Chapter 5

The State-Splitting Algorithm

In this chapter, we provide an exposition of the state-splitting algorithm, which implements
the proof of Theorem 4.1, for constructing finite-state encoders. The steps in the algorithm
are summarized in Figure 5.9.

The approach we will follow uses graph construction techniques, based on state splitting
and approximate eigenvectors, which have their roots in symbolic dynamics, where they
were introduced by R.F. Williams [Will73] and Adler, Goodwyn, and Weiss [AGWT77]. The
first application of state-splitting ideas in constrained coding was Patel’s construction of the
Zero-Modulation (ZM) code [Patel75] (see Section 4.5). The state-splitting algorithm is also
related to earlier ideas of Franaszek [Fra80b], [Fra82], [Frag89).

For a given deterministic presentation G of a constrained system S and an achievable rate
p/q < cap(S), we will apply a state-splitting transformation iteratively beginning with the
gth power graph GY; the procedure culminates in a new presentation of S? with minimum
out-degree at least 27; then, after deleting edges, we get an (S?,2P)-encoder, which, when
tagged, gives our desired rate p : ¢ finite-state encoder for S.

Although the design procedure can be made completely systematic—in the sense of having
the computer automatically generate an encoder and decoder for any valid code rate—the
application of the method to just about any nontrivial code design problem will benefit from
the interactive involvement of the code designers. There are some practical tools that can
help the designer make “good” choices during the construction process. We will discuss some
of these tools in Section 5.5.

It should be stressed that the general problem of designing codes that achieve, for ex-
ample, the minimum number of encoder states, minimum sliding-block decoding window, or
the less precise feature of minimum hardware complexity, is not solved. This remains an
active research topic, as exemplified by recent papers where lower bounds on the number of
encoder states [MR91] and the minimum sliding-block decoder window are studied [Ash88|,
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[Kam89], [Imm92], [Holl95], [AM97], [AMO00]. See Chapters 6 and 7 for more on this.

5.1 State splitting

In this section, we define state splitting of a labeled graph H and later apply it to H = GY.
We begin with a simplified special case.

Let H = (V, E, L) be a labeled graph and denote by E, the set of outgoing edges from
state v in H. A basic out-splitting at state u is determined by a partition

E,=EY UE®

of E, into two disjoint sets. This partition is used to define a new labeled graph H' =
(V',E', L") that changes the local picture at state u. The set of states V' consists of all
states v # v in H, as well as two new states denoted u") and u(®:

V= (V- {u}) u{u®u?} .

The states u() and u(® are called descendant states of state u, and state u is called the
parent state of uM and u®.

The edges in H' that do not involve states u(" and u(® are inherited from H. That is,
if there is an edge e from state v to state v’ in H, (with v,v' # u) there is a corresponding
edge in H'. For edges involving state u, we consider the following three cases.

Case 1: Let edge e in H start at a state v # v and terminate in state u. This edge is

replicated in H' to produce two edges: an edge ") from v to u(!) and an edge e® from v to
(2)
ul?),

Case 2: Let edge e in H start at state v and terminate in a state v # u, and suppose
e belongs to the set E{ in the partition of E,. We draw in H' a corresponding edge from
state u(® to state v.

Case 3: Let edge e be a self-loop at state v in H, and suppose that e belongs to Eg).
In H' there will be two edges from state u(* corresponding to e: one edge to state u(!), the
other to state u(®.

As with states, we refer to descendant edges in H' and parent edges in H. In all cases,
the edge label of an edge in H' is the edge label of its parent edge in H.

In specifying the partitions in particular examples, we will refer to the edges by their
edge labels in cases where this causes no ambiguity.

The change in the local picture at state u is shown in Figures 5.1 and 5.2. In the figures,
we have partitioned the set of edges E, into subsets, EY) = {a,b} and E? = {c}. The
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state u splits into two states, u{") and u?, according to the partition. It is evident that the
anticipation at states v; and vy may increase by one symbol. So, H' need not be deterministic
even if H is.

Figure 5.2: Basic out-splitting at state u for Figure 5.1.

In general, a state splitting may involve partitions into any number of subsets, and several
states may be split simultaneously; so, we have the following more general notion of state
splitting.

An out-splitting of a labeled graph H begins with a partition of the set, F,, of outgoing
edges for each state u in H into N(u) disjoint subsets

E,=EYUE®U...u ENW)

From the partition, we derive a new labeled graph H'. The set of states Vi consists of the
descendant states u(", u® ... u(N®) for every u € V. Outgoing edges from state v in H
are partitioned among its descendant states and replicated in H' to each of the descendant
terminal states as follows: for each edge e from u to v in H, determine the partition element
E{ to which e belongs, and endow H' with edges e from u® to v for r = 1,2,..., N(v);
the label of e in H' is the same as the label of e in H.
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Sometimes an out-splitting is called a round of out-splitting to indicate that several states
may have been split simultaneously.

The labeled graph H' obtained from H by out-splitting is sometimes called an out-
splitting of H. It has several important characteristics, relative to H, enumerated in the
following proposition.

Proposition 5.1 Let H be a labeled graph and let H' be obtained from H by out-splitting.
Then

1. S(H") = S(H).

2. If H has anticipation A, then H' has anticipation at most A+1.
3. If H is (m,a)-definite, then H' is (m,a+1)-definite.

4. If H is irreducible, so is H'.

The key to this result is the following fact, which is a consequence of the definition of
out-splitting.

Lemma 5.2 Let H be a labeled graph and let H' be obtained from H by out-splitting.
Then egrl)egz) .. .ey") is a path in H' if and only if e1es . ..ep is a path in H and

ei1 € B for i=12,..,0-1.

Moreover, both paths generate the same word.

We leave the proof of the lemma to the reader.
Proof of Proposition 5.1. 1. This follows immediately from Lemma 5.2.

2. Let e{™el™) ... eEZfQFZ) and ™l . .éfi;‘:f) be paths of length A+2 in H' starting
at the same state and generating the same word. Then ejey...e449 and €16;...€4,9 are
paths in H that start at the same initial state and generate the same word. Thus e; = é;

and es = é9. Since ey belongs to the partition element Eg(g) and é;, belongs to the partition
element ESY) = ESY) it then follows that r = si. So, ef™ = &, Thus, H' has

anticipation at most A+1.
3. The proof of this is similar to 2 and is left to the reader.

4. Let u® and v® be states in H' and let v = e1ey...ep be any path in H from u to v

such that e; € E{*). Then, by Lemma 5.2, there is a path ' = el .eﬁ”) in H' where
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the r; are determined by e;1; € E") for i = 1,2,...4—1 and r, = t. Observe that 7' is a

7(ei)

path from »® to v® in H'. O

The complete out-splitting of a labeled graph H is the out-splitting obtained from the
partition in which each set in the partition consists of a single, distinct edge. The resulting
graph is exactly the Moore co-form of H, as was defined in Section 2.2.7.

We also have the notion of in-splitting obtained by reversing the roles of outgoing and
incoming edges in the definition of out-splitting.

Finally, we mention that the out-splitting graph transformation can be described in terms
of adjacency matrices as follows. A 0-1 matrix is called a division matriz if it has exactly
one 1 in each column and at least one 1 in each row. Now, given an out-splitting H' of H, let

D be the division matrix with rows indexed by states of H and columns indexed by states
of H', defined by

1 fu=vw
D“’”(i)_{() ifu#v ’

and let C' be the matrix with rows indexed by states of H' and columns indexed by states
of H, defined by

C

s, = number of edges in E{" which terminate in u .

Then one can check that
Ag=DC and Ay =CD.

Conversely, if there is a division matrix D and a matrix C with nonnegative integer entries
such that Ay = DC and Ay = CD, then H' is an out-splitting of H; we leave the proof of
this to the reader.

5.2 Approximate eigenvectors and consistent splitting

The state-splitting algorithm that we will present starts with a deterministic graph presen-
tation of a given constrained system S and, through a sequence of rounds of out-splitting,
ends up with an (S, n)-encoder. One key question to answer is which states to split and how
to split them. Approximate eigenvectors, to be discussed next, serve as such a guide. In
fact, as we show in Section 5.6 and Chapter 7, approximate eigenvectors are useful not only
for the synthesis of finite-state encoders, but also for analyzing them.
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5.2.1 Approximate eigenvectors

Given a nonnegative integer square matrix A and an integer n, an (A, n)-approzimate eigen-
vector is a nonnegative integer vector x Z 0 such that

Ax > nx ,

where the (weak) inequality holds componentwise. We refer to this inequality as the ap-
prozimate eigenvector inequality. The set of all (A, n)-approximate eigenvectors is denoted
X (A, n).

When A is the adjacency matrix of a graph G, the approximate eigenvector inequality
has a very simple meaning in terms of G. Think of the vector x = (z,)yev, as assigning
state weights: the weight of state u is x,. Now assign edge weights to the edges of the graph
according to their terminal states: the weight of an edge e is given by z,,(). Recalling
that E, denotes the set of outgoing edges from state u in GG, the approximate eigenvector
inequality can be written as the set of simultaneous scalar inequalities, one for each state u,

Z Trg(e) = NT,  for every u € Vg .
eckEy

That is, the sum of the weights of the outgoing edges from a given state u is at least n times
the weight of the state u itself.

Example 5.1 Let G be the presentation of the (0,1)-RLL constrained system shown
in Figure 2.2. The third power of G is shown in Figure 2.10, and the adjacency matrix
Ags = A% of G? satisfies

s(2Y (3 2\[(2\ (38 2
Ac ( 1) (21 1) \5 24 1)
Therefore, the vector x = (2 1) is an (Ags, 4)-approximate eigenvector. O

The following result is straightforward.

Proposition 5.3 For a graph G, the all-one vector 1 is an (Ag, n)-approzimate eigen-
vector if and only if G has minimum out-degree at least n. Also, a 0-1 vector is an (Ag,n)-
approximate eigenvector if and only if G has a subgraph with minimum out-degree at least
n.

The next result tells us that approximate eigenvectors exist when we need them.
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Theorem 5.4 Let A be a nonnegative integer square matriz and let n be a positive
integer. Then
X(A,n)#0 if and only if M A) >n.
Furthermore, if A is irreducible and A(A) = n, then every (A, n)-approzimate eigenvector is
a right eigenvector assoctated with the eigenvalue n.

Proof. Sufficiency: Assume that A(A) > n. We first show that there is an (A4,n)-
approximate eigenvector under the assumption that A is irreducible. We distinguish between
the following two cases.

Case 1: A(A) > n. By Theorem 3.11(b), A has a strictly positive right eigenvector y
associated with \(A). We first perturb the entries of y to obtain a new vector y, with
positive rational entries, that satisfies the inequality Ay > ny. Now, let x be the vector
obtained from y by clearing denominators—i.e., by multiplying ¥ by a common multiple of
the denominators of its entries. The vector x has positive integer entries, and it satisfies
the approximate eigenvector inequality since ¥ does. Thus, x is an (A,n)-approximate
eigenvector.

Case 2: M(A) = n. Since A(A) = n is an eigenvalue of A, there is a nontrivial solution
(i.e., not the zero vector) to the homogeneous linear system of equations

(A—nl)y=0.

Since the coefficients of this linear system are rational numbers, we can assume, by applying
Gaussian elimination, that y has rational entries. Clearing denominators, we obtain a so-
lution x with integer entries. By Theorem 3.11(d) it follows that this solution is an integer
eigenvector associated with A(A) = n, and by Theorem 3.11(b) it is strictly positive (possibly
after multiplying each of its entries by —1). Hence, x is a positive integer eigenvector and,
as such, it is an (A, n)-approximate eigenvector. This completes the proof of sufficiency in
case A is irreducible.

If Ais a k x k reducible matrix, then there is, by Theorem 3.15(a), an irreducible
component B of A with \(B) = A(A) > n. Thus, by what we have just proved, there is a
(B, n)-approximate eigenvector x. We extend x to a vector with k entries simply by setting
to zero the entries that are indexed by columns of A that do not contain columns of B. This
new vector is an (A, n)-approximate eigenvector.

Necessity: Suppose first that A is irreducible and let x be an (A, n)-approximate eigen-
vector. Also, let z be a left eigenvector associated with the eigenvalue A = A(A4). By
Theorem 3.11(b), the eigenvector z can be assumed to be strictly positive. Hence,

AzX = z\X = zAX > nzx .

Noting that zx > 0, we thus obtain A > n, with equality (A = n) if and only if Ax = nx.
Therefore, if A = n, every (A, n)-approximate eigenvector is a right eigenvector associated
with the eigenvalue n.
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Finally, suppose that A is reducible and let A be the matrix obtained by removing the
rows and columns of A that contain the irreducible components of A whose columns all index
zero components in x. Let B be an irreducible sink in A and let y be the subvector of x
which is indexed by the columns of B in A. It can be readily verified that the vector y is a

(B, n)-approximate eigenvector and, so, n < A(B) < A(A4) < A(A). O

5.2.2 Computing approximate eigenvectors

In this section, we describe an algorithm for computing (A, n)-approximate eigenvectors.
The algorithm is due to Franaszek [Fra82, Appendix] (see also [ACH83, Appendix]), and its
running time is proportional to the values (rather than the size of the bit representations)
of the computed approximate eigenvector [MR91].

The Franaszek algorithm is presented in Figure 5.3. The input to the algorithm is a

y <&
x + 0;
while (x#y) {
X< y;
y < min{|1Ax|,x}; /x apply |-] and min{-,-} componentwise */

return X;

Figure 5.3: Franaszek algorithm for computing (A, n)-approximate eigenvectors.

nonnegative integer square matrix A, a positive integer n, and a nonnegative integer vector
&. The output is a nonnegative integer vector x, the properties of which are summarized in
Proposition 5.5(b) below.

For a nonnegative integer square matrix A, a positive integer n, and a nonnegative integer
vector & = (&), let X'(A,n; &) denote the set of all elements x = (z,), of X'(A4,n) that are
dominated by & (i.e., z, < &, for all u, or, in short, x < &). Also, for a vector y = (yy)u, we
will use the notations ||y||; and ||y||e for ¥, |v«| and max, |y,|, respectively.

Proposition 5.5 Let A be a nonnegative integer square matriz and let n be a positive
integer.
(a) If x,x" € X(A,n), then the vector defined by Bigl( max(z,, x;)) belongs to X(A,n).
u
Thus, for any nonnegative integer vector & there is a largest (componentwise) element of
X (A, n; &) (provided of course that X(A,n; &) #0).

(b) The Franaszek algorithm eventually halts for any input vector &; and the output is ei-
ther the zero vector (if X(A,n;€) = 0) or the largest (componentwise) element of X (A, n;§).
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Proof. Part (a) is a straightforward computation. As for part (b), let x be an element
of X(A,n; &) and let y,, denote the value of y at the beginning of the mth iteration of the
main loop of the algorithm. We show inductively on m that x <y,,. Clearly, this holds for
m = 1, where we have y; = €. Now, assuming that x < y,,, we also have x < %Ax < %Aym.
Since x is an integer vector we obtain

(11
Xfénnn{{ﬁAme,ym}==ym+1.

It remains to show that the algorithm halts and produces the required vector x. Assume
first that y,,+1 # ¥m. Recalling that y,,,; is dominated by y,,, we must have ||y,+1]1 <
lym|l1- Now, all vectors involved are nonnegative integer vectors and, therefore, the algo-
rithm must eventually halt with y,,,; = y,,. At this point we have y,, = y,n11 < [%Ame.
Hence, either y,, € X(A,n;€) or y,, = 0. Furthermore, if X' (A, n;€&) # (), we must have
Ym # 0, as y,, dominates any vector in X' (4, n;&). [l

By the proof of Proposition 5.5, it also follows that the number of iterations of the main
loop of the algorithm is at most ||&||; + 1.

Now, suppose that A is a nonnegative integer k£ x £ matrix and we would like to compute
the vector in X' (A, n) with the smallest norm ||x||. In order to find such a vector, we apply
the Franaszek algorithm to vectors of the form € = £ - 1 (namely, to integer multiples of the
all-one vector), searching for the smallest positive integer & for which the algorithm produces
a nonzero vector x. By Theorem 5.4, there exists such £ if n < A(Ag). Performing a binary
search on £, the number of integer operations thus totals to O(kQ- ||I%|| 0o log ||x||oo) We point
out, however, that there are families of £ x k£ matrices A for which the computed vectors x
are such that ||x||« is ezponential in k. Such a family is described in Example 7.1.

Example 5.2 Let G denote the third power of the Shannon cover of the (1,7)-RLL
constrained system. The adjacency matrix of G is given by

11010000
21101000
21100100
Ag = 21100010
21100001
21100000
11100000
10100000

We apply the Franaszek algorithm to Ag and n = 4, with vectors of the form & = £-1. The
smallest value of £ that results in a nonzero output is & = 3, in which case the output of the
algorithm is

x=(23332221)".
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We can now try to find other (Ag, 4)-approximate eigenvectors whose largest entry is 3 by
applying the Franaszek algorithm with & = x; for : =0,1,2,...,7, where

X)y ifuz#1
<&%={§$u_1 if u =i

That is, in each application of the algorithm, we start with a vector £ obtained by subtracting
1 from one of the entries of x. When doing so, we find that & = x7 is the only case for which
the algorithm produces a nonzero output: that output is x7 itself, namely,

(23332220)".

It follows that there are only two (Ag, 4)-approximate eigenvectors, x and x7, whose largest
entry is 3. O

Example 5.3 Let G be now the second power of the Shannon cover of the (2,7)-RLL
constrained system. By applying the Franaszek algorithm we find that X(Ag,2;€ - 1) is
nonempty if and only if £ > 4. The output of the algorithm for £ = 4 is

x=(23443321)".
There is another (Ag, 2)-approximate eigenvector,
(234433117,

whose largest entry is 4. (]

Recall from Section 4.4 that a necessary and sufficient condition for the existence of a rate
p : q deterministic encoder for a constrained system S is the existence of a set of principal
states; the definition of such a set (given in Section 4.4) depends on p, ¢ and a deterministic
presentation G of S (recall also that this condition was necessary for the existence of a block
decodable encoder, in particular the existence of a block encoder). From Proposition 5.3, it
is evident that such a set exists if and only if there is an (A%, 2P)-approximate eigenvector
with 0-1 entries. Thus, the question of existence of a rate p : ¢ deterministic encoder can be
answered by applying the Franaszek Algorithm to the vector & = 1: such an encoder exists
if and only if the algorithm does not return the zero vector.

5.2.3 x-consistent splitting

Let H be a labeled graph and let x = (z,),ecv,, be an (Ag,n)-approximate eigenvector. A
basic x-consistent partition at state u is a partition of F, into

E,=EVUE®Y
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with the property that

Z Tr(e) > ny(l) and Z Tr(e) > In‘y(Q) )
eEE,Sl) eEE&Z)

where (1 and y® are positive integers and
The out-splitting determined by this partition is called a basic x-consistent splitting at

state u, and we denote the resulting labeled graph by H'. It is straightforward to check that
the induced vector x' = (x),, indexed by the states of H', defined by

x, if v#u
1

y(2) 2)

if v=u

is an (Ag+, n)-approximate eigenvector.

The cube of the (0, 1)-RLL graph presentation is shown in Figure 5.4 (which is identical
to Figure 2.10). Figure 5.5 shows the result of a basic x-consistent splitting for Figure 5.4,
with respect to the (A%,2?)-approximate eigenvector x = (2 1)T. State 0 is split into
two descendant states, 0 and 02, according to the partition E{" = {011,110,010} and
Eé2) = {101,111}. The induced vector is x’ = (1 1 1), and the resulting labeled graph
therefore has minimum out-degree at least 22 = 4.

o11(" 101 CTIT 2 0 e- 110

Figure 5.4: Cube of (0,1)-RLL graph presentation.

The notion of x-consistency can be extended to out-splittings in general as follows.

Given a labeled graph H, a positive integer n, and an (Ag, n)-approximate eigenvector
X = (Ty)vevy, an x-consistent partition of H is defined by partitioning the set, E,, of
outgoing edges for each state u in H into N(u) disjoint subsets

E,=EWUE®@UyU...u ENW)

such that
S Ty >nal) for  r=1,2,...,N(u), (5.1)

eEEq(f)
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011

010

011 110

101

Figure 5.5: Basic x-consistent splitting for Figure 5.4.

where z{") are nonnegative integers and

N(u)
> 2\ =z, for every u € Vy. (5.2)
r=1

The out-splitting based upon such a partition is called an x-consistent splitting. The vector
x' indexed by the states u(") of the split graph H' and defined by !, = z{") is called the
induced vector.

An x-consistent partition or splitting is called non-trivial if for at least one state wu,
N(u) > 2 and x,(}) and xq(f) are positive. Observe that any basic x-consistent splitting is a
non-trivial x-consistent splitting.

Figures 5.6 and 5.7 give an example of an x-consistent splitting in which two states, 0
and 1, are split simultaneously. An (Ag,2)-approximate eigenvector is x = (2 2 1) (in
this particular case, it is actually an eigenvector). An x-consistent splitting for states 0
and 1 can be carried out as follows. State O splits according to the partition E(()l) = {a}
and E(()Q) = {b,c}. State 1 splits, simultaneously, according to the partition EP = {d} and
E® = {e}. This yields a new labeled graph H’ with induced vector x’ = (11111)", and
the resulting labeled graph therefore has minimum out-degree at least 2.

We summarize in Proposition 5.6 the important features of x-consistent out-splittings.
Proposition 5.6 Let H be a labeled graph and let x be an (Ag,n)-approximate eigen-

vector. Suppose that H' is obtained from H by an x-consistent splitting and x' is the induced
vector. Then
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Figure 5.7: x-consistent splitting for Figure 5.6.

1. x' is an (Ag:, n)-approrimate eigenvector.
2. ZuEVH Ty = EUEVH/ 33;;
Proof. 1. The inequality (5.1) says precisely that (Azx'),» > na!. for each state ulm)

of H'. So, x' is an (Ag+, n)-approximate eigenvector.

2. This follows immediately from (5.2). L

5.3 Constructing the encoder

The key result needed for the construction of our encoders is as follows.
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Proposition 5.7 Let H be an irreducible labeled graph and assume that the all-one vector
1 is not an (Ay, n)-approximate eigenvector. Let x be a strictly positive (Ay,n)-approzimate
ergenvector. Then, there is a basic X-consistent splitting of H.

Before giving the proof, we describe how we will make use of it in an iterative fashion to
construct finite-state encoders with finite anticipation.

Let G be a deterministic labeled graph presenting S and let p and ¢ be integers such
that p/q < cap(S). So, G? is a deterministic labeled graph presenting S?. Let x = (2, )yevy
be an (A%, 2P)-approximate eigenvector (which exists by Theorem 5.4). If x is a 0-1 vector,
then some subgraph of G? has minimum out-degree at least 2?, and we are done. So, we
may assume that there is no 0-1 (A%, 2?)-approximate eigenvector. Let G’ be the labeled
subgraph of G¢ corresponding to the states of G with nonzero entries of x. The vector
x’' obtained by restricting x to the states in G’ is a strictly positive (Agr, 2P)-approximate
eigenvector.

If G’ is irreducible, then we will be in a position to apply Proposition 5.7 for H = G’
and n = 2P. Otherwise, we can restrict to a sink Gy of G'; recall that a sink is an irreducible
component all of whose outgoing edges terminate in the component, and recall that every
graph has a sink. Since Gy is an irreducible component of G’, and, by assumption, there is
no 0-1 (A%, 2P)-approximate eigenvector, it follows that 1 is not an (Ag,, 2P)-approximate
eigenvector. Moreover, since Gy is a sink, it follows that the restriction, xg, of x’' to Gy is
a strictly positive (Ag,, 2P)-approximate eigenvector. Proposition 5.7 can now be applied to
carry out a basic xg-consistent splitting of GGy, producing an irreducible labeled graph Gj.

By Proposition 5.6, a basic xy-consistent splitting decomposes an entry of xq into strictly
smaller positive integers. So, iteration of this state-splitting procedure will produce a se-
quence of labeled graphs G, Gy, ..., Gy, where the graph G} has an adjacency matrix Ag,
with an all-1’s (Ag,, n)-approximate eigenvector. Therefore, by Proposition 5.3, the graph G
has minimum out-degree at least n = 2P. Since, by Proposition 5.1, out-splitting preserves
finite anticipation, the graph G; has finite anticipation. Deleting excess edges, we pass to a
subgraph of G} which is an (SY, 2P)-encoder. Now, tag this encoder with input labels, and
we have our rate p : ¢ finite-state encoder for S with finite anticipation.

Having now completely described the construction of the encoder, we have completed the
proof of Theorem 4.1 modulo the proof of Proposition 5.7.

Note that the number of iterations required to arrive at the encoder graph is no more
than },cy,. (, — 1), since a state v with entry z, will be split into at most z, descendant
states throughout the whole iteration process. So, by Proposition 5.1, the anticipation of G;
is at most Y,cy, (2, — 1). For the same reason, the number of states in the encoder graph
is at most >-,cy, Ty-

If we delete the self-loop at state 1 and assign input tags to the labeled graph in Figure 5.5,
we obtain a rate 2 : 3 finite-state (0,1)-RLL encoder shown in Figure 5.8. We indicate, for
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this example, how the encoding and decoding is implemented.

00/011
11/010
1)
- 10/110
A4
00/101
01/011 01/111

00/101] |01/111

10/101

11/111

10/101 11/111

Figure 5.8: Tagged (0, 1)-RLL encoder.

If we initialize to state 0V, the data sequence of 2-blocks, 00 10 10 11, encodes to the
(0,1)-RLL sequence of 3-codewords

011 110 101 111 .

We decode the (0,1)-RLL codeword sequence just generated. Starting at state 0, the edge

determined by the codeword 011, with upcoming codeword 110, is the self-loop 0() Oﬂl o),
so the decoder will generate the input tag 00. Proceeding, the codeword 110, with upcoming

word 101, determines the edge 0() 910 1 The reader can decode the next codeword 101 in
a similar matter, and that is as far as we can go without knowing more upcoming codewords.

As we will see, the encoder of Figure 5.8 is not the smallest (in terms of number of states)
rate 2 : 3 finite-state (0, 1)-RLL encoder. We now proceed with the proof of Proposition 5.7.

Proof of Proposition 5.7. Let x,,c # 1 be the maximum of the entries of x. We will
show that there is a state u with the following properties:

Ty = Tmax (5.3)

and
(Ap)up # 0 for some state v with 2, < Zmax - (5.4)

We then show that there is a basic x-consistent splitting at each such state wu.

Assume that no such state exists. Then, the outgoing edges for every state u with
component ., must terminate only in states with the component .. Since the graph H
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is assumed to be irreducible, this implies that the approximate eigenvector x is a constant
vector, with all of its components equal to xn.,. If we divide both sides of the approximate
eigenvector inequality (Ayx > nx) by Zmax, we see that the all-1’s vector 1 is also an
approximate eigenvector. However, this contradicts our assumption about Ay.

Let u be a state satisfying properties (5.3) and (5.4). We claim that |E,| > n. To see
this, observe that the approximate eigenvector inequality asserts

Z (AH)u,vxv 2 NIy -

veEVH

Thus, by property (5.3) above,

|Eu‘ Tmax = Z (AH)u,vxv > NTy = NTmax -
veEVy

Dividing by Zax gives the desired conclusion |E,| > n (actually, with the help of property
(5.4) above one can show that |E,| > n+1, but this is not really needed now).

Let M = |E,| > n. Write E, = {e1,e,...,ex} and assume that e; terminates in state
v (i.e., a state satisfying (5.4)), S0 Zr(e;) < Tmax- Consider the partial accumulated weights

HmZZ:L'T(ei), m:1,2,...,M
i=1

and their residues modulo n
Pm =06, (modn), m=1,2... M.

The pigeon-hole principle—which states that if one distributes n pigeons into n pigeon-holes,
then either every hole has a pigeon, or some hole contains two or more pigeons—implies that
the n residues, p1, p2, - - -, pn, satisfy one of the following conditions:

1. pm =0 (mod n) for some 1 < m < n, or—

2. pmy = Pm, (mod n) for some 1 < m; < my < n.

In the former case, we define a partition of E, by setting
EW ={e}™, and E® =F,-E} .
In the latter case, we set

B = (e and B = B, — B0
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In either case, the sum of weights of the edges in Eq(f) is divisible by n:

Z Lre) =TN -

eeE&l)

Next we claim that
1 <r<2max -

Clearly 1 < r since E&l) is nonempty. To see that r < z.x, observe that in the first case,
Eftl) contains at most n edges and includes e; for which z;(,) < Tmax; and in the second
case, E(!) has strictly fewer than n edges, each contributing at most Zmay to the sum.

Now,

D T = D el T D T
ee B e€bu ecEM
> Tyn—1rn

= (zu,—7)n.
Letting y") = r and y® = 2, — r, we conclude that the partition,
E,=EYUE®
defines a basic x-consistent splitting. (]

The discussion in this chapter implies a encoder construction procedure is known as the
state-splitting algorithm or the Adler-Coppersmith-Hassner (ACH) algorithm. This algo-
rithm is summarized in Figure 5.9.

Hints when constructing an encoder:

e In the course of a sequence of state splittings, the resulting graphs may become too
unwieldy to draw. Instead, it may be more convenient to represent the graphs by
tables; such a table has rows and columns indexed by the set of states with the (u,v)-
entry containing the list of labels of all edges from u to v. Both the untagged encoder
and the tagged encoder can also be represented in this way.

e If more then one round of splitting is required, it is convenient at each round to use
the notation u*’ for each state. For instance, if state u has weight 5 and is split in the
first round into two states, one of weight 3 and the other of weight 2, then after the
first round, denote one of the descendant states by u'® and the other by u*5. After
the sequence of splittings is completed, the descendant states of u are denoted u', u?,

u?, ut, ud.
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1. Select a labeled graph G and integers p and g as follows:

(a) Find a deterministic labeled graph G (or more generally a labeled graph with finite anticipation)
which presents the given constrained system S.

(b) Find the adjacency matrix Ag of G.

—~
o
~—

Compute the capacity cap(S) = log A\(4g).
(d) Select a desired code rate p : ¢ satisfying

cap(S) >

ISHkS]

(one usually wants to keep p and ¢ relatively small for complexity reasons).

2. Construct GY.
3. Using the Franaszek algorithm of Figure 5.3, find an (A%, 27)-approximate eigenvector x.

4. Eliminate all states u with z, = 0 from GY, and restrict to an irreducible sink H of the resulting
graph. Restrict x to be indexed by the states of H.

5. Iterate steps ba—5c below until the labeled graph H has minimum out-degree at least 27:

(a) Find a non-trivial x-consistent partition of the edges in H (the proof of Proposition 5.7 shows
how to find such a partition in at least one state).

(b) Find the x-consistent splitting corresponding to this partition, creating a labeled graph H' and
an approximate eigenvector x’.

(c) Let H «+ H' and x + x'.

6. At each state of H, delete all but 2?7 outgoing edges and tag the remaining edges with binary p-blocks,
one for each outgoing edge. This gives a rate p : ¢ finite-state encoder for S.

Figure 5.9: State-splitting algorithm.
5.4 Strong decoders

We begin this section by proving Theorem 4.8, thereby showing how to achieve sliding-block
decodability for finite-type constraints.

The proof is obtained by applying the state-splitting algorithm to any presentation of
S with finite memory. Recall from Propositions 2.7 and 5.1 that higher powers and out-
splitting preserve definiteness (although the anticipation may increase under out-splitting).
Thus, the (S, 2P)-encoder constructed in Section 5.3 is (m, a)-definite for some m and a and
so, by Proposition 4.6, is sliding-block decodable. This completes the proof of Theorem 4.8.

Note that we can decode a ¢-block w as follows: observe the m previous ¢-blocks and the
a upcoming g-blocks to determine the unique edge that produced w; then read off the input
tag on this edge. This defines an (m, a)-sliding-block decoder.
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As an example, by examining Figure 5.8, one can see that the (0,1)-RLL encoder has a
sliding-block decoder with window length 2, as shown in Table 4.1.

Next, we give a very simple example to illustrate how a tagged encoder can be non-
catastrophic without being sliding-block decodable.

Consider the constrained system S which is presented by the labeled graph of Figure 5.10.
Figure 5.11 exhibits a tagged (5, 3)-encoder £ which has finite anticipation; in fact it is
deterministic. We claim that £ is non-catastrophic. To see this, first observe that every
symbol, except for d, is decoded consistently wherever it appears; so, the only decoding
ambiguity is caused by the appearance of d as the label of two different edges with different
input tags (namely, the edges labeled d outgoing from states 2 and 3). Now, suppose that
two right-infinite sequences, y* = 4142 - - - and z* = 2,2, - - -, that can be generated by right-
infinite paths in &, differ in only finitely many places; then for some N and all i > N, we
have y; = z;. We must show that when we decode y™ and z™ in a state-dependent manner,
we get only finitely many differences in their decodings; more precisely, we must show that
when ejey--- and €}é), - - - are right-infinite paths in £ with output labels y* and z™, then
their input tags differ in only finitely many places. Well, e; and e, will have the same input
tag for N < 1 < K, where K is the first time after N that the symbol d appears in y*
(equivalently, z1), i.e., K is the smallest integer such that K > N and yx = d; if d does not
appear at all after time NV, then e; and e; will have the same input tag for 7 > N, and we
will be done. Now, at time K, we may decode yx = zx = d in two different ways. But both
occurrences of d in Figure 5.11 appear on edges with the same terminal state. So, for : > K,
we will have e; = ¢}, and decoding will be synchronized. Thus, the number of differences
between the decodings of y* and z* will be at most N+1, and therefore our tagged encoder
£ is indeed non-catastrophic.

Figure 5.10: Graph presentation of constrained system S.

On the other hand, we claim that £ is not sliding-block decodable. This follows imme-
diately from the fact that for each ¢, the symbol d in the word a‘dea’ can appear on either
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[ 3 0/a

Figure 5.11: (.S, 3)-encoder for constrained system S presented in Figure 5.10.

edge labeled d, yielding different decodings. In fact, for this particular constraint S, it turns
out that there is no sliding-block decodable (S, 3)-encoder at all [KarM88|.

We remark that if this code were to be used in conjunction with a noisy channel, then an
isolated channel error would cause at most two ‘bursts’ of decoding errors: one burst from
the channel error itself followed by a second burst caused by the ambiguity of decoding one
occurrence of the symbol d. This ‘two-burst’ feature holds for the non-catastrophic encoders
produced by the construction in Theorem 4.12.

We now give a very rough outline of the proof of Theorem 4.12; for details, see [KarM88].
Let S be an irreducible constrained system and let G be the Shannon cover of S. For sim-
plicity, we assume that ¢ = 1 (otherwise, by Theorem 3.7, we take an irreducible constrained
system S’ C S7 with cap(S’) = cap(S)). We must show that when logn < cap(S), there is
a non-catastrophic (S, n)-encoder £, and if either logn < cap(S) or S is almost-finite-type,
then there is a sliding-block decodable (.S, n)-encoder.

If logn < cap(S), then it follows from Theorem 4.8 and Proposition 3.25 that there is a
sliding-block decodable (S, n)-encoder. So, we may suppose that cap(S) = logn.

We need to introduce some terminology. A generalized homing word for a labeled graph
is a word w = wywy ... wy such that for some 1 < r < ¢, whenever ejes...ep and €éej ... €
are paths which generate w, then 7(e,) = 7(el.); the integer r is called a homing coordinate
for w. Observe that in the special case that r = ¢, a generalized homing word is a homing
word as in Section 2.6.3.

Our tagged encoder &£ will satisfy the following property:

(1) There is a generalized homing word w € S(£) C S for the encoder £ and a positive
integer M such that whenever a word z = z_pr2z_pr41 - .- 2ar of length 2M+1 in S(£)
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does not contain w, and e_jre_pry1...€p and € € ...eh, are encoder paths
) + ME_M+1 M
which generate z, then ey and ej have the same input tag.

Such an encoder is bound to be non-catastrophic for roughly the same reason as the
example above (in that example d is the (generalized) homing word): suppose that y* =
Y1yo -+ and zT = z;z9--- are two right-infinite sequences that can be generated by the
Shannon cover G such that y; = z; for all ¢ greater than some N if we decode y* and z™
then we will obtain the same decoded input tag sequence except possibly for two bounded
bursts: a burst from time 0 to time N+M and a burst from time K—M to time K+r where
r is a homing coordinate for w and K is the first time after N at which w appears in y™;
i.e., K is the smallest integer such that K > N and ygyxy1---Yx+ew)—1 = W; after time
K+r, our decodings of y™ and z* will be synchronized and we will get the same decoded
symbol. Thus, our tagged encoder will indeed be non-catastrophic.

How do we construct a tagged encoder which satisfies (1)? Well, recall from Section 2.6
that there is a homing word w for the Shannon cover G. Let Sy denote the constrained
system obtained from S by forbidding the appearance of the word w. Since cap(S) = logn,
it follows that cap(Sw) < logn. From this, using a state splitting argument, starting with G,
and deleting edges, (see [Mar85]), we construct a graph (V, E') endowed with two labelings—
input labeling L; and output labeling Lo—both with finite anticipation, such that

1. the labeled graph (V, E, Lp) presents Sy;

2. the labeled graph (V, E, L) presents some proper constrained sub-system of the set of
all n-ary words; and—

3. whenever 7 and 7' are bi-infinite paths in (V, E') with the same L-labeling, they have
the same L;-labeling.

Then, by a long and delicate sequence of state splittings, both out-splitting and in-splitting,
(see [KarM88]), the labeled graph (V, E, Lo) is transformed and extended to a presentation
(V',E', L) of all of S; moreover, this presentation has finite anticipation and constant out-
degree n. At the same time, the labeling L; is transformed to a deterministic labeling which
serves as an input tagging L of (V', E', L};). This gives our tagged (S, n)-encoder £. While
w need not be a generalized homing word for (V, E, L), it does determine a longer word
which is a generalized homing word for (V’, E’, L},) and such that the condition () holds.
This completes our outline of the construction of a non-catastrophic (S, n)-encoder £.

It remains to show that if S is almost-finite-type, then £ is actually sliding-block decod-
able. By definition, S is presented by some labeled graph with finite anticipation and finite
co-anticipation (in fact, by Proposition 2.15, the Shannon cover G is such a presentation).
Our encoder €& is constructed from such a presentation by a sequence of state splittings, and
thus it too has finite anticipation and finite co-anticipation. To show that it is sliding-block
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decodable, it suffices to show that whenever v and ' are bi-infinite paths in £ with the same
sequence, y, of output labels, then they have the same sequence of input tags.

There are two cases to consider. If y contains w—the generalized homing word for £—
then v and +' must arrive at the same state at some time, and so, by finite anticipation and
finite co-anticipation, we must have v = +/; clearly then v and 4’ have the same sequence of
input tags. Otherwise, y does not contain w and so by (1), v and 7' again have the same
sequence of input tags; thus, £ is indeed sliding-block decodable, as desired.

5.5 Simplifications

5.5.1 State merging

In practice, it is desirable to design fixed-rate encoders with a small number of states. For
a given labeled graph G = (V, E, L), with an (Ag, n)-approximate eigenvector x = (Zy)ypev,
we have shown that the state-splitting algorithm can produce an encoder £ with |V¢| states
where
|Vg‘ < Z Ty -
veV

This gives an upper bound on the number of states in the smallest (S, n)-encoder. Often,
however, one can reduce this number substantially by means of state merging. Although
there is not yet a definitive solution to the problem of minimizing the number of encoder
states, there are techniques and heuristics that have proved to be very effective in the con-
struction of encoders.

One situation where we can merge states in a labeled graph H is the following. Let u and
u' be two states in H and suppose that there is a 1-1 correspondence e; — ¢} between the sets
of outgoing edges E, = {e1,ea,...,e;} and Ey = {€/, €, ..., e}} such that fori =1,2,...,¢
we have 7(e;) = 7(e}) and L(e;) = L(e}). Then, we can eliminate one of the states, say
u', and all of its outgoing edges, and redirect into u all incoming edges to u'. Clearly, the
new labeled graph presents the same constraint, but with one fewer state. Note that this
procedure is precisely the inverse of an in-splitting.

Example 5.4 Consider again the (0,1)-RLL constrained system S. If we delete the self-

loop 1 =% 1 from Figure 5.5, we can see that states 0%) and 1 can be merged, according to the
merging criterion just discussed. The resulting two-state labeled graph is the one shown in
Figure 5.12. Tagging the latter, we obtain a tagged (S®, 2?)-encoder as shown in Figure 5.13;
this is the same encoder presented in Figure 4.2. As mentioned in Example 4.2, this encoder
is (0, 1)-definite. Hence, it is also (0, 1)-sliding-block decodable, and the respective decoding
table is shown in Table 4.1. Note that the encoder of Figure 5.13 has fewer states than the
encoder previously shown in Figure 5.8.



CHAPTER 5. THE STATE-SPLITTING ALGORITHM 156

011 -@ @am- 111

Figure 5.12: Deleting edges and merging states in Figure 5.5.

o=
(00) (2 107101

Figure 5.13: Rate 2 : 3 tagged two-state encoder for (0,1)-RLL constrained system.

00/011 11/111

00/101

Example 5.5 The second power of the Shannon cover of the (1,3)-RLL constrained
system is given by the graph G in Figure 5.14. One can verify that

X=(rgz17323) =(1110)7

is an (A%, 2)-approximate eigenvector. After deleting state 3 from G, we obtain an (S(G), 2)-

Figure 5.14: Second power of the Shannon cover of the (1,3)-RLL constrained system.

encoder in which states 1 and 2 are equivalent. When these two states are merged, we end
up with the graph in Figure 5.15. This graph is an untagged version of the MFM encoder
in Figure 4.1. 0

One key idea for merging states involves ordering the states in a labeled graph to reflect
the inclusion relations among the follower sets at each state (defined in Section 2.6): given
two states v and «’ in a labeled graph G, we say that v < o' if the follower sets Fg(u)
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10 -@ G- 01

Figure 5.15: Untagged MFM encoder.

and Fg(u') satisfy Fg(u) C Fg(u'). This partial ordering of sets was used by Freiman and
Wyner [FW64] in the construction of optimal block codes, mentioned in Section 4.2.

We now generalize the merging operation illustrated above as follows. Let G be a labeled
graph and let u and u' be two states in G such that v < u'. The (u,u’)-merger of G is the
labeled graph H obtained from G by:

1. eliminating all edges in E,;

2. redirecting into state u all remaining edges coming into state u’;

3. eliminating the state u'.

Figures 5.16 and 5.17 show a schematic representation of a (u,u')-merger—before and
after merging.

Figure 5.17: (u,u')-merger for Figure 5.16.
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It is not hard to see that the merging of states performed on Figure 5.5 to obtain Fig-
ure 5.12 is a (0, 1)-merger.

The following result shows how we can reduce the final number of encoder states by
(u,u')-merging.

Proposition 5.8 Let G be a labeled graph, with an (Ag,n)-approzimate eigenvector x,
and let u and u' be states in G satisfying

(a) u <, and —

(b) T, = y.
Let H denote the (u,u')-merger of G. Then

1. S(H) C S(G) and

2. The vector y defined by y, = x, for all vertices v of H is an (Ag,n)-approzimate
etgenvector.

Proof. 1. Let w = wyws ... wp be a word generated in H by a path v = ejes; ... e,
If v does not contain any edge derived from an edge in G terminating in state u', one can
immediately find a corresponding path 4 in G that generates w. Otherwise, let e; be the last
edge of v that terminates in state u in H and comes from an edge é; in G that terminates
in state u’. By hypothesis (a) we have Fg(u) C Fg(u'), so there is a path é;.16142...6
in G emanating from state u' and generating w;,1wyyo...we. If ejey...e;_; contains no
redirected edges, then ejey...e;_16:6;41...€; 1s a path in G generating w. If it does, let ey
be the last such edge. Then ey i1€512...€:_16:6111...€6; is a path in G that begins at state
u and generates Wy W42 ... we. By hypothesis (a), there is another path e, e} ,...€} in
G emanating from u' that also generates wy 1wk 2 ... wp. Continuing in this manner, we
eventually produce a path in G that generates the entire word w.

2. Let v be a state in H. By hypothesis (b),

(AHY)'U = (AGX)’U > N, = nYy
so y is an (Ag, n)-approximate eigenvector, as desired. (]

So, if states u and u' satisfy hypotheses (a) and (b) of the preceding result, then the
number of final encoder states in the state-splitting construction is reduced by z,.

In a set with partial ordering, there is the possibility of having minimal elements: a state
u is weight-minimal, with respect to the partial ordering by follower sets and approximate
eigenvector x, if, for any other state v, the conditions v < v and z, = z,, imply that u = v.
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Proposition 5.8 shows that, by means of preliminary state merging, encoder construction by
the state-splitting algorithm can be accomplished using only the subgraph restricted to the
weight-minimal states. This reduces the number of final encoder states to the sum of the
weights of the weight-minimal states.

Example 5.6 Let G be some power of the Shannon cover of the (d, k)-RLL constrained
system. Denoting the states by 0 through k (as in Figure 1.3), it is easy to verify that

1+1=1
for every d <1 < k.

Consider now the special case (d,k) = (1,7) and let G be the third power of this con-
strained system. We have mentioned in Example 5.2 that

(23332220)7 (5.5)

is an (Ag, 4)-approximate eigenvector. With respect to this vector, the weight-minimal states
in G are 0, 3, 6, and 7. We now delete state 7 (whose weight is zero) and merge the other
states into the three remaining weight-minimal states as follows: states 1 and 2 are merged
into state 3 to form state 1-3, and states 4 and 5 are merged into state 6 to form state
4-6. This, in turn, yields a graph G’ with only three states, as shown in Figure 5.18. The

Figure 5.18: Merged graph G’ for the (1, 7)-RLL constrained system.

adjacency matrix of G’ is given by
1 20
Ao =12 2 1
1 20

with an (Ag,4)-approximate eigenvector (2 3 2)"; in fact, this is a true eigenvector of Ag
associated with the Perron eigenvalue 4.

If we now apply the state-splitting algorithm to the graph G’, we can obtain a rate 2 : 3
encoder for the (1, 7)-RLL constrained system with at most 2+ 3+ 2 = 7 states. This upper
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bound on the number of states is far better than the bound, 17, which we would obtain if the
state-splitting algorithm were applied to the original presentation G' with the approximate
eigenvector in (5.5).

By applying further merging in the course of the state-splitting rounds of G’, Weathers
and Wolf obtained in [WW091] the encoder of Figure 4.6, which has only four states. It will
follow from the discussion in Chapter 7 (Example 7.2) that no rate 2 : 3 encoder for the
(1, 7)-RLL constrained system can have less than four states. 1

The partial ordering on weight-minimal states also suggests certain out-splitting rounds
and further state merging rounds than can simplify the final encoder graph. For instance,
if w < v and z, < ,, it would be tempting to try to split state v into two states v") and
v® with weights z, and z, — z, such that v(!) can be merged with state u. This would
then further reduce the number of encoder states by z,. In most cases of practical interest,
this can be done. The paper [MSW92| describes one situation in general and several specific
examples where the operations suggested by the partial ordering of the weight-minimal states
can actually be implemented (those ideas were used by Weathers and Wolf in [WW91] to
obtain their encoder in Figure 4.6). So, the merging principle is a valuable heuristic in
encoder design.

However, as we show in Chapter 7, given a constrained system S and a positive integer
n, there are lower bounds on the number of states that any (S,n)-encoder can have. In
particular, there are limits on the amount of state merging that can be carried out.

Example 5.7 Let G be the 16th power of the (2,10)-RLL constrained system. One can
verify through the Franaszek algorithm that

(11111111100)"

is an (Ag, 2®)-approximate eigenvector. The weight-minimal states in G are 0, 1, 8, and 10,
and by deleting states 9 and 10 and merging states 2 through 7 into state 8 we obtain a
labeled graph G’ with three states, 0, 1, and 2-8. The adjacency matrix of G' is given by

83 57 117
A = | 122 83 170
1 85 173

By further deleting edges we can obtain the 3-EFM(16) code (see Sections 1.7.2 and 4.4).

In Section 1.7.3, we showed how bit inversions in the output sequence of the encoder can
reduce the DSV after precoding; such inversions effectively map certain input tags (bytes)
into two possible codewords that differ in one bit. It was also mentioned, however, that
the DSV reduction that can be obtained with the 3-EFM(16) code is not enough for optical
applications.
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The approach adapted in the DVD was designing an (S(G), n)-encoder where n is (signif-
icantly) greater than 256. The excess out-degree then allows to have n—256 input bytes each
of which can be mapped into two different codewords; this flexibility in selecting the encoded
codeword can then be used to reduce the DSV, especially if the two codeword candidates
are such that one contains an even number of 1’s while the other contains an odd number.

By Franaszek algorithm we obtain that there exists an (Ag, n)-approximate eigenvector
whose largest component is 1 if and only if n < 260; yet, an out-degree 260 is still too close
to 256. Allowing the largest component in the approximate eigenvector to be 2, the values
of n can go up to 351. For n = 351 we obtain the approximate eigenvector

(11222211110)7,

and the respective weight-minimal states in G are 0, 1, 5, 9, and 10. By deleting state 10
and merging states, we obtain a labeled graph H with four states, 0, 1, 2-5, and 6-9, whose
adjacency matrix is given by

83 57 98 22
122 83 142 32
164 113 192 42
97 67 113 25

AH:

and the respective (Agy, 351)-approximate eigenvector is

(1121)".

Next, we obtain a labeled graph H' by splitting state 2-5 into two descendant states,
2-5() and 2-5®), with out-degrees 351 and 352. In fact, the splitting can be such that

Fur(2-51) C Fr(6-9) ,

thereby allowing merging. By deleting excess edges we thus obtain a four-state (S(G), 351)-
encoder that is (0, 1)-sliding-block decodable. In particular, we can obtain in this manner
the EFMPlus code, which is used in the DVD; see Section 1.7.3 and [Imm95b], [Imm99,
Section 14.4.2]. ]

5.5.2 Sliding-block decoder window

When a finite-state encoder with sliding block decoder is used in conjunction with a noisy
channel, the extent of error propagation is controlled by the size of the decoder window. How
large is this window? Well, suppose that we start the state-splitting algorithm with some
labeled graph G presenting a constrained system of finite-type and G¢ has finite memory
M = M(G?) (measured in ¢-blocks). If ¢ is the number of (rounds of) out-splitting used to
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construct the encoder, then the encoder graph £ is (M, t)-definite (measured in ¢g-blocks). It
follows that we can design a sliding-block decoder with decoding window length W satisfying
the bound

WIM+t+1

(again, measured in ¢-blocks). Recall from Section 5.3 that an upper bound on the number
of (rounds of) out-splitting required is

t< > (wy— 1),
veVg
S0,

WM+ D (z,—1)+1. (5.6)

vEVG

The guarantee of a sliding-block decoder when S is finite-type and the explicit bound
on the decoder window length represent key strengths of the state-splitting algorithm. In
practice, however, the upper bound (5.6) on the window length often is larger—sometimes
much larger—than the shortest possible.

For the (0, 1)-RLL encoder in Figure 5.8, where (referring to Figure 5.4) M =1, zy = 2,
and zo = 1, this expression gives an upper bound of 3 (codewords) on the window length.
However, we saw, in Table 4.1, a decoder with window length of W = 2. For the rate 2 : 3
(1, 7)-RLL encoder mentioned in Example 5.6 the initial labeled graph has memory M = 3,
and the approximate eigenvector is

(232)7.

The number of rounds of splitting turns out to be only 2, implying
WIM+3=6,

which is, again, less than the upper bound (5.6) gives. In fact, a window length of W = 3
was actually achieved [AHMS82], [WWO91]. For the rate 8 : 9 (0,G/I) = (0,3/3) encoder for
PRML discussed in [MSW92], the bound (5.6) was 11, but a window length of W = 2 was
achieved [MSW92].

These reduced window lengths were achieved by trying several possibilities for the choices
of presentation, approximate eigenvector, out-splittings, elimination of excess edges and
input tagging assignment (see, for instance [MSW92|, [WW091]). In [KarM88] and [AM95],
in-splitting was another tool used in reducing the window length-—although for those codes,
the ordinary state-splitting algorithm applied to a ‘very large’ approximate eigenvector will
yield codes with the same sliding block decoding window. Recently, Hollmann [Holl95]
has found an approach that combines aspects of the state-splitting algorithm with other
approaches and has been demonstrated to be of use in further reducing the window length.

To illustrate the importance of the input tagging assignment, consider the encoders in
Figures 5.19 and 5.20. In Figure 5.19 (which is the same as the MFM code of Figure 4.1), the
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decoder window length is one codeword, but in Figure 5.20, the minimum decoder window
length is two codewords (one codeword look-back). The difference is that the assignment in
the former is done in a more consistent manner: edges that have the same output label are
assigned the same input tag.

1/01
0/10 -0_0- 1/01
0/00
Figure 5.19: One choice of input tags.
1/01
0/10 0/01
1/00

Figure 5.20: Another choice of input tags.

There is a ‘brute-force’ procedure for deciding if, given m and a, there is an input tagging
assignment of a given (S, n)-encoder G which is (m, a)-sliding block decodable: for each edge
e in G, let L(e, m,a) denote the set of all words generated by paths e_p,...€p...e, such that
eo = e; it is straightforward to verify that an input tagging assignment on G is (m, a)-sliding
block decodable if and only if whenever L(e,m,a) and L(e’, m,a) intersect, e and e’ have the
same input tag.

In Figure 5.21, we exhibit an (S,2)-encoder which is not block decodable (i.e., (0,0)-
sliding block decodable): the reader can easily verify that it is impossible to assign 1-bit
input tags in such a way that the sliding-block decoder will have no look-back and no look-
ahead. However, since the encoder is (1,0)-definite, any input tag assignment allows a
decoder window of length 2.

Figure 5.21: Encoder requiring decoder window length > 2.

Theorem 4.9 shows that in general there is not much hope for simplifying the brute-
force procedure, described above, when n > 3 (see the paragraph following the statement of
Theorem 4.9).
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5.6 Universality of the state-splitting algorithm

We end our treatment of the state-splitting algorithm by reviewing, without proof, some
results from [AM95] and [RuR01] on the universality of the state-splitting algorithm.

Given a deterministic graph G, an integer n, and an (Ag, n)-approximate eigenvector x,
we say that the triple (G, n,x) splits into an (S,n)-encoder & if there is sequence of rounds
of out-splitting that can be applied to G such that the following holds:

1. The first round is consistent with x, and each subsequent round is consistent with the
respective induced approximate eigenvector.

2. The last round ends produces a labeled graph H in which each state has out-degree at
least n.

3. The encoder £ can be obtained from H by deleting excess edges and—in case £ is
tagged—by assigning input tags to the edges.

5.6.1 Universality for sliding-block decodable encoders

For integers m, a, and a function D from (m+a+1)-blocks of S to the n-ary alphabet (such as
a sliding-block decoder), we define D? to be the induced mapping on bi-infinite sequences
defined by:

m,a —
D007 (...w_lwowl...) =---8_18)81" ",

where
S; = ’D(wi_m Wi Wi Wit 1 - - - wi+a) .

Sometimes, we simply write Dy, = DI?. For a tagged (S, n)-encoder £ with sliding-block
decoder D, we then have the mapping D, and we take its domain to be the set of all bi-
infinite (output) symbol sequences obtained from £. When we refer to Dy, we tacitly assume
that its domain is included. We say that a mapping D is a sliding-block (S, n)-decoder if
D is a sliding-block decoder for some tagged (S, n)-encoder.

We have the following positive results from [AM95].

Theorem 5.9 Let S be an irreducible constrained system and let n be a positive integer.

(a) Every sliding-block (S,n)-decoder has a unique minimal tagged (S, n)-encoder (here
minimality can be taken to be in terms of number of states).

(b) If we allow an arbitrary choice of deterministic presentation G of S and (Ag,n)-
approzimate eigenvector x, then the triple (G,n,x) splits into a tagged (S, n)-encoder for
every sliding-block (S, n)-decoder. If we also allow merging of states (i.e., (u,v)-merging
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as in Section 5.5.1), then that triple splits into the minimal tagged (S,n)-encoder for every
sliding-block (S, n)-decoder.

(¢) If we fix G to be the Shannon cover S, but allow arbitrary (Ag,n)-approzimate eigen-
vector x, then (G,n,x) splits into a tagged (S,n)-encoder for every sliding-block (S,n)-
decoder D, modulo a change in the domain of Dy, possibly with a constant shift of each
bi-infinite sequence prior to applying De, (but with no change in the decoding function D it-
self). If we also allow merging of states, then, modulo the same changes, the triple (G, n,x)
splits into the minimal tagged (S,n)-encoder for every sliding-block (S, n)-decoder. In par-
ticular, the triple splits into a sliding-block (S, n)-decoder with minimal decoding window
length.

On the other hand, we have the following negative results from [AM95].

1. If we fix G to be the Shannon cover of an irreducible constrained system S, then
(G,n,x) need not split into a sliding-block (S, n)-decoder with smallest number of
encoder states in its minimal tagged (S, n)-encoder.

2. If we fix G to be the Shannon cover of an irreducible constrained system S and we fix
x to be a minimal (Ag, n)-approximate eigenvector (in terms of the value of ||x||s),
then (G,n,x) may fail to split into a sliding-block (S, n)-decoder with minimum de-
coding window length; examples of this kind were first found by Kamabe [Kam89] and
Immink [Imm92], but in [AM95] an example is given where cap(S) = logn.

5.6.2 Universality for encoders with finite anticipation
Let u and v’ be states in labeled graph G. We say that u and v’ are 0-strongly equivalent if
they are follower-set equivalent states; namely, Fg(u) = Fg(u').

States v and u' in G = (V, E, L) are t-strongly equivalent if the following conditions hold:

1. A one-to-one and onto mapping ¢ : E, — E, can be defined from the set of outgoing
edges of u to the set of outgoing edges of u', such that for every e € F,, both e and
¢(e) have the same label.

2. For every e € F,, the terminal states of e and ¢(e) are (t—1)-strongly equivalent.
States that are t-strongly equivalent are also r-strongly equivalent (and in particular they
are equivalent states) for every r < t.

We say that two states are strongly equivalent states if for every ¢ > 0 the states are
t-strongly equivalent. So, when states are strongly equivalent, the infinite trees of paths that
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start in those states are the same. In a deterministic graph, two states are equivalent if and
only if they are strongly equivalent. On the other hand, in a nondeterministic graph there
may be two states that are equivalent but not strongly equivalent.

The following result is proved in [Ru96] and [RuR01].

Theorem 5.10 Let S be an irreducible constraint and let n be a positive integer where
cap(S) > logn. Suppose there exists some irreducible (S,n)-encoder £ with A(E) =t < oo.
Then there exists an irreducible deterministic (not necessarily reduced) presentation G of S
and an (Ag, n)-approzimate eigenvector x that satisfy the following:

(a) [x[lo < n'.

(b) The triple (G, n,x) splits in t rounds into an (S,n)-encoder Eg such that A(Eg) = t.
(¢) In each of the splitting rounds, every state is split into at most n states.

(d) In the ith round, the induced approzimate eigenvector x® satisfies ||x®||o < nt=".

(e) The encoder € can be obtained from Eg by merging strongly equivalent states.

Theorem 5.10 establishes the universality of the state-splitting algorithm for encoders
with finite anticipation: every (S,n)-encoder with finite anticipation can be constructed
using the state-splitting algorithm, combined with merging of (strongly) equivalent states,
where the input to the process is some irreducible deterministic presentation G of S and
an (Ag, n)-approximate eigenvector x. (However, as shown in [RuR01], not always can the
Shannon cover be taken as the graph G in Theorem 5.10.)

Another application of Theorem 5.10 is obtaining lower bounds on the anticipation of
any (S, n)-encoder. We elaborate more on this in Section 7.4.3.

Problems

Problem 5.1 Construct the graph that is obtained by a complete out-splitting of the Shannon
cover of the (1,3)-RLL constrained system in Figure 1.16.

Problem 5.2 Let & be an (S,n)-encoder with finite anticipation. What can be said about the
graph & that is obtained from &; by complete out-splitting?

Problem 5.3 Let G = (V, E, L) be an irreducible graph with A = A(A¢) and let n be a positive
integer such that n < A. Denote by A the largest out-degree of any state in G.

Let x = (z,)ycv be a strictly positive right eigenvector of Ag associated with the eigenvalue A
and let i, the smallest entry in x. Normalize the vector x so that z;, = A/(A —n), and define
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the integer vector z = (zy)yey by 2y = |y ], where |y| stands for the largest integer not greater
than y.

1. Show that
Agz > nz >0

(that is, z is an (Ag, n)-approximate eigenvector whose entries of are all positive).
2. Show that the sum of the entries in z satisfies the inequality
AVI—1

DIEEST
v =
= A—n -1

Problem 5.4 Let S be the (0,00,2)-RLL constraint; that is, S consists of all binary words in
which the runs of 0’s in between consecutive 1’s have even length. Denote by G the Shannon cover
of S.

1. Construct the graphs G and G3.

2. Are there any values m and a for which G® is (m, a)-definite?

3. Compute the base-2 capacity of S.

4. Construct a (0, 1)-definite (S3,4)-encoder with three states.

5. Does there exist an (S2,4)-encoder that is block decodable?

Problem 5.5 Let S be the constrained system presented by the graph G in Figure 4.11.

1. Construct an (S?,23)-encoder (i.e., a rate 3 : 2 finite-state encoder for S) with two states.

2. Assign input tags to the encoder found in 1 so that it is block decodable (i.e., (0, 0)-sliding
block decodable).

Problem 5.6 Let S be the constrained system presented by the graph G in Figure 5.22.

Figure 5.22: Graph G for Problem 5.6.

1. Compute the eigenvalues of Ag.
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2. Construct a three-state (S,n)-encoder with n = A(Ag) by applying the state-splitting algo-
rithm to G.

3. What is the anticipation of the encoder found in 27

4. Let H be the graph in Figure 5.23. Is H an (S, n)-encoder?

Figure 5.23: Graph H for Problem 5.6.

5. What is the anticipation of the graph H?

6. Can H be obtained by applying a sequence of rounds of state splitting to G (and merging
equivalent states if there are any)? If yes, specify the sequence of state-splitting rounds;
otherwise, explain.

Problem 5.7 Let S be the constrained system generated by the graph G in Figure 2.22.

1. Let € be an (S, 3)-encoder with the smallest number of states that can be obtained by an
application of the state-splitting algorithm (without merging equivalent states) to the graph
G. What is the number of states in £7

2. Repeat 1 except that now £ is an (52, 23)-encoder with the smallest number of states obtained
by an application of the state-splitting algorithm (without merging equivalent states) on G2.

3. Repeat 1 except that now & is an (S%,25)-encoder obtained from G*.

4. What can be said about the anticipation of the encoder in 37

Problem 5.8 Let G be the graph in Figure 5.24 in which the edges are assumed to have distinct
labels.

1. Compute an (Ag,4)-approximate eigenvector x in which the largest entry is the smallest
possible.

2. Apply the state-splitting algorithm to G and the vector x from 1, and construct an (S(G), 4)-
encoder using a minimal number of state-splitting rounds. What is the adjacency matrix of
the resulting encoder?

3. Show that the encoder found in 2 satisfies the minimality criterion of number of rounds; that
is, explain why no other (S(G),4)-encoder can be obtained from x by less state-splitting
rounds.
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b

Figure 5.25: Graph G for Problem 5.9.

Problem 5.9 Let G be the graph in Figure 5.25 with labels over {a, b, ¢, d}.

1. What is the anticipation of G?
2. Compute the base-2 capacity of S(G).

3. Compute an (Ag,2)-approximate eigenvector in which the largest entry is the smallest pos-
sible.

4. Apply the state-splitting algorithm to G and the vector found in 3, and construct an (S(G), 2)-
encoder with anticipation which is the smallest possible.

5. The anticipation of the encoder found in 4 is smaller than the anticipation of G. Explain
how this could happen, in spite of obtaining the encoder by splitting states in G.

Problem 5.10 Let G be a deterministic graph and let x be an (Ag,n)-approximate eigenvector.
Further, assume that an (S(G), n)-encoder £ can be obtained from G by one x-consistent round of
state splitting (and deleting redundant edges), and the resulting (Ag, n)-approximate eigenvector
is a 0-1 vector.

1. Show that x must satisfy the inequality
Agl > x,

where 1 is the all-one vector.
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2. Suppose that, in addition, x does not satisfy the inequality
Agl > 2x.

Show that one of the entries in x is at least n.

Hint: Show that there is a state u in G such that every x-consistent partition of the outgoing
edges from u must contain a partition that consists of exactly one edge.

Problem 5.11 Let S be the constrained system presented by the graph G in Figure 2.23.

1. Construct an (S%,23)-encoder (i.e., a rate 3 : 4 finite-state encoder for S) with two states.

2. Is it possible to assign input tags to the encoder found in 1 so that it is block decodable (i.e.,
(0,0)-sliding block decodable)? If yes, suggest such a tag assignment; otherwise, explain.

Problem 5.12 Let S be the constrained system generated by the graph G in Figure 5.26.

Figure 5.26: Graph G for Problem 5.12.

1. Find the smallest value of M for which there exists an (A, 3)-approximate eigenvector whose
largest entry equals M.

2. Among all (Ag, 3)-approximate eigenvectors whose largest entries equal the value M found
in 1, find a vector x whose sum of entries is minimal.

3. Construct an (.5, 3)-encoder £ by applying the state-splitting algorithm to G and the vector
x found in 2.

4. How many state-splitting rounds were required in 37 Why can’t an (.9, 3)-encoder be obtained
from G and x using a smaller number of rounds?

5. What is the anticipation of £7

6. An (m, a)-sliding block decoder is sought for the encoder £. Find the smallest possible values
of m and a for which such a decoder exists regardless of the tag assignment to the edges in

E.
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7. Is it possible to have an (m,a)-sliding block decoder for £ with a smaller m by a clever tag
assignment to the edges in £7 If yes, suggest such a tag assignment. Otherwise explain.

8. Repeat 7 with respect to the parameter a.

Problem 5.13 Let S be the constrained system presented by the graph G in Figure 5.27 (which
is the same as Figure 2.25).

b a

Figure 5.27: Graph G for Problem 5.13.

1. Compute the base-2 capacity of S.

2. Compute an (Ag,2)-approximate eigenvector in which the largest entry is the smallest pos-
sible.

3. Show that an (5, 2)-encoder can be obtained by four rounds of splitting of G.

4. Construct a (0, 1)-definite (S?,4)-encoder with two states.

Problem 5.14 Let S be the constrained system presented by the graph G in Figure 2.24.

1. Compute the base-2 capacity of S.

2. Using the state-splitting algorithm, construct an (52,2)-encoder (i.e., a rate 1 : 2 finite-state
encoder for S) with six states and anticipation at most 1.

3. Is it possible to assign input tags to the encoder in 2 so that it is block decodable? If yes,
suggest such an assignment; otherwise, explain.

4. Show how to construct an (S2,2)-encoder with finite anticipation yet that anticipation is
greater than 1.

5. Is there a positive integer £ for which there exists a block (5%, 2¢)-encoder (i.e., a rate £: 2/
one-state encoder for S)? If yes, construct such an encoder; otherwise, explain.

Problem 5.15 Let S be the constrained system generated by the graph G in Figure 5.28.

1. What is the memory of G?
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Figure 5.28: Graph G for Problem 5.15.

2. Compute the base-2 capacity of S(G).

3. Compute an (Ag,2)-approximate eigenvector x in which the largest entry is the smallest
possible.

4. Apply the state-splitting algorithm to G and the vector x from 3, and construct an (S(G), 2)-
encoder using a minimal number of state-splitting rounds. Merge states to obtain an encoder
with three states. What is the anticipation of this encoder?

5. Assign input tags to the encoder found in 4 so that it is (m,a)-sliding-block decodable with
the smallest possible window length m + a + 1.

6. Is there a positive integer £ for which there exists a deterministic (S%,2¢)-encoder? If yes,
construct such an encoder; otherwise, explain.

Problem 5.16 Let G be the second power of the Shannon cover of the (2,7)-RLL constrained
system and let bldz be the vector
(23443311)".

As mentioned in Example 5.3, this vector is an (Ag,2)-approximate eigenvector.

1. Find the weight-minimal states in G with respect to x.

2. By merging states in G into its weight-minimal states, construct a deterministic graph G’
with five states such that S(G’) C S(G) and cap(S(G')) > 1.



