Homework 8 - Math 321, Spring 2012

Due on Friday March 16

1. (a) Suppose f is a continuous function on $[1, \infty)$. For every real number $t \ge 1$, compute the Riemann-Stieltjes integral

$$F(t) = \int_{1}^{t} f(x)d[x],$$

where [x] is the greatest integer in x.

(b) Given a sequence $\{x_n : n \ge 1\}$ of distinct points in (a, b) and a sequence $\{c_n : n \ge 1\}$ of positive numbers with $\sum_{n=1}^{\infty} c_n < \infty$, define an increasing function α on [a, b] by setting

$$\alpha(x) = \sum_{n=1}^{\infty} c_n I(x - x_n) \quad \text{where} \quad I(x) = \begin{cases} 0 & \text{for } x < 0, \\ 1 & \text{for } x \ge 0. \end{cases}$$

Show that

$$\int_{a}^{b} f \, d\alpha = \sum_{n=1}^{\infty} c_n f(x_n)$$

for every continuous function f on [a, b].

- 2. (a) If f and α share a common-sided discontinuity in [a, b], show that f is not in $\mathcal{R}_{\alpha}[a, b]$.
 - (b) Identify the class of functions that are Riemann-Stieltjes integrable on [a, b] with respect to α for every nondecreasing α . In other words, describe the set

$$\bigcap \left\{ \mathcal{R}_{\alpha}[a,b] : \alpha \text{ nondecreasing} \right\}.$$

(c) Recall that S[a, b] is the collection of all step functions on [a, b]. If

$$S[a,b] \subseteq \mathcal{R}_{\alpha}[a,b],$$

show that α is continuous.

3. We have seen $\chi_{\mathbb{Q}}$ (the indicator function of the rationals) is not Riemann integrable on [0,1]. The problem was that it was too discontinuous - in fact, every point in [0,1] was a point of discontinuity. Here is another example of a function with uncountably many points of discontinuity, but this time Riemann integrable.

Show that the set of discontinuities of χ_{Δ} (the indicator function of the Cantor middle-third set) is precisely Δ , which is an uncountable set, but that χ_{Δ} is nevertheless Riemann integrable on [0,1].

1