decodable
(S,n)-encoder, then there ezists such an encoder with at most Y ycy, P(u, m)(2V®?) — 1)
states.

Proof. The proof is similar to that of Theorem 7.6. In fact, that proof applies almost
verbatim to the case of (0, a)-sliding-block decodable encoders, so we assume here that m is
strictly positive. Let £ be an irreducible (m, a)-sliding-block decodable (S, n)-encoder. Also,
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let H' be an irreducible sink of the determinizing graph of £ obtained by the construction
of Section 2.2.1. By construction of H', for every path from state v to state ¥ in £ that
generates a word w, there is a path in H' that generates w, starting at a state Z and
terminating in a state Z, such that v € Z and 0 € Z. Hence, by Lemma 2.13, there also
exists a path in G that generates w, starting at a state v and terminating in a state 4, such
that Fg(v) C Fg(u) and Fe(0) C Fe(u). It thus follows that for every state ¢ in £ and a
word w that can be generated in £ by a path terminating in ¥, there is a path in G that
generates w whose terminal state, @, satisfies F¢(0) C Fg(1).

For a state u € V5, a word w of length m that can be generated in G' by a path terminating
in u, and a nonempty subset F C F&(u), we define I'(u, w, F) to be the set of all states v
in £ which are terminal states of paths in £ that generate w and such that Fg(v) C Fg(u)
and F2(v) = F. Note that each state of £ is contained in some set I'(u, w, F) and, so, at
least one such set is nonempty.

A tagged (S,n)-encoder &' is now defined as follows. In each nonempty set I'(u, w,F),
we designate a state of £ and call it v(u, w,F). The states of £ are triples (u,w, F) for
which I'(u, w, F) is nonempty.

Let u and u be states in G and let w = wyws ... wy, and W = W;Ws . . . Wy, be two words
that can be generated by paths in G that terminate in v and @, respectively. If I'(u, w,F)

and ['(u, w, .7?) are nonempty, then we draw a tagged edge (u, w, F) il (u,w, .7?) in &' if and
only if the following four conditions hold:

(a) Wj = wjqq for j =1,2,...,m—1;
(b)
)

(c) there is a tagged edge v(u, w,F) % in & for some ¥ € I'(4,w,F);

b = Wn;

(d) there is an edge u - @ in G.

By the proof of Theorem 7.6, it follows that £’ is, indeed, an (S,n)-encoder and that
a“( u, w, F) ) = .7-'2“( (u,w,}')). Furthermore, it can be shown by induction that, for
every £ < m, the paths of length £ in £ that terminate in (u, wiws ... wmn, F), all have the
same labeling Wm—+1Wm_g+2 - - - Wm. Since the ‘outgoing picture’—including tagging—from
state (u,w,F) in &' is the same as that from state v(u,w,F) in &, it follows that & is
(m, a)-sliding-block decodable.

The upper bound on |Vg| is now obtained by counting the number of distinct states
(u, w,F). O

The upper bound on the number of states in Theorem 7.18 is doubly-exponential in the
decoding look-ahead a. In [AM95], a stronger result is obtained where the upper bound on
the number of states is singly-exponential. It is still open whether such an improvement is
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possible also for the doubly-exponential bound of Theorem 7.6.

The following bound is easily verified.

Proposition 7.19 Let £ be an irreducible (m,a)-sliding-block decodable encoder. Then,
a > A(E).

Hence, we can apply the lower bounds on the anticipation which were presented in Sec-
tion 7.4.3, to obtain lower bounds on the attainable look-ahead of sliding-block decodable
encoders (but these do not give lower bounds on the decoding window length, m +a + 1,
since m may be negative). On the other hand, Theorems 7.9 and 7.12 and Corollary 7.13
provide upper bounds on the look-ahead of encoders obtained by constructions that yield
sliding-block decodable encoders for finite-type constrained systems.

We remark that Theorem 7.18 implies upper bounds on the the size of encoders which
are sliding-block decodable also when m is negative: simply apply the theorem with m = 0.

And finally we note that, at least for finite-type constrained systems, Hollmann [Holl96]
has given a procedure for deciding if there exists a sliding block decodable (S, n)-encoder
with a given window length; here, the window length L = m 4 a 4+ 1, rather than m and a,
is specified. Even for L = 1, this is a non-trivial problem, because one must consider the
possibility that a = —m may be arbitrarily large.

7.6 Gate complexity and time—space complexity

In this section, we discuss the gate complexity and time-space complexity of some of the
encoding schemes that were mentioned in the previous sections. We start with the time-
space complexity criterion, assuming that the encoders are to be implemented as a program
on a random-access machine (RAM) [AHU74, Ch. 1]. The results on gate complexity will
then follow by known results in complexity theory.

We define an encoding scheme as a function (G, ¢,n) — £(G, ¢, n), that maps a determin-
istic graph G and integers ¢ and n into an (S(G?),n)-encoder £(G, ¢, n). The state-splitting
algorithm of [ACHS83], the method described by Ashley in [Ash88], and the stethering method
of [AMR95] are examples of encoding schemes.

For a given encoding scheme (G, ¢, n) — £(G, g, n), we can formalize the encoding problem
as follows: We are to write an encoding program P on a RAM; an input instance to P consists
of the following entries:

e a deterministic graph G over an alphabet 3,

e an integer q,
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e an integer n < \(A%),
e a state u of £(G, q,n),

e an input tag s € {0,1,...,n—1}.

For any input instance, the program P computes an output g-block over ¥ and the next
state of the tagged (S(GY),n)-encoder £(G,¢q,n), given we are at state v in £(G, g,n) and
the current input tag is s. Note that in order to perform its function, the program P does
not necessarily have to generate the whole graph presentation of £(G, ¢, n).

We denote by Poly(-) a fixed arbitrary multinomial, whose coefficients are absolute con-
stants, independent of its arguments.

The following was proved in [AMR95] for the stethering coding scheme and for a variation
of Ashley’s construction [Ash88|.

Theorem 7.20 There exists an encoding scheme (G, q,n) — E(G,q,n) (such as the one
presented in [Ash88] or [AMR95]), for which there is an encoding program P on a RAM that

solves the encoding problem in time complexity which is at most Poly(|Vg|, q,log |E|)

In particular, if we now fix GG, ¢, and n, we obtain an encoding program that simulates
E(G, q,n) with a polynomial time and space complexity.

Theorem 7.20 applies to the constructions covered in Theorems 7.11, 7.12, and 7.14. In
contrast, it is not known yet whether a polynomial encoder can be obtained by a direct
application of the state-splitting algorithm.

For a positive integer ¢, denote by I, the set of all possible inputs to P of size ¢, according
to some standard representation of the input. Now, if the time complexity of P on each
element of I, is polynomial in £, then for any input size £, there exists a circuit C, with
Poly(¢) = Poly(|VG|, q, log \E\) gates that implements P for inputs in I,. Furthermore, such
circuits Cy are ‘uniform’ in the sense that there is a program on a RAM that generates the
layouts of Cy in time complexity which is Poly(¢). This is a consequence of a known result
on the equivalence between polynomial circuit complexity and polynomial RAM complexity
of decision problems [ST93, Theorem 2.3].

By Theorem 7.20, it thus follows that we can have such a polynomial circuit at hand
for both Ashley’s construction and the stethering construction. We summarize this in the
following theorem.

Theorem 7.21 For every constrained system S over an alphabet 3, presented by a de-
terministic graph G, and for any positive integers q and n < M\(Ag), there exists an (S, n)-
encoder that can be implemented by a circuit consisting of Poly(|Vg\,q,log |E|) gates and
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O(|Ve|logn) memory bit-cells. Furthermore, there exists a program on a RAM that generates
the layout of such an tmplementation in polynomial-time.

Theorems 7.20 and 7.21 apply also to the decoding complexity of the corresponding
encoders.

Problems

Problem 7.1 Prove Theorem 7.3 by modifying the end of the proof of Theorem 7.2.
Problem 7.2 Verify the assertion of Example 7.2.

Problem 7.3 Verify the assertion of Example 7.3.

Problem 7.4 Let S be the constrained system presented by the graph G in Figure 2.24. Is there
a positive integer ¢ for which there exists a deterministic (S%¢, 2¢)-encoder? If yes, construct such
an encoder; otherwise, explain.

Problem 7.5 Let S be the constrained system presented by the graph G in Figure 7.2.

Figure 7.2: Graph G for Problem 7.5.

1. Compute the capacity of S.

2. Compute an (Ag,2)-approximate eigenvector in which the largest entry is the smallest pos-
sible.

3. For every positive integer £, determine the smallest anticipation of any (S¢,2¢)-encoder.
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Problem 7.6 Let S be the constrained system presented by the graph G in Figure 5.27.

1. Find the smallest anticipation possible of any (S, 2)-encoder.

2. Find the smallest number of states of any (52, 4)-encoder.



