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1. Let H be a Hilbert space.

(a) Prove the polarization identity:

〈x, y〉 =
1

4
(‖x+ y‖2 − ‖x− y‖2 + i‖x+ iy‖2 − i‖x− iy‖2).

Proof. By direct calculation,

‖x+ y‖2 − ‖x− y‖2 = 2〈x, y〉+ 2〈y, x〉.

Similarly,

‖x+ iy‖2 − ‖x− iy‖2 = 2〈x, iy〉 − 2〈y, ix〉 = −2i〈x, y〉+ 2i〈y, x〉.

Addition gives

‖x+ y‖2−‖x− y‖2+i‖x+ iy‖2−i‖x− iy‖2 = 2〈x, y〉+2〈y, x〉+2〈x, y〉−2〈y, x〉 = 4〈x, y〉.

(b) If there is another Hilbert space H′, a linear map from H to H′ is unitary if
and only if it is isometric and surjective.

Proof. We take the definition from the book that an operator is unitary if and
only if it is invertible and 〈Tx, Ty〉 = 〈x, y〉 for all x, y ∈ H.

A unitary operator T is isometric and surjective by definition. On the other
hand, assume it is isometric and surjective. We first show that T preserves the
inner product:

If the scalar field is C, by the polarization identity,

〈Tx, Ty〉 =
1

4
(‖Tx+ Ty‖2 − ‖Tx− Ty‖2 + i‖Tx+ iTy‖2 − i‖Tx− iTy‖2)

=
1

4
(‖x+ y‖2 − ‖x− y‖2 + i‖x+ iy‖2 − i‖x− iy‖2) = 〈x, y〉,

where in the second equation we used the linearity of T and the assumption
that T is isometric.
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If the scalar field is R, then we use the real version of the polarization identity:

〈x, y〉 =
1

4
(‖x+ y‖2 − ‖x− y‖2)

The remaining computation is similar to the complex case.

It remains to show that T is injective. But

Tx = 0 ⇐⇒ 〈Tx, Tx〉 = 0 ⇐⇒ 〈x, x〉 = 0 ⇐⇒ x = 0.

Hence T is injective.

2. If E is a subset of a Hilbert space H, then (E⊥)⊥ is the smallest closed subspace of
H containing E.

Proof. For each subset A of H, A⊥ is always a subspace by definition. Also, it is
closed, since if yn → y in H where 〈yn, x〉 = 0, then 〈y, x〉 = 0. With A = E⊥, we
have (E⊥)⊥ is a closed subspace. Moreover, it contains E by definition.

It remains to show minimality. let K be any closed subspace containing E, and we
would like to show (E⊥)⊥ ⊆ K. Suppose not. Then there is x ∈ (E⊥)⊥ with x /∈ K.
Since K is a proper closed subspace, by Question 4 of the last homework, there is
l ∈ H∗ such that l(x) = 1 and l ≡ 0 on K. By the Riesz-Fréchet theorem, there is
y ∈ H with l(x) = 〈x, y〉 = 1 6= 0. Since x ∈ (E⊥)⊥, we have y /∈ E⊥. That means
〈z, y〉 6= 0 for some z ∈ E. But this is a contradiction since l(z) = 〈z, y〉 and l ≡ 0
on E. Therefore (E⊥)⊥ ⊆ K.

3. Suppose H is a Hilbert space and T ∈ L(H,H).

(a) There is a unique T ∗ ∈ L(H,H), called the adjoint of T , such that 〈Tx, y〉 =
〈x, T ∗y〉 for all x, y ∈ H.

Proof. We first prove the existence. Fix y ∈ H. Define the mapping ly(x) :=
〈Tx, y〉, which lies in H∗. By the Riesz-Fréchet theorem, there is a unique
z ∈ H with ly(x) = 〈x, z〉 for all x ∈ H, with ‖ly‖ = ‖z‖. We define T ∗y := z
by the above relations. The uniqueness of z ensures that the mapping is well
defined, and satisfies 〈Tx, y〉 = 〈x, T ∗y〉 by construction.

One can check that T ∗ is linear and has operator norm 1. This shows the
existence.

To establish the uniqueness, it suffices to prove the following assertion: if T is
a linear operator on a Hilbert space H and 〈x, Ty〉 = 0 for all x, y ∈ H, then
T ≡ 0. Indeed, fix y ∈ H, and taking x = Ty. Then we have 〈Ty, Ty〉 = 0,
whence Ty = 0. Hence T ≡ 0, so uniqueness is proved.

(b) ‖T ∗‖ = ‖T‖, ‖T ∗T‖ = ‖T‖2, (aS + bT )∗ = aS∗ + bT ∗, (ST )∗ = T ∗S∗, and
T ∗∗ = T .
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Proof. • We first show T ∗∗ = T . Indeed,

〈T ∗∗x, y〉 = 〈y, T ∗∗x〉 = 〈T ∗y, x〉 = 〈x, T ∗y〉 = 〈Tx, y〉.

Since the above holds for all x, y ∈ H, T ∗∗ = T .

• We then show ‖T ∗‖ = ‖T‖.
– We first show ‖T ∗‖ ≤ ‖T‖ <∞. Let x ∈ H. If T ∗x = 0, then we have

nothing to prove. Otherwise, by the Cauchy-Schwarz inequality,

‖T ∗x‖2 = 〈T ∗x, T ∗x〉 = 〈x, TT ∗x〉 ≤ ‖x‖‖TT ∗x‖ ≤ ‖x‖‖T‖‖T ∗x‖.

Thus we have ‖T ∗x‖ ≤ ‖T‖‖x‖. This shows that ‖T ∗‖ ≤ ‖T‖.
– Since T ∗∗ = T , we have ‖T‖ = ‖T ∗∗‖ ≤ ‖T ∗‖ by the previous direction.

Hence ‖T ∗‖ = ‖T‖.
• We show ‖T ∗T‖ = ‖T‖2.

– On the one hand,

‖T ∗Tx‖ ≤ ‖T ∗‖‖T‖‖x‖ = ‖T‖2‖x‖,

where we have used ‖T ∗‖ = ‖T‖ in the last equality. Thus ‖T ∗T‖ ≤
‖T‖2 <∞.

– On the other hand,

‖Tx‖2 = 〈Tx, Tx〉 = 〈x, T ∗Tx〉
≤ ‖x‖‖T ∗Tx‖ ≤ ‖x‖‖T ∗T‖‖x‖.

Hence ‖Tx‖ ≤ ‖T ∗T‖
1
2‖x‖, so ‖T‖ ≤ ‖T ∗T‖

1
2 . Hence ‖T‖2 ≤ ‖T ∗T‖.

• The other two equalities are direct.

(c) Let R and N denote the range and nullspace; then R(T )⊥ = N (T ∗) and
N (T )⊥ = R(T ∗).

Proof. • R(T )⊥ = N (T ∗):

– R(T )⊥ ⊆ N (T ∗): let x ∈ R(T )⊥. Then 〈T ∗x, y〉 = 〈x, Ty〉 = 0 for all
y ∈ H. Taking y = T ∗x shows that T ∗x = 0, that is, x ∈ N (T ∗).

– R(T )⊥ ⊇ N (T ∗): let x ∈ N (T ∗). Then T ∗x = 0. For any y ∈ H,
〈x, Ty〉 = 〈T ∗x, y〉 = 0, which shows that x ∈ R(T )⊥.

• Applying the first part of the question to T ∗, we have R(T ∗)⊥ = N (T ∗∗) =
N (T ), so (R(T ∗)⊥)⊥ = N (T )⊥. But by Question 2 in this homework,
(R(T ∗)⊥)⊥ is the smallest closed subspace of H containing R(T ∗). Since
R(T ∗) is already a subspace of H, the smallest closed subspace of H con-
taining R(T ∗) is R(T ∗). Hence N (T )⊥ = R(T ∗).

(d) T is unitary if and only if T is invertible and T−1 = T ∗.
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Proof. As in Question 1 (b), we take the definition that an operator is unitary
if and only if it is invertible and 〈Tx, Ty〉 = 〈x, y〉 for all x, y ∈ H.

If T is unitary, then T is invertible by definition. To show that T−1 = T ∗, we
note that

〈Tx, y〉 = 〈Tx, TT−1y〉 = 〈x, T−1y〉,

for all x, y ∈ H, since T is unitary. This is to say that T−1 is an adjoint of T .
By uniqueness of the adjoint operator, we have T−1 = T ∗.

On the other hand, suppose T is invertible and T−1 = T ∗. To show T is unitary,
it suffices to show it preserves the inner product. But we easily compute

〈Tx, Ty〉 = 〈x, T ∗Ty〉 = 〈x, T−1Ty〉 = 〈x, y〉,

for all x, y ∈ H. hence T is unitary.

4. Let M be a closed subspace of the Hilbert space H, and for x ∈ H let Px be the
element of M such that x− Px ∈M⊥ as in Theorem 5.24.

(a) P ∈ L(H,H), P ∗ = P , P 2 = P , R(P ) = M, and N (P ) = M⊥. P is called
the orthogonal projection onto M.

Proof. i. P is linear: Theorem 5.24 states that each x ∈ H can be uniquely
decomposed into x = y + z, where Px := y ∈M and z ∈M⊥. Using this
and the fact that M, M⊥ are subspaces, we can prove linearity.
P is bounded: Theorem 5.24 also states that Px is perpendicular to x−Px.
By the Pythagorean Theorem,

‖Px‖2 = ‖x‖2 − ‖x− Px‖2 ≤ ‖x‖2,

which shows that ‖P‖ ≤ 1. Hence P ∈ L(H,H).

ii. By uniqueness of the adjoint operator, it suffices to show that for all x, x′ ∈
H, we have

〈Px, x′〉 = 〈x, Px′〉.

Decompose x = y+ z, x′ = y′+ z′ as in Theorem 5.24. This can be proved
using the fact that y, y′ ∈M and z, z′ ∈M⊥.

iii. Note that for each y ∈M, the orthogonal decomposition in Theorem 5.24
is y = y + 0, so Py = y. (This implies that ‖P‖ = 1 unless M = {0}).
Applying this to y = Px ∈M, we have P 2x = P (Px) = Px for all x ∈ H.

iv. We have R(P ) ⊆M by definition. On the other hand, given any x ∈M,
Px = x implies that x ∈ R(P ).

v. Since P = P ∗, N (P ) = N (P ∗). By Question 3(c), N (P ∗) = R(P )⊥. But
R(P ) =M, so R(P )⊥ =M⊥. Hence N (P ) =M⊥.

(b) Conversely, suppose that P ∈ L(H,H) satisfies P 2 = P ∗ = P . Then R(P ) is
closed and P is the orthogonal projection onto R(P ).
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Proof. By Theorem 5.24, it suffices to show that M := R(P ) is closed, and
then show that Px = x for all x ∈M and Px = 0 for all x ∈M⊥.

To show that R(P ) is closed, note that P 2 = P implies that R(P ) = N (P−I).
Recall that the nullspace of a bounded linear operator is closed. Using this fact
to the bounded linear operator P − I, we have R(P ) is closed.

Next, let x ∈ M = R(P ). Then x = Py for some y ∈ H. Since P 2 = P ,
Px = P 2y = Py = x.

Lastly, let x ∈ M⊥ = R(P )⊥. By Question 3(c), R(P )⊥ = N (P ∗). But
P ∗ = P , so N (P ∗) = N (P ). Hence Px = 0. This completes the proof.

(c) If {uα} is an orthonormal basis for M, then Px =
∑
〈x, uα〉uα.

Proof. By properties of P , we have 〈x, u〉 = 〈Px, u〉 for all u ∈M.

Let x ∈ H, then Px ∈ M. By definition of the orthonormal basis, there are
cα, where at most countably many are nonzero, such that

Px =
∑
α

cαuα.

Moreover, the sum on the right is absolutely convergent in H.

Now fix β. We have, by the continuity of the inner product,

〈Px, uβ〉 =
〈∑

α

cαuα, uβ

〉
=
∑
α

cα〈uα, uβ〉.

Since {uα} is orthonormal, 〈uα, uβ〉 = 0 or 1 according as α 6= β or α = β.
Hence 〈Px, uβ〉 = cβ for all β. This proves the claim.

5. In this exercise the measure defining the L2 spaces is the Lebesgue measure.

(a) C([0, 1]) is dense in L2([0, 1]). (Adapt the proof of Theorem 2.26).

Proof. Let f ∈ L2([0, 1]) and let ε > 0. Then there is a large N such that∥∥f1(|f |>N)

∥∥
2
< ε/2. (This can be proved using the dominated convergence

theorem). Define g := f1(|f |≤N). By Lusin’s theorem (Page 64 in Folland),
there is a compact E ⊆ [0, 1] such that g|E is continuous and [0, 1]\E has
measure less than ε2/(16N2). Furthermore, by Tietze extension theorem (Page
122 in Folland), g|E can be extended to h : [0, 1]→ C such that h is continuous
on [0, 1], with ‖h‖∞ ≤ ‖g‖∞ ≤ N . This h is the required continuous function.

Indeed, ∫ 1

0

|h− g|2 =

∫
[0,1]\E

|h− g|2 ≤
∫
[0,1]\E

4N2 <
ε2

4
.

Thus ‖h− g‖2 <
ε
2
. Since ‖f − g‖2 <

ε
2
, the triangle inequality shows that

‖f − h‖2 < ε.

Remark from Marking:

Alternative answer: We have a fact that if f ∈ L2([0, 1]), then the Fourier
series of f converges to f in L2([0, 1]). Since any partial sum of the Fourier
series is continuous, we are done.
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Most standard answer: Approximate f by simple functions, then approximate
indicator functions of measurable sets by a linear combination of indicator
functions of intervals, and lastly, approximate linear combinations of indicator
functions of intervals by continuous functions.

(b) The set of polynomials is dense in L2([0, 1]).

Proof. Let f ∈ L2([0, 1]) and let ε > 0. By Part (a), there is h ∈ C([0, 1])
with ‖f − h‖2 < ε/2. Next, by Weierstrass approximation theorem, there is a
polynomial P such that ‖P − h‖∞ < ε/2. But then Hölder’s inequality shows
that

‖P − h‖2 ≤ ‖P − h‖∞‖1‖2 = ‖P − h‖∞ < ε/2.

Again, the triangle inequality shows that ‖f − P‖2 < ε.

(c) L2([0, 1]) is separable.

Proof. By Part (b), the set of all polynomials on [0, 1] is dense in L2([0, 1]).
Furthermore, any polynomial with complex coefficients can be uniformly (and
hence in L2 by Hölder’s inequality) approximated by polynomials with co-
efficients in Q2. Hence the set of the latter is a countable dense subset of
L2([0, 1]).

(d) L2(R) is separable. (Use Exercise 60.)

Proof. Use Exercise 60 and the decomposition R = [n, n + 1), and note that
L2([n, n+ 1)) is separable by a trivial modification of Part (c).

(e) L2(Rn) is separable. (Use Exercise 61.)

Proof. We prove it by induction. The case n = 1 is the statement of Part (d).
Suppose L2(Rn) is separable, n ≥ 1. By Proposition 5.29 in Folland, a Hilbert
space H is separable iff it has a countable orthonormal basis, in which case
every orthonormal basis for H is countable. This proposition, together with
Exercise 61, show that L2(Rn+1) is separable.
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