Homework 6 - Math 321, Spring 2012

Due on Friday February 17

- 1. Let \mathcal{A} be a normed algebra. Show that if \mathcal{B} is a subalgebra of \mathcal{A} , then so is $\overline{\mathcal{B}}$.
- 2. Let \mathcal{A} be a vector subspace of B(X), the space of bounded real-valued functions on X. Show that \mathcal{A} is a sublattice of B(X) if and only if \mathcal{A} is closed under absolute value; i.e., $|f| \in \mathcal{A}$ whenever $f \in \mathcal{A}$. If X is a compact metric space, use this to show that C(X) is a sublattice of B(X).
- 3. The version of Stone-Weierstrass theorem that we proved in class was for real scalars, i.e., the scalar field underlying the vector space C(X) was \mathbb{R} . Use this "real version" to deduce the following "complex version" of Stone-Weierstrass theorem:

Let X be a compact metric space, let $C_{\mathbb{C}}(X)$ denote the space of all complex-valued continuous functions on X, and let $A_{\mathbb{C}}$ be a subalgebra over \mathbb{C} of $C_{\mathbb{C}}(X)$. If $A_{\mathbb{C}}$ separates points in X, vanishes at no point in X and is self-conjugate, then $A_{\mathbb{C}}$ is dense in $C_{\mathbb{C}}(X)$.

- 4. The space of polynomials in the complex variable z = x + iy obviously separates points in $\mathbb{T} = \{e^{it} : 0 \le t < 2\pi\}$ and vanishes at no point of \mathbb{T} (convince yourself of this, but you need not submit a proof of it). Nevertheless, the polynomials in z (with complex coefficients) are not dense in the space of continuous complex-valued functions of \mathbb{T} . Here is a proof fill in the steps outlined below to show that $f(z) = \overline{z}$ cannot be uniformly approximated by polynomials in z:
 - (a) If $p(z) = \sum_{k=0}^{n} c_k z^k$, show that

$$\int_0^{2\pi} \overline{f(e^{it})} p(e^{it}) dt = 0.$$

(b) Show that

$$2\pi = \int_0^{2\pi} \overline{f(e^{it})} f(e^{it}) dt = \int_0^{2\pi} \overline{f(e^{it})} \left[f(e^{it}) - p(e^{it}) \right] dt.$$

- (c) Conclude that $||f p||_{\infty} \ge 1$ for any polynomial p.
- (d) Why does the conclusion of part (c) not contradict the Stone-Weierstrass theorem?

1