Homework 4 - Math 321, Spring 2015

Due on Friday February 6

- 1. Weierstrass's second theorem states that any continuous 2π -periodic function f on \mathbb{R} is uniformly approximable by trigonometric polynomials. The aim of this exercise is to prove this statement.
 - (a) Deduce Weierstrass's second theorem from his first in the special case when f is even. We sketched a proof of this in class, but fill in the details.
 - (b) Explain why a verbatim adaptation of the proof does not work if f is odd.
 - (c) Given a general function f and a number $\epsilon > 0$, invoke part (a) to find trigonometric polynomials P and Q that approximate the even functions

$$f(x) + f(-x)$$
 and $(f(x) - f(-x)) \sin x$

to within $\frac{\epsilon}{10}$. Now use P and Q to find a trigonometric polynomial R that uniformly approximates f with error at most ϵ , thereby proving Weierstrass's second theorem.

- 2. Let A be a normed algebra. If B is a subalgebra of A, conclude that \overline{B} is a subalgebra of A. Clarification: Recall that for us, an algebra is a vector space equipped with a vector multiplication that is associative, left and right distributive and compatible with scalars.
- 3. Given a metric space (X, d), recall that $\mathcal{B}(X)$ is the space of all bounded real-valued functions on X. Let A be a vector subspace of of $\mathcal{B}(X)$. Show that A is a sublattice of $\mathcal{B}(X)$ if and only if $|f| \in A$.
- 4. For the examples below, explain whether the class of functions \mathcal{A} is dense in $\mathcal{C}(X)$.
 - (a) $X = U \times V$, where U and V are compact metric spaces; $\mathcal{A} =$ the class of functions of the form f(u, v) = g(u)h(v) where $g \in \mathcal{C}(U)$, $h \in \mathcal{C}(V)$.
 - (b) X =a compact set in \mathbb{R}^n ; $\mathcal{A} =$ the class of all polynomials in n-variables.
- 5. Let $X = \{z : |z| = 1\}$ be the unit circle in the complex plane.
 - (a) Verify that the space of functions

$$\mathcal{A} = \left\{ f : f(e^{i\theta}) = \sum_{n=0}^{N} c_n e^{in\theta}, \quad \theta \in [0, 2\pi), \quad c_n \in \mathbb{R} \right\}$$

is an algebra.

- (b) Show that \mathcal{A} separates points in X and vanishes at no point of X.
- (c) Show that there exist continuous functions on X that cannot be in the uniform closure of A.
- (d) Explain why the statements above do not contradict the Stone-Weierstrass theorem.

1