Math 121: Homework 8 solutions

1.

n 1)! :
(a) ForY >, 1+5 2 x" we have R = lim ==~ 1+5 1(1;“21 = co. The radius of convergence
is infinite, the center of convergence is 0. The interval of convergence is the

whole real line (—o0, o).

(b) We have Y7 4 4x (1) Yo' 1(3)"(x — 1/4)". The center of convergence is
x =1/4. The radlus of convergence is
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Hence, the interval of convergence is (—o0, c0).

(a) Letx+2=1t,sox =t—2. Then

1 1 = (41" S (n+1)(x+2)"
Z n+2 o Z%) n+2 ’
n= n=

(-4 <x<0).

(b) We have
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— 2x2 — XB(ZO(zxZ)n) — Z%)znxszrS,
n= n=

(—1/vV2 < x <1/V2).
(c) Lett=x+1. Thenx =t —1, and
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i (x + 1) (forallx)

(d) Lett =x—m/4,s0 x =t+ r/4. Then

f(x) = sinx —cosx
sin(t 4+ 7/4) — cos(t + 7 /4)
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(x _ /n/4)2n+1.

For all x.



(e)
2
In(e+x?) = lne+ln(1—|—?)
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- 1 -1 nflx_,
ne -+ Z( ) 2

—Ve < x <. /e

arccos x > arcs 2 >3 545

-1<x<l1
(a)

i -1 14+ x
n—1 (1_x)3’

for -1 < x < 1. Putting x = 1/, we get
& (n+1 < kK 14+1/n nA(m+1)
L b

= — 7T 1-1/m)3 (m—1)3
(b)
> 1
-1 _
ann —m, —1<x<l1.
Differentiate with respect to x and then replace n by n 4 1:

0 o
;n(n—l)x” B -1<x <1

Z n(Tl + 1)xn_1 = (1 — x)3/ -1 <x< 1.

Now letx = —1/2:
a . n—ln(n+1) _ E
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Finally, multiply by —1/2:
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7;1( ) n 27
(c) Since
[oe] n
Y (—1)" 1 = In(1 +x),
n=1 h
for —1 < x < 1, therefore
= (1!
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(d)

for all x.

(e)

-
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if x #0. Thesumis 1if x = 0.
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The series is the Maclaurin series for cos x with x? replaced by x. For x > 0 the
series therefore represents cos \/x. For x < 0, the series is } 5 W;,, which is

the Maclaurin series for cosh /|x|.
4. The Fundamental Theorem of Calculus written in the form

£x) = F€) + [ (B0t = o) + Eo(x)

is the case n = 0 of the above formula. We now apply integration by parts to the
integral, setting

u = f(),
av = dt

du = f"(t)dt
%4 —(x—1t)

We have

We have now proved the case n = 1 of the formula. We complete the proof for
general n by mathematical induction. Suppose the formula holds for some n = k:

Flx) = Belo) + Eil) = P + 7 [ (= 0D 0y,

3



Again we integrate by parts, let

u = f(k+1)(t),

AV = (x—t)kdt,

dau = fE2(t)dt,
e SN ST

V = k+1(x R

We have

(k+1)
£3) = o) + L e g+

- JC

If f(x) =1In(1+ x), then

, B 1
F) =
1" _ —1
f (X) - (1+x)2
i - 2
0 = arap
—3!
) = e
n _ (=) -1)
f( )(x) = At
and
f(0) =0
f1(0) = 1
71(0) = -1
1(0) = 2
M) = -3
F0) = (~1 -1
Therefore, the Taylor Formula is
flx) = x+;—!1x2+%x3+;—?!x4+..+
(_1);1—1(”_ 1)!xn —|—En(x),
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where

Eiv) = o [ =
1 o (=1)mn!
= a ) (x —t) —(1+t)n+1dt

a [ (x—1)"
— (=1) /O ﬁdt.

fo<t<x<1,thenl+t>1and

x " xH 1
E < —t)'dt = < — 0
Bl < [ Gt = < oo
asn — oo.
If -1 <x<t<0,then
x—t t—x
= <
T =T s P
because ﬁ‘T’; increases from 0 to —x = |x| as t increases from x to 0. Thus,
1 H B
E — "t = —— =0
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as n — oo since |x| < 1. Therefore,
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X t4 t8 t12
= 1—-—+—-—— dt
/0 [ 3 i 5 7 + -
X5 2 13
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© " xAn+1
= —1 , —1<x<1.
ng)( ) (2n+1)(4n+1) -
(a)
¥ 1 2 2oy )2
lim (-1-%)"  _ lim ~2 3~
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(b)
b — [ SnX—1/3! sin® x +1/5!sin® x — ..
x—0 x[1 —1/2!sin? x + 1/4!sin* x — .. — 1]
- %x3 + higherdegreeterms
= 1 =
x—0 —Zl!x3 + higherdegreeterms
2
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X
S(x) = / sin(#2)dt
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0
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(d)

(x—x+%5— )2 +%+.)

lim = lim 5
22 —14+1-3-+..
fim x*(2/34+...)
x4(2/3+...)
=1

7. If f(x) = In(sin x), then calculation of successive derivatives leads to

) (x) = 24csc* x cot x — 8 csc® x cot x.

Observe that 1.5 < /2 ~ 1.5708, that cscx > 1 and cotx > 0, and that both
functions are decreasing on that interval. Thus

|f(5)(x)| < 24 csc(1.5) cot(1.5) < 2
for 1.5 < x < /2. Therefore, the error in the approximation
In(sin1.5) ~ Py(x),

where P; is the 4th degree Taylor polynomial for f(x) about x = 71/2, satisfies

2
lerror| < Z[1.5— m/2]° <3 %1078

n

1/2 1/2 o (_.4\n
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The series satisfies the conditions of the alternating series test, so if we truncate after
the term for n = k — 1, then the error will satisfy

1

error| < ST e DR

This is less than 0.000005 if 241 (4k + 1)k! > 200000, which happens if k > 3. Thus,
rounded to five decimal places,

/1/2ex4dx~ oo b b 049386
0 ~2.1-1 32.5.-1 512.9.2 '




8. f is even, so its Fourier sine coefficients are all zero. Its cosine coefficients are

a _ 1 %/3 _2
2 23 of(t)dt_3

2 t 3 2 4
=3 / f(t) n = 5.2 [cos( gﬂ) —1—cos(2nm) + cos(?)].
The latter expression was obtamed using Maple to evaluate the integral. If n = 3k,
where k is an integer, then a,, = 0. For other integers n we have a, = —9/ (27‘(2112).

Thus the Fourier series of f is

2n7rt 1 &1
= 27r22 —c ﬁrgﬁcos(mmt).

9. If f is even and has period T, then

T/2
b, — / si an‘dtL
T/2
T/2 T/2
= 21w 2’””dt+ F(t)sin =],

In the first integral in the line above replace t with —t. Since f(—t) = f() and sine
is odd, we get

2nrtt
b, = — —dt
v o= (s 2T (ay
T/2 . 2nrt
+ : f(t)sin T dt]
2 T/2 2n7t T/2 . 2nmt
= T[_ A f(t)sin T dt + ; f(t)sin T dt]

= 0.

Similarity, we have

4 (T/2 2n7t
ay = T/o f(t) cos T dt.

The corresponding result for an odd function f states that a, = 0 and

4 (T/2 . 2n7t
b, = T/o f(t)sin dt,

T

and is proved similarly.
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If 0 <k <mn,then
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