Math 121: Homework 5 solutions

1. Let a circular disk with radius a have center at point (a,0). Then the disk is rotated about the y-axis which is one of its tangent lines. The volume is:

$$V = 2 \times 2\pi \int_0^{2a} x \sqrt{a^2 - (x - a)^2} dx.$$

Let u = x - a, du = dx. Then we have:

$$V = 4\pi \int_{-a}^{a} (u+a)\sqrt{a^2 - u^2} du$$

$$= 4\pi \int_{-a}^{a} u\sqrt{a^2 - u^2} du + 4\pi a \int_{-a}^{a} \sqrt{a^2 - u^2} du$$

$$= 0 + 4\pi a (\frac{1}{2}\pi a^2)$$

$$= 2\pi^2 a^3.$$

2. The region is symmetric about x = y so has the same volume of revolution about the two coordinate axes. The volume of revolution about the y-axis is

$$V = 2\pi \int_0^8 x(4 - x^{2/3})^{3/2} dx.$$

Let $x = 8 \sin^3 u$, $dx = 24 \sin^2 u \cos u du$. Thus, we have

$$V = 3072\pi \int_0^{\pi/2} \sin^5 u \cos^4 u du$$
$$= 3072\pi \int_0^{\pi/2} (1 - \cos^2 u)^2 \cos^4 u \sin u du.$$

Let $v = \cos u$, $dv = -\sin u du$. So

$$V = 3072\pi \int_0^1 (1 - v^2)^2 v^4 dv$$
$$= 3072\pi \int_0^1 (v^4 - 2v^6 + v^8) dv$$
$$= 3072\pi (\frac{1}{5} - \frac{2}{7} + \frac{1}{9}) = \frac{8192\pi}{105}.$$

3. The volume between height 0 and height z is z^3 . Thus,

$$z^3 = \int_0^z A(t)dt,$$

where A(t) is the cross-sectional area at height t. Differentiating the above equation with respect to z, we get $3z^2 = A(z)$. The cross-sectional area at height z is $3z^2$ sq.units.

4. (a)

$$V = 2 \int_0^r (2\sqrt{r^2 - y^2})^2 dy$$

$$= 8 \int_0^r (r^2 - y^2) dy$$

$$= 8(r^2 y - \frac{y^3}{3})|_0^r$$

$$= \frac{16r^3}{3} cu.units.$$

(b) The area of an equilateral triangle of base 2*y* is $\frac{1}{2}(2y)(\sqrt{3}y) = \sqrt{3}y^2$. Hence, the solid has volume

$$V = 2 \int_0^r \sqrt{3} (r^2 - x^2) dx$$

= $2\sqrt{3} (r^2 x - \frac{1}{3} x^3)|_0^r$
= $\frac{4}{\sqrt{3}} r^3 cu.units.$

5. (a) $y = x^2$, $0 \le x \le 2$, y' = 2x. So we have

$$L = \int_0^2 \sqrt{1 + 4x^2} dx.$$

Let $2x = \tan \theta$, $2dx = \sec^2 \theta d\theta$.

$$L = \frac{1}{2} \frac{x=0}{x=2} \sec^3 \theta$$

$$= \frac{1}{4} (\sec \theta \tan \theta + \ln |\sec \theta + \tan \theta|)|_{x=0}^{x=2}$$

$$= \frac{1}{4} (2x\sqrt{1+4x^2} + \ln(2x+\sqrt{1+4x^2}))|_0^2$$

$$= \frac{1}{4} (4\sqrt{17} + \ln(4+\sqrt{17}))$$

$$= \sqrt{17} + \frac{1}{4} \ln(4+\sqrt{17}) units.$$

(b)
$$y = \ln \frac{e^x - 1}{e^x + 1}$$
, $2 \le x \le 4$,
$$y' = \frac{2e^x}{e^{2x} - 1}$$
.

The length of the curve is

$$L = \int_{2}^{4} \sqrt{1 + \frac{4e^{2x}}{(e^{2x} - 1)^{2}}} dx$$

$$= \int_{2}^{4} \frac{e^{2x} + 1}{e^{2x} - 1} dx$$

$$= \int_{2}^{4} \frac{e^{x} + e^{-x}}{e^{x} - e^{-x}} dx = \ln|e^{x} - e^{-x}||_{2}^{4}$$

$$= \ln(e^{4} - \frac{1}{e^{4}}) - \ln(e^{2} - \frac{1}{e^{2}})$$

$$= \ln\frac{e^{4} + 1}{e^{2}} units.$$

6.

$$S = 2\pi \int_0^1 |x| \sqrt{1 + \frac{1}{x^2}} dx = 2\pi \int_0^1 \sqrt{1 + x^2} dx.$$

Let $x = \tan \theta$, $dx = \sec^2 \theta d\theta$,

$$S = 2\pi \int_0^{\pi/4} \sec^3 \theta d\theta$$

= $\pi (\sec \theta \tan \theta + \ln |\sec \theta + \tan \theta|)|_0^{\pi/4}$
= $\pi [\sqrt{2} + \ln(\sqrt{2} + 1)] sq.units.$

7. (a) The mass of the plate is

$$m=2\int_0^4 ky\sqrt{4-y}dy,$$

let u = 4 - y, du = -dy. Then we have

$$m = 2k \int_0^4 (4-u)u^{1/2} du$$

= $2k (\frac{8}{3}u^{3/2} - \frac{2}{5}u^{5/2})|_0^4 = \frac{256k}{15}.$

By symmetry, $M_{x=0} = 0$, so $\bar{x} = 0$.

$$M_{y=0} = 2 \int_0^4 ky^2 \sqrt{4 - y} dy,$$

let u = 4 - y, du = -dy.

$$M_{y=0} = 2k \int_0^4 (16u^{1/2} - 8u^{3/2} + u^{5/2}) du$$

= $2k (\frac{32}{3}u^{3/2} - \frac{16}{5}u^{5/2} + \frac{2}{7}u^{7/2})|_0^4$
= $\frac{4096k}{105}$.

Thus, $\bar{y} = \frac{16}{7}$. The center of mass of the plate is $(0, \frac{16}{7})$.

(b) The mass of the ball is

$$m = \int_{-R}^{R} (y+2R)\pi(R^2 - y^2)dy$$
$$= 4\pi R(R^2y - \frac{y^3}{3})|_{0}^{R}$$
$$= \frac{8}{3}\pi R^4kg.$$

By symmetry, the center of mass lies along the y-axis; we need only calculate \bar{y} .

$$M_{y=0} = \int_{-R}^{R} y(y+2R)\pi(R^2 - y^2)dy$$
$$= 2\pi \int_{0}^{R} y^2(R^2 - y^2)dy$$
$$= \frac{4}{15}\pi R^5.$$

Thus, $\bar{y} = \frac{R}{10}$.

(c) A slice at height z has volume $dV = \pi y^2 dz$ and density kzg/cm^3 . Thus, the mass of the cone is

$$m = \int_0^b kz \pi y^2 dz$$

$$= \pi k a^2 \int_0^b z (1 - z/b)^2 dz$$

$$= \pi k a^2 (\frac{z^2}{2} - \frac{2z^3}{3b} + \frac{z^4}{4b^2})|_0^b$$

$$= \frac{1}{12} \pi k a^2 b^2 g.$$

The moment about z = 0 is

$$M_{z=0} = \pi ka^2 \int_0^b z^2 (1-z/b)^2 dz = \frac{1}{30} \pi ka^2 b^3 g - cm.$$

Thus, $\bar{z} = \frac{2b}{5}$. Hence, the center of mass is on the axis of the cone at height 2b/5cm above the base.