Question 1

a. (8 pts) Find constants A, B, C, and D so that

$$
\frac{x^{3}-8 x+4}{x(x-1)(x-2)}=A+\frac{B}{x}+\frac{C}{x-1}+\frac{D}{x-2} .
$$

Solution: Since the numerator and denominator both have degree 3, the first step is to perform a long division: the denominator expands to $x^{3}-3 x^{2}+2 x$, which divides once into the numerator $x^{3}-8 x+4$, leaving a remainder of $3 x^{2}-10 x+4$. So far, we have

$$
\frac{x^{3}-8 x+4}{x(x-1)(x-2)}=1+\frac{3 x^{2}-10 x+4}{x(x-1)(x-2)},
$$

and now the remaining fraction has a lower degree in the numerator than in the denominator, making it suitable for partial fraction decomposition. Thus $A=1$, and we now look for B, C, and D so that

$$
\frac{3 x^{2}-10 x+4}{x(x-1)(x-2)}=\frac{B}{x}+\frac{C}{x-1}+\frac{D}{x-2} .
$$

Multiply both sides by the common denominator $x(x-1)(x-2)$ to get

$$
\begin{equation*}
3 x^{2}-10 x+4=B(x-1)(x-2)+C x(x-2)+D x(x-1) \tag{1}
\end{equation*}
$$

which must hold for all x. In particular, when $x=0$, equation (1) gives $4=B(-1)(-2)=2 B$, so $B=2$. Similarly, when $x=1$, equation (1) becomes $3-10+4=C(1)(-1)$, which simplifies to $C=3$. To find D, we can plug in $x=2$ which gives $3(4)-10(2)+4=D(2)(1)$, which gives $D=-2$.
To summarize, we have $A=1, B=2, C=3$, and $D=-2$, that is:

$$
\frac{x^{3}-8 x+4}{x(x-1)(x-2)}=1+\frac{2}{x}+\frac{3}{x-1}+\frac{-2}{x-2} .
$$

b. (8 pts) Compute the indefinite integral

$$
\int \sec ^{3} x \tan ^{3} x d x
$$

Solution: Since the exponent of $\tan x$ is odd, we should try the substitution $u=\sec x$ (since $d u=\sec x \tan x d x$, this will make the exponent of $\tan x$ even, once we convert from $d u$ to $d x$). We have

$$
\int \sec ^{3} x \tan ^{3} x d x=\int \sec ^{2} x \tan ^{2} x d u=\int \sec ^{2} x\left(\sec ^{2} x-1\right) d u=\int u^{2}\left(u^{2}-1\right) d u
$$

The substitution succeeded in making the integrand much simpler. The rest is very straightforward:

$$
\int u^{2}\left(u^{2}-1\right) d u=\int u^{4}-u^{2} d u=\frac{1}{5} u^{5}-\frac{1}{3} u^{3}+C=\frac{1}{5} \sec ^{5} x-\frac{1}{3} \sec ^{3} x+C .
$$

c. (8 pts) Suppose Simpson's Rule with $n=20$ was used to estimate

$$
\int_{0}^{\pi} x^{4}+\sin (2 x) d x
$$

Find, with justification, a reasonable upper bound for the absolute error of this approximation.
Solution: The absolute error in Simpson's Rule for $\int_{a}^{b} f(x) d x$ is guaranteed to be at most

$$
\frac{K(b-a)}{180}(\Delta x)^{4}
$$

provided that $\left|f^{(4)}(x)\right| \leq K$ for all x in the interval $[0, \pi]$. We know that $b=\pi$ and $a=0$, so $\Delta x=(b-a) / n=\pi / 20$. The main question is how to find a value for K. First we differentiate $f(x)=x^{4}+\sin (2 x)$:

$$
\begin{aligned}
f^{\prime}(x) & =4 x^{3}+2 \cos (2 x), & f^{\prime \prime \prime}(x) & =24 x-8 \cos (2 x), \\
f^{\prime \prime}(x) & =12 x^{2}-4 \sin (2 x), & f^{(4)}(x) & =24+16 \sin (2 x) .
\end{aligned}
$$

The largest value that $\sin (2 x)$ ever takes is ± 1. Therefore $\left|f^{(4)}(x)\right|=$ $|24+16 \sin (2 x)|$ is never larger than $24+16=40$, and we can take $K=40$. The worst-case error is therefore

$$
\frac{40 \pi}{180}(\pi / 20)^{4}=\frac{40 \pi^{5}}{180 \cdot 20^{4}}
$$

[This can be simplified to $\pi^{5} / 720000$, or about 0.000425 by calculator.]
d. (8 pts) Let Z be a continuous random variable with a standard normal distribution. Recall that the probability density function of Z is

$$
f(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}}
$$

Suppose we define a new function $H(x)$ in terms of the probability

$$
H(x)=\operatorname{Pr}\left(-x^{2}<Z<x^{2}\right)
$$

Find a formula for $H^{\prime}(x)$. Your final answer must not contain any derivative or integral signs.
Solution: The key here is that since $f(x)$ is the PDF of Z, we know that $\operatorname{Pr}(a<Z<b)=\int_{a}^{b} f(x) d x$ for any a and b, so in particular

$$
H(x)=\operatorname{Pr}\left(-x^{2}<Z<x^{2}\right)=\int_{-x^{2}}^{x^{2}} f(t) d t
$$

(We changed the integration variable to t to prevent confusing it with the x appearing the limits.) There's no convenient formula for the CDF $F(x)$, but we can still use the Fundamental Theorem of Calculus to write $H(x)$ in terms of $F(x)$:

$$
H(x)=F\left(x^{2}\right)-F\left(-x^{2}\right)
$$

By the chain rule,

$$
H^{\prime}(x)=F^{\prime}\left(x^{2}\right)(2 x)-F^{\prime}\left(-x^{2}\right)(-2 x)=2 x F^{\prime}\left(x^{2}\right)+2 x F^{\prime}\left(-x^{2}\right) .
$$

But we know that $F^{\prime}(x)=f(x)$ (this is the definition of the PDF), so

$$
\begin{aligned}
H^{\prime}(x)=2 x f\left(x^{2}\right)+2 x f\left(-x^{2}\right) & =2 x \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}\left(x^{2}\right)^{2}}+2 x \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}\left(-x^{2}\right)^{2}} \\
& =\frac{4 x}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{4}}
\end{aligned}
$$

Since there are no integrals or derivatives in this expression, we're done.
e. (8 pts) Consider the improper integral

$$
\int_{-1}^{8} x^{-5 / 3} d x
$$

Determine whether this integral converges or diverges. If it converges, then calculate its value.
Solution: This integral is improper because the integrand $x^{-5 / 3}$ is undefined at $x=0$, and the interval of integration includes this point. To properly compute the integral, we split it into two parts

$$
\int_{-1}^{0} x^{-5 / 3} d x+\int_{0}^{8} x^{-5 / 3} d x=\lim _{b \rightarrow 0^{-}} \int_{-1}^{b} x^{-5 / 3} d x+\lim _{a \rightarrow 0^{+}} \int_{a}^{8} x^{-5 / 3} d x
$$

Let's study the first of these two limits: the antiderivative of $x^{-5 / 3}$ is $-\frac{3}{2} x^{-2 / 3}$, so the first limit is equal to

$$
\lim _{b \rightarrow 0^{-}} \int_{-1}^{b} x^{-5 / 3}=\lim _{b \rightarrow 0^{-}}\left(-\left.\frac{3}{2} x^{-2 / 3}\right|_{x=-1} ^{b}\right)=\lim _{b \rightarrow 0^{-}}\left(-\frac{3}{2} b^{-2 / 3}+\frac{3}{2}\right)
$$

As $b \rightarrow 0$ from the left, $b^{-2 / 3}$ gets larger and larger, so the limit does not exist (this is true regardless of which direction we approach $b=0$). Therefore the first half of the integral diverges, and this is enough to make the entire improper integral divergent.
[If we had checked the second half of the integral, we would also have found that it diverges for much the same reason.]
f. (10 pts) Calculate the following integral using a suitable trigonometric substitution:

$$
\int \frac{d x}{x^{2} \sqrt{x^{2}-1}}
$$

Simplify your final answer so that it doesn't contain any trigonometric functions.

Solution: The presence of $x^{2}-1$, especially inside a square root, strongly suggests the substitution $x=\sec \theta$, so that we can make use of the identity $\sec ^{2} \theta-1=\tan ^{2} \theta$. To make the substitution, we compute $d x=\sec \theta \tan \theta d \theta$, so that

$$
\int \frac{d x}{x^{2} \sqrt{x^{2}-1}} d x=\int \frac{\sec \theta \tan \theta d \theta}{\sec ^{2} \theta \sqrt{\sec ^{2} \theta-1}}=\int \frac{\sec \theta \tan \theta d \theta}{\sec ^{2} \theta \tan \theta}=\int \frac{d \theta}{\sec \theta}
$$

To solve this new integral, it's easy to see that $1 / \sec \theta=\cos \theta$, so

$$
\int \frac{d \theta}{\sec \theta}=\int \cos \theta d \theta=\sin \theta+C=\sin \left(\sec ^{-1} x\right)+C
$$

We're almost done, but we need to simplify $\sin \left(\sec ^{-1} x\right)$ to eliminate the trig functions. The quickest way to do this is to label a right triangle with angle θ so that the hypotenuse is x and adjacent side is 1 (since $\sec \theta=\mathrm{hyp} / \mathrm{adj}$). This means the opposite side is $\sqrt{x^{2}-1}$, and we can then use $\sin \theta=\mathrm{opp} / \mathrm{hyp}=\frac{\sqrt{x^{2}-1}}{x}$.
Here's a different, algebraic approach to simplifying: since $x=\sec \theta=$ $1 / \cos \theta$, we have $\cos \theta=1 / x$, and so $\sin \theta=\sqrt{1-(1 / x)^{2}}$. Therefore

$$
\sin \left(\sec ^{-1} x\right)+C=\sqrt{1-(1 / x)^{2}}+C=\frac{\sqrt{x^{2}-1}}{x}+C
$$

Question 2

(15 pts) Compute the definite integral

$$
\int_{0}^{\pi / 2}\left(\sin ^{3} x\right) e^{\cos x} d x
$$

Solution: We first make the substitution $u=\cos x$. This is the only way to reduce the complexity of the expression $e^{\cos x}$. To carry out the substitution, we compute $d u=-\sin x d x$, and adjust the endpoints: $x=0$ means $u=1$, and $x=\pi / 2$ means $u=0$. So then

$$
\begin{aligned}
\int_{0}^{\pi / 2}\left(\sin ^{3} x\right) e^{\cos x} d x & =\int_{1}^{0}-\left(\sin ^{3} x\right) e^{\cos x} \frac{1}{\sin x} d u \\
& =\int_{1}^{0}-\left(\sin ^{2} x\right) e^{\cos x} d u=\int_{0}^{1}\left(\sin ^{2} x\right) e^{\cos x} d u \\
& =\int_{0}^{1}\left(1-\cos ^{2} x\right) e^{u} d u=\int_{0}^{1}\left(1-u^{2}\right) e^{u} d u
\end{aligned}
$$

The substitution is done, but now we need to integrate by parts (we could expand the product first, but it won't make it any easier or harder). Instead of u and $d v$ we'll call the two parts s and $d t$, since u is already taken:

$$
\begin{align*}
s & =1-u^{2} \\
t & =e^{u} \\
d t & =e^{u} d u \tag{2}\\
d s & =-2 u d u \\
\int_{0}^{1}\left(1-u^{2}\right) e^{u} d u & =\left.\left(1-u^{2}\right) e^{u}\right|_{u=0} ^{1}+\int_{0}^{1} 2 u e^{u} d u
\end{align*}=-1+2 \int_{0}^{1} u e^{u} d u . ~ \$
$$

To evaluate this new integral, we integrate by parts once more:

$$
\begin{array}{cc}
s=u & d t=e^{u} d u \\
t=e^{u} & d s=d u \\
\int_{0}^{1} u e^{u} d u=\left.u e^{u}\right|_{u=0} ^{1}-\int_{0}^{1} e^{u} d u=e-\left(\left.e^{u}\right|_{u=0} ^{1}\right)=e-(e-1)=1
\end{array}
$$

Plugging this back into (2) gives

$$
\int_{0}^{1}\left(1-u^{2}\right) e^{u} d u=-1+2(1)=1
$$

and this is equal to the integral we started with. So the final answer is 1.

Question 3

A certain continuous random variable X is known to have a cumulative distribution function of the form

$$
F(x)= \begin{cases}a, & \text { if } x<0 \\ \frac{1}{2} x^{2}+k x, & \text { if } 0 \leq x \leq 1 \\ b, & \text { if } x>1\end{cases}
$$

where a, b, and k are constants.
a. (6 pts) Determine the exact values of a, b, and k using the fact that $F(x)$ is the CDF of the continuous random variable X.
Solution: Since $\lim _{x \rightarrow-\infty} F(x)=0$ for any CDF and for this F we have $\lim _{x \rightarrow-\infty} F(x)=a$, we must have $a=0$. Similarly, $\lim _{x \rightarrow-\infty} F(x)=b$, so $b=1$. Finally, we need $F(x)$ to be continuous: so $\lim _{x \rightarrow 1^{-}} F(x)=$ $\frac{1}{2}+k$ must agree with $\lim _{x \rightarrow 1^{+}} F(x)=b=1$. Therefore $k=\frac{1}{2}$.
b. (6 pts) What is the expected value of X ?

Solution: First we calculate the PDF of X by differentiating $F(x)$:

$$
f(x)= \begin{cases}0, & \text { if } x<0 \\ x+\frac{1}{2}, & \text { if } 0<x<1 \\ 0, & \text { if } x>1\end{cases}
$$

With PDF in hand, we can now easily calculate $\mathbb{E}(X)$ by the standard formula (note that $f(x)$ is exactly 0 unless x is between 0 and 1):

$$
\begin{aligned}
\mathbb{E}(X) & =\int_{-\infty}^{\infty} x f(x) d x=\int_{0}^{1} x f(x) d x=\int_{0}^{1} x\left(x+\frac{1}{2}\right) d x \\
& =\int_{0}^{1} x^{2}+\frac{1}{2} x d x=\frac{1}{3} x^{3}+\left.\frac{1}{4} x^{2}\right|_{x=0} ^{1}=\frac{1}{3}+\frac{1}{4}-0=\frac{7}{12}
\end{aligned}
$$

c. $(8 \mathrm{pts})$ What is the the standard deviation of X ?

Solution: To calculate $\sigma(X)$, it is always easier to first calculate the variance $\operatorname{Var}(X)=\mathbb{E}\left(X^{2}\right)-\mathbb{E}(X)^{2}$. We already found $\mathbb{E}(X)$ in part (b), so let's start by finding

$$
\begin{aligned}
\mathbb{E}\left(X^{2}\right) & =\int_{-\infty}^{\infty} x^{2} f(x) d x=\int_{0}^{1} x^{2} f(x) d x=\int_{0}^{1} x^{2}\left(x+\frac{1}{2}\right) d x \\
& =\int_{0}^{1} x^{3}+\frac{1}{2} x^{2} d x=\frac{1}{4} x^{4}+\left.\frac{1}{6} x^{3}\right|_{x=0} ^{1}=\frac{1}{4}+\frac{1}{6}-0=\frac{5}{12}
\end{aligned}
$$

So that gives

$$
\operatorname{Var}(X)=\mathbb{E}\left(X^{2}\right)-\mathbb{E}(X)^{2}=\frac{5}{12}-\left(\frac{7}{12}\right)^{2}=\frac{5 \cdot 12-7^{2}}{12 \cdot 12}=\frac{11}{12 \cdot 12}
$$

Finally, we get the standard deviation of X by taking the square root:

$$
\sigma(x)=\sqrt{\operatorname{Var}(X)}=\sqrt{11} / 12 \text {. }
$$

Question 4

(15 pts) Find the solution of the differential equation

$$
\frac{d y}{d t}=e^{y-\ln t}
$$

that satisfies the initial condition $y(1)=-1$.
Solution: We first look for the general solution to the differential equation $\frac{d y}{d t}=e^{y-\ln t}$. To separate y and t, we rewrite $e^{y-\ln t}$ as a product, namely

$$
\frac{d y}{d t}=e^{y-\ln t}=e^{y} e^{-\ln t}=\frac{e^{y}}{t} .
$$

Now it's easy to separate the y 's and t 's, by multiplying both sides by $e^{-y} d t$:

$$
e^{-y} d y=\frac{d t}{t}
$$

After taking integrals, this becomes

$$
-e^{-y}=\int e^{-y} d y=\int \frac{d t}{t} d t=\ln |t|+C
$$

At this point we could identify the constant C using the initial condition: when $t=1$ we must have $y=-1$, so

$$
-e^{1}=\ln |1|+C=C \Longrightarrow C=-e .
$$

We now finish the job by isolating for y :

$$
\begin{aligned}
e^{-y}=-\ln |t|-C & =e-\ln |t|, \\
-y & =\ln (e-\ln |t|), \\
y & =-\ln (e-\ln |t|) .
\end{aligned}
$$

So the solution is given by $y(t)=-\ln (e-\ln |t|)$.
Warning: Don't be fooled into thinking this is the same as $-\ln e+\ln \ln |t|$; that would be $-\ln (e / \ln |t|)$, which is quite different from $-\ln (e-\ln |t|)$!

